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Abstract
This paper analyzes the generalization error of minimum-norm interpolating solutions in linear
regression using spiked covariance data models. The paper characterizes how varying spike strengths
and target-spike alignments affect risk, especially in overparameterized settings. The study presents
an exact expression for the generalization error, leading to a comprehensive classification of benign,
tempered, and catastrophic overfitting regimes based on spike strength, the aspect ratio c = d/n
(particularly as c → ∞), and target alignment. Notably, in well-specified aligned problems,
increasing spike strength can surprisingly induce catastrophic overfitting before achieving benign
overfitting. The paper also reveals that target-spike alignment is not always advantageous, identifying
specific, sometimes counterintuitive, conditions for its benefit or detriment. Alignment with the
spike being detrimental is empirically demonstrated to persist in nonlinear models.
Keywords: Generalization, Random Matrix Theory, Spiked Covariance, Benign/Tempered/Catastrophic
Overfitting

1. Introduction

Understanding the generalization error of overparameterized models is a central challenge in modern
machine learning. Phenomena such as double descent [7, 16] and benign overfitting [6, 21, 32] have
spurred research underscoring the critical role of the data’s spectral structure [6, 15, 16, 18, 24, 31–
33]. The spiked covariance model is one commonly considered spectral structure [12]. In this model,
the data matrix X = Z+A ∈ Rd×n, comprising n data points in Rd , is decomposed into a rank-one
signal component (“spike”) Z and an isotropic noise component (“bulk”) A. Spiked covariance
models emerge naturally in practice, for instance, in the features learned by neural networks during
training [1, 2, 13, 14, 23, 26, 34]. While recent studies have examined benign overfitting in spiked
models [2, 18], they lack a systematic taxonomy spanning spike strength, target–spike alignment,
model misspecification, and train–test covariate shift. This paper closes the gap for linear regression.

This work explores how general spike sizes and target alignments affect generalization error in
least squares linear regression. We address two fundamental questions:

• Q1: For a fixed aspect ratio c = d/n, in asympototic proportional regime under what conditions
does alignment of the target signal with the data spike improve or impair generalization?

• Q2: In the high-dimensional limit where c → ∞, when do we observe benign, tempered, or
catastrophic overfitting regimes?

Contributions We present precise characterization of the generalization performance of minimum-
norm interpolating solutions in linear regression. Our exact risk decomposition pinpoints conditions
for transitions between benign and catastrophic overfitting. This reveals alignment-dependent
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phenomena obscured by isotropic theories, clarifying how signal structure, data scaling, and overpa-
rameterization shape generalization.

Notation The subscript on o,O, ω,Ω,Θ will denote which quantity is being sent to infinity.

2. Problem Setting

We study the generalization of minimum-norm interpolators in high-dimensional linear regression.
Using a spiked covariance data model, we quantify how spike strength and alignment influence
generalization and the emergence of benign, tempered, or catastrophic overfitting.

Data Model. We consider a data matrix X = Z + A ∈ Rd×n with signal component Z and
isotropic noise component A that satisfy the following assumptions. Specifically, we shall that the
population feature covariance is Σ = θ2uuT + τ2Id, modeling a rank-one perturbation of isotropic
noise.

Assumption 1 (Signal) Let u ∈ Rd be a fixed unit vector representing the spike direction. Then

Z = θ · uvT , (1)

where θ > 0 controls the spike strength, and the vector v ∈ Rn has i.i.d. standard normal entries.

Assumption 2 (Noise) The entries of A have zero mean and variance τ2. The matrix A satisfies:
• Its entries are uncorrelated and possess finite fourth moments.
• Its distribution is invariant under left and right orthogonal transformations.
• The empirical spectral distribution of 1

τ2d
AAT converges to the Marchenko–Pastur law as n, d →

∞ with d/n → c ∈ (0,∞).

Spike Strength Normalizations. We consider two key scaling regimes for the spike strength
relative to the bulk noise. These lead to distinct generalization behaviors.
1) Operator Norm Scaling (θ2 = γτ2): Here γ tunes the spike strength θ2 relative to the noise

variance τ2. When γ = (1 +
√
c)2, the spectral norm of the signal component Z is comparable

to that of the noise component A. If γ > (1 +
√
c)2, the spike emerges as an isolated eigenvalue

beyond the bulk spectrum established by A, a phenomenon known as the Baik–Ben Arous–Péché
(BBP) transition [5]. This scaling reflects spikes in learned neural network features [1, 26].

2) Frobenius Norm Scaling (θ2 = dτ2): Here θ2 = dτ2 matches expected signal and noise
Frobenius norms (E[∥Z∥2F ] = E[∥A∥2F ]) and the spike has macroscopic proportion of the energy.
Such strong signals can lead to improved sample complexity, potentially overcoming limitations
observed in purely isotropic models [2, 24].
Target Model. Given xi = zi + ai, the targets y are obtained as follows:

yi = αZz
T
i β∗ + αAa

T
i β∗ + εi, (2)

where β∗ ∈ Rd is the true underlying parameter vector with ∥β∗∥ = Θ(1). The terms zi and ai
are the i-th columns of Z and A respectively. The observation noise εi are i.i.d. with E[εi] = 0,
E[ε2i ] = τ2ε . The coefficients αZ , αA ∈ R control the target’s dependence on the signal and noise
components. If αZ ̸= αA, the true data generating process for y differentially weights components
of xi, causing model misspecification for estimators unaware of this structure.
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Generalization Risk. We study the minimum-norm interpolating ordinary least squares estimator:
βint = X†y, with ŷ = (z̃ + ã)βint , where X† denotes the Moore–Penrose pseudoinverse. Given
a new test data points (x̃, ỹ), where x̃ = z̃ + ã and targets ỹ = α̃Z z̃

Tβ∗ + α̃Aã
Tβ∗ + ε̃ with

potentially with different coefficients α̃Z , α̃A, the generalization risk is defined as the expected
squared prediction error:

R(βint) = EX,ε,{x̃,ε̃}
[
(ỹ − ŷ)2

]
. (3)

The expectation is over the training data (X, ε) and the test data realization ({x̃, ε̃}). We shall denote
the asymptotic excess risk in the proportional regime as follows:

Rc = lim
n,d→∞, d/n→c

R(βint)− τ2ε .

Remark 1 (Generalizing Prior Work) This problem formulation encompasses several existing
models as special cases. For instance, isotropic regression settings studied in [16] are recovered
by setting θ = 0 (no spike) and αZ = 0. Spike recovery models, such as in [31], correspond to
specific choices like τ2 = 1/d, τ2ε = 0, and αA = 0. Our generalized setup allows for a nuanced
investigation of the interplay between signal structure, target alignment, and overparameterization.

Quantifying the Benefit of Alignment. A key aspect of our investigation is to determine when
the alignment of the true parameter vector β∗ with the data’s principal spike direction u is beneficial
for generalization. We define alignment as beneficial if the generalization risk R(βint) (or Rc), is
monotonically decreasing as a function of (βT

∗ u)
2 ∈ [0, 1]. Conversely, alignment is detrimental if

the risk is a monotonically increasing function of (βT
∗ u)

2.
Characterizing Overfitting Regimes. Following [6, 21], we classify the asymptotic behavior of

the excess risk, Rc as c → ∞ as benign, tempered or catastrophic. We say the overfitting is benign if
limc→∞Rc is zero, tempered if this limit is positive and finite, catastrophic if this limit is infinite.

3. Theoretical Results

Our core theoretical contribution is a precise analytical formula for excess risk in the spiked covari-
ance model. This result relies on Assumption 3, which encompasses both the operator norm scaling
(θ2 = γτ2) and Frobenius norm scaling (θ2 = dτ2) regimes. We develop our general risk theorem by
analyzing progressively complex scenarios. Specifically, our forthcoming theorems provide specific
conditions for benign, tempered, or catastrophic overfitting (as c → ∞), and determine when, for
finite c, alignment of β∗ with spike u is beneficial or detrimental. In the main text, we only present
the well specified case, the rest, including the mis-specified case, the general theorem, and extension
to nonlinear cases, can be found in the appendix.

Assumption 3 (Scaling) As n, d → ∞ with d/n → c ∈ (0,∞), we assume that θ2 and τ2 satisfy
Ω(τ2) ≤ θ2 ≤ O(dτ2) and Ω

(
1
d

)
≤ τ2 ≤ O(1).

3.1. Well Specified Problem

We begin by analyzing the well-specified case, where the target y is a direct linear function of the
observed covariates X = Z +A. This scenario is realized by setting:

αZ = αA = α̃Z = α̃A = α > 0.

Consequently, yi = αxTi β∗ + εi, and the model is properly specified.
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(a) Operator norm scaling (θ2 = cτ2). Alignment
can initially improve generalization for small c, but
may lead to catastrophic overfitting as c → ∞. Anti-
alignment typically yields tempered risk.

(b) Equal Frobenius norm scaling (θ2 = dτ2). Align-
ment leads to benign overfitting, while anti-alignment
results in tempered risk.

Figure 1: Excess error vs. overparameterization ratio c = d/n in the well-specified case. Each plot
shows the risk for aligned and anti-aligned targets under different spike scaling regimes. The scatter
plots are empirically obtained and the lines are theory.

Theorem 2 (Well-Specified Risk) Given data (X, y) and (X̃, ỹ) generated according to Assump-
tions 1 (Signal), 2 (Noise), Equation 2 (Target Model), and Assumption 3 (Scaling). If the well-
specification condition αZ = αA = α̃Z = α̃A = α > 0 holds, the asymptotic excess risk Rc is
given by:

Rc =

{
τ2ε

c
1−c if c < 1

τ2ε
1

c−1 + α2τ2
(
1− 1

c

) [
∥β∗∥2 + (βT

∗ u)
2 θ2τ2c2−2θ2τ2c−θ4

(θ2+τ2c)2

]
if c > 1

where u is the unit vector defining the spike direction.

Remark 3 If θ2 = γτ2 with γ = o(1) (a regime not allowed by Assumption 3 but useful for sanity
checks), the coefficient of (βT

∗ u)
2 vanishes, the risk expression aligns with that of isotropic models,

such as in [16, Theorem 1].

Operator Norm Scaling (θ2 = γτ2). In this regime, where the spike strength θ2 is γτ2, the
excess risk for c > 1 becomes:

Rc = α2τ2
(
1− 1

c

)(
∥β∗∥2 +

γc2 − 2γc− γ2

(γ + c)2
(βT

∗ u)
2

)
+ τ2ε

1

c− 1
.

The formula shows that alignment with the spike direction u is beneficial if and only if the coefficient
of (βT

∗ u)
2 is negative, which occurs when γ > c(c− 2). We consider different scalings for γ.

Case 1: γ = Θc(1) (constant with respect to c). The condition for beneficial alignment,
γ > c(c − 2), interacts intricately with the BBP phase transition condition, γ > (1 +

√
c)2. Let

c∗ ≈ 4.212 be the unique solution to c(c− 2) = (1 +
√
c)2 for c > 1.
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• For 1 < c < c∗: Here, c(c − 2) < (1 +
√
c)2. If γ is in the range c(c − 2) < γ < (1 +

√
c)2,

alignment is beneficial even though the BBP transition has not occurred (the spike is not resolved
from the bulk).

• For c > c∗: Here, c(c − 2) > (1 +
√
c)2. For alignment to be beneficial (γ > c(c − 2)), the

BBP transition must have occurred (as γ > c(c− 2) =⇒ γ > (1 +
√
c)2). However, the BBP

transition occurring is not sufficient for beneficial alignment. If (1 +
√
c)2 < γ < c(c− 2), the

BBP transition occurs, yet alignment is detrimental.

Regarding the type of overfitting as c → ∞ (while γ remains constant):

lim
c→∞

Rc = α2 τ2
(
∥β∗∥2 + γ(βT

∗ u)
2
)
.

Since this limit is a positive constant, we consistently observe tempered overfitting when γ = Θc(1).
Case 2: γ = ωc(1) (γ grows with c). The behavior depends on the growth rate of γ relative to c.

The limit of the excess risk for βT
∗ u ̸= 0 as c → ∞ is:

lim
c→∞

Rc = α2τ2 ·


∞ if ωc(1) ≤ γ ≤ oc(c)

∥β∗∥2 + ( 1ϕ − 1)(βT
∗ u)

2 if γ = ϕc2 for const. ϕ > 0

∥β∗∥2 − (βT
∗ u)

2 if γ = ωc(c
2)

Surprisingly, while γ = Θc(1) gives tempered overfitting, increasing spike strength to ωc(1) ≤ γ ≤
oc(c

2) results in catastrophic overfitting, even though morally, this version of the problem has less
noise. Additionally, we see that this catastrophic overfitting is not present in the anti-aligned (βT

∗ u)
case. More, aligned with intuition, we see that further increasing the size of the spike improves
the generalization performance. Specifically, we get tempered overfitting if γ = ϕc2 and benign
overfitting if γ = ωc(c

2), β∗ ∥ u and ∥β∗∥ = 1.
For γ = c, the (βT

∗ u)
2 coefficient is (c− 3)/4. Thus, for 1 < c < 3, alignment is beneficial and

for c > 3, alignment becomes detrimental. As c → ∞, if β∗ ∥ u, the excess risk grows approximately
as α2τ2 c

4(β
T
∗ u)

2, indicating catastrophic overfitting. In contrast, if β∗ ⊥ u, the excess risk grows
like α2τ2(1− 1/c)∥β∗∥2, leading to tempered overfitting. This transition is illustrated in Figure 1a.

Frobenius Norm Scaling (θ2 = dτ2). The excess risk for c > 1 simplifies to:

Rc>1 = α2τ2
(
1− 1

c

)(
∥β∗∥2 − (βT

∗ u)
2
)
+ τ2ε

1

c− 1
.

We have a few observations. First, if β∗ ∥ u and ∥β∗∥ = 1, the excess risk Rc tends to 0 as c → ∞
(benign overfitting). Second, if β∗ is not perfectly aligned with u, Rc → α2τ2(∥β∗∥2− (βT

∗ u)
2) > 0

as c → ∞ (tempered overfitting). Finally, the coefficient of (βT
∗ u)

2 in the risk formula is negative.
Hence, in contrast with the operator norm regime, alignment is always beneficial in this regime for
c > 1, and we visualize these behaviors in Figure 1b.

Takeaways for the Well-Specified Case. Spike scaling profoundly impacts overfitting, especially
with target alignment. For aligned targets, increasing spike strength can drive transitions from
tempered → catastrophic → tempered → benign overfitting, while anti-alignment (β∗ ⊥ u) can
mitigate catastrophic overfitting. Additionally, alignment with the spike is not always beneficial.
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Appendix A. Detailed Contributions & Related Works

Our primary contributions are as follows:
• Precise Risk Characterization: We derive an exact generalization error decomposition (Theo-

rem 7) into interpretable bias, variance, data noise, and alignment terms.
• Comprehensive Categorization of Overfitting Regimes: We precisely classify benign, tempered,

or catastrophic overfitting regimes based on spike strength, overparameterization (c = d/n), and
target alignment (Table 1). Surprisingly, for well-specified aligned problems, increasing spike
strength can induce catastrophic overfitting before achieving benign overfitting. Misspecified
problems show distinct transitions, often precluding benign overfitting.

• Conditions for Beneficial Alignment: Challenging conventional wisdom, we show spike align-
ment is not always beneficial and depends on spike strength meeting critical thresholds (Table 2).
For misspecified problems, beneficial alignment requires αZ/αA in a specific, non-trivial range.
Counterintuitively, very strong spike dependence (αZ/αA) can render alignment detrimental.

• Empirical Validation: 1 Empirical validation confirms our theoretical phenomena, including
surprising negative alignment impacts, persist in nonlinear models, underscoring broader relevance.

Benign Overfitting in Linear Regression. Significant research has explored benign overfitting
in linear regression [6, 10, 11, 17, 19–21, 28, 30, 32, 35]. Many studies assume a uniformly
bounded largest covariance eigenvalue or lack precise characterizations of its interplay with target
alignment and generalization. Our work allows this eigenvalue to grow, offering precise performance
characterizations based on this growth and alignment. While Kausik et al. [18] considers spiked
models, their focus is on noiseless, well-specified scenarios with specific spike scaling. Our analysis
is broader, encompassing observation noise, misspecification, and general spike scaling.

Many prior works[17, 30, 32] on benign overfitting with low-rank signals plus isotropic noise
require near-orthogonality between signal and noise, sometimes imposing strong conditions like
d = Ω(n2 log n). We instead consider the proportional regime d/n → c = Θ(1), subsequently
examining c → ∞. This setting is morally similar to allowing d = ω(n) and aligns with approaches
like [17] which, for classification, shows misclassification probability can be upper bounded by
Ce−d/n, vanishing as d/n → ∞.

Generalization Error with Spiked Covariance. While recovering spike properties [8, 9, 18,
29, 31] and analyzing generalization error in spiked models [1, 2, 26, 27] are active research areas,
existing analyses often characterize generalization implicitly (e.g., via fixed-point equations) or
focus on specific spike strengths/alignments. In contrast, we provide explicit, generic formulae
for generalization error, enabling precise categorization of overfitting regimes and conditions for
beneficial spike alignment.

Appendix B. Misspecified Cases & Summary

B.1. Mis-Specified Case and no Covariate Shift

We next consider misspecified targets y with differing dependence on spike Z and noise A feature
components. Specifically, we assume αZ ̸= αA but introduce no covariate shift between training
and test distributions, i.e., α̃Z = αZ and α̃A = αA. This scenario models situations where intrinsic

1. Our code is available at the anonymous GitHub repository: link

10

https://anonymous.4open.science/r/Alignment-Spike-45B6/Equal_Operator_Norm.ipynb


ALIGNMENT DRIVEN BENIGN AND CATASTROPHIC OVERFITTING

(a) Under operator norm scaling (θ2 = cτ2) with
αZ = 1, αA = 2, alignment initially improves gen-
eralization for small c, but becomes harmful beyond
a critical point, leading to catastrophic overfitting.

(b) Under Frobenius norm scaling (θ =
√
dτ ) with

αA = 1 and αZ = 1.1, alignment remains better than
anti-alignment across all c, but benign overfitting is
not achieved unless αZ = αA.

Figure 2: Transition from beneficial to harmful alignment under mild misspecification. The scatter
plots are empirically obtained and the lines are theory.

feature properties lead to differential correlations with the target, a common occurrence in practice.
For notational convenience, we define ∆c := αZ − αA

c with ∆1 := αZ − αA.

Theorem 4 [Misspecified] Given data Z, Z̃ that satisfy Assumption 1, A, Ã that satisfy Assump-
tion 2 and y, ỹ according to Equation (2). If Assumption 3 holds with αZ = α̃Z , and αA = α̃A, then
we have that

Rc =


τ2ε

c
1−c + τ2 (βT

∗ u)
2 ∆2

1
1−c

θ2

θ2+τ2
c < 1

τ2ε
1

c−1 + α2
Aτ

2∥β∗∥2
(
1− 1

c

)
+ τ2 (βT

∗ u)
2∆2

c
θ2

θ2+τ2c

[
c

c−1
θ2+τ2c2

θ2+τ2c
− 2αA

∆c

]
c > 1

A key observation is that misspecification (αZ ̸= αA) can itself induce double descent, even
if τ2ε = 0. This contrasts with the well-specified case where, if τ2ε = 0, double descent is absent.
However, in the misspecified case, we do not observe double descent if there is no alignment
βT
∗ u = 0.

