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ABSTRACT

The mismatch between the a-priori and a-posteriori error is ubiquitous in data-
driven subgrid-scale (SGS) modeling, which is an important ingredient in large
eddy simulations. In this work, we investigate the cause of this mismatch in depth
and attribute it to two issues: data imbalance and multi-valuedness. Based on this
understanding, we propose a generative modeling approach for the SGS stresses
that resolves the issue of multi-valuedness and demonstrate its effectiveness in the
Kuramoto-Sivashinsky equation.

1 INTRODUCTION

Modern computational fluid dynamics applications demand the simulation of fluid equations on
meshes ranging from millions to billions of elements. For most real-world simulation problems
such as wind farms and turbomachines, direct numerical simulations that resolve the fluid physics
at all scales are still impractical on current supercomputers. Large eddy simulations reduce compu-
tational cost by separating fluid physics into two scales. While the physics of scales larger than the
mesh resolution are resolved by discretizing and simulating the equation, those smaller scale physics
below the mesh resolution have to be captured by subgrid-scale (SGS) modeling, which employs a
phenomenological or data-driven model to resolve the errors introduced by the coarse scales.

More concretely, we study the SGS modeling of two equations: the incompressible Navier-Stokes
(NS) equations
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and the Kuramoto-Sivashinsky (KS) equation

ut = −(c+ u)ux − uux − uxx − νuxxxx,

u(0, t) = u(L, t) = ux(0, t) = ux(L, t) = 0.
(2)

The NS equations represent the practical applications of wide interest, while the KS equation serves
as a toy model to test our insights and algorithms. The KS equation is chosen as a test as it also
exhibit chaotic behavior much like fluid turbulence, but it is lower dimensional and thus easier to
visualize and simulate.

Consider a spatially-homogeneous filter G, e.g. Gaussian filter G(x) = 1√
(2π)3

e−∥x∥2
2/2, convolved

to the field variable u componentwise, i.e. ũ = G ∗ u, one can obtain the equation governing the
filtered field variable ũ:
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Most of the linear operations commute with spatially-homogeneous convolution while the nonlinear
convection term uj

∂ui

∂xj
does not, resulting in an unclosed term τ , the so-called SGS stress given

explicitly by
τij = ũiuj − ũiũj . (4)
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The goal of the SGS modeling is to build a closure model to calculate the SGS stress from the filtered
velocity field. For example, the well-known Smagorinsky model provides τ = −2Cs∆

2|S̃|S̃, where
S̃ = 1

2 (∇ũ + (∇ũ)T ) is the rate of strain tensor, ∆ is the grid scale, and Cs is the Smagorinsky
constant. While empirical methods can be successful when appropriate SGS model classes and
their parameters are selected, making such choices in practical applications is still challenging and
requires not only domain knowledge but also trial-and-error.

In recent years, researchers have been exploring using neural network to “learn” the SGS model
from the high fidelity data (Maulik & San, 2017; Park & Choi, 2021). Among most of these works,
the data-driven surrogate turbulence model is determined via minimizing a so-called a-priori error
defined as the deviation between the estimated SGS stresses calculated from the model and those
calculated from the high fidelity simulations, although parametrization and regularization can be
very different. However, a common observation in Sanderse et al. (2024) is that the a-posteriori
error does not have similar trend as that of the a priori error. Namely, for a data-driven model
achieving smaller a-priori error than the classical Smagorinsky model, the a-posteriori error can be
much worse than the simulation deploying Smaogorinsky model. This is named as “a-priori and
a-posteriori dichotomy” in Maulik et al. (2019) and several works are attempting to resolve this,
e.g. Zhao & Li (2024) introduced regularization based on the dynamical information to mitigate the
mismatch.

The contribution of this work is two-fold:

1. We explain the mismatch of “a-priori and a-posteriori dichotomy”, by studying the dataset
for SGS model training and identify two features: data imbalance and multi-valuedness.

2. We propose a generative modeling of the SGS stresses via a conditional Gaussian model
to resolve the multi-valuedness and demonstrate improvement in the simulation of the KS
equation.

