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ABSTRACT

The problem of symbolic regression (SR) arises in many different applications,
such as identifying physical laws or deriving mathematical equations describ-
ing the behavior of financial markets from given data. In this paper, we present
our new approach ParFam that utilizes parametric families of suitable symbolic
functions to translate the discrete symbolic regression problem into a continuous
one, resulting in a more straightforward setup compared to current state-of-the-
art methods. In combination with a global optimizer, this approach results in a
highly effective method to tackle the problem of SR. We theoretically analyze the
expressivity of ParFam and demonstrate its performance with extensive numerical
experiments based on the common SR benchmark suit SRBench, showing that we
achieve state-of-the-art results. Moreover, we present an extension incorporating
a pre-trained transformer network (DL-ParFam) to guide ParFam, accelerating the
optimization process by up to two magnitudes. Our code and results can be found
at https://github.com/Philipp238/parfam.

1 INTRODUCTION

Symbolic regression (SR) aims to discover concise and interpretable mathematical functions that
accurately model input-output relationships. This focus on simplicity is crucial for applications
requiring model analysis and trustworthiness, such as in physical or chemical sciences (Quade et al.,
2016; Angelis et al., 2023; Wang et al., 2019). SR finds broad application in diverse fields, including
ecosystem dynamics (Chen et al., 2019), solar power forecasting (Quade et al., 2016), financial
market analysis (Liu & Guo, 2023), materials science (He & Zhang, 2021), and robotics (Oplatkova
& Zelinka, 2007). The growing body of SR research, as evidenced by the increasing number of
publications (Angelis et al., 2023), underscores its significance.

SR is a regression task in machine learning that aims to find an accurate model without any assump-
tions by the user related to the specific data set. Formally, a symbolic function f : Rn → R that
accurately fits a given data set (xi, yi)i=1,...,N ⊆ Rn ×R is sought, i.e., it should satisfy yi = f(xi)
for all data points, or, in the case of noise, yi ≈ f(xi) for all i ∈ {1, . . . , N}. Unlike other regression
tasks, SR aims at finding a simple symbolic and thus interpretable formula while assuming as little
as possible about the unknown function. In contrast to SR, solutions derived via neural networks
(NNs), for instance, lack interpretability. Traditional regression tasks, on the other hand, typically
assume a strong structure of the unknown function, such as linearity or polynomial.

To tackle SR problems, the most established methods are based on genetic programming (Augusto
& Barbosa, 2000; Schmidt & Lipson, 2009; 2010; Cranmer, 2023) and nowadays many algorithms
incorporate neural networks (Martius & Lampert, 2017; Udrescu & Tegmark, 2020; Desai & Stra-
chan, 2021; Makke et al., 2022). However, despite significant effort, many methods struggle to
consistently find accurate solutions on challenging benchmarks. La Cava et al. (2021) evaluate 13
SR algorithms on the SRBench ground-truth problems: the Feynman (Udrescu & Tegmark, 2020)
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and Strogatz (La Cava et al., 2016) problem sets. Both data sets consist of physical formulas with
varying complexities, where the first one encompasses 115 formulas and the latter 14 ordinary dif-
ferential equations. Most algorithms achieved success rates below 30% on both datasets within an
8-hour time limit, with only AI Feynman (Udrescu & Tegmark, 2020) showing better performance.
Furthermore, these results deteriorate significantly in the presence of noise (La Cava et al., 2021;
Cranmer, 2023).

In this paper, we introduce ParFam, a novel SR algorithm that leverages the inherent structure of
physical formulas. By translating the discrete SR problem into a continuous optimization problem,
ParFam enables precise control over the search space and facilitates the use of gradient-based opti-
mization techniques like basin-hopping (Wales & Doye, 1997). While ParFam is not the first method
to employ continuous optimization for symbolic regression, it aims to enhance the translation to the
continuous space. By doing so, ParFam becomes the first SR method based on continuous opti-
mization to achieve state-of-the-art performance. To accelerate ParFam at the cost of flexibility, we
extend it to DL-ParFam which incorporates a pre-trained Set Transformer (Lee et al., 2019) to guide
the optimization process for ParFam. ParFam is detailed in Section 2.1, its expressivity is analyzed
in Section 2.2, and DL-ParFam is introduced in Section 2.3. Notably, despite its simplicity, ParFam
achieves state-of-the-art results on the Feynman and Strogatz datasets, as demonstrated in Section 3.

Our Contributions Our key contributions are as follows:

1. Introduction of ParFam, a novel method for SR improving compared to existing continuous
optimization-based SR algorithm by leveraging the inherent structure of physical formulas
and the expressivity of rational functions to translate SR into an efficiently solvable con-
tinuous optimization problem, by avoiding the need for nested basis functions. This results
in the following advantages: (1) Enabling gradient-based optimization techniques while
avoiding exploding gradients, (2) enhanced interpretability, and (3) efficient but simple and
user-friendly setup.

2. Thorough theoretical analysis of the expressivity of ParFam, showing its high expressivity
despite its pre-defined structure necessary for continuous optimization.

3. Introduction of DL-ParFam, an extension of ParFam based on a pre-trained Set Transformer
(Lee et al., 2019), which guides ParFam and, therefore, accelerates its search by up to 100
times.

4. Extensive benchmarks showing state-of-the-art performance of ParFam and DL-ParFam
and significantly better results than other methods based on continuous optimization.

Related work Most SR algorithms approach the problem in two steps. First, they search for
the analytic form of the target function in the discrete space of functions and then optimize the
coefficients via continuous optimization techniques like BFGS (Nocedal & Wright, 2006).

Traditionally, genetic programming was used to heuristically search the space of equations given
some base functions and operations (Augusto & Barbosa, 2000; Schmidt & Lipson, 2009; 2010;
Cranmer, 2023). However, due to the accomplishments of NNs across diverse domains, numerous
researchers aimed to leverage their capabilities within the realm of SR. Udrescu & Tegmark (2020),
for instance, have employed an auxiliary NN to evaluate data characteristics.

Petersen et al. (2021) rely on reinforcement learning (RL) to explore the function space, where
a policy, modeled by a recurrent neural network, generates candidate solutions. Mundhenk et al.
(2021) combined this concept with genetic programming such that the RL algorithm iteratively
learns to identify a good initial population for the GP algorithm, resulting in superior performance
compared to individual RL and GP approaches. Similarly, Sun et al. (2022) rely on Monte Carlo
tree search to search the space of expression trees for the correct equations.

Inspired by the success of pre-training of models on large data sets in other machine learning tasks
(Kaplan et al., 2020; Devlin et al., 2018; Brown et al., 2020; Chen et al., 2020) and for mathematical
data (Lample & Charton, 2019), there have been many attempts in recent years to leverage pre-
training for SR. Biggio et al. (2021) build upon the data generation from Lample & Charton (2019) to
train a neural network to predict the skeleton of a function symbolically, the constants of the skeleton
are then found via BFGS. Kamienny et al. (2022) extend this approach to predict the skeletons
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directly and only use BFGS for fine-tuning afterwards. Landajuela et al. (2022) incorporate pre-
training with a combination of RL (Petersen et al., 2021), GP (Mundhenk et al., 2021), AI Feynman
(Udrescu & Tegmark, 2020) and linear models.

In contrast, only a few algorithms, such as FFX (McConaghy, 2011) and SINDy (Brunton et al.,
2016), share ParFam’s approach of merging the search for the analytical form with coefficient op-
timization. These methods utilize a model with linear parameters, enabling efficient coefficient
estimation via sparse linear regression. To expand the search space, they generate a large set of
features by applying base functions to the input variables. However, this linear parameterization
restricts the search space, as it cannot model non-linear parameters within the base functions.

The closest method to ParFam is EQL with division (Martius & Lampert, 2017; Sahoo et al., 2018),
which makes use of continuous optimization and overcomes the limitation of FFX and SINDy by
utilizing small NNs with sin, cos, and the multiplication as activation functions. The goal of EQL
is to find sparse weights such that the NN reduces to an interpretable formula. However, while
EQL applies linear layers between the base functions, ParFam applies rational layers. Thereby,
EQL usually needs multiple layers to represent the most relevant functions, which introduces many
redundancies, inflates the number of parameters, and complicates the optimization process. More-
over, EQL relies on the local minimizer ADAM (Kingma & Ba, 2014) for coefficient optimization.
On the contrary, ParFam leverages the reduced dimensionality of the parameter space by applying
global optimization techniques for the parameter search, which mitigates the issues of local minima.
Furthermore, ParFam maintains versatility, allowing for the straightforward inclusion of different
base functions, while EQL cannot handle, e.g., the exponential, logarithm, root, and division within
unary operators. In recent years, several extensions of EQL and similar approaches have been pro-
posed. DySymNet (Li et al., 2024) employs a structure akin to EQL but optimizes the architecture
through reinforcement learning. MetaSymNet (Li et al., 2023) builds on the EQL framework by
incorporating evolvable activation functions and rules for dynamically modifying the architecture
during training. Similarly, Dong et al. (2024) enhance the classical EQL network by introducing an
activation function that is evolved using genetic programming.