Equal Operator Norm Case. For θ2 = γτ2, the excess risk is

R =

τ2(βT
∗ u)

2 ∆2
1

1−c
γ

γ+1 + τ2ε
c

1−c c < 1

τ2 γ
γ+c(β

T
∗ u)

2∆2
c

[(
c2+γ
γ+c

c
c−1

)
− 2αA

∆c

]
+ α2

Aτ
2∥β∗∥2

(
1− 1

c

)
+ τ2ε

1
c−1 c > 1

For c < 1, the spike is detrimental. For c > 1, the behavior depends on αZ/αA. In particular, if

1

c
≤ αZ

αA
≤ 1

c

(
3c2 − γ + 2cγ − 2c

(c2 + γ)

)
,

then we have that the coefficient in front of (βT
∗ u)

2 is negative. Thus, when αZ/αA lies between
these thresholds, the spike helps, but the spike is harmful outside this range. As c → ∞, if γ = oc(c

2),

11
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the beneficial region shrinks and alignment increasingly harms generalization. On the other hand,
if the spike is big enough (γ = ωc(c

2)), we have that the beneficial region limits to 0 ≤ αZ
αA

≤ 2.
Figures 3a and 3b plot the coefficient of (βT

∗ u)
2 for c = 2 and c = 20 for γ = c.

The upper bound on beneficial αZ/αA is surprising, as stronger target dependence on the
spike might be expected to always favor alignment. Additionally, the dependence on the level of
overparameterization c also offers new insights. Consider the example of γ = c, and αZ/αA = 2.
Then when c < 2 or c > (9 +

√
57)/2, we have that the ratio is outside the beneficial region.

Figure 2a shows that in the beneficial region, the aligned risk is lower than the anti-aligned risk.
However, outside the beneficial region, the aligned risk becomes strictly larger than the anti-aligned
counterpart.

Next, in terms of benign vs. tempered vs. catastrophic overfitting, we have that

lim
c→∞

Rc =



τ2
[
γα2

Z(β
T
∗ u)

2 + α2
A∥β∗∥2

]
β∗ ̸⊥ u, γ = Θc(1)

∞ β∗ ̸⊥ u, ωc(1) ≤ γ ≤ oc(c
2)

τ2
[
α2
A∥β∗∥2 +

(
α2
Z

(
1 + 1

ϕ

)
− 2αZαA

)
(βT

∗ u)
2
]

β∗ ̸⊥ u, γ = ϕc2

τ2(α2
A∥β∗∥2 + (α2

Z − 2αZαA)(β
T
∗ u)

2) β∗ ̸⊥ u, γ = ωc(c
2)

α2
Aτ

2∥β∗∥2 β∗ ⊥ u

For β∗ ̸⊥ u, if ωc(1) ≤ γ ≤ oc(c
2) we have catastrophic overfitting. If γ = Θc(c

2), overfitting is
tempered, with benign overfitting precluded (Appendix Proposition 1). If γ = ωc(c

2), overfitting is
again tempered with benign requiring returning to the well-specified case (αA = αZ).

Equal Frobenius Norm Case. For θ2 = dτ2, the excess risk becomes:

Rc>1 = α2
A∥β∗∥2

(
1− 1

c

)
+ (βT

∗ u)
2

[
c

c− 1

(
αZ − αA

c

)2
− 2αA

(
αZ − αA

c

)]
+

τ2ε
c− 1

.

For c > 1, the beneficial region for the ratio αZ/αA is defined by:

1

c
≤ αZ

αA
≤ 2− 1

c
.

The beneficial region expands with c, making alignment increasingly beneficial in extreme overpa-
rameterization (Figure 3c). Beneficial alignment can also be seen in Figure 2b. Here αZ/αA = 1.1,
which is in the beneficial region for c > 10/9. Finally, the overfitting is tempered unless αA = αZ .

B.2. Misspecified Target and Covariate Shift

Lastly, we consider the most challenging setting, where in addition to misspecifation, we also have
covariate shift between train and test. Specifically, αZ ̸= α̃Z or αA ̸= α̃A, hence we have the
spike/noise importance differ between train and test.

Equal Operator Norm. In this case, we show the following.

Theorem 5 Given data Z, Z̃ that satisfy Assumption 1, A, Ã that satisfy Assumption 2 and y, ỹ
according to Equation (2). If Assumption 3 holds, catastrophic overfitting occurs if α̃Z = αZ ,
β∗ ̸⊥ u, and ωc(1) ≤ γ ≤ oc(c

2). Additionally, if α̃Z ̸= αZ with γ = ωc(1) and β∗ ̸⊥ u we get
catastrophic overfitting. Other scenarios yield tempered overfitting.

12
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(a) Operator norm scaling, c =
2. Here there is a large beneficial
region.

(b) Operator norm scaling, c =
20. Here the beneficial region has
shrunk

(c) Frobenius norm scaling, c =
1000. The beneficial region persists
at extreme overparameterization.

Figure 3: Phase boundaries for spike alignment impact. Coefficient of (βT
∗ u)

2 as a function of
αZ/αA, indicating whether alignment improves or harms generalization.

Again, spike size and overfitting type show nuanced dependence. Additionally, different covariate
shifts pose varying challenges. Specifically, if αZ ̸= α̃Z , (target’s spike dependence shifts), then
catastrophic overfitting becomes unavoidable for sufficiently large spikes. That is unlike before,
increasing the spike size does not mitigate catastrophic overfitting as it did before.

Equal Frobenius Norm. In this case, we have the following.

Theorem 6 Given data Z, Z̃ that satisfy Assumption 1, A, Ã that satisfy Assumption 2 and y, ỹ
according to Equation (2). If Assumption 3 holds and αZ ̸= α̃Z then Rc = ∞ for all c ̸= 1. For
αZ = α̃Z , we have that

lim
c→∞

Rc = τ2
[
(βT

∗ u)
2(α2

Z − 2α̃AαZ) + ∥β∗∥2α̃2
A

]
.

Thus, if αZ ̸= α̃Z , catastrophic overfitting is pervasive. When β∗ and u are parallel, we have that

τ2∥β∗∥2(αZ − α̃A)
2

This is benign if and only if αZ = α̃A. Notably, if training data is misspecified (αA ̸= αZ) but
test data is well-specified and matches the training spike dependence (αZ = α̃Z = α̃A), benign
overfitting becomes achievable.

Tables 1 and 2 provide a summary of our observations.

Appendix C. General Theorem & Extension to Nonlinear Models

C.1. General Theorem

Prior results are special cases of our main theorem (Theorem 7). Its full form is complex (Ap-
pendix G). We present a high-level decomposition here.

Theorem 7 (Generalization Risk) Suppose Assumption 1, Assumption 2, and Assumption 3 hold.

R = E

∥∥∥α̃zβ
T
∗ Z̃ − βT

intZ̃
∥∥∥2
F︸ ︷︷ ︸

Bias

+ τ2
∥∥∥βT

intÃ
∥∥∥2
F︸ ︷︷ ︸

V ariance

+ α̃2
A

∥∥∥βT
∗ Ã
∥∥∥2
F︸ ︷︷ ︸

Data Noise

+
(
−2α̃Aβ

T
∗ ÃÃTβint

)
︸ ︷︷ ︸

Target Alignment
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Table 1: Asymptotic Generalization Regimes. This table summarizes conditions for when over-
fitting is benign, tempered, or catastrophic in the limit where d/n → c and subsequently c → ∞.
The behavior depends on the spike scaling relative to the bulk, target alignment (β∗ relative to spike
direction u), and target specifications αA, αZ (train) and α̃A, α̃Z (test). Here, θ2 quantifies the scaled
spike strength and τ2 the scaled bulk variance; the two primary scaling regimes are operator norm
based (θ2 = γτ2) and Frobenius norm based (θ2 = dτ2). The ω, o,O,Θ are all as we send c → ∞.

Scaling Benign Tempered Catastrophic

Well-Specified, No Covariate Shift: αA = α̃A = αZ = α̃Z = α > 0

θ2 = γτ2 γ = ωc(c
2), β∗ ∥ u All other cases oc(c

2) ≥ γ ≥ ωc(1), β∗ ̸⊥ u

θ2 = dτ2 β∗ ∥ u β∗ ∦ u Never

Misspecified, No Covariate Shift: αA = α̃A, αZ = α̃Z , αA ̸= αZ

θ2 = γτ2 Never All other cases oc(c
2) ≥ γ ≥ ωc(1), β∗ ̸⊥ u

θ2 = dτ2 Never Always Never

Misspecified with Covariate Shift: αA ̸= α̃A or αZ ̸= α̃Z

θ2 = γτ2 Never All other cases

αZ ̸= α̃Z , β∗ ̸⊥ u, γ = ωc(1)
or

αZ = α̃Z , β∗ ̸⊥ u,
ωc(1) ≤ γ ≤ oc(c

2)

θ2 = dτ2 αZ = α̃Z = α̃A,
β∗ ∥ u

All other cases αZ ̸= α̃Z and β∗ ̸⊥ u

Spike Recovery: αA = α̃A = 0, αZ = α̃Z (Appendix F)

θ2 = γτ2 γτ2 = oc(1) γτ2 = Θc(1) γτ2 = ωc(1)

θ2 = dτ2 τ2 = oc(1) τ2 = Θc(1) Never

• Bias. This is the squared error between the learned predictor βint and the true parameter β∗
projected onto the spike direction u. In particular, the risk penalizes discrepancies only along the
top eigen-direction of the population covariance Σ, reflecting the anistropic influence of the spike.

• Variance. The variance is equivalent to τ2∥βint∥2. This mirrors classical isotropic regression
results [6, 16], but the norm ∥βint∥2 itself is dependent upon the interaction between signal and
noise components, the alignment between β∗ and u, and the scaling parameters.

• Data Noise. The data noise term quantifies the contribution of the noise matrix A to the target
outputs yi through αA. Even in the absence of observation noise (τ2ε = 0), target corruption via
data noise can create an irreducible error floor.

14
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Table 2: Conditions for Beneficial Spike Alignment at Finite Aspect Ratios (c = d/n). This
table outlines the specific regions where alignment of the target signal with the data’s principal spike
direction improves generalization. Conditions depend on the problem setting (well-specified vs.
mis-specified), the spike scaling regime (operator or frobenius norm based), the overparameterization
level c = d/n, and the relative dependence of the targets y on the spike versus the bulk αZ/αA.

Setting Alignment Beneficial Region

Well-Specified, Operator Norm γ > c(c− 2)
Well-Specified, Frobenius Norm c > 1

Misspecified, No Covariate Shift, Operator Norm 1
c ≤ αZ

αA
≤ 1

c

(
3c2−γ+2cγ−2c

(c2+γ)

)
Misspecified, No Covariate Shift, Frobenius Norm 1

c < αZ
αA

< 2− 1
c

(a) αZ = 0.1, alignment helps. (b) αZ = 1, mixed behavior. (c) αZ = 4, alignment hurts.

Figure 4: Alignment-phase transitions persist in deep networks. Generalization error vs. angle
between spike direction u and ground-truth parameter β∗ when fitting data with a 3-layer ReLU
networks. The effect of alignment switches as αZ increases, consistent with the phase transitions
predicted by our theory. Experimental details are in AppendixE.

• Target Alignment. The alignment term measures the inner product between βint and β∗ with
respect to the sample noise covariance. This cross-term captures how mismatch between βint and
β∗, especially when mediated by A, can amplify or dampen generalization error.

C.2. Extension: Nonlinear Models Also Exhibit Alignment Phase Transitions

While our theoretical focus is on linear regression, key phenomena like αZ dependent non-monotonic
alignment effects appear in nonlinear models as well. We test this by training 3-layer ReLU networks
to predict y (Equation (2)) given X , where we vary the alignment angle between spike u and β∗
and record the generalization error. Figure 4, shows our results for three αZ values. For αZ = 0.1,
increasing alignment with the spike is detrimental. For αZ = 1, alignment is beneficial, while for
αZ = 10, alignment is detrimental again. This mirrors our theoretical findings that there is a region
for beneficial alignment and a nuanced phase transition for different αZ values.

Appendix D. Notation

Table 3 summarizes our notations used throughout the main text and Appendix.
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Symbol Description / Role Typical scaling / range First used

d, n Data dimension and sample size d, n → ∞ with c = d/n
fixed

Sec. 2

c Aspect ratio d/n (0,∞) Sec. 2
τ2 Noise variance in ambient bulk A Θ(1) (or ρ2/d under alt.

notation)
Sec. 2

θ2 Spike (signal) variance θ2 = γτ2 (operator-
norm)
or θ2 = dτ2 (Frobenius)

Sec. 2

γ Spike-to-noise ratio γ = θ2/τ2 (effective
outlier eigenvalue)

[0,∞); critical line γ =
(1 +

√
c)2

Sec. 2

αZ , αA Coeffs. weighting spike vs. bulk in targets
y

Θ(1) Eq. (2)

α̃Z , α̃A Same coefficients for test data (covariate
shift)

Θ(1) Sec. 3

β∗ True parameter vector ∥β∗∥2 = 1 Sec. 2
u Spike direction in data covariance ∥u∥2 = 1 Sec. 2

A, Z Bulk noise matrix, rank-one signal matrix Aij ∼ N (0, τ2/n), Z =
θ uv⊤

Sec. 2

ε, τ2ε Label noise and its variance IID, N (0, τ2ε ) Sec. 2

Table 3: Glossary of recurrent parameters and symbols. All Θ(1) constants are independent of n, d.

Appendix E. Non-Linear Experiment

We used 500 data points in 750 dimensional space, with a hidden width of 1000. We used full batch
gradient descent for 100 epochs with a learning rate of 1e-4. Each data point is averaged over 50
trials. Equal Frobenius norm scaling was used for the size of the spike.

Appendix F. Spike Recovery Case

Finally, we consider the special case where the goal is to recover the spike direction u. In this setting,
the target y depends only on the spike component Z, with no contribution from the noise A:

αA = α̃A = 0, αZ = α̃Z = α > 0.

Thus, the target y is proportional to the signal Z plus possible observation noise ε.
Equal Operator Norm In this regime, we have that the risk is

Rc<1 =
γα2

Zτ
2

(1− c)(γ + 1)
(βTu)2 +

c

1− c
τ2ε , Rc>1 =

γc(c2 + γ)α2
Zτ

2

(c− 1)(γ + c)2
(βTu)2 +

1

c− 1
τ2ε

Here again, we see that when γ = Θc(1), we have tempered overfitting and ωc(1) ≤ γ ≤ oc(c
2), we

have catastrophic overfitting and for γ = Ωc(c
2) we get tempered overfitting again.

Equal Frobenius Norm. In this regime, we have that

Rc<1 =
α2
Zτ

2

1− c
(βTu)2 +

c

1− c
τ2ε Rc>1 =

cα2
Zτ

2

c− 1
(βTu)2 +

1

c− 1
τ2ε
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This generalizes the spike recovery setting studied in [31], which assumed noiseless targets
(τε = 0) and the equal Frobenius norm scaling. Our formula allows for observation noise and thus
captures the more realistic case where the target y itself contains randomness not aligned with the
spike. Here we see that we have tempered overfitting unless τ2 = o(1), which is the case considered
in [31].

Appendix G. Theorem 7

We have that as n, d → ∞ with d/n → c ∈ (0,∞), we have the following expressions for each
term.
Bias: For c < 1, we have that the bias term is

θ̃2

[
(βT

∗ u)
2

(
α̃Z − αZ + (αZ − αA) +

τ2

θ2 + τ2

)2

+ τ2ε
c

1− c

1

d(θ2 + τ2)

]
.

If c > 1, we that the bias term is

θ̃2(βT
∗ u)

2

(
α̃Z − αZ +

(
αZ − αA

c

) τ2c

θ2 + τ2c

)2

+ θ̃2
[
α2
A

∥β∗∥2

d

c− 1

c

θ2τ2c

(θ2 + τ2c)2
+ τ2ε

c

c− 1

θ2 + τ2

n(θ2 + τ2c)2

]
.

Variance: For c < 1, we have that the variance term is

α2
Aτ̃

2∥β∗∥2 + τ̃2(βT
∗ u)

2

[
1

1− c

θ4 + θ2τ2c

(θ2 + τ2)2
(αZ − αA)

2 + 2αA(αZ − αA)
θ2

θ2 + τ2

]
+ τ2ε

τ̃2

τ2

[
c

1− c
− θ2

d(θ2 + τ2)

c

1− c

]
.

For c > 1, we have that the variance term is

τ̃2∥β∗∥2
(
α2
A

c
−

α2
A

d

θ2

θ2 + τ2c

)
+ τ̃2(βT

∗ u)
2 c

(c− 1)

θ2

θ2 + τ2c

(
αZ − αA

c

)2
+ τ2ε

τ̃2

τ2

(
1

c− 1
− θ2

d(θ2 + τ2c)

c

c− 1

)
.

Data Noise: For all c, we have that
α̃2
Aτ̃

2∥β∗∥2.
Target Alignment: For c < 1, we have that the alignment term is

−2α̃Aτ̃
2

(
(αZ − αA)

θ2

θ2 + τ2
(βT

∗ u)
2 + αA∥β∗∥2

)
.

For c > 1, we have that the alignment term is

−2α̃Aτ̃
2

((
αZ − αA

c

) θ2

θ2 + τ2c
(βT

∗ u)
2 + αA∥β∗∥2

(
1

c
− 1

d

θ2

θ2 + τ2c

))
.

Error terms: The largest error terms for all c are:

o(1) +O

(
1

n

)
.

Remark: We note that the above theorem is very general and captures all of the theorems in the
main text as special cases. It is worth noting that the theorem also incorporates different signal and
bulk strengths for test data, namely for θ̃ and τ̃ .
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Appendix H. Proof of Theorem 7

Theorem 7 (Generalization Risk) Suppose Assumption 1, Assumption 2, and Assumption 3 hold.

R = E

∥∥∥α̃zβ
T
∗ Z̃ − βT

intZ̃
∥∥∥2
F︸ ︷︷ ︸

Bias

+ τ2
∥∥∥βT

intÃ
∥∥∥2
F︸ ︷︷ ︸

V ariance

+ α̃2
A

∥∥∥βT
∗ Ã
∥∥∥2
F︸ ︷︷ ︸

Data Noise

+
(
−2α̃Aβ

T
∗ ÃÃTβint

)
︸ ︷︷ ︸

Target Alignment


The proof will be broken up into roughly three steps

1. Decompose the error into four terms. We shall refer to these terms as the 1) bias, 2) variance,
3) data noise, and 4) target alignment.

2. Simplify the expressions. We shall then use the result from [25] to simplify the expression for
each of the four terms. In particular, we shall express each term as the product of dependent
functions of the eigenvalues of X .

3. Random matrix theory estimate. We then use standard results from random matrix theory
such as [3, 4, 22] to obtain a closed-form formula of the risk.