2 A-PRIORI ERROR ANALYSIS FOR REGRESSION-BASED DATA-DRIVEN SGS
MODELING

In this section, we briefly discuss regression-based SGS modeling and highlight two key phenom-
ena observed in training the data-driven SGS models: data imbalance and multi-valuedness. The
simulation data of the NS equations is generated by OpenFOAM (Weller et al., 1998) and of the KS
equation is generated by custom implementation, with details in appendix A.1.

Learning the data-driven SGS model can be formalized as the optimization of the following regres-
sion problem:

min
θ

∑
n

∥∥∥ϕθ(ũ
(n))− τ (n)

∥∥∥2 , (5)

given the parametrized model ϕθ and the dataset {ũ(n), τ (n)} where n denotes the sample. One can
specify different choices of input features, and here we fix this to ũ(n) for simplification.

However, it has been pointed out in several works (Wang et al., 2024; Sanderse et al., 2024) on
the data-driven SGS modeling that the closure problem is not a well-defined regression problem.
Even the same filtered velocity can correspond to different SGS stresses, because it may arise from
different underlying flow fields. One evidence is that both the training and test error of the regression
problem eq. (5) cannot be optimized to a low threshold, even if an overparametrized model is used.
In our experiments, we also observe a substantial training error in optimizing the neural network
surrogate SGS model. We perform an ablation study to find that even using model with large capacity
(e.g. deep neural networks and XGBoost (Chen & Guestrin, 2016)) cannot reduce the training error
to a satisfactory level (see table 1). To explain this observation, in the next two subsections we
discuss two key features of the SGS modeling dataset.

2.1 THE ISSUE OF DATASET IMBALANCE

The first feature is that the data distribution is imbalanced. Namely, most of the data is concentrated
in the region where both the input and output channels are very small. To illustrate this point, we plot
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Table 1: A-priori analysis using channel flow dataset for wall turbulence. The row denotes the input
features where ũ,∇ũ, S̃, y+ are the filtered velocity, shear stresses, rate of strain, and wall unit.
The outputs are the SGS stresses of dimension 9. We report the relative MSE on test dataset with
models of different number of parameters. This error is similar to that of the training dataset. The
dataset contains 1M data pairs. As can be concluded from the table, even if we use XGBoost with
parameters number more than the size of the dataset, it cannot over-fit the dataset to achieve a near-
zero training loss. We use fully-connected neural networks with sizes of hidden layers specified in
the table and for XGBoost we specify the [n estimators, max depth].

# params ũ ∇ũ S̃ ũ, y+ ∇ũ, y+ S̃, y+

NN, [64] 877 0.896 0.616 0.772 0.824 0.598 0.729
NN, [64, 64] 5037 0.884 0.601 0.775 0.825 0.568 0.715
NN, [64, 64, 64] 9708 0.923 0.586 0.774 0.831 0.570 0.690
XGBoost, [100, 5] 55910 0.888 0.618 0.759 0.803 0.597 0.721
XGBoost, [1000, 5] 558610 0.887 0.539 0.726 0.793 0.515 0.674
XGBoost, [1000, 10] 11055275 0.888 0.472 0.712 0.789 0.432 0.728

the histogram of one of the components of the shear stresses ∇ũ and stress tensor τ of NS equations
and ∂xxu, τ of KS equation in fig. 1. While it is the natural to have both inputs and outputs clustered
around 0, but the concentration is so severe as can be read from the histogram plot of the density.
Therefore, the data having nontrivial behavior can not be captured in the regression problem as they
only occupies a very small portion of the dataset.

Figure 1: We show both the scattering plot and the histogram of the SGS dataset for NS and KS
equations. The upper (lower) row is the dataset for NS (KS) equations respectively. For NS equa-
tions, we only show the histogram of the first components of the shear ∇u and SGS stresses τ , e.g.
∂xu, τxx. Notice that the y (density) axis is in log scale and there exists a peak around 0, indicating
that a large potion of data has negligible magnitude. This phenomenon can also be understood as
a multiscale structure of the dataset where most of the data has rather smaller scale compared to
those large-scale rare data. The issue of multi-valuedness can be directly observed from the leftmost
figure of the KS dataset: the scattering pattern between the input and output is quite complicated.
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2.2 THE ISSUE OF MULTI-VALUEDNESS

Besides the data imbalance, we observe that the dataset is multivalue, which is more related to the
cause of the large training error. The scattering plot of the data pair in both equations are shown in
fig. 1, e.g. two figures on the left.