2 METHODS

In the following section, we first introduce ParFam as a novel approach, that exploits a well-suited
representation of possible symbolic functions to which an efficient global optimizer can be applied.
Afterwards, we theoretically analyze the expressivity of the considered parametric families, showing
that ParFam is quite expressive despite the restrictions due to the predefined structure. We then
introduce DL-ParFam as an extension of ParFam which incorporates pre-training on synthetic data
to inform the parameter choices of ParFam and, therefore, speed up the learning process.

2.1 PARFAM

The aim of SR is to find a simple and thus interpretable function that describes the mapping under-
lying the data (xi, yi)i=1,...,N without additional assumptions. Typically, a set of base functions,
such as {+,−,−1 , exp, sin,

√}, is predetermined. The primary goal of an SR algorithm is to find
the simplest function that uses only these base functions to represent the data, where simplicity is
usually defined as the number of operations. In Subsection 2.1.1 we introduce the architecture of
ParFam and in Subsection 2.1.2 we explain its optimization.

2.1.1 THE STRUCTURE OF THE PARAMETRIC FAMILY

The main goal of ParFam is to translate SR into a continuous optimization problem to enable the
use of gradient and higher-order derivative information to accelerate the search. To achieve this, we
construct a parametric family of functions in a neural network-like structure presented in Figure 1,
where Q1, ..., Qk+1 are rational functions and g1, ..., gk are the unary base functions, which cannot
be expressed as rational functions, like sin, √, exp, etc. The difference from a standard residual
neural network with one hidden layer is that we use rational functions instead of linear connections
between the layers. Furthermore, we apply physically relevant activation functions g1,...,gk which
may differ in each neuron.
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Figure 1: The architecture of ParFam: ParFam can be interpreted as a residual neural network
with one hidden layer. Instead of linear weights between the layers, it applies rational functions
Qi(·) = pd1

i
(·)/pd2

i
(·). Furthermore, the standard basis functions are substituted by physically

relevant functions like sin, exp,√, etc. The learnable parameters are the coefficients of pd1
i

and pd2
i
.

Since the network has only one hidden layer, we can write it in a compact form as

fθ(x)=Qk+1(x, g1(Q1(x)), g2(Q2(x)), . . . , gk(Qk(x))), (1)

where x ∈ Rn is the input vector. The learnable parameters θ ∈ Rm are the coefficients of the
polynomials, i.e., of the numerators and denominators of Q1, ..., Qk+1. The degrees d1i and d2i ,
i ∈ {1, . . . , k+1}, of the numerator and denominator polynomials of Q1, ..., Qk+1, respectively, and
the base functions g1, ..., gk are chosen by the user. Depending on the application, custom functions
can be added to the set of base functions. This versatility and its simplicity make ParFam a highly
user-friendly tool, adaptable to a wide range of problem domains. In Appendix A, we explain how
to incorporate specific base functions to avoid numerical issues and further implementation details.

It is possible to extend the architecture shown in Figure 1 to multiple layers to cover arbitrary func-
tions. However, the main motivation for the proposed architecture is that it consists of a single
hidden layer, due to the high approximation qualities of rational functions and the general structure
of common physical laws (Woan, 2000). Employing a single hidden layer offers several advantages:
it reduces the number of parameters, simplifies optimization by mitigating issues such as explod-
ing or vanishing gradients caused by nested functions, and enhances interpretability since it avoids
complicated and uncommon compositions such as sin ◦ cos (Woan, 2000), which many algorithms
enforce to avoid as well (Petersen et al., 2021; Landajuela et al., 2022). In Section 2.2 we analyze the
expressivity of our architecture (using one hidden layer) and in Section 3 we show that the structure
is not only flexible enough to recover many formulas exactly, but also has the best approximation
capabilities among all tested algorithms.

2.1.2 OPTIMIZATION

The goal of the optimization is to find the coefficients of the rational functions Q1, ..., Qk+1 such that
fθ approximates the given data (xi, yi)i=1,...,N , thus, we aim to minimize the mean squared error
(MSE) between yi and fθ(xi). As we aim for preferably simple functions to derive interpretable
and easy-to-analyze results, a regularization term R(θ) is added to encourage sparse parameters. In
total, we consider the loss function

L(θ) = 1
N

∑N
i=1 (yi − fθ(xi))

2
+ λR(θ), (2)

where λ > 0 is a hyperparameter to control the weight of the regularization. Here, we choose
R(θ) = ∥θ∥1 as a surrogate for the number of non-zero parameters, which is known to enforce
sparsity (Bishop, 2006; Goodfellow et al., 2016). In Appendix A, we discuss how to deal with the
regularization of the coefficients of rational functions in detail, to ensure that the regularization is
applied effectively and cannot be circumvented during optimization.

Although the SR problem is now transformed into a continuous optimization problem, due to the
presence of many local minima, it is not sufficient to apply purely local optimization algorithms
like gradient descent or BFGS (Nocedal & Wright, 2006). This is also shown in our comparison
study in Appendix B. To overcome these local minima, we instead rely on established (stochastic)
global optimization methods. Here, we choose the so-called basin-hopping algorithm, originally
introduced by Wales & Doye (1997), which combines a local minimizer, e.g., BFGS (Nocedal &
Wright, 2006), with a global search technique inspired by Monte-Carlo minimization (Li & Scher-
aga, 1987) to cover a larger part of the parameter space. More precisely, we use the implementation
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provided by the SciPy library (Virtanen et al., 2020). The basic idea of the algorithm is to divide
the complex landscape of the loss function into multiple areas, leading to different optima. These
are the so-called basins. The random perturbation of the parameters allows for hopping between
these basins and the local search (based on the real loss function) inbetween improves the results
and ensures that a global minimum is reached if the correct basin is chosen. For the acceptance test,
the criterion introduced by Metropolis et al. (1953) is taken.

Following the optimization with basin-hopping, a finetuning routine is initiated. In this process, co-
efficients that fall below a certain threshold are set to 0, and the remaining coefficients are optimized
using the L-BFGS method, starting from the previously found parameters. The threshold is grad-
ually increased from 10−5 to 10−2 to encourage further sparsity in the discovered solutions. This
step has been found to be crucial in enhancing the parameters initially found by basin-hopping.

2.2 EXPRESSIVITY OF PARFAM

Since the structure of the parametric family in ParFam restricts the search space, it is interesting to
investigate the expressivity of our approach in detail. For this, we aim to quantify the ratio of the
number of functions of complexity l ∈ N that can be represented using ParFam to the number of
functions with the same complexity that cannot be represented. We follow the modeling approach
by Lample & Charton (2019), who used expression trees to represent functions and investigate the
number of expression trees, which is a common structure used in genetic algorithms. Examples of
expression trees are given in Figure 2. Note that this approach does not take into account that some
trees model the same expression, e.g., x1 + x2 and x2 + x1 will refer to different trees.

/

+

x1 x2

x2

(a) Binary expression tree
with 2 internal nodes for
x1+x2

x2
.

+

exp

x1

cos

x2

(b) Unary-binary expres-
sion tree with 3 inter-
nal nodes, representable by
ParFam, for exp(x1) +
cos(x2).

cos

√

x2

(c) Unary-binary expres-
sion tree with 2 internal
nodes, not representable by
ParFam, for cos(

√
x2).

Figure 2: Examples for the different kinds of expression trees counted by bl, cl, and dl.

We call a node without children a leaf, a node with one child a unary node, and a node with two
children a binary node. The nodes with children, i.e., the unary and binary nodes, are referred to as
internal nodes. We call a tree a binary tree if all its internal nodes are binary, and a unary-binary
tree if all its internal nodes are either unary or binary. We assume that there are n different possible
leaves (the variables x1, ..., xn), k different unary nodes (the non-rational functions g1, ..., gk), and b
different binary nodes (the binary operations +,−, /, ·; can be set to 4 in general). We do not model
constants separately, as these can be incorporated either as part of each node or as additional leaves.

To quantify the expressivity of ParFam, we define cl as the number of unary-binary trees with l
internal nodes that can be represented by ParFam and dl as the number of all unary-binary trees
with l internal nodes (including the trees that cannot be represented by ParFam). Examples for these
different types of trees are shown in Figure 2. The tree in Figure 2c cannot be modeled by ParFam
since there is a path from the root (cos) to a leaf (x2), that contains more than one unary node.
Such paths represent compositions of unary functions g1, ..., gk which are omitted by ParFam as
explained in Section 2.1. Typical formulas from the Feynman dataset Udrescu & Tegmark (2020),
for instance, have a complexity of around 10. For example, the formula m sin(nθ/2)2/ sin(θ/2)2

(Feynman I.30.3) has a complexity of 9.

Our goal in this section is to compute an estimate for the ratio cl/dl. The proofs rely mostly on the
idea of generating functions (Wilf, 2005) and can be found in Appendix E together with additional
context. We start by stating an approximation to cl proven in Appendix E.5.
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Theorem 2.1. For (cl)l∈N, the number of unary-binary trees expressible by ParFam with complexity
l, it holds that

cl =
1

2bxl+1
1

(
v0

(
1√

4π(l+1)3
+ 3

8
√

4π(l+1)5

)
− v1

3

4
√

π(l+1)5

)
+O(x−l

1 l−7/2) (3)

with some constants x1,v0, v1 ∈ R depending on the number of binary operators b, number of unary
operators k, and number of variables n.