In order to better align with existing results and use them accordingly, we change our scalings
for now and switch back after our derivation. In particular, consider the covariance matrix and data
matrix, we now make:

Z = ηuvT , where θ =
η√
n

and ∥v∥ = 1,

τ =
ρ√
d

for the variance of the noise matrix A,

where ρ, κ have the corresponding scalings that we need to match. Note that with the change of
variable, the covariance matrix can be rewritten as:

Σ = θ2uuT + τ2Id =
κ2

n
uuT +

ρ2

d
Id.

In the general theorem, we can accommodate more room for distribution shift, that is, we consider ñ
test data with Z̃ = θ̃uṽT and test noise matrix with variance τ̃ . We define the corresponding η̃, ρ̃,
and suppose ñ = Θ(n), τ̃ = Θ(τ), and θ̃ = Θ(θ).

H.1. Decompose Error

Using the fact that Ã has been zero entries and is independent of Z̃, we see that we can decompose
the error as follows:

1

ñ

∥∥∥βT
∗ (α̃zZ̃ + α̃AÃ)− βT

int(Z̃ + Ã)
∥∥∥2
F

E
=
1

ñ

∥∥∥α̃zβ
T
∗ Z̃ − βT

intZ̃
∥∥∥2
F
+

1

ñ

∥∥∥α̃Aβ
T
∗ Ã− βT

intÃ
∥∥∥2
F

E
=

1

ñ

∥∥∥α̃zβ
T
∗ Z̃ − βT

intZ̃
∥∥∥2
F︸ ︷︷ ︸

Bias

+
1

ñ

∥∥∥βT
intÃ

∥∥∥2
F︸ ︷︷ ︸

V ariance

+
1

ñ
α̃2
A

∥∥∥βT
∗ Ã
∥∥∥2
F︸ ︷︷ ︸

Data Noise

+

(
− 2

ñ
α̃Aβ

T
∗ ÃÃTβint

)
︸ ︷︷ ︸

Target Alignment

We compute these four terms one by one in the following sections.
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H.2. Simplifying Terms and RMT estimates

This section simplifies the four terms and provides the random matrix theory estimates.

H.2.1. BIAS

Using Theorem 14, we have that if c < 1

α̃zβ
T
∗ Z̃ − βT

intZ̃ =

[
α̃Z − αZ +

ξ

γ1
(αZ − αA)

]
βT
∗ Z̃ +

η̃

η

ξ

γ1
εT p1ṽ

T ,

and if c > 1

α̃zβ
T
∗ Z̃−βT

intZ̃ = βT
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA

†)

]
Z̃−αA

η∥s∥2

γ2
βT
∗ h

TuT Z̃+
η̃

η

ξ

γ2
εT p2ṽ

T .

Then we are interested in the norm. Hence, we see that in c < 1 case, we have that

∥α̃zβ
T
∗ Z̃ − βT

intZ̃∥2 =
[
α̃Z − αZ +

ξ

γ1
(αZ − αA)

]2
βT
∗ Z̃Z̃TβT

∗ +
η̃2

η2
ξ2

γ21
εT p1ṽ

T ṽp1ε

+ 2

[
α̃Z − αZ +

ξ

γ1
(αZ − αA)

]
η̃

η

ξ

γ1
εT p1ṽ

T Z̃TβT
∗ .

Then taking the expectation with respect of ε, we get that the cross term disappears and a trace in the
second term (Theorem 25).

Eε

[
∥α̃zβ

T
∗ Z̃ − βT

intZ̃∥2
]
=

[
α̃Z − αZ +

ξ

γ1
(αZ − αA)

]2
βT
∗ Z̃Z̃TβT

∗ +
η̃2

η2
ξ2

γ21
τ2ε Tr

(
p1ṽ

T ṽpT1
)
.

Using the fact that Z̃ = η̃uṽT and that ṽ has unit norm, we get

Eε

[
∥α̃zβ

T
∗ Z̃ − βT

intZ̃∥2
]
=

[
α̃Z − αZ +

ξ

γ1
(αZ − αA)

]2
η̃2(βT

∗ u)
2 +

η̃2

η2
ξ2

γ21
τ2ε ∥p1∥2.

Then using Theorem 28, we see the second term is equal to

η̃2 τ2ε
c

1− c

1

η2c+ ρ2
+ o

(
η̃2

η2ρ2

)
+O

(
η̃2

η2ρ2n

)
= τ2ε

η̃2c

1− c

1

η2c+ ρ2
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)
.

For the first term, expanding the coefficient, we get

(α̃Z − αZ)
2 +

1

η2
η2ξ2

γ21
(αZ − αA)

2 +
1

η
2
ηξ

γ1
(αZ − αA)(α̃Z − αZ).

Taking the expectation and using Theorem 21, the last term is

2
ρ2

η2c+ ρ2
(αZ − αA)(α̃Z − αZ) + o

(
1

η2ρ2

)
+O

(
1

ηnρ

)
.

For the middle term, we write
1

η2
η2ξ2

γ21
=

1

η2
· η

2

γ1
· ξ

2

γ1
.
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Then using Theorem 20 and Theorem 21, we have that the expectation of this is

1

η2

[(
ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

))(
ρ2

η2c+ ρ2
+ o

(
1

η2ρ2

)
+O

(
1

n

))
+O

(
1

η2n
+

1

n1.5

)]
.

We can simplify this as:
ρ4

(η2c+ ρ2)2
+ o

(
1

η4

)
+O

(
ρ2

η2n

)
Thus, we have that this term is[

(α̃Z − αZ) +
ρ2

η2c+ ρ2
(αZ − αA)

]2
+ o

(
1

η4

)
+O

(
ρ2

η2n

)
+ o

(
1

η2ρ

)
+O

(
1

ηnρ

)
.

Thus, the non-error terms are

η̃2

([
(α̃Z − αZ) +

ρ2

η2c+ ρ2
(αZ − αA)

]2
(βT

∗ u)
2 + τ2ε

c

1− c

1

η2c+ ρ2

)
,

with an error term of

η̃2
[
o

(
1

η2ρ2

)
+O

(
ρ2

η2n

)
+O

(
1

ηnρ

)]
= o

(
1

ρ2

)
+O

(
ρ2

n

)
+O

(
η

nρ

)
.

Dividing by ñ, we then have the desired results:

η̃2

ñ

([
(α̃Z − αZ) +

ρ2

η2c+ ρ2
(αZ − αA)

]2
(βT

∗ u)
2 + τ2ε

c

1− c

1

η2c+ ρ2

)
+o

(
1

η2ρn

)
+O

(
ρ2

n2

)
+O

(
η

n2ρ

)
.

Case: c > 1 To help simplify notation we shall let c1 = α̃Z − αZ . We shall look at this term by
term. We begin, with the last term squared. Here we see that using Theorem 28∥∥∥∥ η̃η ξ

γ2
εT p2ṽ

T

∥∥∥∥2 = ( η̃

η

)2 ξ2

γ22
∥p2∥2

E
=

(
η̃

η

)2

τ2ε

[
η2

c− 1

η2c+ ρ2

(η2 + ρ2)2
+ o

(
1

ρ2
+

1

n

)
+O

(
1

n

)]
= η̃2

τ2ε
c− 1

η2c+ ρ2

(η2 + ρ2)2
+ o

(
1

ρ2
+

1

n

)
+O

(
1

n

)
.

For the middle term, since Z̃ = η̃uṽ, we have that∥∥∥∥αA
η∥s∥2

γ2
βT
∗ h

TuT Z̃

∥∥∥∥2 = α2
Aη̃

2 η
2∥s∥4

γ22
βT
∗ h

Thβ∗ = α2
A

η̃2

η2
η4∥s∥4

γ22
βT
∗ h

Thβ∗.

By Equation 7, we first have that

E
[
η4∥s∥4

γ22

]
=

(
1− 1

c

)2 ρ4η4

(η2 + ρ2)2
+ o(ρ2) +O

(
ρ2

n

)
, Var

(
η4∥s∥4

γ22

)
= O

(
ρ4

n

)
.

20



ALIGNMENT DRIVEN BENIGN AND CATASTROPHIC OVERFITTING

Then using this and Lemma 36, we get

E
[
η4∥s∥4

γ22
βT
∗ h

Thβ∗

]
=

∥β∗∥2

d

(
c− 1

c

)
η4ρ2

(η2 + ρ2)2
+ o

(
ρ2

n

)
+O

(
1

n1.5

)
.

Thus the final expression for the middle term is

E

[∥∥∥∥αA
η∥s∥2

γ2
βT
∗ h

TuT Z̃

∥∥∥∥2
]
= α2

A

η̃2

η2

[
∥β∗∥2

d

(
c− 1

c

)
η4ρ2

(η2 + ρ2)2
+ o

(
ρ2

n

)
+O

(
1

n1.5

)]
= α2

Aη̃
2 ∥β∗∥2

d

(
c− 1

c

)
η2ρ2

(η2 + ρ2)2
+ o

(
ρ2

n

)
+O

(
1

n1.5

)
.

The first term can be broken into three terms

c21η̃
2(βT

∗ u)
2+η̃2

ξ2

γ22
βT
∗ (αZI−αAAA

†)uuT ((αZI−αAAA
†)β∗+2c1η̃

2 ξ

γ2
βT
∗ (αZI−αAAA

†)uuTβ∗.

Not that for the second and third term, we have that ξ, γ2 only depend on the singular values of A
and the rest only depend on the singular vectors. Hence, these terms are independent. For the middle
term, we have

βT
∗ (αZI − αAAA

†)uuT ((αZI − αAAA
†)β∗

E
=
(
αZ − αA

c

)2
(βT

∗ u)
2.

While for the last term, we have

βT
∗ (αZI − αAAA

†)uuTβ∗
E
=
(
αZ − αA

c

)
(βT

∗ u)
2.

Thus putting it together, we get

η̃2(βT
∗ u)

2

[
c21 +

ξ2

γ22

(
αZ − αA

c

)2
+ 2c1

ξ

γ2

(
αZ − αA

c

)]
E
= η̃2(βT

∗ u)
2

[
c1 +

ξ

γ2

(
αZ − αA

c

)]2
= η̃2(βT

∗ u)
2

[
α̃Z − αZ +

ξ

γ2

(
αZ − αA

c

)]2
.

Then with the same argument as for the c < 1, taking the expectation with respect to the singular
values, we get

η̃2(βT
∗ u)

2

[
α̃Z − αZ +

ρ2

η2 + ρ2

(
αZ − αA

c

)]2
+ o

(
1

ρ2

)
+O

(
η

ρn

)
.

The final term we need is the cross term between the first and second terms, and the cross terms
with ε have mean zero. This cross term can be broken up into sub-terms, for which we compute their
errors using Theorem 18, Theorem 19, Theorem 21, and Theorem 24. These cross-terms respectively
become:

−2η̃2c1
η∥s∥2

γ2
βT
∗ uhβ∗ = −2

η̃2

η
c1
η2∥s∥2

γ2
βT
∗ uhβ∗ = O

(
η

ρn

)
,

−2αZ η̃
2 ηξ∥s∥2

γ22
βT
∗ uhβ∗ = −2αZ

η̃2

η2
η2∥s∥2

γ2

ηξ

γ2
βT
∗ uhβ∗ = O

(
1

√
ρn

)
,
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2αAη̃
2 ηξ∥s∥2

γ22
βT
∗ AA

†uhβ∗ = −2αA
η̃2

η2
η2∥s∥2

γ2

ηξ

γ2
βT
∗ AA

†uhβ∗ = O

(
1

√
ρn

)
.

Thus the cross term concentrates to zero at a controlled rate. Thus collecting all the terms and
dividing by ñ, we get that the non-error terms are

η̃2

ñ

[
(βT

∗ u)
2

(
α̃Z − αZ +

(
αZ − αA

c

) ρ2

η2 + ρ2

)2

+ α2
A

∥β∗∥2

d

(
c− 1

c

)
η2ρ2

(η2 + ρ2)2
+

τ2ε
c− 1

η2c+ ρ2

(η2 + ρ2)2

]

with an error term of o
(

ρ2

n2

)
+O

(
1
n

)
.

H.2.2. VARIANCE

Lemma 17 implies that the expectation will be the weighted sum of the expressions from Lemmas
29, 30, 31, 32. Informally,

ρ̃2

d

(
α2
Z ∗ Lemma 29 + 2αZαA ∗ Lemma 31 + α2

A ∗ Lemma 30 + Lemma 32
)
.

This yields that for c < 1, after simplification, the variance is

ρ̃2

d

[
α2
A∥β∗∥2 + (βT

∗ u)
2

[
(αZ − αA)

2 η
2(η2 + ρ2)

(η2c+ ρ2)2
c2

1− c
+ 2αA(αZ − αA)

η2c

η2c+ ρ2

]
+τ2ε

(
c

1− c

d

ρ2
− η2

ρ2(η2c+ ρ2)

c2

1− c

)]
.

For c > 1, we similarly simplify it to:

ρ̃2

d

[
∥β∗∥2

(
α2
A

c
−

α2
A

d

η2

η2 + ρ2

)
+ (βT

∗ u)
2 c

c− 1

η2

η2 + ρ2

(
αZ − αA

c

)2
+τ2ε

(
d

ρ2
1

c− 1
− η2

ρ2(η2 + ρ2)

c

c− 1

)]
H.2.3. DATA NOISE

The data noise term is the simplest to understand. Preliminary calculation gives us.

1

ñ
α̃2
A

∥∥∥βT
∗ Ã
∥∥∥2
F

E
=

α̃2
A

ñ

ρ̃2ñ

d
∥β∗∥2 =

α̃2
Aρ̃

2

d
∥β∗∥2.

H.2.4. TARGET ALIGNMENT

To understand this term, we first note that Ã is independent of everything else. Hence we replace
ÃÃT with its expectation ρ̃2ñ

d I .

−EÃ

[
2

ñ
α̃Aβ

T
∗ ÃÃTβint

]
= − 2

ñ

ρ̃2ñ

d
α̃Aβ

T
∗ βint = −2α̃Aρ̃

2

d
βT
∗ βint.
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Since ε has mean-zero entries that are independent of everything else. We see that

βT
∗ βint = βT

∗

(
(αzβ

T
∗ Z + εT )(Z +A)† + αAβ

T
∗ A(Z +A)†

)T
(4)

E
= βT

∗

(
αzβ

T
∗ Z(Z +A)† − αAβ

T
∗ A(Z +A)†

)T
(5)

= αzβ
T
∗ (Z +A)†TZTβ∗ + αAβ

T
∗ (Z +A)†TATβ∗. (6)

From Theorem 26, we have that

E
[
βT
∗ (Z +A)†TZTβ∗

]
=


η2c(uT β∗)2

ρ2+η2c
+ o

(
1
ρ2

)
+O

(
1
ρn

)
, c < 1

η2

η2+ρ2
(βT

∗ u)
2 + o

(
1
ρ2

)
+O

(
1
n

)
, c > 1

.

and from Theorem 27, we have that

E
[
βT
∗ (Z +A)†TATβ∗

]
=

∥β∗∥2 − η2c(uT β∗)2

ρ2+η2c
+ o

(
1
ρ2

)
+O

(
1
ρn

)
, c < 1

∥β∗∥2
c − η2∥β∗∥2

d(η2+ρ2)
− η2(uT β∗)2

c(η2+ρ2)
+ o

(
1
ρ2

+ 1
n

)
++O

(
1
ρn

)
, c > 1

.

Thus for c < 1, the entire interaction term now becomes

−E
[
2

ñ
α̃Aβ

T
∗ ÃÃTβint

]
= −2α̃Aρ̃

2

d
βT
∗ βint

= −2α̃Aρ̃
2

d

(
αz

η2c(uTβ∗)
2

ρ2 + η2c
+ αA

[
∥β∗∥2 −

η2c(uTβ∗)
2

ρ2 + η2c

]
+ o

(
1

ρ2

)
+O

(
1

ρn

))
= −2α̃Aρ̃

2

d

(
(αz − αA)

η2c

ρ2 + η2c
(βT

∗ u)
2 + αA∥β∗∥2

)
+ o

(
1

n

)
+O

( ρ

n2

)
.

For c > 1, instead we have

−E
[
2

ñ
α̃Aβ

T
∗ ÃÃTβint

]
= −2α̃Aρ̃

2

d
βT
∗ βint

= −2α̃Aρ̃
2

d

(
αz

η2

η2 + ρ2
(βT

∗ u)
2 +O

(
1

n

)
+αA

[
∥β∗∥2

c
− η2∥β∗∥2

d(η2 + ρ2)
− η2(uTβ∗)

2

c(η2 + ρ2)

]
+ o

(
1

ρ2

))
= −2α̃Aρ̃

2

d

((
αz −

αA

c

) η2

ρ2 + η2
(βT

∗ u)
2

+αA∥β∗∥2
(
1

c
− η2

d(η2 + ρ2)

))
+ o

(
1

n

)
+O

(
ρ2

n2

)
.

We perform a change of variables ρ = τ
√
d, ρ̃ = τ̃

√
d, η = θ

√
n, η̃ = θ̃

√
ñ and the result

follows from d/n → c. Note our biggest error terms are o(1) +O
(
1
n

)
.
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Appendix I. Proof of Specific Cases and Overfitting

I.1. Proof of Theorem 2.

Proof We set αZ = αA = α̃Z = α̃A = α, θ̃ = θ, τ̃ = τ in the above Theorem 7 and note that it
greatly simplifies each term. Algebra shows that for c < 1

Bias = τ2ε
c

1− c

θ2

d(θ2 + τ2)
, Variance = α2τ2∥β∗∥2 + τ2ε

c

1− c

[
1− θ2

d(θ2 + τ2)

]
,

Data Noise = α2τ2∥β∗∥2, Target Alignment = −2α2τ2∥β∗∥2,
While for c > 1, we can first send d, n → ∞ and many terms become asymptotically 0. In the end,
we get that:

Bias = α2θ2(βT
∗ u)

2

(
1− 1

c

)2( τ2c

θ2 + τ2c

)2

, Data Noise = α2τ2∥β∗∥2,

Variance = α2τ2∥β∗∥2
1

c
+ α2τ2(βT

∗ u)
2 θ2

θ2 + τ2c

(
1− 1

c

)
+ τ2ε

1

c− 1
.

Target Alignment = −2α2τ2
((

1− 1

c

)
θ2

θ2 + τ2c
(βT

∗ u)
2 + ∥β∗∥2

1

c

)
,

Adding these terms together, we see with simple algebra that many terms cancel or can be combined,
establishing the stated formula.

I.2. Proof of Theorem 4.

Proof We set αZ = α̃Z , αA = α̃A, θ̃ = θ, τ̃ = τ , and send d, n → ∞ in Theorem 7. Recall that
∆c = αZ − αA

c and ∆1 = αZ − αA. Then some algebra shows that for c < 1,

Bias = θ2(βT
∗ u)

2∆2
1

(
τ2

θ2 + τ2

)2

, Data Noise = α2
Aτ

2∥β∗∥2,

Target Alignment = −2α2
Aτ

2∥β∗∥2 − 2αAτ
2(βT

∗ u)
2∆1

θ2

θ2 + τ2
,

Variance = α2
Aτ

2∥β∗∥2 + τ2ε
c

1− c
+ τ2(βT

∗ u)
2

[
1

1− c

θ4 + θ2τ2c

(θ2 + τ2)2
∆2

1 + 2αA∆1
θ2

θ2 + τ2

]
.