In the lower left figure which corresponds to the 1D KS equation, both the input and the output
are 1D and there does not exists a clear dependency between them. Moreover, from this figure
we find there exists a set of stresses value corresponding to the same input, implying the issue of
multi-valuedness. Under this situation, minimizing the L2 error between the true stresses and the
data-driven model will not result in a training error close to zero as the minimizer is achieved by the
average of stresses corresponding to the same inputs. This point is illustrated by the red curve, which
corresponds to the learned regression relation of a data-driven model. We observe that the curve only
captures the bulk behavior of the dataset concentrating around zero while some large fluctuations of
the dataset are ignored. For NS equation, we show the first components of shear stresses and SGS
stresses, e.g. ∂xu, τxx in the upper left figure of fig. 1 which also has some complex patterns beyond
deterministic relation. Notice that the SGS modeling of NS equations has both input and output
of multiple dimension and we have to perform some dimension reduction and nearest neighbor
technique to explore the multi-valuedness. The details are explained in appendix A.2. Nevertheless,
we also observe the multivalue phenomena in the dataset of the SGS modeling for NS equations.

While the issue of data imbalance revealing certain multiscale structures in the SGS modeling dataset
may cause the abnormality and failure in the training of data-driven SGS models, the issue of multi-
valuedness implies the intrinsic drawback of the regression-based SGS modeling and we will spend
the next section discuss our solution to this issue by the generative modeling.

3 GENERATIVE MODELING FOR THE SGS MODELING

In this section, we propose our method to resolve the mismatch between the a-priori and a-posteriori
error of the data-driven SGS modeling by generative modeling. In the previous section, we visualize
the dataset of SGS modeling and demonstrated a significant issue of multi-valuedness, causing the
large training error. To capture the multi-value nature of the SGS models, a direct solution is to
model the SGS stresses as a probability distribution conditioned on the input features, instead of a
single value in regression, i.e.

τ = ϕθ(u) → τ ∼ pθ(·|u). (6)

As the KS equation is 1D, we do not use the boldface of u, τ for simplicity. Compared with the
regression-based model where the value of the stresses is fix by the regression function, generative
SGS model provides an ensemble of stresses value obeying certain probability law, thus is consistent
with the observation that the dataset is multivalued. Moreover, the correlation coefficients of inputs
and outputs are calculated to be very close to zero. While deterministic regression relations may be
reasonable for input-output pairs with strong correlations (absolute value of correlation coefficients
close to 1), probabilistic relations are better to model the case where the correlation is very weak.

Next, we use the KS equation as a toy model to present our algorithm concretely. The SGS modeling
task in the KS equation scenario is to learn a SGS model and solve the KS equation on a much
coarser grid with the correction given by the SGS model so that it can simulate this chaotic dynamics
correctly in the statistical sense. To evaluate the a-posteriori error of our SGS models, we consider
the first two statistics of the flow over space and time as well as the pointwise accuracy:

u =
1

LT

∫ L

0

∫ T

0

u(x, t) dt dx, u2 =
1

LT

∫ L

0

∫ T

0

u(x, t)2 dt dx,

∥u− u0∥22 =
1

LT

∫ L

0

∫ T

0

(u(x, t)− u0(x, t))
2 dt dx.

(7)

The u0 denotes the ground truth simulation obtained from fine-grid simulation without any SGS
model. The pointwise error is used to demonstrate that it does not make sense to require the trajec-
torywise accuracy of the SGS modeled simulation and we focus more on the first two moment as in
Blonigan & Wang (2014).
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3.1 CONDITIONAL GAUSSIAN MODEL

We consider using the conditional Gaussian distribution for the SGS stresses, modeling the stresses
as a Gaussian distribution depends on the input features. Instead of minimizing the mean squared
error as in eq. (5), we use maximum likelihood principle to train the model, i.e. given a conditional
model pθ(τ |u) we maximize the following function

max
θ

N∑
i=n

log pθ(τ
(n)|u(n)). (8)

Under the assumption that the parametrized family is Gaussian with learnable mean and variance,
the loss function is simplified to:

min
θ

N∑
n=1

(τ (n) − µθ(u
(n)))2

2(σθ(u(n)))2
+ log σθ(u

(n)) (9)

Specifically, the output dimension is given by 2 with one dimension represents the mean µ while the
other dimension represents the standard deviation σ which is guaranteed to be positive by applying
a softplus activation.