In Appendix E.5, we additionally compute the exact formulas for v0 and v1. Moreover, we show
the approximations and the true values cl in Figure 8a, revealing that already the first-order ap-
proximation of cl is quite close to the exact one. Since we are interested in cl/dl, we also need an
approximation of dl.

Theorem 2.2. For (dl)l∈N, the number of unary-binary trees with complexity l, it holds that

dl =
λ

2brl+1
2

(√
1− r2

r1

(
1√

4π(l+1)3
+ 3

8
√

4π(l+1)5

)
− 3r2

8
√

1− r2
r1

√
π(l+1)5r1

)
+O(x−l

1 l−7/2) (4)

where r1,2 = k+2bn±2
√
bnk+b2n2

k2 and b, k, and n denote the number of binary operators, the number
of unary operators, and the number of variables, respectively.

The proof of Theorem 2.2 is given in Appendix E.7. Theorem 2.1 and 2.2 yield an approximation
for the expressivity of ParFam cl/dl. To simplify the approximations, we disregard the constant
and polynomial terms in l yielding cl/dl ≈ (r2/x1)

l. Table 1 shows r2/x1 for b = 4 and varying
values for k and n. The ratio is mainly between 0.9 and 1.0, revealing that especially for formulas
of low complexity, i.e., small l, cl is relatively close to dl, showing the high expressivity of ParFam
despite its restrictions. For example, for n = 4 and k = 3, Table 1 yields r2

x1
= 0.9799. Therefore,

cl
dl

≈ 0.9799l holds. E.g, for l = 5, ParFam covers 90.25% of formulas, and, for l = 10, 81.62%.

Table 1: Approximation of cl+1/cl
dl+1/dl

≈ r2
x1

, given by Theorem 2.1 and 2.2, for b = 4 and varying
values for k and n.

n/k 1 2 3 4 5 6
1 0.9712 0.9356 0.9020 0.8713 0.8435 0.8183
2 0.9881 0.9712 0.9533 0.9356 0.9185 0.9020
3 0.9931 0.9827 0.9712 0.9593 0.9474 0.9356
4 0.9954 0.9881 0.9799 0.9712 0.9623 0.9533
5 0.9966 0.9912 0.9849 0.9782 0.9712 0.9641
6 0.9974 0.9931 0.9881 0.9827 0.9770 0.9712
7 0.9979 0.9944 0.9903 0.9859 0.9811 0.9762
8 0.9983 0.9954 0.9919 0.9881 0.9841 0.9799
9 0.9985 0.9961 0.9931 0.9899 0.9864 0.9827

2.3 DL-PARFAM

The choice of model parameters for fθ, specifically the basis functions g1, ..., gk and the degrees of
the polynomials Q1, ..., Qk+1, is crucial yet challenging. A highly general parametric family can
lead to a complex optimization problem, while a restrictive family may hinder the discovery of the
correct expression. If the time constraint allows it, iterating through different model parameters can
be an effective solution for this problem, as demonstrated in our experiments in Section 3.

To solve this problem with tighter time constraints, we introduce DL-ParFam: A neural-guided
version of ParFam, which follows the recent emergence of pre-trained neural networks for symbolic
regression (Biggio et al., 2020; 2021; Kamienny et al., 2022; Holt et al., 2023) to predict the correct
model parameters for the given data. The idea behind these approaches is to leverage the simple
generation of synthetic data for symbolic regression, to train networks to map data (xi, yi)i=1,...,N

directly—or indirectly using further optimization schemes— to the corresponding solution. After
a costly pre-training step that can be done offline and only has to be performed once, this acquired
knowledge can be used to speed up the learning process considerably.
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DL-ParFam

NN ParFam

Model Parameters

Degrees
numerator

Degrees
denominator

 basis
functions

Figure 3: DL-ParFam first applies the pre-trained neural network to input data (xi, yi)i=1,...,N ,
which outputs the model parameters for ParFam: the degrees of the polynomials used in
Q1, ..., Qk+1 and the basis functions g1, ..., gk. Afterwards, ParFam can run using these settings
to find the best parameters θ∗ and, therefore, identify the best fitting function fθ.

However, pre-training is a highly complicated task, because of the complex data distribution and the
need to be able to handle flexible data sets in high dimensions (Biggio et al., 2021; Kamienny et al.,
2022). Furthermore, networks trained on the symbolic representation of functions fail to incorporate
invariances in the function space during training, e.g., x+y and y+x are seen as different functions,
as pointed out by Holt et al. (2023), which possibly complicates the training. Holt et al. (2023) re-
solve this by evaluating the generated function to compute the loss and update the network using RL.
However, evaluating each function during the training instead of comparing its symbolic expression
with the ground truth is computationally expensive. Moreover, due to the non-differentiability, the
network has to be optimized using suitable algorithms like policy gradient methods. The approach
most similar to DL-ParFam is SNR (Liu et al., 2023), which uses a pre-trained SET-Transformer to
predict a mask for active connections within SymNet—a symbolic neural network similar to EQL.
During inference, these predictions are further fine-tuned using RL.

With DL-ParFam, see Figure 3, we aim to combine the best of both worlds, by predicting the model
parameters for ParFam which are more robust to functional invariances than symbolic representa-
tions. This approach yields significant improvements compared to ParFam and other pre-training-
based SR methods:

• DL-ParFam strongly reduces the computational burden of ParFam by predicting model
parameters.

• DL-ParFam predicts the structure of the function, which can be directly compared with
the ground truth and, thereby, avoids the evaluation of the predicted function on the data
in every training step and yields an end-to-end differentiable pipeline, while being able to
manage invariances in the function space.

The idea behind DL-ParFam is that we train a neural network on synthetic functions to learn to
predict the correct model parameters for ParFam from the data (xi, yi)i=1,...,N . After the training
is finished, the network is used on real data to predict the model parameters, with which ParFam
then aims to compute the underlying function. We implement the neural network for DL-ParFam
using a Set Transformer (Lee et al., 2019) as the encoder and a fully connected ReLU network as
the classifier. To train it we generate synthetic functions along with the corresponding data points
(xi, yi)i=1,...,N and one-hot encoded model parameters. Note that we do not follow the data gener-
ation introduced by Lample & Charton (2019) as other approaches (Kamienny et al., 2022; Biggio
et al., 2021; Holt et al., 2023) do since we require direct access to the model parameters for ParFam,
which would be complicated to extract from the formulas generated by Lample & Charton (2019).
The xi are sampled from a uniform distribution on [1, 5]n, where 1 ≤ n ≤ 9. The functions f
along with (xi, f(xi) = yi)i=1,...,N are generated as described in Appendix C. The input data to the
neural network is normalized to be between −1 and 1 to improve the training and make the model
applicable to different input ranges. The network is trained by optimizing the cross-entropy between
its output and the model parameters using the Adam optimizer with a learning rate of 0.0001 and a
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step learning rate scheduler. Further implementation details and the hyper-parameters necessary to
replicate the experiments are provided in Appendix D.

The network was trained on about 4,000,000 functions for 88 epochs after it stopped improving for
4 epochs. The creation of the data took 1.3h and the training took 93h on one RTX3090. We further
fine-tuned the network on noisy data on 4,000,000 noisy functions for 30h on one RTX3090. For
comparison, end-to-end (E2E) (Kamienny et al., 2022) made use of 800 GPUh and NeSymRes (Big-
gio et al., 2021), which is only trained for problems up to dimension 3, used 10,000,000 functions
and was trained on a GeForce RTX 2080 GPU for 72h.

3 BENCHMARK

After the introduction of the SR benchmark (SRBench) by La Cava et al. (2021), several researchers
have reported their findings on SRBench’s ground-truth and black box data sets, due to the usage of
real-world equations and data, the variety of formulas, the size of the benchmark, and comparability
to competitors. The ground-truth datasets are synthetic datasets following real physical formulas
and the black-box datasets are real-world datasets for which the underlying formulas are unknown.
These data sets are described in more detail in Appendix F. In this section, we evaluate ParFam
and DL-ParFam on the SRBench data sets and report their performance in terms of the symbolic
solution rate, the coefficient of determination R2, and their training time demonstrating the strong
performance of ParFam and the additional speed up achieved by DL-ParFam.

0 10 20 30 40 50 60

PySR
ParFam

DL-ParFam
uDSR

AIFeynman
AFP_FE

DSR
AFP

gplearn
GP-GOMEA

ITEA
EPLEX

Operon
SBP-GP

BSR
EndToEnd

FEAT
FFX

MRGP

Symbolic Solution Rate (%)
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Accuracy Solution Rate (%)

102 103 104

Training Time (s)

Target Noise
0.0
0.01
0.1

SRBench ground-truth problems

Figure 4: Mean results on the SRBench ground-truth problems. Following SRBench terminology,
training time refers to the time each algorithm requires to compute a result for a specific problem,
which corresponds to inference time for pre-trained methods.