For c > 1, we have that

Bias = θ2(βT
∗ u)

2∆2
c

(
τ2c

θ2 + τ2c

)2

, Data Noise = α2
Aτ

2∥β∗∥2,

Target Alignment = −2α2
Aτ

2 ∥β∗∥2

c
− 2αAτ

2(βT
∗ u)

2∆c
θ2

θ2 + τ2c
,

Variance = α2
Aτ

2 ∥β∗∥2

c
+ τ2ε

1

c− 1
+ τ2(βT

∗ u)
2 c

1− c

θ2

θ2 + τ2c
∆2

c .

We proceed by adding these terms together and the results follow from algebra.
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I.3. Proof of Theorem 5.

Proof We set θ̃ = θ and τ̃ = τ in Theorem 7 and have the regime of equal operator norm θ2 = γτ2.
Since we are interested in the limit c → ∞, we only consider the overparameterized case c > 1. We
first take the limit d, n → ∞ and have that:

Bias = τ2(βT
∗ u)

2

(
√
γ(α̃Z − αZ) +

(
αZ − αA

c

) c
√
γ

γ + c

)2

, Data Noise = α̃2
Aτ

2∥β∗∥2,

Target Alignment = −2α̃Aτ
2

((
αZ − αA

c

) γ

γ + c
(βT

∗ u)
2 + αA

∥β∗∥2

c

)
,

Variance = τ2α2
A

∥β∗∥2

c
+ τ2(βT

∗ u)
2 c

(c− 1)

γ

γ + c

(
αZ − αA

c

)2
+ τ2ε

(
1

c− 1

)
.

The rest follows from simple calculus: if α̃Z ̸= αZ , γ = ωc(1), and βT
∗ u ̸= 0, the bias will diverge

and other terms are controlled, yielding catastrophic. If α̃Z = αZ , ωc(1) ≤ γ ≤ oc(c
2), and

βT
∗ u ̸= 0, a similar thing happens. In other cases, all of these terms are controlled and become finite

values in the limit limc→∞Rc − τ2ε , giving us tempered overfitting.

lim
c→∞

Rc =



α̃2
Aτ

2∥β∗∥2 β ⊥ u

τ2
[
γα̃2

Z(β
T
∗ u)

2 + α̃2
A∥β∗∥2

]
β ̸⊥ u, γ = Θc(1)

∞ αZ ̸= α̃Z , β∗ ̸⊥ u, γ = ω(1)

∞ αZ = α̃Z , β∗ ̸⊥ u, ω(1) ≤ γ ≤ o(c2)

τ2
[(

ϕ
(ϕ+1)2

α2
Z − 2α̃AαZ

)
(βT

∗ u)
2 + α2

A∥β∗∥2
]

αZ = α̃Z , β∗ ̸⊥ u, γ = ϕc2

τ2
[
(α2

Z − 2α̃AαZ)(β
T
∗ u)

2 + α2
A∥β∗∥2

]
αZ = α̃Z , β∗ ̸⊥ u, γ = ω(c2)

I.4. Proof of Theorem 6.

Proof We start with the first part and assume that αZ ̸= α̃Z . Similarly, we have that θ̃ = θ and τ̃ = τ
in Theorem 7. To achieve equal Frobenius norm, we set θ2 = dτ2 and send d, n → ∞ so several
terms would vanish.

In particular, for c < 1, we have that

Bias = θ2(βT
∗ u)

2

(
α̃Z − αZ + (αZ − αA)

τ2

θ2 + τ2

)2

= τ2(βT
∗ u)

2

(
√
d(α̃Z − αZ) + (αZ − αA)

√
d

d+ 1

)2

,

It is clear that this term becomes ∞ since the term inside the parentheses scales with d. Note that the
variance and data noise are non-negative, and target alignment is controlled. We have that Rc = ∞
for c ∈ (0, 1).

For c > 1, the same logic follows, and we also note that:

Bias = θ2(βT
∗ u)

2

(
α̃Z − αZ +

(
αZ − αA

c

) τ2c

θ2 + τ2c

)2

= τ2(βT
∗ u)

2

(
√
d(α̃Z − αZ) +

(
αZ − αA

c

) √
dc

d+ c

)2

,
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which scales with d with other terms controlled. Hence, Rc = ∞ for all c ̸= 1.
Now assume that αZ = α̃Z . Since we are interested in c → ∞, we only consider c > 1. First,

from algebra and taking the limit for d, n, we have that:

Bias = τ2(βT
∗ u)

2

((
αZ − αA

c

) c
√
d

d+ c

)2

→ 0, Data Noise = α̃2
Aτ

2∥β∗∥2,

Target Alignment = −2α̃Aτ
2

((
αZ − αA

c

)
(βT

∗ u)
2 + αA

∥β∗∥2

c

)
,

Variance = τ2α2
A

∥β∗∥2

c
+ τ2(βT

∗ u)
2 c

(c− 1)

(
αZ − αA

c

)2
+ τ2ε

(
1

c− 1

)
.

We now take c → ∞ and many terms vanish in this limit, yielding:

lim
c→∞

Rc = −2α̃AαZτ
2(βT

∗ u)
2+τ2(βT

∗ u)
2α2

Z+α̃2
Aτ

2∥β∗∥2 = τ2
[
(βT

∗ u)
2(α2

Z − 2α̃AαZ) + ∥β∗∥2α̃2
A

]
.

Proposition 1 (Non–existence of a canceling scale parameter) Let αA, αZ > 0 be fixed scalars,
let u, β∗ ∈ Rd be fixed vectors, and set

a := ∥β∗∥2 > 0, b :=
(
β⊤∗ u

)2 ∈ [0, a].

For every positive real number ϕ define

f(ϕ) = α2
A a +

(
α2
Z

(
1 +

1

ϕ

)
− 2αZαA

)
b.

Then
f(ϕ) > 0 for all ϕ > 0.

Consequently the equation f(ϕ) = 0 has no solution with ϕ ∈ (0,∞).

Proof If b = 0 (i.e. β∗ is orthogonal to u) we have f(ϕ) = α2
Aa > 0, so no positive ϕ can cancel the

expression. Hence assume b > 0.
Writing r := b/a ∈ (0, 1] we obtain

f(ϕ) = a
[
α2
A + αZ(αZ − 2αA) r +

α2
Zr

ϕ

]
. (∗)

Since r ≤ 1,

α2
A + αZ(αZ − 2αA) r ≥ α2

A + αZ(αZ − 2αA) =
(
αA − αZ

)2 ≥ 0.

Thus the square bracket in (∗) is the sum of a non–negative term and a strictly positive term.

26



ALIGNMENT DRIVEN BENIGN AND CATASTROPHIC OVERFITTING

Appendix J. Helper Results

In this section, we detail helpful lemmas that we will need according to the η, ρ scalings.

J.1. Results from prior work

We begin by recalling results from prior work. We state them here for completeness.

Theorem 8 (Theorems 3, 5 of [25]) Define the following helper functions h = vTA†, k = A†u,
t = vT (I−A†A), ξ = 1+ηvTA†u, s = (I−AA†)u, γ1 = η2∥t∥2∥k∥2+ξ2, γ2 = η2∥s∥2∥h∥2+ξ2

and

p1 = −η2∥k∥2

ξ
tT − ηk, qT1 = −η∥t∥2

ξ
kTA† − h.

p2 = −η2∥s∥2

ξ
A†hT − ηk, qT2 = −η∥h∥2

ξ
sT − h,

Then we have that

(Z +A)† =

{
A† + η

ξ t
TkTA† − ξ

γ1
p1q

T
1 , c < 1

A† + η
ξA

†hT sT − ξ
γ2
p2q

T
2 , c > 1

.

Proposition 2 (Proposition 2 from [31]) In the setting from Section 2

Z(Z +A)† =

{
ηξ
γ1
uh+ η2∥t∥2

γ1
ukTA†, c < 1

ηξ
γ2
uh+ η2∥h∥2

γ2
usT , c > 1

.

In addition to the above linear algebra results, we also need some random matrix theory estimates
from prior work.

Lemma 9 (Lemma 7 from [31]) In the setting of Section 2, we have that

1. E[∥h∥2] =

{
1
ρ2

c2

1−c c < 1
1
ρ2

c
c−1 c > 1

+ o

(
1

ρ2

)
and Var(∥h∥2) = O

(
1

ρ4n

)

2. E[∥k∥2] = 1

ρ2
c

1− c
+ o

(
1

ρ2

)
and Var(∥k∥2) = O

(
1

ρ4n

)
3. E[∥s∥2] = 1− 1

c
and Var(∥s∥2) = O

(
1

n

)
4. E[∥t∥2] = 1− c and Var(∥t∥2) = O

(
1

n

)
5. E

[
ξ

η

]
=

1

η
and Var

(
ξ

η

)
= O

(
1

max(n, d)

1

ρ2
c

|1− c|

)

6. E
[
ξ2

η2

]
=

1

η2
+

1

max(n, d)

1

ρ2
c

|1− c|
+ o

(
1

max(n, d)ρ2

)
=

1

η2
+O

(
1

max(n, d)ρ2

)
and

Var

(
ξ2

η2

)
= O

(
1

max(d, n)2ρ4

)
.
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Proof Let ζ = ξ/η = 1/η + vTA†u. With A = UΣV T (SVD), A ∈ Rd×n having i.i.d. N (0, ρ2/d)
entries, and u, v fixed unit vectors, we have ζ =

∑r
i=1

1
σi
biai. Here r = min(d, n), a = V T v,

b = UTu are uniformly random on Sn−1 and Sd−1 respectively.
The fourth moment is E[ζ4] =

∑
i,j,k,l E

[
1

σiσjσkσl

]
E[bibjbkbl]E[aiajakal]. Non-zero terms

require paired indices. Using exact spherical moments E[ζ4i ] =
3

M(M+2) and E[ζ2i x2k] =
1

M(M+2)

(i ̸= k) for x ∈ SM−1:

E[ζ4] =
r∑

i=1

E
[
1

σ4
i

]
9

d(d+ 2)n(n+ 2)
+ 3

∑
i ̸=k

E
[

1

σ2
i σ

2
k

]
1

d(d+ 2)n(n+ 2)

=
9S4

d(d+ 2)n(n+ 2)︸ ︷︷ ︸
Term 1

+
3
∑

i ̸=k E[1/(σ2
i σ

2
k)]

d(d+ 2)n(n+ 2)︸ ︷︷ ︸
Term 2

where S4 =
∑r

i=1 E[1/σ4
i ].

Leading Order Scaling: Let N = max(d, n), assume n, d → ∞ with d/n → c ̸= 1. Lemma 5
from [31] tells

E[1/σ4
i ] = O(1/ρ4)

and
E[1/(σ2

i σ
2
k)] = O(1/ρ4).

Term 1 has r = min(d, n) summands, hence

Term 1 ∼ O

(
r

N4ρ4

)
∼ O

(
1

N3ρ4

)
.

Term 2 has r(r − 1) ≈ r2 summands, hence

Term 2 ∼ O

(
r2

N4ρ4

)
∼ O

(
1

N2ρ4

)
.

Term 2 dominates. Thus,

E[ζ4] = O

(
1

max(d, n)2ρ4

)
.

Variance Var(ζ2): Var(ζ2) = E[ζ4] − (E[ζ2])2. Let S2 =
∑r

i=1 E[1/σ2
i ], then (E[ζ2])2 =

S2
2/(d

2n2). Neglecting the lower order Term 1 in E[ζ4] and approximating denominators d(d+2) ≈
d2, n(n+ 2) ≈ n2:

Var(ζ2) ≈
3
∑

i ̸=k E[1/(σ2
i σ

2
k)]

d2n2
− S2

2

d2n2
=

1

d2n2

3∑
i ̸=k

E
[

1

σ2
i σ

2
k

]
− S2

2


This is the leading order expression for the variance, which depends on the joint moments E[1/(σ2

i σ
2
k)].

The overall scaling is determined by the dominant terms:

Var

((
ξ

η

)2
)

= O

(
1

max(d, n)2ρ4

)
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J.2. New Linear Algebra Calculations

Lemma 10 If ξ ̸= 0 and A has full rank, we have:

εT (Z +A)†Z̃ =

{
− η̃ξ

ηγ1
εT p1ṽ

T c < 1

− η̃ξ
ηγ2

εT p2ṽ
T c > 1

.

Proof After substitutions, for c < 1 using Proposition 2 εT (Z +A)†Z̃ becomes:

εT
(
A† +

η

ξ
tTkTA† − ξ

γ1
p1

(
−η∥t∥2

ξ
kTA† − h

))
Z̃

= η̃εT
(
A†uṽT +

η

ξ
tTkTA†uṽT − ξ

γ1
p1

(
−η∥t∥2

ξ
kTA†u− hu

)
ṽT
)
.

Since k = A†u and hu = vTA†u = ξ−1
η , we then have that

η̃εT
(
A†uṽT +

η

ξ
tTkTA†uṽT − ξ

γ1
p1

(
−η∥t∥2

ξ
kTA†u− hu

)
ṽT
)

= η̃εT
(
kṽT +

η∥k∥2

ξ
tT ṽT +

ξ

γ1
p1

(
η2∥t∥2∥k∥2 + ξ2 − ξ

ξη

)
ṽT
)

= η̃εT
(
kṽT +

η∥k∥2

ξ
tT ṽT +

1

γ1
p1

(
γ1 − ξ

η

)
vTtst

)
= η̃εT

(
1

η

(
η2∥k∥2

ξ
tT + ηk

)
ṽT +

1

η
p1ṽ

T − ξ

ηγ1
p1ṽ

T

)
= εT

(
− η̃

η
p1ṽ

T +
η̃

η
p1ṽ

T − η̃ξ

ηγ1
p1ṽ

T

)
= − η̃ξ

ηγ1
εT p1ṽ

T ,

For c > 1, we note that the calculation is exactly the same. An example of such a calculation can
be seen in the proof of Theorem 13.

Lemma 11 In the setting of Section 2, we have:

A(Z +A)† =

{
I − ηξ

γ1
uh+ η2∥t∥2

γ1
ukTA†, c < 1

AA† + ηξ
γ2
hT sT − η2∥s∥2

γ2
hTh− η2∥h∥2

γ2
AA†usT − ηξ

γ2
AA†uh, c > 1

.

Proof For c < 1, we see that Z,A are d× n with d < n. Then since A is assumed to have full rank,
Z +A has full rank with probability 1, and hence

(Z +A)(Z +A)† = I.

Thus, from Proposition 2,

A(Z +A)† = (Z +A)(Z +A)† − Z(Z +A)† = I − ηξ

γ1
uh− η2∥t∥2

γ1
ukTA†.
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For c > 1, since (Z + A)(Z + A)† is no longer the identity matrix, we instead note AA† and
directly expand using Theorem 8:

A(Z +A)† = A

(
A† +

η

ξ
A†hT sT − ξ

γ2

(
η2∥s∥2

ξ
A†hT + ηk

)(
η∥h∥2

ξ
sT + h

))
= AA† +

η

ξ
AA†hT sT − ξ

γ2

(
η2∥s∥2

ξ
AA†hT + ηAA†u

)(
η∥h∥2

ξ
sT + h

)
Noting that AA†hT = AA†A†T v = A†T v = hT , we see that

A(Z +A)† = AA† +
η

ξ
hT sT − ξ

γ2

(
η2∥s∥2

ξ
hT + ηAA†u

)(
η∥h∥2

ξ
sT + h

)
= AA† +

η

ξ
hT sT − η3∥s∥2∥h∥2

ξγ2
hT sT − η2∥s∥2

γ2
hTh− η2∥h∥2

γ2
AA†usT − ηξ

γ2
AA†uh.

We can combine the coefficients in front of hT sT to get

η

ξ
− η3∥s∥2∥h∥2

ξγ2
=

η(η2∥s∥2∥h∥2 + ξ2)− η3∥s∥2∥h∥2

ξγ2
=

ηξ

γ2
.

The Lemma statement follows from here.

Lemma 12 If ξ ̸= 0 and A has full rank, we have:

βT
∗ Z(Z +A)†Z̃ =


(
1− ξ

γ1

)
βT
∗ Z̃ c < 1(

1− ξ
γ2

)
βT
∗ Z̃ c > 1

,

Proof Using Proposition 2 for c < 1, we get that

βT
∗ Z(Z +A)†Z̃ = βT

∗

(
ηξ

γ1
uh+

η2∥t∥2

γ1
ukTA†

)
Z̃

= η̃βT
∗

(
ηξ

γ1
uhuṽT +

η2∥t∥2

γ1
ukTA†uṽT

)
= η̃βT

∗

(
ηξ

γ1
uvTA†uṽT +

η2∥t∥2

γ1
ukTA†uṽT

)
Note ξ − 1 = ηvTA†u, kA†u = kTk = ∥k∥2. The above equation becomes

η̃βT
∗

(
ξ(ξ − 1)

γ1
+

η2∥t∥2∥k∥2

γ1

)
uṽT = βT

∗

(
ξ(ξ − 1)

γ1
+

η2∥t∥2∥k∥2

γ1

)
Z̃T .

Using γ1 = η2∥t∥2∥k∥2 + ξ2 to combine the coefficients, we have that

ξ(ξ − 1)

γ1
+

η2∥t∥2∥k∥2

γ1
=

−ξ + ξ2 + η2∥t∥2∥k∥2

γ1
=

−ξ + γ1
γ1

= 1− ξ

γ1
.
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Similarly, for c > 1, we obtain

βT
∗ Z(Z +A)†Z̃ = βT

∗

(
ηξ

γ2
uh+

η2∥h∥2

γ2
usT

)
Z̃

= η̃βT
∗

(
ηξ

γ2
uhuṽT +

η2∥h∥2

γ2
usTuṽT

)
= η̃βT

∗

(
ηξ

γ2
uvTA†uṽT +

η2∥h∥2

γ2
usTuṽT

)
Note ξ − 1 = ηvTA†u, sTu = ∥s∥2. The above equation becomes

η̃βT
∗

(
ξ(ξ − 1)

γ2
+

η2∥s∥2∥h∥2

γ2

)
uṽT = βT

∗

(
ξ(ξ − 1)

γ2
+

η2∥s∥2∥h∥2

γ2

)
Z̃T .

Using γ2 = η2∥s∥2∥h∥2 + ξ2 to combine the coefficients, we have that

ξ(ξ − 1)

γ2
+

η2∥s∥2∥h∥2

γ2
=

−ξ + ξ2 + η2∥t∥2∥k∥2

γ2
=

−ξ + γ2
γ2

= 1− ξ

γ2
.

The target expression follows: (
1− ξ

γ2

)
βT
∗ Z̃.