Compared to the regression-based approach which can be understood as approximating the mean
value, the conditional Gaussian distributions also characterize the variance at each point that implies
the severeness of the multi-valuedness at different inputs. Different from the regression-based SGS
model, our generative SGS model is trained via maximum likelihood. Its output is a probabilistic
distribution, or a sample from this distribution. Consequently, there exists several choices to plug
this generative SGS models into the simulator and quantify its a-posteriori error, among which we
emphasize two notions: temporal and spatial consistency.

3.2 TEMPORAL AND SPATIAL CONSISTENCY

As we are using a local SGS model for transient simulation, at each spatial-temporal point (x, t) this
model is used to predict the stresses

τ(x, t) ∼ pθ(·|u(x, t)). (10)

Therefore, when sampling from these distributions to perform simulation, two kinds of consistency
arises. Spatial (temporal) consistency refers to the consistency of generative models at different
spatial (temporal) points respectively. For example, to enforce the spatial consistency, we sample
the SGS stresses according to

τ(x, t) = σθ(u(x, t))Z(t) + µθ(u(x, t)), Z(t) ∼ N(0, 1). (11)

We use the reparametrization trick to sample from Gaussian distribution where Z(t) is sampled from
standard Gaussian distribution. As this sampler only depends on t rather than x, the random noise
of the generative model will be consistent along all the spatial points at the same time step while
only change according to time. For the temporal consistency it suffices to change Z(t) to Z(x) and
for spatial-temporal consistency it suffices to choose a random Z for the whole simulation.

After this discussion, we can present our experiments results on the KS equation. In summary, we
perform five simulations:

1. Fine-grid simulation without any SGS model: ground truth.

2. Coarse-grid (4x coarser) simulation without any SGS model (baseline).

3. Coarse-grid simulation with regression-based SGS model (regression).

4. Coarse-grid simulation with spatial-temporally consistent generative SGS model (gaussian,
fix).

5. Coarse-grid simulation with only spatially consistent generative SGS model (gaussian,
sample).
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The name in the brackets refers to their column in table 2. The simulation results are shown in
fig. 2. For both figures, the simulations on fine grid and coarse grid without any SGS model are
given by the blue (truth) and orange (baseline) curve respectively. In the left figure, the coarse grid
simulation with regression-based SGS model is the green (err2) line. In the right figure, the coarse
grid simulation with generative SGS model and spatial-temporal consistency is the green (err2) line
while with only spatial consistency is the red (err3) line. The number in the legend refers to the
error of the first and second moment statistics averaged over time and space. We also calculate the
pointwise error in eq. (7) denoted by MSE.

It can be observed from fig. 2a that for both moments the regression-based SGS model has marginal
improvements over the baseline. On the other hand, for generative SGS modeling shown in fig. 2b,
both generative SGS model has much greater improvements over the baseline than the regression
model and with spatial-temporal consistency the improvement is slightly greater. This results are
also stated in the table table 2.

We conduct complete numerical experiments over different input features and SGS models and
report their MSE of the trajectory as well as the error of the first second moments. The results are
summarized in table 2.
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(a) Regression based the SGS modeling.
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(b) Generative SGS modeling.

Figure 2: Comparison of the a-posteriori error over different approaches to SGS modeling.

4 CONCLUSION

In this work, aiming to understand the mismatch of a-priori and a-posteriori error in SGS model-
ing, we discover two issues, data imbalance and multi-valuedness, by investigating the dataset with
evidences given by visualizations. We attribute the substantial training error of the SGS models to
the multi-valuedness. To resolve this, we propose a generative SGS model improving the single-
value feature of the classical regression-based model and demonstrate its effectiveness to reduce the
a-posteriori error on the KS equation.
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A EXPERIMENTS DETAILS

A.1 DATASET GENERATION

In this section, we discuss the procedure to generate the dataset of the SGS modeling from high
fidelity simulation.