Competitors We include the results reported by SRBench for 14 SR algorithms and extend them
by running EndToEnd (Kamienny et al., 2022), uDSR (Landajuela et al., 2022), and PySR (Cranmer,
2023) on our machines. Further information on the algorithms and the chosen hyper-parameters can
be found in Appendix G.

Metrics To ensure comparability with the results evaluated on SRBench, we use the same evalu-
ation metrics as La Cava et al. (2021). For the ground-truth problems, we first report the symbolic
solution rate, which is the percentage of equations recovered by an algorithm. Second, we consider
the coefficient of determination

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
, (5)

where ŷi = fθ(xi) represents the model’s prediction and ȳ the mean of the output data y. The closer
R2 is to 1, the better the model describes the variation in the data. It is a widely used measure for

8



Published as a conference paper at ICLR 2025

−0.25 0.00 0.25 0.50 0.75 1.00

*PySR
*Operon

*FEAT
*ParFam
*SBP-GP

*GP-GOMEA
XGB

*EPLEX
RandomForest

*ITEA
KernelRidge

AdaBoost
LGBM
*AFP

*AFP_FE
*gplearn

MLP
*FFX
*DSR

*uDSR
*MRGP
Linear
*BSR

*AIFeynman

R2 Test

101 102 103 104 105

Model Size

100 102 104

Training Time (s)

Figure 5: Median R2, formula complexity, and training time on the 77 black-box problems from
SRBench (La Cava et al., 2021) with at most 10 independent variables. The asterisk indicates that it
is a symbolic regression method.

goodness-of-fit since it is independent of the scale and variation of the data. Following La Cava et al.
(2021) we report the accuracy solution rate for each algorithm, defined as the percentage of functions
such that R2 > 0.999. The original data sets do not include any noise. However, similar to La Cava
et al. (2021), we additionally perform experiments with noise by adding εi ∼ N(0, σ2 1

N

∑N
i=1 y

2
i )

to the targets yi, where σ denotes the noise level. For the black-box problems we report the median
R2 and the median complexity of the formula, as defined in La Cava et al. (2021), since the symbolic
solution rate is not defined in this case.

Hyperparameters The hyperparameters of ParFam can be divided into two subsets. The first
subset defines the parametric family (fθ)θ∈Rm , e.g., the degree of the polynomials and the set of
base functions. A good choice for this set is highly problem-dependent. However, in the absence
of prior knowledge, it is advantageous to select a parametric family that is sufficiently expansive to
encompass a wide range of potential functions. In this context, we opt for sin, exp, and √ as our
base functions. For the first layer rationals Q1, . . . , Qk, we set the degrees of the numerator and
denominator polynomials to 2. For Qk+1, we set the degree of the numerator polynomial to 4 and
the denominator polynomial to 3. This choice results in a parametric family with hundreds of pa-
rameters, making it challenging for global optimization. To address this issue, we iterate for ParFam
through various smaller parametric families, each contained in this larger family, see Appendix H
for details. The second set of hyperparameters defines the optimization scheme. Here, we set the
regularization parameter to λ = 0.001, the number of iterations for basin-hopping to 10, and the
maximal number of BFGS steps for the local search to 100 times the dimension of the problem. Our
choice of parameters for ParFam and DL-ParFam are summarized in Table 7 in Appendix I. The
hyperparameters for the pre-training of DL-ParFam can be found in Appendix D.

Results Following La Cava et al. (2021), we allow a maximal training time of 8 CPU hours and
a maximal number of function evaluations of 1, 000, 000 on the ground-truth data sets and 48 CPU
hours on the black-box problems. In Figure 4, we present the mean of the symbolic solution rate,
the accuracy solution, and the training time on both data sets together. PySR, ParFam, AI Feynman,
DL-ParFam, and uDSR outperform all other competitors by a substantial margin (over 20%) when
it comes to symbolic solution rate. Among those 5 algorithms, PySR performs the best, followed by
ParFam. These two algorithms are also the most robust to noise, where it is important to notice that
PySR is the only method that incorporates a noise filter (Cranmer, 2023).

Concerning the accuracy solution, ParFam outperforms all competitors with and without noise, fol-
lowed by PySR, MRGP, Operon, uDSR, and DL-ParFam. These two metrics underscore the strongly
competitive performance of ParFam with the current state-of-the-art. While DL-ParFam performed
slightly worse, it beats most of the established methods in both metrics, while being up to a hun-
dred times faster than its competitors, which was the goal of incorporating pre-training into ParFam.
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However, DL-ParFam’s ability to recover the symbolic solution is notably hindered under low-noise
conditions. The only other pre-training-based method, EndToEnd, performed worse in all three met-
rics. We performed the experiments without tuning the hyperparameter λ. To assess the sensitivity
of the results with respect to λ, see Appendix K.

In Figure 5 we present the median R2, formula complexity, and training time across the 77 black-
box problems with a maximum of 10 independent variables. While ParFam’s performance is slightly
weaker compared to the physics datasets discussed earlier, it remains among the top-performing
algorithms for these real-world datasets. Results of DL-ParFam on the black-box data sets with at
most 9 variables (the limit of the current DL-ParFam) are shown in Appendix L.

Due to the proximity of EQL (Martius & Lampert, 2017; Sahoo et al., 2018) and ParFam, we deem a
comparison between these two methods as highly interesting. However, the restricted expressivity of
EQL makes it an unfair comparison on the whole Feynman and Strogatz dataset. For this reason, we
show the results for EQL on a reduced benchmark in Appendix M. To compare DL-ParFam with fur-
ther pre-training-based methods, we show the results of DL-ParFam and NeSymRes (Biggio et al.,
2021) on a reduced subset of Feynman and Strogatz in Appendix N, since NeSymRes cannot han-
dle expressions with more than 3 variables. We further compare DL-ParFam with model-parameter
selection guided by Bayesian optimization in Appendix O. For results of ParFam on the Nguyen
benchmark (Uy et al., 2011) and comparisons with algorithms that were not tested on SRBench, like
SPL (Sun et al., 2022) and NGGP (Mundhenk et al., 2021), see Appendix P. To show the robustness
of ParFam and, especially, DL-ParFam to different data domains we refer to the SRSD-Feynman
benchmarks (Matsubara et al., 2024) in Appendix Q.

4 DISCUSSION AND CONCLUSION

This work introduces ParFam, accompanied by a theoretical analysis and extensive experiments.
ParFam is the first continuous optimization-based SR algorithm to match the performance of top
genetic programming methods. Furthermore, we present a novel pre-training approach that sig-
nificantly outperforms existing methods and offers a substantial speed advantage over traditional
competitors.

Limitations The parametric structure of ParFam is its greatest asset in tackling SR but also its
main constraint, as it limits the function space. However, in Section 2.2, we theoretically prove that
this limitation is not severe. Section 3 further demonstrates that algorithms theoretically capable of
identifying specific formulas often fail in practice, while ParFam, despite its constraints, still finds
highly accurate approximations. Another drawback is the computational expense of solving high-
dimensional problems (>10 variables) with a global optimizer, as the number of parameters grows
in O(nd), where n is the number of variables and d the polynomial degree. For DL-ParFam, the
biggest challenge is the costly pre-training of the transformer network, making it less flexible than
ParFam. However, since training is done offline with synthetic data, it can be reused for various SR
tasks and its pre-training is faster than other pre-training-based methods.

Future Work Several avenues of ParFam and DL-ParFam remain unexplored, encompassing
diverse forms of regularization, alternative parametrizations, and the potential incorporation of
custom-tailored optimization techniques.
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Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-
to-end symbolic regression with transformers. In Advances in Neural Information Processing
Systems, 2022. URL http://papers.nips.cc/paper_files/paper/2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

William G. La Cava, Kourosh Danai, and Lee Spector. Inference of compact nonlinear dynamic
models by epigenetic local search. Engineering Applications of Artificial Intelligence, 55:292–
306, 2016. doi: 10.1016/j.engappai.2016.07.004.

William G. La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabrı́cio Olivetti de França,
Marco Virgolin, Ying Jin, Michael Kommenda, and Jason H. Moore. Contem-
porary symbolic regression methods and their relative performance. In Proceed-
ings of the Neural Information Processing Systems Track on Datasets and Bench-
marks, 2021. URL https://datasets-benchmarks-proceedings.neurips.cc/
paper_files/paper/2021.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santi-
ago, Ignacio Aravena, Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen.
A unified framework for deep symbolic regression. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems, volume 35, pp. 33985–33998. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/dbca58f35bddc6e4003b2dd80e42f838-Paper-Conference.pdf.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744–3753. PMLR, 2019.

Wenqiang Li, Weijun Li, Lina Yu, Min Wu, Linjun Sun, Jingyi Liu, Yanjie Li, Shu Wei, Yusong
Deng, and Meilan Hao. A neural-guided dynamic symbolic network for exploring mathematical
expressions from data. International Conference on Machine Learning, 2024.

Yanjie Li, Weijun Li, Lina Yu, Min Wu, Jinyi Liu, Wenqiang Li, Meilan Hao, Shu Wei, and Yusong
Deng. Metasymnet: A dynamic symbolic regression network capable of evolving into arbitrary
formulations. arXiv preprint arXiv:2311.07326, 2023.