Lemma 13 If ξ ̸= 0 and A has full rank, we have:

βT
∗ A(Z +A)†Z̃ =

{
ξ
γ1
βT
∗ Z̃ c < 1

η∥s∥2
γ2

βT
∗ h

TuT Z̃ + ξ
γ2
βT
∗ AA

†Z̃. c > 1
,

Proof We begin with c < 1. Then since A is assumed to have full rank. We see that Z +A has full
column rank with probability 1, and hence

(Z +A)(Z +A)† = I

It follows from Theorem 12 that

βT
∗ A(Z +A)†Z̃ = βT

∗ (Z +A)(Z +A)†Z̃ − βT
∗ Z(Z +A)†Z̃

= βT
∗ Z̃ −

(
1− ξ

γ1

)
βT
∗ Z̃ =

ξ

γ1
βT
∗ Z̃.

For c > 1, we no longer have that Z +A is full column rank. It is now full row rank. Hence we
do not have

(Z +A)(Z +A)† = I
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hence, we directly expand it using Theorem 8 and its helper variables:

βT
∗ A(Z +A)†Z̃ = βT

∗ A

(
A† +

η

ξ
A†hT sT − ξ

γ2
p2q

T
2

)
Z̃

= η̃βT
∗ A

(
kṽT +

η∥s∥2

ξ
A†hT ṽT − ξ

γ2
p2q

T
2 uṽ

T

)
= η̃βT

∗ A

(
−1

η
p2ṽ

T − ξ

γ2
p2

(
−η∥h∥2

ξ
sT − h

)
uṽT

)
= η̃βT

∗ A

(
−1

η
p2ṽ

T +
ξ

γ2
p2

(
η∥s∥2∥h∥2

ξ
+

ξ − 1

η

)
ṽT
)

= η̃βT
∗ A

(
−1

η
p2ṽ

T +
ξ

γ2
p2

(
η2∥s∥2∥h∥2 + ξ2 − ξ

ξη

)
ṽT
)

= η̃βT
∗ A

(
−1

η
p2ṽ

T +
ξ

γ2
p2

(
γ2 − ξ

ξη

)
ṽT
)

= η̃βT
∗ A

(
−1

η
p2ṽ

T +
1

η
p2ṽ

T − ξ

ηγ2
p2ṽ

T

)
= − η̃ξ

ηγ2
βT
∗ Ap2ṽ

T

=
η̃ξ

ηγ2
βT
∗

(
η2∥s∥2

ξ
hT + ηAk

)
ṽT

=
η̃η∥s∥2

γ2
βT
∗ h

T ṽT +
ξ

γ2
βT
∗ AA

†Z̃.

Noting that βT
∗ h

T is a scalar, we then introduce 1 = uTu and get that

η̃η∥s∥2

γ2
βT
∗ h

TuTuṽT =
η∥s∥2

γ2
βT
∗ h

TuT Z̃.

Thus, the final expression is

η∥s∥2

γ2
βT
∗ h

TuT Z̃ +
ξ

γ2
βT
∗ AA

†Z̃.

Lemma 14 (Bias Term) In the setting of Section 2, we have that if c < 1

α̃zβ
T
∗ Z̃ − βT

intZ̃ =

[
α̃Z − αZ +

ξ

γ1
(αZ − αA)

]
βT
∗ Z̃ +

η̃

η

ξ

γ1
εT p1ṽ

T

and if c > 1

α̃zβ
T
∗ Z̃−βT

intZ̃ = βT
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA

†)

]
Z̃−αA

η∥s∥2

γ2
βT
∗ h

TuT Z̃+
η̃

η

ξ

γ2
εT p2ṽ

T
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Proof To simplify the bias term, we first need to the following calculation.

α̃zβ
T
∗ Z̃ − βT

intZ̃ = α̃zβ
T
∗ Z̃ − (βT

∗ (αzZ + αAA) + εT )(Z +A)†Z̃

= α̃zβ
T
∗ Z̃ − αzβ

T
∗ Z(Z +A)† − αAβ

T
∗ A(Z +A)†Z̃ − εT (Z +A)†Z̃

Using Theorem 12, we get

βT
∗ Z(Z +A)†Z̃ =


(
1− ξ

γ1

)
βT
∗ Z̃ c < 1(

1− ξ
γ2

)
βT
∗ Z̃ c > 1

,

Using Theorem 13, we get

βT
∗ A(Z +A)†Z̃ =

{
ξ
γ1
βT
∗ Z̃ c < 1

η∥s∥2
γ2

βT
∗ h

TuT Z̃ + ξ
γ2
βT
∗ AA

†Z̃. c > 1
,

and using Theorem 10

εT (Z +A)†Z̃ =

{
− η̃ξ

ηγ1
εT p1ṽ

T c < 1

− η̃ξ
ηγ2

εT p2ṽ
T c > 1

.

Thus, adding the terms together, we see that for c < 1, we get

α̃Zβ
T
∗ Z̃ − αZ

(
1− ξ

γ1

)
βT
∗ Z̃ − αA

ξ

γ1
βT
∗ Z̃ +

η̃

η

ξ

γ1
εT p1ṽ

T

Collecting relevant terms together, we get[
α̃Z − αZ +

ξ

γ1
(αZ − αA)

]
βT
∗ Z̃ +

η̃

η

ξ

γ1
εT p1ṽ

T

On the other hand for c > 1, we have

α̃Zβ
T
∗ Z̃ − αZ

(
1− ξ

γ2

)
βT
∗ Z̃ − αA

[
η∥s∥2

γ2
βT
∗ h

TuT Z̃ +
ξ

γ2
βT
∗ AA

†Z̃

]
+

η̃

η

ξ

γ2
εT p2ṽ

T

Collecting relevant terms together, we get

βT
∗

[
(α̃Z − αZ)I +

ξ

γ2
(αZI − αAAA

†)

]
Z̃ − αA

η∥s∥2

γ2
βT
∗ h

TuT Z̃ +
η̃

η

ξ

γ2
εT p2ṽ

T

Lemma 15 (Squared Norms of p1 and p2) Let p1 = −η2∥k∥2
ξ t− ηk and p2 = −η2∥s∥2

ξ A†h− ηk.

1. ∥p1∥2 =
η2∥k∥2

ξ2
γ1.

2. ∥p2∥2 = η4∥s∥4
ξ2

∥A†hT ∥2 + 2η3∥s∥2
ξ h(A†)Tk + η2∥k∥2.
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Proof For p1:

∥p1∥2 =
(
−η2∥k∥2

ξ
t− ηkT

)(
−η2∥k∥2

ξ
tT − ηk

)
=

(
η2∥k∥2

ξ

)2

∥t∥2 + 2
η3∥k∥2

ξ
(tk) + η2∥k∥2.

Using tk = 0 yields the first result, we can further simplify as

η2∥k∥2

ξ2
(
η2∥k∥2∥t∥2 + ξ2

)
=

η2∥k∥2

ξ2
γ1

For p2:

∥p2∥2 =
(
−η2∥s∥2

ξ
(A†hT )T − ηkT

)(
−η2∥s∥2

ξ
A†hT − ηk

)
=

(
η2∥s∥2

ξ

)2

∥A†hT ∥2 + 2
η3∥s∥2

ξ
(A†hT )Tk + η2∥k∥2

=
η4∥s∥4

ξ2
∥A†hT ∥2 + 2η3∥s∥2

ξ
h(A†)Tk + η2∥k∥2.

Lemma 16 (Squared Norms of q1 and q2) Let qT1 = −η∥t∥2
ξ kTA† − h and qT2 = −η∥h∥2

ξ sT − h.

1. ∥q1∥2 =
η2∥t∥4

ξ2
kA†A†Tk +

2η∥t∥2

ξ
kTA†hT + ∥h∥2.

2. ∥q2∥2 = ∥h∥2
ξ2

γ2.

Proof For q1,

∥q1∥2 =
(
−η∥t∥2

ξ
kTA† − h

)(
−η∥t∥2

ξ
A†Tk − hT

)
=

η2∥t∥4

ξ2
kA†A†Tk +

2η∥t∥2

ξ
kTA†hT + ∥h∥2.

For q2:

∥q2∥2 =
(
−η∥h∥2

ξ
sT − h

)(
−η∥h∥2

ξ
s− hT

)
=

η2∥h∥4∥s∥2

ξ2
+ ∥h∥2 since hs = 0

=
∥h∥2(η2∥h∥2∥s∥2 + ξ2)

ξ2

=
∥h∥2

ξ2
γ2.
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Lemma 17 (Preliminary Expansion of Variance) In the setting of Section 2, we have

E
[
1

ñ

∥∥∥βT
intÃ

∥∥∥2
F

]
= E

[
ρ̃2α2

z

d
βT
∗ Z(Z +A)†(Z +A)†TZβ∗ +

ρ̃2α2
A

d
βT
∗ A(Z +A)†(Z +A)†TATβ∗

+
2ρ̃2αAαz

d
βT
∗ Z(Z +A)†(Z +A)†TATβ∗ +

ρ̃2

d
εT (Z +A)†(Z +A)†T ε

]
Proof Since Ã is independent of the other terms, we replace ÃÃT with its expectation ρ̃2ñ

d I .

1

ñ

∥∥∥βT
intÃ

∥∥∥2
F
=

1

ñ
βT
intÃÃTβint

E
=

1

ñ

ρ̃2ñ

d
α̃Aβ

T
intβint =

ρ̃2

d
∥βint∥2.

We now plug in the expression for βint. Since ε is a zero-mean vector and independent from other
random variables, terms with only one ε have zero expectation. A straightforward expansion gives:

ρ̃2

d
∥βint∥2F =

ρ̃2

d
(βT

∗ (αzZ + αAA) + εT )(Z +A)†(Z +A)†T (βT
∗ (αzZ + αAA) + εT )T

E
=

ρ̃2α2
z

d
βT
∗ Z(Z +A)†(Z +A)†TZβ∗ +

ρ̃2

d
εT (Z +A)†(Z +A)†T ε

+
ρ̃2α2

A

d
βT
∗ A(Z +A)†(Z +A)†TATβ∗

+
2ρ̃2αAαz

d
βT
∗ Z(Z +A)†(Z +A)†TATβ∗

J.3. New Estimates

We now present new random matrix theory estimates.

Lemma 18 (General Terms) In the setting of Section 2 we have the following expectations:

1. For c < 1, E[βT
∗ uk

TA†β∗] =
c

ρ2(1−c)
(βT

∗ u)
2 + o

(
1
ρ2

)
and the variance is O(1/(ρ2d)).

2. For c < 1, E[kTA†A†Tk] = c2

ρ4(1−c)3
+ o

(
1
ρ4

)
and the variance is O(1/(ρ4d2)).

3. For c > 1, E[βT
∗ su

Tβ∗] =
c−1
c (βT

∗ u)
2 and the variance is O(1/d).

4. For c > 1, E[βT
∗ AA

†usTβ∗] =
c−1
c2

(βT
∗ u)

2 + o(1/n) and the variance is O(1/(ρ2d)).

5. For c > 1, E[βT
∗ h

Thβ∗] =
∥β∗∥2

d
c

ρ2(c−1)
+ o

(
∥β∗∥2
dρ2

)
and the variance is O(1/(ρ4d2)).

6. For c > 1, E[∥A†hT ∥2] = 1
ρ4

c3

(c−1)3
+ o

(
1
ρ4

)
and the variance is O(1/(ρ8d)).

7. For c > 1, E[∥k∥2] = 1
ρ2

1
c−1 + o

(
1
ρ2

)
and the variance is O(1/(ρ4n))
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Proof For all three terms we will need the SVD A = UΣV T , with A† = V Σ†UT .

For the first term, we note that

βT
∗ uk

TA†β∗ = (βT
∗ u)u

TA†TA†β∗

= (βT
∗ u)

d∑
i=1

(uTU)i(U
Tβ∗)i

1

σ2
i (A)

= (βT
∗ u)

d∑
i=1

uTui · βT
∗ ui

1

σ2
i (A)

where ui is the ithe column of U . Noting that

(uTβ∗) = (uTUUTβ∗)

Since permuting columns of a orthogonal matrix does not break orthogonality and U is uniformly
random, we have that the marginals ui are identical. Thus, we see that

E[uTu1 · βT
∗ u1] = . . . = E[uTud · βT

∗ ud] =
1

d
(uTβ∗)

Thus using Lemma 5 part 5 from [31] along with convergence, we get that

E
[
βT
∗ uk

TA†β∗

]
= (βT

∗ u)
d∑

i=1

E[(uTuuTβ∗)i]E
[

1

ρ2σ2
i (A/ρ

2)

]

=
1

ρ2
(βT

∗ u)
2

d∑
i=1

1

d

(
c

1− c
+ o(1)

)
=

1

ρ2
c

1− c
(βT

∗ u)
2 + o

(
1

ρ2

)
Similar to calculation in Theorem 19, we see that the variance of this term is O(1/(ρ2d)).

For the second term, we have that

kTA†A†Tk = uT ((AAT )†)2u

= uTU((ΣΣT )†)2UTu

=
d∑

i=1

(uTui)
2 1

σ4
i (A)

Then using Lemma 5 part 6 from [31], we have that

E[kTA†A†Tk] =
d∑

i=1

E[(uTui)2]E
[

1

σ4
i (A)

]
=

d∑
i=1

1

ρ4
1

d

(
c2

(1− c)3
+ o(1)

)
=

1

ρ4
c2

(1− c)3
+o

(
1

ρ4

)
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Similarly, we see that the variance is O(1/(ρ4d2)).

For third term, we have that

βT
∗ su

Tβ∗ = βT
∗ (I −AA†)u · (uTβ∗)

= (βT
∗ u)

2 −
n∑

i=1

(βT
∗ ui)(u

Tui)

Taking the expectation, we get

(βT
∗ u)

2

[
1−

n∑
i=1

1

d

]
=

(
1− 1

c

)
(βT

∗ u)
2

the variance for this term is O(1/d).

For the fourth term, we have that

βT
∗ AA

†usTβ∗ = βT
∗ AA

†uuTβ∗ − (βT
∗ AA

†u)2

From previous calculations, we have that

E[βT
∗ AA

†u] = (βT
∗ u)E[βT

∗ AA
†u] =

1

c
(βT

∗ u)
2

Using Proposition 3, we see that

E[(βT
∗ AA

†u)2] =
1

c2
(βT

∗ u)
2 + o(1)

Then, we get

E[βT
∗ AA

†usTβ∗] =
c− 1

c2
(βT

∗ u)
2 + o(1)

The variance for this term is O(1/(ρ2d)).

For the fifth term, and final term, we have

βT
∗ h

Thβ∗ = (βT
∗ A

†v)2 =
n∑
i,j

(βT
∗ U)i(β

T
∗ U)j

1

σi(A)σj(A)
(V T v)i(V

T v)j

Since βT
∗ U is uniformly random and independent of everything else, we see that we only have the

diagonal terms when we take the expectation. Using Lemma 5 part 1 from [31]

E[βT
∗ h

Thβ∗] =

n∑
i=1

∥β∗∥2

d

1

n

1

ρ2

(
c

c− 1
+ o(1)

)
=

∥β∗∥2

d

1

ρ2
c

c− 1
+ o

(
∥β∗∥2

dρ2

)
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The variance for this term is O(1/(d2ρ2)).

For the sixth term we have that

E
[
∥A†hT ∥2

]
=

n∑
i=1

1

n
E
[
1

σ4
i

]
=

1

ρ4
c3

(c− 1)3
+ o

(
1

ρ4

)
With a variance of O(1/(ρ8d)).

Lemma 19 (Zero Expectation) In the setting of Section 2, we have the following expectations for

1. ∀c, E[βT
∗ uhβ∗] = 0 and Var(βT

∗ uhβ∗) = O(1/(ρ2d))

2. If c > 1, E[βT
∗ AA

†uhβ∗] = 0 and Var(βT
∗ AA

†uhβ∗) = O(1/(ρ2d2))

3. If c > 1, E[βT
∗ shβ∗] = 0 and Var(βT

∗ shβ∗) = O(1/(ρ2d))

4. ∀c, E[kTA†hT ] = 0 and Var(kTA†hT ) = O(1/(ρ6d))

Proof For all three terms we will need the SVD A = UΣV T , with A† = V Σ†UT .

For the first term, we note that

βT
∗ uhβ

T
∗ = (βT

∗ u) · vTA†β∗

= (βT
∗ u)v

TV Σ†UTβ∗

= (βT
∗ u)

min(n,d)∑
i=1

(vTV )i(U
Tβ∗)i

1

σi(A)

Since A is isotropic Gaussian, we have that U, V are uniformly random orthogonal matrices. Thus,
we have that vTV and UTβ∗ are uniformly random vectors on a spheres of radius ∥v∥ and ∥β∗∥
respectively. In particular, they are independent and have mean zero. Thus, we see that

E
[
βT
∗ uhβ

T
∗
]
= 0

Since vTV and UTβ∗ are independent. We have their we have that variance of this term is
O(1/(ρ2d))

For the second term, we note that

βT
∗ AA

†u =

min(n,d)∑
i=1

(βT
∗ U)i(U

Tu)i and hβ∗ =

min(n,d)∑
i=1

(vTV )i(U
Tβ∗)i

1

σi(A)

Multiplying the two together, we get that

βT
∗ AA

†uhβ∗ =

min(n,d)∑
i,j

(βT
∗ U)i(U

Tu)i(v
TV )j(U

Tβ∗)j
1

σi(A)
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Noting that vTV is a uniformly random mean zero vector independent of everything else in the
summation. Hence the expectation is equal to zero.

E
[
βT
∗ AA

†uhβ∗

]
= 0

Using Theorem 37, the variance of this term is O(1/(ρ2d2))
For the third term, we have that

βT
∗ shβ∗ = βT

∗ (I −AA†)uhβ∗

= βT
∗ uhβ∗ − βT

∗ AA
†uhβ∗

Then using the previous two parts, we get that each term has mean zero. Thus, we get the needed
result. Using Theorem 35, the variance of this term is O(1/(ρ2d))

Finally, we have that for the last term:

kTA†hT = uUΣ†TΣ†Σ†TV T v

Hence using similar arguments to before, using the independence of U,Σ, V , we get mean zero and
variance O(1/(ρ6n))

Lemma 20 (Moments of γ1/η2) We have:

(i) For γ1/η2,

E
[
γ1
η2

]
=

c

ρ2
+

1

η2
+ o

(
1

ρ2

)
, Var

(
γ1
η2

)
= O

(
1

n

)
.

(ii) For γ2/η2,

E
[
γ2
η2

]
=

1

ρ2
+

1

η2
+ o

(
1

ρ2

)
, Var

(
γ2
η2

)
= O

(
1

n

)
.

Proof We decompose
γi
η2

= ζi + Y, i = 1, 2,

where

ζ1 = ∥t∥2 ∥k∥2, ζ2 = ∥s∥2 ∥h∥2, and Y =
ξ2

η2
.

Expectation Estimates:
Even though the norm terms (e.g. ∥t∥2 and ∥k∥2) are not independent, we use the standard bound∣∣E [∥t∥2 ∥k∥2]− E[∥t∥2] E[∥k∥2]

∣∣ ≤√Var (∥t∥2)Var (∥k∥2).