To generate the dataset for NS equations, we use OpenFOAM (Weller et al., 1998) to perform
the simulation over a periodic channel with upper and bottom wall. We follow the existing direct
numerical simulation literature (Lee & Moser, 2015) to set up the numerical experiments and verify
our simulation results with the literature by various statistics. Throughout the paper, we use x, y, z to
denote the streamwise, wall-normal, and spanwise direction respectively. Moreover, we are mostly
interested in the behavior of several statistics versus the wall-normal direction y and in these cases
we will take average over both x, z directions.
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Given the simulation results and recall the definition of the SGS stress in eq. (4), we perform discrete
convolution to obtain the stresses from the discrete measurements of the velocity. Some typical
choices are the box filter, Gaussian filter, spectral filter, etc. Throughout the paper, we fix the box
filter as the filter operator. Specifically, for 3D simulation with a box filter of length L, the stress can
be calculated as

τij(x0, y0, z0) =
1

L3

∑
x,y,z

ũi(x, y, z)ũj(x, y, z)−
1

L6

(∑
x,y,z

ũi(x, y, z)

)(∑
x,y,z

ũj(x, y, z)

)
(12)

where the summation is taken over the cube centered at (x0, y0, z0) with length L, i.e. x ∈ [x0 −
L/2, x0 + L/2], y ∈ [y0 − L/2, y0 + L/2], z ∈ [z0 − L/2, z0 + L/2]. In our case, we filter merely
along the x, z direction and retains all the information of the wall-normal direction. The box filter
we used has side length 4 times the grid size. Besides the filtered velocity, we can also obtain
the filtered shear stresses , rate of strain tensor and wall unit and use them as the input features of
our SGS models. The dataset will consist of data pair of input features and SGS stresses at each
spatial-temporal point.

The KS equation and the boundary condition we considered is given by

ut = −(c+ u)ux − uux − uxx − νuxxxx,

u(0, t) = u(L, t) = 0,

ux(0, t) = ux(L, t) = 0,∀t.
(13)

To solve the equation, the space is discretized via finite difference (mostly central difference) and
we use Crank-Nicolson scheme to solve the time evolution. Both the boundary condition and the
numerical scheme is consistent with that of Blonigan & Wang (2014). The SGS modeling dataset
can be generated similarly as that of NS equations with a box filter of size 4. This corresponds to
the ratio of the fine and coarse mesh resolutions.

A.2 VISUALIZING THE MULTI-VALUEDNESS IN MULTI-DIMENSION

In the main text, we visualize the correlation between the input feature and the SGS stresses in the
KS equation by the scattering plot fig. 1 of two scalar and demonstrate the issue of multi-valuedness
in that case. Visualization of the multi-valuedness for the case of NS equations is not straightforward
as that of the KS equation as both the input features, e.g. filtered velocity, rate of strain tensor and the
output features SGS stresses are not 1D. Two ingredients are required for the visualization. Firstly,
we have to perform dimension reduction on the 9D SGS stresses so that we can plot them on the
plane. Specifically, we perform PCA on the set of 9D vector SGS stresses and project them onto
the first two principle components which account for more than 90% of variance and thus contain
enough information. Next, inspired by the notion of continuity for mapping that neighboring inputs
should have neighboring output.

We use k-nearest neighbor algorithm to find a cluster of neighboring input features, visualize their
corresponding outputs using dimension reduction technique, and check if this outputs are neighbors
to each other. If we can detect some clustering patterns in the outputs plot, this can be an evidence
to the multi-valuedness of the SGS modeling. The pseudocode of this visualization algorithm is
summarized in algorithm 1.

Algorithm 1 Visualizing the multivalue phenomena in multidimensional datasets.

Input: Dataset {u(n), τ (n)}, an array of number of neighbor;
1: Choose a data pair (u(0), τ (0)) randomly from the dataset;
2: Perform dimension reduction, e.g. PCA, tSNE, UMAP on the stress data {τ (n)} and project them onto a

two-dimensional space.
3: for n in n array do
4: Run k-nearest neighbor algorithm to find the n nearest neighbor of (u0, τ0) in the whole dataset;
5: Visualize the stresses corresponding to these nearest neighbors using the projection obtained from di-

mension reduction.
6: end for
7: Seek the cluster patterns in the low-dimensional visualization of the stresses plot as the number of nearest

neighbor decreases.
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