Z. Li and H. A. Scheraga. Monte carlo-minimization approach to the multiple-minima problem in
protein folding. Proceedings of the National Academy of Sciences, 84(19):6611–6615, 1987. doi:
10.1073/pnas.84.19.6611.

Jiacheng Liu and Siqi Guo. Symbolic regression in financial economics. In The First Tiny Papers
Track at ICLR 2023, Tiny Papers @ ICLR 2023, Kigali, Rwanda, May 5, 2023. OpenReview.net,
2023.

Jingyi Liu, Weijun Li, Lina Yu, Min Wu, Linjun Sun, Wenqiang Li, and Yanjie Li. Snr:
Symbolic network-based rectifiable learning framework for symbolic regression. Neural
Networks, 165:1021–1034, 2023. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2023.06.046. URL https://www.sciencedirect.com/science/article/pii/
S0893608023003568.

Nour Makke, Mohammad Amin Sadeghi, and Sanjay Chawla. Symbolic regression for interpretable
scientific discovery. In Big-Data-Analytics in Astronomy, Science, and Engineering, pp. 26–40.
Springer International Publishing, 2022.

12

http://papers.nips.cc/paper_files/paper/2022
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021
https://proceedings.neurips.cc/paper_files/paper/2022/file/dbca58f35bddc6e4003b2dd80e42f838-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/dbca58f35bddc6e4003b2dd80e42f838-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S0893608023003568
https://www.sciencedirect.com/science/article/pii/S0893608023003568


Published as a conference paper at ICLR 2025

Georg Martius and Christoph H. Lampert. Extrapolation and learning equations. In 5th International
Conference on Learning Representations, Workshop Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=BkgRp0FYe.

Yoshitomo Matsubara, Naoya Chiba, Ryo Igarashi, and Yoshitaka Ushiku. Rethinking symbolic
regression datasets and benchmarks for scientific discovery. Journal of Data-centric Machine
Learning Research, 2024. URL https://openreview.net/forum?id=qrUdrXsiXX.

Trent McConaghy. FFX: Fast, Scalable, Deterministic Symbolic Regression Technology, pp. 235–
260. Springer New York, New York, NY, 2011. doi: 10.1007/978-1-4614-1770-5 13.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Ed-
ward Teller. Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092, 1953. doi: 10.1063/1.1699114.

T. Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Cláudio P. Santiago, Daniel M. Faissol, and
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A IMPLEMENTATION DETAILS OF PARFAM

In this section, some further implementation details are discussed.

A.1 REGULARIZATION OF THE DENOMINATOR

Since we aim for simple function representations, i.e., for sparse solutions θ ∈ Rm, the regular-
ization term R(θ) is of great importance. If we parameterize a rational function Q : R → R in one
dimension by

Q(x) = Q(a,b)(x) =

∑d1

i=0 aix
i∑d2

i=0 bix
i

(6)

with a ∈ Rd1+1 and b ∈ Rd2+1, the following problem occurs: Since for any γ ∈ R \ {0} and
(a, b) ∈ Rd1+1 × Rd2+1 it holds that Q(a,b)(x) = Q(γa,γb)(x), the parameters cannot be uniquely
determined. Although the non-uniqueness of the solution is not a problem in itself, it shows that this
parameterization is not the most efficient, and, more importantly, the regularization will be bypassed
since γ can be chosen arbitrarily small. We address this issue by normalizing the coefficients of
the denominator, i.e., we use b̃ = b

||b||2 rather than b. In other words, instead of defining rational
functions by equation 6, we consider

Q(a,b)(x) =

∑d1

i=0 aix
i

1
||b||2

∑d2

i=0 bix
i
. (7)

Note that using the 2-norm and not the 1-norm is important since we regularize the coefficients using
the 1-norm. To illustrate this, let b̃ = 1

||b||p b.

Case p = 1: When p = 1, we have ||b̃||1 = 1 for any b ∈ Rd2

. This demonstrates that b̃ is not
regularized anymore and, consequently, also b is not regularized. In essence, this choice of p does
not promote sparsity in the solution.
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Case p = 2: In contrast, when p = 2, we have ||b̃||1 = || b
||b||2 ||1. This expression favors sparse

solutions, as it encourages the elements of b̃ to be close to zero, thus promoting regularization and
sparsity in the solution.

A.2 MISCELLANEOUS

In general, we look for rational functions Qi whose numerator and denominator polynomials have
a degree greater than 1 in order to model functions like x2

1 exp(2x2). However, for some base
functions, such as exp,√, sin, cos, higher powers introduce redundancy, for instance, exp(x2)

2 =

exp(2x2). To keep the dimension of the parameter space as small as possible without limiting the
expressivity of ParFam, we allow the user to specify the highest allowed power of each chosen base
function separately. In our experiments, we set it to 1 for all used basis functions: exp, cos and √.

In addition, to ensure that the functions generated during the optimization process are always well-
defined and we do not run into an overflow, we employ various strategies:

• To ensure that
√
Q(x) is well-defined, i.e., Q(x) ≥ 0 for all x in the data set, we use√

|Q(x)| instead.
• To avoid the overflow that may be caused by the exponential function, we substitute it

by the approximation min{exp(Q(x)), exp(10) + |Q(x)|}, which keeps the interesting
regime but does not run into numerical issues for big values of Q(x). However, adding
|Q(x)| ensures that the gradient still points to a smaller Q(x).

• To stabilize the division and avoid the division by 0 completely, we substitute the denomi-
nator by 10−5 if its absolute value is smaller than 10−5.

Implementing further base functions can be handled in a similar way as for the square root if they
are only defined on a subset of R or are prone to cause numerical problems.

B OPTIMIZER COMPARISON

As discussed in the main paper, ParFam needs to be coupled with a (global) optimizer to approximate
the desired function. This section compares different global optimizers, underpinning our decision
to use basin-hopping. We tested the following optimizers, covering different global optimizers and
local optimizers combined with multi-start:

• L-BFGS with multi-start (Nocedal & Wright, 2006)
• BFGS with multi-start (Nocedal & Wright, 2006)
• Basin-hopping (Wales & Doye, 1997)
• Dual annealing (Xiang et al., 1997)
• Differential evolution (Wormington et al., 1999)

We conducted the experiments on a random subset of 15 Feynman problems, which are listed in
Table 5 in Appendix F. For each of the 15 problems, we ran ParFam with each optimizer for seven
different random seeds and different numbers of iterations. As we solely compare the influence of
different optimizers in this experiment, we assume full knowledge of the perfect model parameters
for each algorithm. Hence, we are only learning the parameters θ of one parametric family (fθ)θ∈Rm

instead of iterating through multiple ones as in the experiments in Section 3. Therefore, we have to
omit the problem Feynman-test-17 since the perfect model parameters result in a parametric family
with too many parameters to be optimized in a reasonable time and, thus, wasting unreasonable
resources. The results are presented in Figure 6. These show the superiority of basin-hopping and
BFGS with multi-start compared to all the other algorithms. While basin-hopping and BFGS with
multi-start perform similarly well, it is notable that basin-hopping is less sensitive to the training
time (and hence the number of iterations). Therefore, we chose basin-hopping in the main paper,
although using BFGS with multi-start would have led to similar results.
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Figure 6: Symbolic solution and accuracy solution rate (percentage of data sets with R2>0.999 for
the test set) of ParFam with different optimizers on the subset of the Feynman problems displayed
in Table 5.

C DATASET CREATION FOR DL-PARFAM

The synthetic data set for the training of DL-ParFam is sampled in the following way. For each
dimension 1 ≤ m ≤ 9 of x and each model parameter of ParFam (i.e., maximal degree of the
polynomials, base functions, etc.), we sample the same amount of functions from the parametric
family fθ by sampling θ ∈ Rm. the coefficients θ, however, is not directly sampled from a specified
distribution, as we have to prevent the sampling of extremely complicated and unrealistic formulas.
Therefore, θ is restricted to be sparse, by limiting the number of coefficients allowed to be non-zero.
Specifically, for each polynomial involved, a number between 1 and 3 is chosen, which determines
the number of coefficients of the denominator and numerator polynomials that are allowed to be
non-zero.

Choosing random subsets of the parameters to be non-zero, however, might produce a function that
is covered by a more restrictive set of model parameters. For example, if the degree of the numerator
of the output rational function Qk+1 is supposed to be 2, but the coefficients of all monomials of
degree 2 are set to 0, then the function is also covered by the ”smaller” set of model parameters,
with degree 1 for the numerator of Qk+1. This hinders the training of the network since a data set
can have multiple correct labels.

For this reason, we restrict the random subset of coefficients to include all coefficients that are
necessary such that the generated function can not be modeled by a smaller parametric family.
This process ensures that each function has as a target the ”smallest” model parameter necessary to
describe them and, therefore, for each input to the network there is a unique target.

Note that, it might be possible that some parts of the function can be simplified due to mathematical
equivalences. However, many of these equivalences depend highly on the basis functions used, so
concentrating on these would mean to overfit to specific functions which we aim to avoid.