By Theorem 9 we have

Var(∥t∥2) = O

(
1

n

)
, Var(∥k∥2) = O

(
1

ρ4n

)
,
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so that √
Var (∥t∥2)Var (∥k∥2) = O

(
1

ρ2n

)
.

Therefore,

E[ζ1] = E[∥t∥2 ∥k∥2] = E[∥t∥2] E[∥k∥2] +O

(
1

ρ2n

)
.

Using Theorem 9 again,

E[∥t∥2] = 1− c, E[∥k∥2] = 1

ρ2
c

1− c
+ o

(
1

ρ2

)
,

which implies

E[ζ1] = (1− c)

(
1

ρ2
c

1− c

)
+ o

(
1

ρ2

)
+ o

(
1

ρ2

)
=

c

ρ2
+ o

(
1

ρ2

)
.

Finally from Theorem 9 item 9,

E[Y ] =
1

η2
+O

(
1

nρ2

)
,

since for c < 1 we have max(n, d) = n. Hence,

E
[
γ1
η2

]
= E[ζ1] + E[Y ] =

c

ρ2
+

1

η2
+ o

(
1

ρ2

)
.

A similar argument applies for γ2/η2. Using items 9 and 9,

E
[
γ2
η2

]
=

1

ρ2
+

1

η2
+ o

(
1

ρ2

)
.

Variance Estimates:
By Theorem 35, we have that

Var(ζ1) ≤ O
(
Var(∥k∥2) + Var(∥t∥2)

)
Thus, we see that

Var(ζ1) = O

(
1

n
+

1

ρ4n

)
= O

(
1

n

)
For both cases, by Theorem 36 the variance obeys

Var

(
γi
η2

)
≤
(√

Var(ζi) +
√

Var(Y )
)2

Also, from item 9

Var(Y ) = O

(
1

max(n, d)2ρ4

)
= o

(
1

ρ4n

)
.

Thus, we get that

Var

(
γi
η2

)
= O

(
1

n

)
, i = 1, 2.
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Lemma 21 (Moments of ξ/γi) Defining

ηξ

γi
=

ξ/η

γi/η2
, i = 1, 2,

we have the following estimates for the moments:

(i) For ηξ/γ1,

E
[
ηξ

γ1

]
=

ρ2η

η2c+ ρ2
+ o

(
1

ηρ2

)
+O

(
1

nρ

)
, Var

(
ηξ

γ1

)
= O

(
1

n

)
.

(ii) For ηξ/γ2,

E
[
ηξ

γ2

]
=

ρ2η

η2 + ρ2
+ o

(
1

ηρ2

)
+O

(
1

nρ

)
, Var

(
ηξ

γ2

)
= O

(
1

n

)
.

Proof Write
ηξ

γi
=

ξ/η

γi/η2
, i = 1, 2.

Since both ξ/η and γi/η
2 concentrate (with vanishing variances) and are bounded away from zero

with high probability, standard concentration bounds and the delta method (in particular, Lemma 33)
imply that

E
[
ηξ

γ1

]
=

E[ξ/η]
E[γ1/η2]

+
√
Var([γi/η2)Var(ξ/η)

=
1

η
·
(

ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

))
+O

(
1

nρ

)
=

ρ2η

η2c+ ρ2
+ o

(
1

ηρ2

)
+O

(
1

nρ

)
For the variance, we have from Theorem 36

Var

(
ηξ

γ1

)
≤
(

1

η2
O

(
1

n

)
+

ρ4η4

(η2c+ ρ2)2
O

(
1

nρ2

)
+O

(
1

n
+

1

nρ2

))
≤ O

(
1

n

)
Similarly for the other term.

Lemma 22 (Moments of ξ/γi) Defining

ξ2

γi
=

ξ2/η2

γi/η2
, i = 1, 2,

we have the following estimates for the moments:
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(i) For ξ2/γ1,

E
[
ξ2

γ1

]
=

ρ2η2

η2c+ ρ2

(
1

η2
+

1

nρ2
c

1− c

)
+o

(
1

η2ρ2

)
+O

(
1

n

)
, Var

(
ξ2

γ1

)
= O

(
1

n2

)
+O

(
1

η4n

)
.

(ii) For ξ2/γ2,

E
[
ξ2

γ2

]
=

ρ2η2

η2 + ρ2

(
1

η2
+

1

nρ2
1

c− 1

)
+o

(
1

η2ρ2

)
+O

(
1

n

)
, Var

(
ξ2

γ2

)
= O

(
1

n2

)
+O

(
1

η4n

)
.

Proof Using Theorem 9 and Theorem 21, we see that

E
[
ξ2/η2

γ1/η2

]
=

(
ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

))
·
(

1

η2
+ o

(
1

nρ2

)
+O

(
1

nρ2

))
+O

(
1

ρ2n1.5

)
=

ρ2

η2c+ ρ2
+ o

(
1

η2ρ2

)
+O

(
1

n

)
.

E
[
ξ2/η2

γ2/η2

]
=

(
ρ2η2

η2 + ρ2
+ o

(
1

ρ2

))
·
(

1

η2
+ o

(
1

dρ2

)
+O

(
1

dρ2

))
+O

(
1

ρ2n1.5

)
=

ρ2

η2 + ρ2
+ o

(
1

η2ρ2

)
+O

(
1

n

)
Similarly, using Theorem 36, we have that

Var

(
ξ2/η2

γ1/η2

)
,Var

(
ξ2/η2

γ2/η2

)
= O

(
1

n2

)
+O

(
1

η4n

)

Lemma 23 (Moments of ∥t∥2(∥h∥2)/γi) We have the following estimates for the moments:

(i) For η2∥t∥2/γ1,

E
[
η2∥t∥2

γ1

]
=

ρ2η2

η2c+ ρ2
(1− c) + o (1) +O

(
1

n

)
, Var

(
η2∥t∥2

γ1

)
= O

(
1

n

)
.

(ii) For η2∥h∥2/γ1,

E
[
η2∥h∥2

γ1

]
=

η2

η2c+ ρ2
c2

1− c
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)
, Var

(
η2∥h∥2

γ1

)
= O

(
1

n

)
.

(iii) For η2∥h∥2/γ2,

E
[
η2∥h∥2

γ2

]
=

η2

η2 + ρ2
· c

c− 1
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)
, Var

(
η2∥h∥2

γ2

)
= O

(
1

n

)
.
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Proof Similar to Lemma 23, since both ∥k∥2 and γi/η
2 concentrate (with vanishing variances) and

are bounded away from zero with high probability, standard concentration bounds and the delta
method (in particular, Lemma 33) imply that

E
[
η2∥t∥2

γ1

]
=

E[∥t∥2]
E[γ1/η2]

+
√

Var(γi/η2)Var(∥t∥2)

= (1− c) ·
(

ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

))
+O

(
1

n

)
= (1− c) · ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

)
+O

(
1

n

)
For the variance, we have from Theorem 36

Var

(
η2∥t∥2

γ1

)
≤
(
(1− c)2O

(
1

n

)
+

ρ4η4

(η2c+ ρ2)2
O

(
1

n

)
+O

(
1

n
+

1

n

))
≤ O

(
1

n

)
Similarly, we have that:

E
[
η2∥h∥2

γ1

]
=

E[∥h∥2]
E[γ1/η2]

+
√

Var(γi/η2)Var(∥h∥2)

=

(
1

ρ2
c2

1− c
+ o

(
1

ρ2

))
·
(

ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

))
+O

(
1

ρ2n

)
=

η2

η2c+ ρ2
c2

1− c
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)
For the variance, we have from Theorem 36

Var

(
η2∥h∥2

γ1

)
≤

((
1

ρ2
c2

1− c

)2

O

(
1

n

)
+

ρ4η4

(η2c+ ρ2)2
O

(
1

ρ4n

)
+O

(
1

n
+

1

ρ4n

))

≤ O

(
1

n

)
.

This proof is similar for the last term.

Lemma 24 (Moments of ∥s∥2(∥k∥2)/γi) We have the following estimates for the moments:

(i) For η2∥k∥2/γ1,

E
[
η2∥k∥2

γ1

]
=

c

1− c

η2

η2c+ ρ2
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)
, Var

(
η2∥k∥2

γ1

)
= O

(
1

n

)
.

(ii) For η2∥s∥2/γ2,

E
[
η2∥s∥2

γ2

]
=

(
1− 1

c

)
ρ2η2

η2 + ρ2
+ o (1) +O

(
1

n

)
, Var

(
η2∥s∥2

γ2

)
= O

(
1

n

)
.
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(iii) For η2∥k∥2/γ2,

E
[
η2∥k∥2

γ2

]
=

1

c− 1

η2

η2 + ρ2
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)
, Var

(
η2∥k∥2

γ2

)
= O

(
1

n

)
.

Proof Similar to Lemma 23, since both ∥k∥2 and γi/η
2 concentrate, Lemma 33 imply that

E
[
η2∥k∥2

γ1

]
=

E[∥k∥2]
E[γ1/η2]

+
√

Var(γ1/η2)Var(∥k∥2)

=

(
1

ρ2
c

1− c
+ o

(
1

ρ2

))(
ρ2η2

η2c+ ρ2
+ o

(
1

ρ2

))
+O

(
1

ρ2n

)
=

c

1− c

η2

η2c+ ρ2
+ o (1) +O

(
1

ρ2n

)
.

For the variance, we have from Theorem 36

Var

(
η2∥k∥2

γ1

)
≤
(

1

ρ2
c

1− c

)2

O

(
1

n

)
+

(
c

ρ2
+

1

η2

)2

O

(
1

n

)
+O

(
1

n

)
≤ O

(
1

n

)
.

Similarly for the other term.

Lemma 25 Suppose ε ∈ Rn whose entries have mean 0, variance τε, and follow our noise
assumptions. Then for any random matrix Q ∈ Rn×n independent, we have

Eε,Q

[
εTQε

]
= τ2εE [Tr(Q)] .

Proof We have that

εTQε =
n∑

i=1

n∑
j=1

εiεjqij .

We take the expectation of this sum. By the independence assumption and assumption E[εiεj ] =
0 when i ̸= j, we then have

Eε,Q

[
εTQε

]
=

n∑
i=1

E
[
ε2i
]
E [qii] = τ2εE

[
n∑

i=1

qii

]
= τ2εE [Tr(Q)] .

Lemma 26 In the same setting as Section 2, we have that,

E
[
βT
∗ (Z +A)†TZTβ∗

]
=


η2c

ρ2+η2c
(βT

∗ u)
2 + o

(
1
ρ2

)
+O

(
1
ρn

)
, c < 1

η2

η2+ρ2
(βT

∗ u)
2 + o

(
1
ρ2

)
+O

(
1
n

)
, c > 1

.
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Proof For c < 1, from Proposition 2, we get that

βT
∗ (Z +A)†TZTβ∗ =

ηξ

γ1
βT
∗ h

TuTβ∗ +
η2∥t∥2

γ1
βT
∗ A

†TkuTβ∗

Let us now compute the expected value of both terms. For the first one, we have that by approximating
the expectation of the product with the product of the expectations it has mean 0 with an error of√

Var

(
ηξ

γ1

)
Var (βT

∗ h
TuTβ∗) = O

(
1

nρ

)
.

Thus, we have that

E
[
ηξ

γ1
βT
∗ h

TuTβ∗

]
= O

(
1

nρ

)
Here we used Theorem 21 and Theorem 19. Using Theorem 19 and Theorem 23, we see that the
mean of the second term is

E
[
η2∥t∥2

γ1
βT
∗ A

†TkuTβ∗

]
=

(
ρ2η2

η2c+ ρ2
(1− c) + o (1) +O

(
1

n

))
·
(

c

ρ2(1− c)
(βT

∗ u)
2 + o

(
1

ρ2

))
+O

(
1

ρn

)
=

η2c

ρ2 + η2c
(βT

∗ u)
2 + o

(
1

ρ2

)
+O

(
1

ρn

)
Similarly, for c > 1, with expectations from Proposition 2, Theorem 18, Theorem 19, it follows

that

βT
∗ (Z +A)†TZTβ∗ = βT

∗

(
ηξ

γ2
uh+

η2∥h∥2

γ2
usT

)T

β∗

=
ηξ

γ2
βT
∗ h

TuTβ∗ +
η2∥h∥2

γ2
βT
∗ su

Tβ∗

Similar to before the mean zero term is of order o(1/(ρn)). While the second term is

E
[
η2∥h∥2

γ2
βT
∗ su

Tβ∗

]
=

(
η2

η2 + ρ2
c

c− 1
+ o

(
1

ρ2

)
+O

(
1

ρ2n

))
·
(
c− 1

c
(βT

∗ u)
2

)
+O

(
1

n

)
=

η2

η2 + ρ2
(βT

∗ u)
2 + o

(
1

ρ2

)
+O

(
1

n

)

Lemma 27 In the same setting as Section 2, we have that, for c < 1

E
[
βT
∗ (Z +A)†TATβ∗

]
= ∥β∗∥2 −

η2c

ρ2 + η2c
(βT

∗ u)
2 + o

(
1

ρ2

)
+O

(
1

ρn

)
,

and for c > 1

E
[
βT
∗ (Z +A)†TATβ∗

]
=

1

c
∥β∗∥2−

1

d

η2

η2 + ρ2
∥β∗∥2−

1

c

η2

η2 + ρ2
(βT

∗ u)
2+o

(
1

ρ2
+

1

n

)
+O

(
1

ρn

)
.
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Proof For c < 1, using that Theorem 11, we get

βT
∗ (Z +A)†TATβ∗ = βT

∗

(
I − Z(Z +A)†

)T
β∗

E
= ∥β∗∥2 −

η2c

ρ2 + η2c
(βT

∗ u)
2 + o

(
1

ρ2

)
+O

(
1

ρn

)
For c > 1, using Theorem 11, we get

βT
∗ (Z +A)†TATβ∗ = βT

∗

(
AA† +

ηξ

γ2
hT sT − η2∥s∥2

γ2
hTh− η2∥h∥2

γ2
AA†usT − ηξ

γ2
AA†uh

)T

β∗

Then we have that
E
[
βT
∗ AA

†βT
∗

]
=

1

c
∥β∗∥2

Next, using Theorem 19 and Theorem 20, we have that

E
[
βT
∗

(
ηξ

γ2
hT sT

)
β∗

]
= O

(
1

ρn

)
and E

[
βT
∗

(
ηξ

γ2
AA†uh

)
β∗

]
= O

(
1

ρn1.5

)
Then using Theorem 18 and Theorem 24, we have that

E
[
βT
∗

(
η2∥s∥2

γ2
hTh

)
β∗

]
=

(
1

d
∥β∗∥2

c

ρ2(c− 1)

)
·
((

1− 1

c

)
ρ2η2

η2 + ρ2
+ o (1) +O

(
1

n

))
+O

(
1

ρ2n1.5

)
=

1

d

η2

η2 + ρ2
∥β∗∥2 + o

(
1

ρ2n

)
+O

(
1

ρ2n1.5

)
The final term is

E
[
βT
∗

(
η2∥h∥2

γ2
AA†usT

)
β∗

]
=

(
c− 1

c2
(βT

∗ u)
2 + o

(
1

n

))
·
(

η2

η2 + ρ2
· c

c− 1
+ o

(
1

ρ2

)
+O

(
1

ρ2n

))
+O

(
1

ρn

)
=

1

c

η2

η2 + ρ2
(βT

∗ u)
2 + o

(
1

ρ2
+

1

n

)
+O

(
1

ρn

)
Putting it all together, we get that

E
[
βT
∗ (Z +A)†TATβ∗

]
=

1

c
∥β∗∥2−

1

d

η2

η2 + ρ2
∥β∗∥2−

1

c

η2

η2 + ρ2
(βT

∗ u)
2+o

(
1

ρ2
+

1

n

)
+O

(
1

ρn

)

Lemma 28 (Expectations involving p1 and p2) In the setting of Section 2, we have that

1. For c = d/n < 1:

E
[
ξ2

γ21
∥p1∥2

]
=

c

1− c

η2

η2c+ ρ2
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)
.
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2. For c = d/n > 1:

E
[
ξ2

γ22
∥p2∥2

]
=

η2

c− 1

η2c+ ρ2

(η2 + ρ2)2
+ o

(
1

ρ2
+

1

n

)
+O

(
1

n

)
Proof Theorem 15 showed

ξ2

γ21
∥p1∥2 =

η2∥k∥2

γ1
.

Then Theorem 24 gives us the result.
Using Lemma 15 for p2:

ξ2

γ22
∥p2∥2 =

1

γ22

[
η4∥s∥4∥A†hT ∥2 + 2η3ξ∥s∥2kTA†hT + η2ξ2∥k∥2

]
For the first term we have that, we begin by noting that from Theorem 24

E
[
η4∥s∥4

γ22

]
= E

[
η2∥s∥2

γ2

]2
+Var

(
η2∥s∥2

γ2

)
=

(
1− 1

c

)2 ρ4η4

(η2 + ρ2)2
+ o(1) +O

(
1

n2

)
+ o(ρ2) + o

(
1

n

)
+O

(
ρ2

n

)
+O

(
1

n

)
=

(
1− 1

c

)2 ρ4η4

(η2 + ρ2)2
+ o(ρ2) +O

(
ρ2

n

)
(7)

Then using Theorem 36, we have that

Var

(
η4∥s∥4

γ22

)
= O

(
E
[
η2∥s∥2

γ2

]2
Var

(
η2∥s∥2

γ2

))
= O

(
ρ4

n

)
Thus, we have that

E
[
η4∥s∥4

γ22
∥A†hT ∥2

]
=

(
1

ρ4
c3

(c− 1)3
+ o

(
1

ρ4

))((
1− 1

c

)2 ρ4η4

(η2 + ρ2)2
+ o(ρ2) +O

(
ρ2

n

))
+O

(
1

ρ2n

)
=

c

c− 1

η4

(η2 + ρ2)2
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)

We write the second term as

2 · ηξ
γ2

· η
2∥s∥2

γ2
· kTA†h

where we see that each term concentrates. Since the last term has mean zero, we have that

E
[
·ηξ
γ2

· η
2∥s∥2

γ2
· kTA†h

]
= 0 +

√
Var

(
ηξ

γ2
· η

2∥s∥2
γ2

)
Var (kTA†h)
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Hence we need Var
(
ηξ
γ2

· η2∥s∥2
γ2

)
, which we get from Theorem 36, Theorem 24, and Theorem 21 as

follows:

Var

(
ηξ

γ2
· η

2∥s∥2

γ2

)
= O

(
ρ4

η2n

)
+O

(
ρ4

n

)
= O

(
ρ4

n

)
Thus, we get that

E
[
·ηξ
γ2

· η
2∥s∥2

γ2
· kTA†h

]
= O

(
1

ρn

)

The final term can be written as

ξ2

γ2
· η

2∥k∥2

γ2
=

ξ2/η2

γ2/η2
· η

2∥k∥2

γ2

The final term can be written as

ξ2

γ2
· η

2∥k∥2

γ2
=

ξ2/η2

γ2/η2
· η

2∥k∥2

γ2
, E

[
ξ2

γ2

]
=

ρ2η2

η2 + ρ2

(
1

η2
+

1

nρ2
1

c− 1

)
Then Theorem 24 gives us

E
[
η2∥k∥2

γ2

]
=

1

c− 1

η2

η2 + ρ2
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)
, Var

(
η2∥k∥2

γ2

)
= O

(
1

n

)
.

Thus, we see that the mean is

1

c− 1

η2ρ2

(η2 + ρ2)2
+ o

(
1

n

)
+ o

(
1

η2ρ2

)
+O

(
1

n

)
Finally, putting all three terms together we get

E
[
ξ2

γ22
∥p2∥2

]
=

c

c− 1

η4

(η2 + ρ2)2
+ o

(
1

ρ2

)
+

1

c− 1

η2ρ2

(η2 + ρ2)2
+ o

(
1

n

)
+O

(
1

n

)
=

η2

c− 1

η2c+ ρ2

(η2 + ρ2)2
+ o

(
1

ρ2
+

1

n

)
+O

(
1

n

)

The following lemmas deal with terms in the variances.

Lemma 29 In the same setting as Section 2, we have that,

E
[
βT
∗ Z(Z +A)†(Z +A)†TZβ∗

]
=


η2(η2+ρ2)
(η2c+ρ2)2

c2

1−c(β
T
∗ u)

2 + o (1) +O
(
1
n

)
, c < 1

η2

η2+ρ2
c

c−1(β
T
∗ u)

2 + o
(

1
ρ2

)
+O

(
1

ρ2n

)
, c > 1

Proof We start with c < 1 and expand this term using Proposition 2:

βT
∗ Z(Z+A)†(Z+A)†TZβ∗ =

η2∥h∥2ξ2

γ21
(βT

∗ u)
2+

η4∥t∥4

γ21
(kTA†A†Tk)(βT

∗ u)
2+

2η3∥t∥2ξ
γ21

kTA†hT (βT
∗ u)

2.
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We then start plugging in the expectations of these terms and keep track of the “cumulative" variance
of the sum. By Lemmas 9, 23, 22,

E
[
η2∥h∥2ξ2

γ21
(βT

∗ u)
2

]
= (βT

∗ u)
2E
[
η2∥h∥2

γ1

]
E
[
ξ2

γ1

]
+

√
Var

(
η2∥h∥2

γ1

)
Var

(
ξ2

γ1

)
= (βT

∗ u)
2

[
η2

η2c+ ρ2
c2

1− c
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)][
ρ2

η2c+ ρ2
+ o

(
1

η2ρ2

)
+O

(
1

n

)]
+O

(
1

n1.5

)
+O

(
1

η2n

)
= (βT

∗ u)
2 η2ρ2

(η2c+ ρ2)2
c2

1− c
+ o

(
1

η2

)
+O

(
1

n

)
.

For the second term, we begin from Theorem 23,

E
[
η4∥t∥4

γ21

]
= E

[
η2∥t∥2

γ1

]2
+Var

(
η2∥t∥2

γ1

)
= (1− c)2

ρ4η4

(η2 + ρ2)2
+ o(1) +O

(
1

n2

)
+ o(ρ2) + o

(
1

n

)
+O

(
ρ2

n

)
+O

(
1

n

)
= (1− c)2

ρ4η4

(η2 + ρ2)2
+ o(ρ2) +O

(
ρ2

n

)
Then by Theorem 36,

Var

(
η4∥t∥4

γ21

)
= O

(
E
[
η2∥t∥2

γ1

]2
Var

(
η2∥t∥2

γ1

))
= O

(
ρ4

n

)
Finally, we have that:

E
[
η4∥t∥4

γ21
(kTA†A†Tk)(βT

∗ u)
2

]
= (βT

∗ u)
2E
[
η4∥t∥4

γ21

]
E
[
kTA†A†Tk

]
+

√
Var

(
η4∥t∥4
γ21

)
Var (kTA†A†Tk)

= (βT
∗ u)

2

(
(1− c)2 ρ4η4

(η2 + ρ2)2
+ o(ρ2) +O

(
ρ2

n

))(
c2

ρ4(1− c)3
+ o

(
1

ρ4

))
+ o(1) +O

(
1

n1.5

)
=

η4

(η2 + ρ2)2
c2

1− c
(βT

∗ u)
2 + o(1) +O

(
1

n1.5

)
.

We now have one term left. Similarly, we will have:

E
[
η3∥t∥2ξ

γ21

]
= E

[
η2∥t∥2

γ1

]
E
[
ηξ

γ1

]
+

√
Var

(
η2∥t∥2
γ1

)
Var

(
ηξ

γ1

)
=

ρ4η3

(η2c+ ρ2)2
(1− c) + o

(
ρ2

η

)
+O

(ρ
n

)
+O

(
ρ2

ηn

)
.
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Then by Theorem 36,

Var

(
η3∥t∥2ξ

γ21

)
= O

(
1

n

)
O

(
ρ4 +

ρ4

η2

)
+ o

(
1

n

)
= O

(
ρ4

n

)
.

The entire term becomes:

E
[
η3∥t∥2ξ

γ21
kTA†hT (βT

∗ u)
2

]
= (βT

∗ u)
2E
[
η3∥t∥2ξ

γ21

]
E
[
kTA†hT

]
+

√
Var

(
η3∥t∥2ξ

γ21

)
Var (kTA†hT )

= O

(
1

nρ

)
.

Now we have the expectations and errors for the three terms. Combining them yields the Lemma
statement. For c > 1, we recall that hs = 0,

βT
∗ Z(Z +A)†(Z +A)†TZβ∗ =

η2∥h∥2ξ2

γ22
(βT

∗ u)
2 +

η4∥h∥4∥s∥2

γ22
(βT

∗ u)
2 +

2η3∥h∥2ξ
γ22

βT
∗ uhsu

Tβ∗

=

(
η2∥h∥2(ξ2 + η2∥h∥2∥s∥2)

γ22

)
(βT

∗ u)
2

=

(
η2∥h∥2γ2

γ22

)
(βT

∗ u)
2

=
η2∥h∥2

γ2
(βT

∗ u)
2

E
=

η2

η2 + ρ2
c

c− 1
(βT

∗ u)
2 + o

(
1

ρ2

)
+O

(
1

ρ2n

)
by Lemma 23.

Lemma 30 In the same setting as Section 2, we have that,

E
[
βT
∗ A(Z +A)†(Z +A)†TAβ∗

]
=

∥β∗∥2 + η2(η2+ρ2)
(η2c+ρ2)2

c2

1−c(β
T
∗ u)

2 − 2η2c
η2c+ρ2

(βT
∗ u)

2 + o(1) +O
(
1
n

)
, c < 1

∥β∗∥2
c − η2

η2+ρ2

(
∥β∗∥2

d − (βT
∗ u)2

c(c−1)

)
+ o(1) +O

(
1
n

)
, c > 1

Proof We use similar expansions that follow from Lemma 11.

βT
∗ A(Z +A)†(Z +A)†TAβ∗ = ∥β∗∥2 +

η2∥h∥2ξ2

γ21
(βT

∗ u)
2 +

η4∥t∥4

γ21
(kTA†A†Tk)(βT

∗ u)
2

+
2η3∥t∥2ξ

γ21
(βT

∗ u)
2kTA†hT − 2η2∥t∥2

γ1
βT
∗ uk

TA†β∗ −
2ηξ

γ1
βT
∗ uhβ∗.

Lemma 29 gives the expectation of the first four terms as,

∥β2
∗∥2 +

η2(η2 + ρ2)

(η2c+ ρ2)2
c2

1− c
(βT

∗ u)
2 + o (1) +O

(
1

n

)
.

50



ALIGNMENT DRIVEN BENIGN AND CATASTROPHIC OVERFITTING

The other expectations follow from Lemmas 23, 18, 19,

E
[
ηξ

γ1
βT
∗ uhβ∗

]
= E

[
ηξ

γ1

]
E
[
βT
∗ uhβ∗

]
+

√
Var

(
ηξ

γ1

)
Var (βT

∗ uhβ∗) = O

(
1

nρ

)
.

E
[
η2∥t∥2

γ1
βT
∗ uk

TA†β∗

]
= E

[
η2∥t∥2

γ1

]
E
[
βT
∗ uk

TA†β∗

]
+

√
Var

(
η2∥t∥2
γ1

)
Var (βT

∗ uk
TA†β∗)

=

[
ρ2η2

η2c+ ρ2
(1− c) + o(1) +O

(
1

n

)][
c

ρ2(1− c)
(βT

∗ u)
2 + o

(
1

ρ2

)]
+O

(
1

nρ

)
=

η2c

η2c+ ρ2
+ o(1) +O

(
1

nρ

)
.

Combining these results yields the lemma statement.
For c > 1, we let IU = AA†. With hs = 0, sT IU = 0, hIU = h, we have the following

expansion:

βT
∗ A(Z +A)†(Z +A)†TAβ∗ = βT

∗ IUβ∗ +
η2∥s∥2ξ2

γ22
βT
∗ h

Thβ∗ +
η4∥s∥4∥h∥2

γ22
βT
∗ h

Thβ∗

+
η4∥h∥4∥s∥2

γ22
βT
∗ IUuu

T IUβ∗ +
η2∥h∥2ξ2

γ22
βT
∗ IUuu

T IUβ∗

− 2η2∥s∥2

γ2
βT
∗ h

Thβ∗ −
2ηξ

γ2
βT
∗ IUuhβ∗

− 2η3∥s∥2∥h∥2ξ
γ22

βT
∗ IUuhβ∗ +

2η3∥s∥2∥h∥2ξ
γ22

βT
∗ IUuhβ∗

We can combine the coefficients as:

η2∥s∥2ξ2

γ22
+

η4∥s∥4∥h∥2

γ22
− 2η2∥s∥2

γ2
=

η2∥s∥2(η2∥s∥2∥h∥2 + ξ2)− 2η2∥s∥2γ2
γ22

= −η2∥s∥2

γ2
,

η4∥h∥4∥s∥2

γ22
+

η2∥h∥2ξ2

γ22
=

η2∥h∥2(η2∥s∥2∥h∥2 + ξ2)

γ22
=

η2∥h∥2γ2
γ22

=
η2∥h∥2

γ2
.

Then we have that:

βT
∗ A(Z +A)†(Z +A)†TAβ∗ = βT

∗ IUβ∗ −
η2∥s∥2

γ2
βT
∗ h

Thβ∗ +
η2∥h∥2

γ2
βT
∗ IUuu

T IUβ∗ −
2ηξ

γ2
βT
∗ IUuhβ∗.

Following Proposition 3, E[βT
∗ IUβ∗] = ∥β∗∥2/c+ o(1). Simiarly, we use Lemmas 18, 23, 24, 21 to

obtain:

E
[
η2∥s∥2

γ2
βT
∗ h

Thβ∗

]
= E

[
η2∥s∥2

γ2

]
E
[
βT
∗ h

Thβ∗
]
+

√
Var

(
η2∥s∥2
γ2

)
Var (βT

∗ h
Thβ∗)

=

[(
1− 1

c

)
ρ2η2

η2 + ρ2
+ o(1) +O

(
1

n

)][
∥β∗∥2

d

c

ρ2(c− 1)
+ o

(
∥β∗∥2

dρ2

)]
+O

(
1

ρ2n1.5

)
=

∥β∗∥2

d

η2

η2 + ρ2
+ o

(
∥β∗∥2

d

)
+O

(
1

ρ2n1.5

)
.
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E
[
η2∥h∥2

γ2
βT
∗ IUuu

T IUβ∗

]
=

η2

η2 + ρ2
(βT

∗ u)
2

c(c− 1)
+ o(1) +O

(
1

n

)
, E

[
ηξ

γ2
βT
∗ IUuhβ∗

]
= O

(
1

ρn1.5

)
.

We combine these results.

Lemma 31 In the same setting as Section 2, we have that,

E
[
βT
∗ Z(Z +A)†(Z +A)†TAβ∗

]
=

−
(
η2(η2+ρ2)
(η2c+ρ2)2

c2

1−c −
η2c

η2c+ρ2

)
(βT

∗ u)
2 + o(1) +O

(
1
n

)
, c < 1

− η2

η2+ρ2
1

c−1(β
T
∗ u)

2 + o(1) +O
(
1
n

)
, c > 1

Proof For c < 1, we expand using Proposition 2, Theorem 11, and note that all of the relevant terms
have been evaluated in the proofs of Lemmas 29, 30,

βT
∗ Z(Z +A)†(Z +A)†TAβ∗ =

ηξ

γ1
βT
∗ uhβ∗ +

η2∥t∥2

γ1
βT
∗ uk

TA†β∗ −
2η3∥t∥2ξ

γ21
(βT

∗ u)
2hA†Tk

− η4∥t∥4

γ21
(kTA†A†Tk)(βT

∗ u)
2 − η2∥h∥2ξ2

γ21
(βT

∗ u)
2

E
= −

(
η2(η2 + ρ2)

(η2c+ ρ2)2
c2

1− c
− η2c

η2c+ ρ2

)
(βT

∗ u)
2 + o(1) +O

(
1

n

)
.

For c > 1, βT
∗ Z(Z +A)†(Z +A)†TAβ∗ becomes:

= βT
∗
ηξ

γ2
uh

(
IU +

ηξ

γ2
sh− η2∥s∥2

γ2
hTh− η2∥h∥2

γ2
suT IU − ηξ

γ2
hTuT IU

)
β∗

+ βT
∗
η2∥h∥2

γ2
usT

(
IU +

ηξ

γ2
sh− η2∥s∥2

γ2
hTh− η2∥h∥2

γ2
suT IU − ηξ

γ2
hTuT IU

)
β∗

= βT
∗

[
ηξ

γ2
uhIU +

η2ξ2

γ22
uhsh− η3ξ∥s∥2

γ22
uhhTh− η3∥h∥2ξ

γ22
uhsuT IU − η2ξ2

γ22
uhhTuT IU

]
β∗

+ βT
∗

[
η2∥h∥2

γ2
usT IU +

η3∥h∥2∥s∥2ξ
γ22

uh− η4∥h∥2∥s∥2

γ22
usThTh− η4∥h∥4∥s∥2

γ22
uuT IU − η3∥h∥2ξ

γ22
usThTuT IU

]
β∗

= βT
∗

[
ηξ

γ2
uhIU − η3ξ∥s∥2∥h∥2

γ22
uh− η2∥h∥2ξ2

γ22
uuT IU

]
β∗

+ βT
∗

[
η3∥h∥2∥s∥2ξ

γ22
uh− η4∥h∥4∥s∥2

γ22
uuT IU

]
β∗

= βT
∗

[
ηξ

γ2
uhIU − η2∥h∥2ξ2

γ22
uuT IU − η4∥h∥4∥s∥2

γ22
uuT IU

]
β∗

=
ηξ

γ2
βT
∗ uhIUβ∗ −

η2∥h∥2

γ2
βT
∗ uu

T IUβ∗

E
= − η2

η2 + ρ2
1

c− 1
(βT

∗ u)
2 + o(1) +O

(
1

n

)
.
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Lemma 32 In the same setting as Section 2, we have that,

E
[
εT (Z +A)†(Z +A)†T ε

]
=

τ2ε

(
cd

ρ2(1−c)
− η2

ρ2(η2c+ρ2)
c2

1−c

)
+ o

(
n
ρ2

)
+O

(
1

ρ2n

)
, c < 1

τ2ε

(
d

ρ2(c−1)
− η2

ρ2(η2+ρ2)
c

c−1

)
+ o

(
n
ρ2

)
+O

(
1

ρ2n

)
, c > 1

Proof For c < 1, we first expand this term using Theorem 8:

εT (Z +A)†(Z +A)†T ε

= εT
(
A† +

η

ξ
tTkTA† − ξ

γ1
p1q

T
1

)(
A† +

η

ξ
tTkTA† − ξ

γ1
p1q

T
1

)T

ε

= εTA†A†T ε+
2η

ξ
εTA†A†Tktε− 2ξ

γ1
εTA†q1p

T
1 ε+

η2

ξ2

(
kTA†A†Tk

)
εT tT tε− 2η

γ1
εT tTkTA†q1p

T
1 ε+

ξ2

γ21
εT p1q

T
1 q1p

T
1 ε

Note that Lemma 25 and the fact that tA† = 0 imply that the second term has zero expectation:

Eε

[
2η

ξ
εTA†A†Tktε

]
=

2ητ2ε
ξ

tA†A†Tk = 0.

Simiarly, we will later use:

Eε

[
εTA†hT tε

]
= τ2ε tA

†hT = 0, Eε

[
εT tTkT ε

]
= τ2ε Tr(t

TkT ) = τ2ε Tr(kt) = 0.

Note that these terms do not induce extra variance so that we can directly eliminate them from the
following expressions. We now expand the other terms one by one and compute their expectations
along the way:

−2ξ

γ1
εTA†q1p

T
1 ε = −2ξ

γ1
εTA†

(
η∥t∥2

ξ
A†Tk + hT

)(
η2∥k∥2

ξ
t+ ηkT

)
ε

= −2η3∥t∥2∥k∥2

γ1ξ
εTA†A†Tktε− 2η2∥t∥2

γ1
εTA†A†TkkT ε− 2η2∥k∥2

γ1
εTA†hT tε− 2ηξ

γ1
εTA†hTkT ε

E
= −2η2∥t∥2τ2ε

γ1
kTA†A†Tk − 2ηξτ2ε

γ1
kTA†hT

−2η

γ1
εT tTkTA†q1p

T
1 ε = −2η

γ1
εT tTkTA†

(
η∥t∥2

ξ
A†Tk + hT

)(
η2∥k∥2

ξ
t+ ηkT

)
ε

= −2η4∥t∥2∥k∥2

γ1ξ2

(
kTA†A†Tk

)
εT tT tε− 2η3∥t∥2

γ1ξ

(
kTA†A†Tk

)
εT tTkT ε

− 2η3∥k∥2

γ1ξ
(kTA†hT )εT tT tε− 2η2

γ1
(kTA†hT )εT tTkT ε

E
= −2η4∥t∥4∥k∥2τ2ε

γ1ξ2
kTA†A†Tk − 2η3∥k∥2∥t∥2τ2ε

γ1ξ
kTA†hT .

η2

ξ2

(
kTA†A†Tk

)
εT tT tε

E
=

η2∥t∥2τ2ε
ξ2

kTA†A†Tk.
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By the squared norms in Lemmas 15, 16, and Lemma 25,

ξ2

γ21
εT p1q

T
1 q1p

T
1 ε

E
=

ξ2τ2ε
γ21

∥p1∥2∥q1∥2

=
ξ2τ2ε
γ21

(
η2∥k∥2

ξ2
γ1

)(
η2∥t∥4

ξ2
kA†A†Tk +

2η∥t∥2

ξ
kTA†hT + ∥h∥2

)
=

τ2ε
γ1

(
η2∥k∥2

)(η2∥t∥4

ξ2
kA†A†Tk +

2η∥t∥2

ξ
kTA†hT + ∥h∥2

)
= τ2ε

(
η4∥t∥4∥k∥2

γ1ξ2
kA†A†Tk +

2η3∥t∥2∥k∥2

γ1ξ
kTA†hT +

η2∥k∥2∥h∥2

γ1

)
We combine like terms and simplify the coefficients, which can seem quite complicated at first:

For term kTA†A†Tk,

τ2ε

(
η4∥t∥4∥k∥2

γ1ξ2
− 2η4∥t∥4∥k∥2

γ1ξ2
− 2η2∥t∥2

γ1
+

η2∥t∥2

ξ2

)
= τ2ε η

2∥t∥2
(
η2∥t∥2∥k∥2

γ1ξ2
− 2η2∥t∥2∥k∥2

γ1ξ2
− 2

γ1
+

1

ξ2

)
= τ2ε η

2∥t∥2
(
−γ1 − ξ2

γ1ξ2
− 2

γ1
+

1

ξ2

)
= τ2ε η

2∥t∥2
(
−γ1 − ξ2

γ1ξ2
− 2ξ2

γ1ξ2
+

γ1
γ1ξ2

)
= −τ2ε

η2∥t∥2

γ1
.