After choosing the non-zero entries of θ, we sample them from N (0, 9) and sample x1, ..., xN ∼
U(1, 5). The next step is to compute yi = fθ(xi). As it is possible that the sampled function fθ is
not well-defined on the whole domain, some of the values yi might be NaN or ∞. Furthermore, we
want to restrict ourselves to functions with yi ∈ [−1000, 1000] to ensure that the sampled functions
are reasonable. Therefore, it is necessary to filter these functions afterward.

Our procedure for filtering is as follows: For 6 times we resample all xi for which |yi| > 1000 or
yi was NaN. This helps to keep functions that only have a singularity somewhere in the domain but
are otherwise interesting. If after 6 times, there are still points in the domain with |yi| > 1000 or yi
NaN, we remove the generated function fθ from the data set. In Table 2 we present a random subset
of the generated expressions.

16



Published as a conference paper at ICLR 2025

Table 2: Example formulas of the synthetically generated expressions for the pre-training of DL-
ParFam

Formula

−2.665x3
0e

1.0(−1.33x2
0−2.51x0+2.122)

x0 + 4.032x0e
1.0(−1.33x2

0−2.51x0+2.122)
x0

0.502x0e
1.0(1.853x0−0.674)

x0

−0.887x2
0−0.462

3.841x2
0x1+1.243x0 cos

(
4.048x0

−0.843x0x1−0.537x1

)
−0.874x3

0−0.486x1

− 3.646x2
1e

4.074x0x1+0.551x0x2−2.429x2
1−0.349x1+4.669

−0.429x2
0−0.574x0x1+0.339x0x2−0.536x2

1−0.29x1x2

x2
0

2.226 cos
(

0.753x3+0.234x4−0.735x5

−0.521x0x4+0.853x4x7

)
−0.392x0 cos

(
1.657x2

0

)
0.87 cos

(
− 1.0(−2.691x0−0.831)

x2
0

)
x2
0

0.297x0

0.669x2
0

(
−2.898x0−2.206

−0.565x2
0−0.819x0+0.103

)0.5

+0.743

(
−2.898x0−2.206

−0.565x2
0−0.819x0+0.103

)0.5

1.785x0

−0.818x2
0 cos

(
0.176x0

0.109x2
0+0.774x0−0.596x2

1+0.183x1

)
−0.575 cos

(
0.176x0

0.109x2
0+0.774x0−0.596x2

1+0.183x1

)
0.666x1x2 − 1.626e−

3.487x2
−0.08x0−0.38x1−0.785x2−0.483

1.762x1x2 cos

(
1.0(3.598x2

2−4.965x3−1.02x4x5)
x3

)
1.482x3x6

x0.5
1

− 2.773x2
0x3e

7.804x2
0−1.411x0x2+1.884x0x3−0.178x1x2−2.365x2x6+2.817x2x7+4.086x2

4+2.572x2
5+1.686x2

7
−0.377x0+0.128x1−0.585x3+0.179x4−0.433x5+0.054x6−0.525

0.931x3+0.366x7

D IMPLEMENTATION DETAILS OF DL-PARFAM

In this section, we give further details on DL-ParFam.

Embedding The input (xi, yi)i=1,...,N may vary in the sequence length N and the dimension of
xi ∈ Rm. To deal with a varying sequence length, we apply a Set Transformer (Lee et al., 2019)
since the ordering of the input-output pairs is not important. To deal with the varying dimension
of xi, 1 ≤ m ≤ 9, we embed them in R9. Since we noticed that a linear embedding improves the
performance only marginally, we opted for a simple embedding by appending zeros.

Target encoding The targets of the network are the model parameters for ParFam. We focus here
on five different ones: The degrees of the numerator and the denominator of the first layer rationals
Q1, ..., Qk, the degrees of the numerator and the denominator of the second layer rational Qk+1 and
the functions g1, ..., gk used. We opted for a one-hot encoding for all five parameters.

At inference time At inference we apply the pre-trained network to predict probabilities for the
different model parameters for ParFam. We then extract m sets of model parameters with the high-
est probability, for ParFam to try. Furthermore, we add the model parameters for polynomial and
rational functions, since these involve fewer parameters and can be checked quickly. In this work,
we set m = 3 to speed up the computations. Other works (Kamienny et al., 2022) propose to sample
from the predicted probabilities to increase the diversity, which we did not consider in this work but
might be a useful extension in the future.
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Table 3: The training and data parameters for the pre-training of DL-ParFam

Data parameters

Maximal Degree First Layer Numerator 2
Maximal Degree First Layer Denominator 2
Maximal Degree Second Layer Numerator 4
Maximal Degree Second Layer Denominator 3
Base functions √, cos, exp
Maximal potence of any variable 3

(i.e., x4
1 is excluded but x3

1x2 is allowed)
Number of data pairs (xi, yi)i=1,...,N per function 200
Minimal dimension of xi 1
Maximal dimension of xi 9

Training parameters

Optimizer ADAM
Step size 0.0001
Batchsize 1024
Gradient clipping 1
Hidden dimension 256
Number inducing points (Set Transformer) 128
Number heads per multi-head 4
Number layers encoder 8
Number layers classifier 4

In Table we show the generalization gap of the SET Transformer trained for DL-ParFam, which
arises by training it on synthetic data and then applying it to the Feynman data sets. We evaluated
how often the SET Transformer correctly predicts model parameters for synthetic training datasets
and the Feynman dataset, considering the top k most likely predictions.

Top 1 Top 3 Top 5 Top 10
Synthetic 31.4% 50.2% 61.8% 71.2%
Feynman 30.4% 38.0% 40.5% 45.6%

Table 4: Percentage of data sets for which the SET Transformer of DL-ParFam predicted the correct
model parameters on the synthetic and the Feynman datasets.

The results indicate that while the SET Transformer used for DL-ParFam generalizes well to OOD
data (the Feynman data sets) for its top predictions, there is room to optimize the synthetic train-
ing data further to improve its generalization. Note that ”correct model parameters” refer to those
spanning the parametric family with the minimal number of parameters covering the target function.
Thus, DL-ParFam can sometimes recover the correct function without using the exact ”correct”
model parameters.

E EXPRESSIVITY OF PARFAM

Our goal in this section is to compute an estimate for the ratio cl/dl. To this end, we first consider
the number of binary trees of complexity l, which we denote by bl. Note that there exist n binary
trees with 0 internal nodes, thus, b0 = n. A binary tree with l internal nodes can be created by
combining two binary trees, whose internal nodes sum up to l−1, with a binary operator as the root.
This results in the following recurrent formula:

bl = b
∑l−1

l1=0 bl1bl−l1−1, for l > 0, b0 = n. (8)
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ParFam can represent any unary-binary tree where each path from the root to a leaf has at most one
unary node. Thus, it holds c0 = n. A new tree with l internal nodes can be created by either adding
a unary node as the root of a binary tree with l − 1 internal nodes or by adding a binary node as the
root of two trees that can be represented by ParFam with l − 1 internal nodes together. Therefore,

cl = kbl−1 + b
∑l−1

l1=0 cl1cl−l1−1, for l > 0, c0 = n. (9)

Lastly, we analyze the number of all unary-binary trees with l internal nodes, including those not
representable by ParFam. There exist n unary-binary trees with 0 internal nodes, so d0 = n. A new
unary-binary tree with l internal nodes can be created by either adding a unary node as the root of a
unary-binary tree with l−1 internal nodes or by adding a binary node as the root of two unary-binary
trees with l − 1 internal nodes together:

dl = kdl−1 + b
∑l−1

l1=0 dl1dl−l1−1, for l > 0, d0 = n. (10)

Given specific values for k, b, and n, we can use the formulas for bl, cl, and dl to calculate cl/dl
for the first few values of l, shown in Figure 7 in Appendix E.1. To compute the ratio cl/dl in
general, however, we need to compute an explicit exact or approximate formula for cl and dl. We
start by deriving an approximate formula for cl. Therefore, we compute the generating function
(Wilf, 2005) of bl, following the ideas of Lample & Charton (2019). For the ease of notation we set
bl = cl = dl = 0 for all l < 0.
Lemma E.1. For the generating function of (bl)l∈Z, given by B(z) =

∑
l∈Z blz

l, B(z) =
1−

√
1−4bzn
2bz .

The proof can be found in Appendix E.2.

Based on this formula, we can determine the generating function C(x) of (cl)l∈Z. The proof follows
a similar argumentation as the one for B(x) and can be found in Appendix E.3.
Lemma E.2. For the generating function of (cl)l∈Z, given by C(z) =

∑
l clz

l, C(z) =
1−

√
1−4bz(kzB(z)+n)

2bz .

To derive an approximation of cl we compute the singularity with the smallest absolute value of C,
see Theorem 5.3.1 in Wilf (2005). The singularities of C are the zeroes of

p(z) = 1− 4bz(kzB(z) + n) = 1− 2kz + 2kz
√
1− 4bzn− 4bnz. (11)

Computing a zero of p is equivalent to finding a solution of

(1− 2kz − 4bnz)2 = 4k2z2(1− 4bnz). (12)

The solutions of this equation can be computed using Cardano’s formula. Therefore, we define

Q :=
−4b3n3 − 8b2kn2 − 10bk2n− 3k3

36bk4n

R :=
−32b4n4 −96b3kn3 −168b2k2n2 −140bk3n−63k4

864bk6n

(13)

and

V := Q3 +R2 = −8b2n2 + 13bkn+ 16k2

27648b3k5n3
. (14)

With the quantities

S :=
3

√
R+

√
V and T :=

3

√
R−

√
V , (15)

the roots of p are given by

x1 =S + T − bn+ k

3k2

x2 =− S + T

2
− bn+ k

3k2
+

i
√
3

2
(S − T )

x3 =− S + T

2
− bn+ k

3k2
− i

√
3

2
(S − T ).