For term kTA†hT ,

τ2ε

(
2η3∥t∥2∥k∥2

γ1ξ
− 2η3∥k∥2∥t∥2

γ1ξ
− 2ηξ

γ1

)
= −τ2ε

2ηξ

γ1
.

Combining these terms together, we have:

εT (Z +A)†(Z +A)†T ε
E
= εTA†A†T ε− η2∥t∥2τ2ε

γ1
kTA†A†Tk − 2ηξτ2ε

γ1
kTA†hT +

η2∥k∥2∥h∥2

γ1
.

Similarly, using the relevant lemmas, we have the following:

E
[
εTA†A†T ε

]
= τ2ε

cd

ρ2(1− c)
+ o

(
d

ρ2

)
,

E
[
η2∥t∥2

γ1
kTA†A†Tk

]
=

η2

η2c+ ρ2
c2

ρ2(1− c)2
+ o

(
1

ρ2

)
+O

(
1

ρ4n

)
+O

(
1

ρ2n1.5

)
,

E
[
ηξ

γ1
kTA†hT

]
= O

(
1

ρ3n

)
,

E
[
η2∥k∥2∥h∥2

γ1

]
=

η2

η2c+ ρ2
c3

ρ2(1− c)2
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)
.
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After simple algebra, the result follows.
For c > 1, we can expand similarly using Theorem 8,

εT (Z +A)†(Z +A)†T ε

= εT
(
A† +

η

ξ
A†hT sT − ξ

γ2
p2q

T
2

)(
A†T +

η

ξ
shA†T − ξ

γ2
q2p

T
2

)
ε

= εTA†A†T ε+
2η

ξ
εT A†s︸︷︷︸

0

hA†T ε− 2ξ

γ2
εTA†q2p

T
2 ε

+
η2∥s∥2

ξ2
εTA†hThA†T ε− 2η

γ2
εTA†hT sT q2p

T
2 ε+

ξ2

γ22
εT p2q

T
2 q2p

T
2 ε

We expand the other terms one by one, marking those with zero expectations:

−2ξ

γ2
εTA†q2p

T
2 ε = −2ξ

γ2
εTA†

(
η∥h∥2

ξ
s+ hT

)(
η2∥s∥2

ξ
hA†T + ηkT

)
ε

= −2ξ

γ2
εTA†hT

(
η2∥s∥2

ξ
hA†T + ηkT

)
ε

= −2η2∥s∥2

γ2
εTA†hThA†T ε− 2ηξ

γ2
εTA†hTkT ε

E
= −2η2∥s∥2τ2ε

γ2
∥A†hT ∥2 − 2ηξτ2ε

γ2
kTA†hT

−2η

γ2
εTA†hT sT q2p

T
2 ε = −2η

γ2
εTA†hT sT

(
η∥h∥2

ξ
s+ hT

)(
η2∥s∥2

ξ
hA†T + ηkT

)
ε

= −2η

γ2
εTA†hT

(
η∥h∥2∥s∥2

ξ

)(
η2∥s∥2

ξ
hA†T + ηkT

)
ε

= −2η4∥s∥4∥h∥2

γ2ξ2
εTA†hThA†T ε− 2η3∥s∥2∥h∥2

γ2ξ
εTA†hTkT ε

E
= −2η4∥s∥4∥h∥2τ2ε

γ2ξ2
∥A†hT ∥2 − 2η3∥s∥2∥h∥2τ2ε

γ2ξ
kTA†hT

Using the squared norms from Lemmas 15, 16,

ξ2

γ22
εT p2q

T
2 q2p

T
2 ε

E
=

ξ2

γ22
τ2ε ∥p2∥2∥q2∥2

=
ξ2τ2ε
γ22

(
∥h∥2

ξ2
γ2

)(
η4∥s∥4

ξ2
∥A†hT ∥2 + 2η3∥s∥2

ξ
kTA†hT + η2∥k∥2

)
= τ2ε

(
η4∥h∥2∥s∥4

γ2ξ2
∥A†hT ∥2 + 2η3∥h∥2∥s∥2

γ2ξ
kTA†hT +

η2∥h∥2∥k∥2

γ2

)
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Similarly, we combine the coefficients: For ∥A†hT ∥2,

τ2ε

(
η4∥s∥4∥h∥2

γ2ξ2
− 2η4∥s∥4∥h∥2

γ2ξ2
− 2η2∥s∥2

γ2
+

η2∥s∥2

ξ2

)
= τ2ε η

2∥s∥2
(
η2∥s∥2∥h∥2

γ2ξ2
− 2η2∥s∥2∥h∥2

γ2ξ2
− 2

γ2
+

1

ξ2

)
= τ2ε η

2∥s∥2
(
−γ2 − ξ2

γ2ξ2
− 2

γ2
+

1

ξ2

)
= τ2ε η

2∥s∥2
(
−γ2 − ξ2

γ2ξ2
− 2ξ2

γ2ξ2
+

γ2
γ2ξ2

)
= −τ2ε

η2∥s∥2

γ2
.

For term kTA†hT ,

τ2ε

(
2η3∥s∥2∥h∥2

γ2ξ
− 2η3∥s∥2∥h∥2

γ2ξ
− 2ηξ

γ2

)
= −τ2ε

2ηξ

γ2
.

Combining these terms together, we have:

εT (Z +A)†(Z +A)†T ε
E
= εTA†A†T ε− η2∥s∥2τ2ε

γ2
∥A†hT ∥2 − 2ηξτ2ε

γ2
kTA†hT +

η2∥k∥2∥h∥2

γ2
.

Similarly, using the relevant lemmas, we have the following:

E
[
εTA†A†T ε

]
= τ2ε

d

ρ2(c− 1)
+ o

(
n

ρ2

)
,

E
[
η2∥s∥2

γ2
∥A†hT ∥2

]
=

η2

η2 + ρ2
c2

ρ2(c− 1)2
+ o

(
1

ρ2

)
+O

(
1

ρ4n

)
,

E
[
ηξ

γ2
kTA†hT

]
= O

(
1

ρ3n

)
,

E
[
η2∥k∥2∥h∥2

γ2

]
=

η2

η2 + ρ2
c

ρ2(c− 1)2
+ o

(
1

ρ2

)
+O

(
1

ρ2n

)
.

After simple algebra, the result follows.

Appendix K. Probability Lemmas

Proposition 3 If u, v ∈ Rd are fixed unit norm vector and A ∈ Rd×n is a Gaussian matrix with IID
N (0, 1) entries. Then we have that

E[(uTAA†v)2] =
n

d(d+ 2)

[
(uT v)2(n+ 2) +

(1− (uT v)2)(d− n)

d− 1

]
=

1

c2
(uT v)2 + o(1)
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Proof Let P := AA†. This is the orthogonal projection matrix onto the column space of A, denoted
C(A) = Range(A). The subspace C(A) is an n-dimensional subspace of Rd. Because the entries
Aij are i.i.d. N (0, 1), the distribution of the random subspace C(A) is isotropic (or rotationally
invariant). Consequently, the distribution of the random projection matrix P is also rotationally
invariant. That is, for any fixed d× d orthogonal matrix Q, the distribution of QPQT is the same as
the distribution of P .

We are interested in E[(uTPv)2]. Let θ be the angle between u and v, such that cos(θ) = uT v
(since they are unit vectors). Due to the rotational invariance of the distribution of P , we can
choose an orthonormal basis without loss of generality. Let Q be an orthogonal matrix such
that u′ = Qu = e1 = (1, 0, . . . , 0)T and v′ = Qv lies in the span of e1 and e2. Specifically,
v′ = cos(θ)e1 + sin(θ)e2. Let P ′ = QPQT . P ′ has the same distribution as P . Then,

uTPv = (QTu′)TP (QT v′) = (u′)T (QPQT )v′ = (u′)TP ′v′

Substituting u′ = e1 and v′ = cos(θ)e1 + sin(θ)e2:

uTPv = eT1 P
′(cos(θ)e1 + sin(θ)e2)

= cos(θ)(eT1 P
′e1) + sin(θ)(eT1 P

′e2)

= cos(θ)P ′
11 + sin(θ)P ′

12

where P ′
ij are the elements of P ′. Since P ′ has the same distribution as P , we can drop the prime for

calculating expectations involving the elements. Let X = uTPv. We need E[X2].

E[X2] = E[(cos(θ)P11 + sin(θ)P12)
2]

= E[cos2(θ)P 2
11 + sin2(θ)P 2

12 + 2 cos(θ) sin(θ)P11P12]

= cos2(θ)E[P 2
11] + sin2(θ)E[P 2

12] + 2 cos(θ) sin(θ)E[P11P12]

Calculation of Moments We need to compute E[P 2
11], E[P 2

12], and E[P11P12].
Consider a reflection matrix R that maps e2 to −e2 and leaves other basis vectors unchanged (i.e.,

R = diag(1,−1, 1, . . . , 1)). Since the distribution of P is isotropic, it is invariant under reflection.
Let P ∗ = RPRT = RPR. P ∗ has the same distribution as P . The components are related:

P ∗
11 = (RPR)11 = R11P11R11 = P11

and
P ∗
12 = (RPR)12 = R11P12R22 = (1)P12(−1) = −P12.

Therefore,
E[P11P12] = E[P ∗

11P
∗
12] = E[P11(−P12)] = −E[P11P12].

This implies 2E[P11P12] = 0, so E[P11P12] = 0.
The diagonal element P11 = eT1 Pe1 = ||Pe1||22 represents the squared norm of the projection of

the fixed unit vector e1 onto the random n-dimensional subspace C(A). This variable follows a Beta
distribution:

P11 ∼ Beta
(
n

2
,
d− n

2

)
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The mean and variance of a Beta(α, β) distribution are α
α+β and αβ

(α+β)2(α+β+1)
, respectively. Here,

α = n/2 and β = (d− n)/2, so α+ β = d/2.

E[P11] =
n/2

d/2
=

n

d

Next

Var(P11) =
(n/2)((d− n)/2)

(d/2)2(d/2 + 1)
=

n(d− n)/4

(d2/4)((d+ 2)/2)
=

n(d− n) · 8
4d2(d+ 2)

=
2n(d− n)

d2(d+ 2)

Now we find E[P 2
11] using E[P 2

11] = Var(P11) + (E[P11])
2:

E[P 2
11] =

2n(d− n)

d2(d+ 2)
+
(n
d

)2
=

2n(d− n) + n2(d+ 2)

d2(d+ 2)

=
2nd− 2n2 + n2d+ 2n2

d2(d+ 2)

=
2nd+ n2d

d2(d+ 2)
=

nd(2 + n)

d2(d+ 2)

=
n(n+ 2)

d(d+ 2)
.

We use the property that P is a projection matrix, so P 2 = P . The trace is Tr(P ) = n. Also
Tr(P 2) = Tr(P ) = n. We can write Tr(P 2) = Tr(PP T ) since P is symmetric.

Tr(P 2) =
d∑

i=1

d∑
j=1

(Pij)
2

Taking the expectation:

E[Tr(P 2)] = E

∑
i,j

P 2
ij

 =
∑
i,j

E[P 2
ij ] = n

By rotational symmetry, E[P 2
ii] is the same for all i, and E[P 2

ij ] is the same for all i ̸= j.

d∑
i=1

E[P 2
ii] +

∑
i ̸=j

E[P 2
ij ] = n

There are d diagonal terms and d(d− 1) off-diagonal terms.

dE[P 2
11] + d(d− 1)E[P 2

12] = n

Substitute the value for E[P 2
11] (assuming d > 1):

d

(
n(n+ 2)

d(d+ 2)

)
+ d(d− 1)E[P 2

12] = n
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n(n+ 2)

d+ 2
+ d(d− 1)E[P 2

12] = n

d(d− 1)E[P 2
12] = n− n(n+ 2)

d+ 2
=

n(d+ 2)− n(n+ 2)

d+ 2
=

nd+ 2n− n2 − 2n

d+ 2
=

n(d− n)

d+ 2

E[P 2
12] =

n(d− n)

d(d− 1)(d+ 2)

Substitute the moments back into the expression for E[X2]:

E[X2] = cos2(θ)E[P 2
11] + sin2(θ)E[P 2

12] + 2 cos(θ) sin(θ) · 0

Using cos(θ) = uT v, cos2(θ) = (uT v)2, and sin2(θ) = 1− cos2(θ) = 1− (uT v)2:

E[(uTAA†v)2] = (uT v)2
(
n(n+ 2)

d(d+ 2)

)
+ (1− (uT v)2)

(
n(d− n)

d(d− 1)(d+ 2)

)
=

n

d(d+ 2)

[
(uT v)2(n+ 2) +

(1− (uT v)2)(d− n)

d− 1

]

Lemma 33 Let a ̸= 0 be a constant and suppose that ζ = a+ o(1) as n → ∞. Then,

1

ζ
=

1

a
+ o(1).

Proof We can write

ζ = a+ o(1) = a

(
1 +

o(1)

a

)
= a [1 + o(1)] .

Taking the reciprocal gives
1

ζ
=

1

a (1 + o(1))
=

1

a
· 1

1 + o(1)
.

Since for any u = o(1) we have the expansion

1

1 + u
= 1− u+ o(u),

it follows that
1

1 + o(1)
= 1− o(1) = 1 + o(1).

Thus,
1

ζ
=

1

a
[1 + o(1)] =

1

a
+ o(1).
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Lemma 34 Let X be a random variable satisfying

E[X] = a > 0 and Var(X) = o(1),

and assume that X is bounded away from zero with high probability. Then

Var

(
1

X

)
=

1

a4
Var(X) + o (Var(X)) ,

so in particular, Var(1/X) = o(1).

Proof Since Var(X) = o(1), the random variable X is highly concentrated about its mean a.
Consider the function f(x) = 1/x, which is differentiable at x = a with derivative

f ′(a) = − 1

a2
.

By the first-order Taylor expansion (or the delta method), we have

1

X
= f(X) ≈ f(a) + f ′(a)(X − a) =

1

a
− 1

a2
(X − a)

for X near a. Since E[X − a] = 0, the mean of 1/X is approximately

E

[
1

X

]
≈ 1

a
.

Now, the variance of 1/X can be approximated by considering the linear term:

Var

(
1

X

)
≈ Var

(
− 1

a2
(X − a)

)
=

1

a4
Var(X).

The remainder term in the Taylor expansion, which is of higher order in (X − a), contributes a term
that is o(Var(X)). Hence, we obtain

Var

(
1

X

)
=

1

a4
Var(X) + o (Var(X)) .

Since Var(X) = o(1), it follows that Var(1/X) = o(1) as well.

Lemma 35 Let A and B be any random variables with finite variances V (A) = Var(A) and
V (B) = Var(B). Then,

Var(A+B) ≤
(√

V (A) +
√
V (B)

)2
.

Proof Recall that
Var(A+B) = Var(A) + Var(B) + 2 Cov(A,B).

By the Cauchy–Schwarz inequality, we have

|Cov(A,B)| ≤
√

V (A)V (B).

Thus,

Var(A+B) ≤ V (A) + V (B) + 2
√
V (A)V (B) =

(√
V (A) +

√
V (B)

)2
.
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Lemma 36 Let A and B be random variables with finite variances, and denote a = E[A], b =
E[B], and let Ã = A− a, B̃ = B − b. Then,

Var(AB) ≤
(
|a|
√

Var(B) + |b|
√

Var(A) +
√
Var(A)Var(B)

)2
.

In particular, if A and B concentrate to a and b respectively (i.e. if Var(A), Var(B) → 0), then

Var(AB) = a2Var(B) + b2Var(A) + o (Var(A) + Var(B)) .

Proof Write
AB = (a+ Ã)(b+ B̃) = ab+ a B̃ + b Ã+ ÃB̃.

Thus,
AB − ab = a B̃ + b Ã+ ÃB̃.

Taking the L2 norm (which is the square root of the variance) and applying the triangle inequality
yields √

Var(AB) = ∥AB − ab∥2 ≤ |a|∥B̃∥2 + |b|∥Ã∥2 + ∥ÃB̃∥2.

Since ∥Ã∥2 =
√

Var(A) and ∥B̃∥2 =
√
Var(B), and by Cauchy–Schwarz,

∥ÃB̃∥2 ≤
√
Var(A)Var(B),

we have √
Var(AB) ≤ |a|

√
Var(B) + |b|

√
Var(A) +

√
Var(A)Var(B).

Squaring both sides gives the stated bound:

Var(AB) ≤
(
|a|
√

Var(B) + |b|
√

Var(A) +
√
Var(A)Var(B)

)2
.

In the situation where Var(A) and Var(B) are small, the term
√
Var(A)Var(B) is negligible relative

to the linear terms, and hence

Var(AB) = a2Var(B) + b2Var(A) + o (Var(A) + Var(B)) .

Lemma 37 Let x ∈ Rd be uniformly distributed on the unit sphere Sd−1 and let Q ∈ Rd×d be a
fixed orthogonal matrix. For fixed indices i, j ∈ {1, . . . , d}, define

Y = xi xj (Qx)i.

Then, as d → ∞,

Var(Y ) = O

(
1

d3

)
.
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Proof Since x is uniformly distributed on Sd−1, its coordinates satisfy (by symmetry)

E[xk] = 0, E[x2k] =
1

d
, and E[x4k] = O

(
1

d2

)
for any k ∈ {1, . . . , d}. Moreover, for distinct indices k ̸= ℓ one may show that

E[x2k x
2
ℓ ] = O

(
1

d2

)
.

Since Q is orthogonal, each row of Q is a unit vector; in particular, for any fixed i we have

(Qx)i = Qii xi +
∑
k ̸=i

Qik xk,

and a routine calculation shows that

Var ((Qx)i) =
1

d
.

Thus, each coordinate of Qx is also of order 1/
√
d.

We now write
Y = xi xj (Qx)i = Qii x

2
ixj + xi xj

∑
k ̸=i

Qik xk.

For a uniformly random vector on a sphere it is know that

x2ixj = O

(
1

d
· 1√

d

)
= O

(
1

d3/2

)
and similarly,

xi xj xk = O

(
1

d3/2

)
.

Thus

E[Y 2] = O

(
1

d3

)
.

Since by symmetry E[Y ] = 0, we conclude

Var(Y ) = E[Y 2] = O

(
1

d3

)
.
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