(16)
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Evaluating p on x1, x2, and x3 shows that x1 and x2 are the zeros of p, if we choose the branches of
the kth-roots in S and T such that k

√
eiϕ = eiϕ/k. Choosing different branches results in the same

zeros of p but a different numbering. In Appendix E.4 we show that |x1| < |x2| and, thus, |x1| is
the singularity with the smallest absolute value of C. As discussed before, this allows us to compute
an explicit approximation of cl.
Theorem E.3. It holds that

cl =
1

2bxl+1
1

(
v0

( 1√
4π(l + 1)3

+
3

8
√

4π(l + 1)5

)
−v1

3

4
√

π(l + 1)5

)
+O(x−l

1 l−7/2) (17)

for some constants v0, v1 ∈ R (depending on b, k, and n).

In Appendix E.5, we additionally compute the exact formulas for v0 and v1. Moreover, we show the
approximations and the true values cl in Figure 8a, revealing that already the first-order approxima-
tion of cl is quite close to the exact one.

Since we are interested in cl
dl

, we also need an approximation of dl. We again start by computing the
generating function:
Lemma E.4. For the generating function of (dl)l∈Z, given by D(z) =

∑
l dlz

l,

D(z) =
1−kz−

√
k2z2−(2k+4bn)z+1

2bz .

The proof can be found in Appendix E.6. Lample & Charton (2019) also proved this lemma, aiming
for an approximation of dl afterwards as well. However, their calculation included some small
typos. For this, we derive a different approximation in Appendix E.7 and consider a higher order
approximation, which is closer to dl as shown in Figure 8b.

Theorem E.5. For r1,2 =
k + 2bn± 2

√
bnk + b2n2

k2
, it holds that

dl =
λ

2brl+1
2

(√
1− r2

r1

(
1√

4π(l+1)3
+ 3

8
√

4π(l+1)5

)
− 3r2

8
√

1− r2
r1

√
π(l+1)5r1

)
+O(x−l

1 l−7/2). (18)

E.1 VISUALIZATION OF THE RATIO cl/dl
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Figure 7: Ratio of cl and dl for b = 4 and k = 3 for different values of n and l = 0, 1..., 30,
computed using equation 9 and equation 10.

E.2 PROOF OF LEMMA E.1

Proof. We start with multiplying equation 8 with zl and then summing over all l ∈ Z \ {0} which
yields for the left hand side ∑

l ̸=0

blz
l =

∑
l∈Z

blz
l − b0 = B(z)− n. (19)
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For the right hand side, we get

∑
l ̸=0

(
b

l−1∑
l1=0

bl1bl−l1−1

)
zl = b

∑
l

(
l−1∑
l1=0

bl1bl−l1−1

)
zl = b

(∑
l

bl−1z
l

)(∑
l

blz
l

)

= bz

(∑
l

bl−1z
l−1

)(∑
l

blz
l

)
= bzB(z)2.

(20)

Therefore,
bzB(z)2 −B(z) + n = 0, (21)

which is solved by

B1,2(z) =
1±

√
1− 4bzn

2bz
. (22)

Since we know that B(0) = b0 = n and limz↓0 B1(z) = ∞ and limz→0 B2(z) = n, the generating
function is given by

B(z) = B2(z) =
1−

√
1− 4bzn

2bz
. (23)

E.3 PROOF OF LEMMA E.2

Proof. As before, we start with multiplying the recurrence relation for cl equation 9 and then sum
over all l ∈ Z \ {0}. For the left-hand side this yields again∑

l ̸=0

clz
l =

∑
l∈Z

clz
l − c0 = C(z)− n. (24)

For the right-hand side, we get

k
∑
l ̸=0

bl−1z
l + b

∑
l ̸=0

(
l−1∑
l1=0

cl1cl−l1−1

)
zl

= kz
∑
l ̸=0

bl−1z
l−1 + b

∑
l

(
l−1∑
l1=0

cl1cl−l1−1

)
zl

= kzB(z) + b

(∑
l

cl−1z
l

)(∑
l

clz
l

)

= kzB(z) + bz

(∑
l

cl−1z
l−1

)(∑
l

clz
l

)
= kzB(z) + bzC(z)2.

(25)

Together this yields
bzC(z)2 − C(z) + kzB(z) + n = 0, (26)

which can be solved by

C1,2(z) =
1±

√
1− 4bz(kzB(z) + n)

2bz
. (27)

As before, we know that C(0) = c0 = n. Therefore, C ̸= C1 since limz↓0 C1(z) = ∞ and, thus,

C(z) = C2(z) =
1−

√
1− 4bz(kzB(z) + n)

2bz
. (28)
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E.4 PROOF THAT |x1| < |x2|

The definition of x1 and x2 is given in equation 16. We want to prove that x1 is the singularity of C
with the smallest absolute value (except for z = 0). (We already proved in the main paper that x1

and x2 are the only relevant singularities.)

Proof. Remember that we chose the branches of the kth-roots in S and T such that k
√
eiϕ = eiϕ/k.

Start with observing that R, V ∈ R<0 and, therefore, R +
√
V = λeiϕ for some λ > 0 and

ϕ ∈ (π/2, π). Thus, S = 3
√
λeiϕ/3 and ϕ/3 ∈ (π/6, π/3), so Re(S), Im(s) > 0 and Im(s) >

tan(π/6)Re(S). Next observe that T is the complex conjugate of S and, therefore, S+T = 2Re(S)
and S − T = i2Im(S). All together this yields

|x2| =
S + T

2
+

bn+ k

3k2
− i

√
3

2
(S − T )

= Re(S) +
bn+ k

3k2
− i

√
3

2
(i2Im(S))

= Re(S) +
bn+ k

3k2
+

√
3Im(S)

> Re(S) +
bn+ k

3k2
+

√
3 tan(π/6)Re(S)

= Re(S) +
bn+ k

3k2
+

√
3

1√
3
Re(S)

= 2Re(S) +
bn+ k

3k2

> |2Re(s)− bn+ k

3k2
| = |x1|.

(29)

E.5 PROOF OF THEOREM 2.1

Proof. Our plan is to use Theorem 5.3.1 in Wilf (2005) stating that

[zl]{(1− z/s)βv(z)} =

m∑
j=0

vjs
−l

(
l − β − j − 1

l

)
+O(s−ll−m−β−2), (30)

where [zl]f(z) denotes the l-th coefficient (corresponding to zl) of the series of powers of f in z
and v(z) =

∑∞
j=0 vj(1 − z/s)j is analytic on a disk |z| < |s| + η for some η > 0 and β /∈ N and

m ∈ N. We define

R(z) =

√
1− 2kz + 2kz

√
1− 4bzn− 4bnz (31)

such that

C(z) =
1−R(z)

2bz
. (32)

Hence, the coefficients of the power series of R will allow us to compute the coefficients of the
power series of C. To compute the power series of R we set

v(z) = (1− z

x1
)−1/2R(z). (33)

Since R only has the two singularities x1 and x2 and the product of two functions which are analytic
at a point z0 is itself analytic at z0 we know that v has at most the singularities x1 and x2. To see
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that v is analytic around x1, calculate

v(z) = (1− z

x1
)−1/2

√
1− 2kz + 2kz

√
1− 4bzn− 4bnz (34)

= (1− z

x1
)−1/2

√
(1− 2kz − 4bnz + 2kz

√
1− 4bzn)(1− 2kz − 4bnz − 2kz

√
1− 4bzn)√

(1− 2kz − 4bnz − 2kz
√
1− 4bzn)

(35)

= (1− z

x1
)−1/2

√
(1− 2kz − 4bnz)2 − (2kz)2(1− 4bzn)√
(1− 2kz − 4bnz − 2kz

√
1− 4bzn)

. (36)

The numerator in the last step is the same polynomial arising in equation 11 and, thus, has the roots
x1, x2, and x3. Therefore, we can factorize it and continue the computation to

v(z) = (1− z

x1
)−1/2

√
µ(1− z

x1
)(1− z

x2
)(1− z

x3
)√

(1− 2kz − 4bnz − 2kz
√
1− 4bzn)

(37)

=

√
µ(1− z

x2
)(1− z

x3
)√

(1− 2kz − 4bnz − 2kz
√
1− 4bzn)

(38)

with µ = −16k2bnx1x2x3. Since (1− 2kz− 4bnz− 2kz
√
1− 4bzn) has no zero at x1, this shows

that v is analytic in x1 and, thus, x2 is the only singularity of v. Furthermore, since we have shown
in Appendix E.4 that |x1| < |x2| we know that there is some η > 0 such that v is analytic on some
disk |z| < |x1|+ η. Thus, we can use equation 30 to get

[zl]R(z) = v0x
−l
1

(
l − 1/2− 1

l

)
+ v1x

−l
1

(
l − 3/2− 1

l

)
+O(x−l

1 l−7/2). (39)

First we need to determine v0 and v1 which we can compute by developing v around x1:

v(z) ≈ v(x1) + v′(x1)(z − x1) = v(x1)− x1v
′(x1)(1− z/x1). (40)

So, we compute

v0 = v(x1) =

√
µ(1− x1

x2
)(1− x1

x3
)√

(1− 2kx1 − 4bnx1 − 2kx1

√
1− 4bx1n)

(41)

and

v1 =− x1v
′(x1) (42)

=− x1
µ

2
√
µ(1− x1

x2
)(1− x1

x3
)
√

(1− 2kx1 − 4bnx1 − 2kx1

√
1− 4bx1n)

(
2x1

x2x3
− 1

x2
− 1

x3
)

(43)

+ x1

√
µ(1− x1

x2
)(1− x1

x3
)

2(1− 2kx1 − 4bnx1 − 2kx1

√
1− 4bx1n)3/2

(44)

· (−2k − 4bn− 2k
√
1− 4bx1n+

4bnkx1√
1− 4bx1n

). (45)

Furthermore, we can use the formula (Wilf, 2005)(
l − α− 1

l

)
=

l−α−1

Γ(−α)
[1 +

α(α+ 1)

2l
+O(l−2)] (46)
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(a) The true values of cl and its approximations com-
puted using equation 50 (first order approximation)
and equation 51 (second order approximation) for
b = 4, k = 3, and n = 5.

0 5 10 15 20 25 30
Complexity 

104

1011

1018

1025

1032

1039

1046

1053

Nu
m

be
r o

f t
re

es

d
First order approximation
Second order approximation

(b) The true values of cl and its approximations
computed using equation 68 (first order approxima-
tion) and equation 69 (second order approximation)
for b = 4, k = 3, and n = 5.

Figure 8: The true values of cl and of dl and their approximations computed in Theorem 2.1 and 2.2
for b = 4, k = 3, and n = 5.

to compute(
l − 1/2− 1

l

)
=

l−3/2

Γ(−1/2)
[1 +

1/2 · (1/2 + 1)

2l
+O(l−2)] = − 1√

4πl3
− 3

8
√
4πl5

+O(l−7/2)

(47)
and (

l − 3/2− 1

l

)
=

l−5/2

Γ(−3/2)
[1 +O(l−1)] =

3

4
√
πl5

+O(l−7/2) (48)

where we used that Γ(−1/2) = −
√
4π and Γ(−3/2) = 4

√
π

3 .

Using the approximation from equation 47 and equation 48 yields

[zl]R(z) = x−l
1 v0(−

1√
4πl3

− 3

8
√
4πl5

) + x−l−1
1 v1

3

4
√
πl5

+O(r−l
2 l−7/2)

= −x−l
1 v0

1√
4πl3

+O(r−l
2 l−5/2)

(49)

We can now further compute, for l > 0,

cl = [zl]C(z) = − 1

2b
[zl]

R(z)

z
= − 1

2b
[zl+1]R(z) = x−l−1

1 v0
1

2b
√

4π(l + 1)3
+O(x−l

1 l−5/2)

(50)
or

cl = − 1

2b
[zl+1]R(z) (51)

=
1

2b

(
x−l−1
1 v0(

1√
4π(l + 1)3

+
3

8
√

4π(l + 1)5
)− x−l−1

1 v1
3

4
√

π(l + 1)5

)
+O(x−l

1 l−7/2).

(52)

E.6 PROOF OF LEMMA E.4

Proof. As for bl and cl we get for the left-hand side∑
l ̸=0

dlz
l =

∑
l∈Z

dlz
l − d0 = D(z)− n (53)

24



Published as a conference paper at ICLR 2025

and for the right-hand side

k
∑
l ̸=0

dl−1z
l + b

∑
l ̸=0

(
l−1∑
l1=0

dl1dl−l1−1

)
zl

= kz
∑
l

dl−1z
l + b

∑
l

(
l−1∑
l1=0

dl1dl−l1−1

)
zl

= kz
∑
l

dl−1z
l−1 + b

(∑
l

dl−1z
l

)(∑
l

dlz
l

)

= kzD(z) + bz

(∑
l

dl−1z
l−1

)(∑
l

dlz
l

)
= kzD(z) + bzD(z)2.

(54)

Together this yields
bzD(z)2 + (kz − 1)D(z) + n = 0 (55)

which is solved by

D1,2(z) =
−(kz − 1)±

√
(kz − 1)2 − 4bzn

2bz
. (56)

As before, using D(0) = n yields

D(z) = D2(z) =
−(kz − 1)−

√
k2z2 − (2k + 4bn)z + 1

2bz
. (57)

E.7 PROOF OF THEOREM 2.2

As for Theorem 2.1 we plan to use Theorem 5.3.1 in Wilf (2005) which yields that

[zl]{(1− z/s)βv(z)} =

m∑
j=0

vjs
−l

(
l − β − j − 1

l

)
+O(s−ll−m−β−2), (58)

where [zl]f(z) denotes the l-th coefficient (corresponding to zl) of the series of powers of f in z
and v(z) =

∑∞
j=0 vj(1 − z/s)j is analytic on a disk |z| < |s| + η for some η > 0 and β /∈ N and

m ∈ N. Similar to the proof of Theorem 2.1 in Appendix E.5 we start by defining

R(z) =
√
k2z2 − (2k + 4bn)z + 1 (59)

such that

D(z) =
1− kz −R(z)

2bz
. (60)

To be able to define v we first have to compute the singularities of R with the smallest absolute
value. The singularities of R are the zeros of p(z) = k2z2 − (2k + 4bn)z + 1 which are

r1,2 =
2k + 4bn±

√
(2k + 4bn)2 − 4k2

2k2
=

k + 2bn±
√
(k + 2bn)2 − k2

k2
. (61)

Since k+ 2bn > 0 and (k+ 2bn)2 − k2 > 0, we know that |r1| > |r2| for all b, k, n > 0. Thus, we
define

v(z) = (1− z

r2
)−1/2R(z) = λ

√
1− z

r1
(62)

where λ = k
√
r1r2 which is analytic on a disk |z| < |r2| + η for some η > 0 since |r1| > |r2|.

Choosing m = 1 in equation 58, we only need to compute v0 and v1 which we can do by developing
v around r2:

v(z) ≈ v(r2) + v′(r2)(z − r2) = v(r2)− r2v
′(r2)(1− z/r2) (63)
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which shows that
v0 = v(r2) = λ

√
1− r2/r1 (64)

and
v1 = −r2v

′(r2) =
λr2

2
√

1− r2
r1
r1

(65)

since
v′(z) = − λ

2
√

1− z
r1
r1

. (66)

Plugging v0 and v1 and the approximations for the binomial coefficients from equation 47 and
equation 48 into equation 58 yields

[zl]R(z) = r−l
2 λ
√
1− r2/r1(−

1√
4πl3

− 3

8
√
4πl5

) + r−l
2

λr2

2
√

1− r2
r1
r1

3

4
√
πl5

+O(r−l
2 l−7/2)

= −r−l
2 λ
√
1− r2/r1

1√
4πl3

+O(r−l
2 l−5/2).

(67)
We can now further compute, for l > 1,

dl = [zl]D(z) = − 1

2b
[zl]

R(z)

z
= − 1

2b
[zl+1]R(x) ≈ r−l−1

2 λ
√
1− r2/r1

1

2b
√

4π(l + 1)3
. (68)

or

dl = − 1

2b
[zl+1]R(x) (69)

≈ 1

2b

(
r−l−1
2 λ

√
1− r2

r1
( 1√

4π(l+1)3
+ 3

8
√

4π(l+1)5
)− r−l−1

2
λr2

2
√

1− r2
r1

r1

3

4
√

π(l+1)5

)
(70)

which perfectly approximates dl.
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F SRBENCH DATASETS

SRBench (La Cava et al., 2021) comprises two types of problem sets: the ground-truth datasets,
which include the Feynman datasets (Udrescu & Tegmark, 2020) and the Strogatz datasets (La Cava
et al., 2016), and the black-box datasets. The ground-truth datasets are synthetically generated and
follow known analytical formulas, while the black-box datasets consist of real-world data, where
the existence of concise analytic formulas is uncertain, and they are often high-dimensional. In the
following, we describe the different data sets in more detail.

F.1 FEYNMAN DATA SET

The Feynman data set consists of 119 physical formulas taken from the Feynman lectures and other
seminal physics books (Udrescu & Tegmark, 2020). Some examples can be found in Appendix F.
The formulas depend on a maximum of 9 independent variables and are composed of the elemen-
tary functions +,−, ∗, /,√, exp, log, sin, cos, tanh, arcsin and arccos. Following La Cava et al.
(2021), we omit three formulas containing arcsin and arccos and one data set where the ground-
truth formula is missing. Additionally, since the data sets contain more data points than required for
the reconstruction of the equations and this abundance of data slows down the optimizer, we only
consider a subset of 500, for the experiments without noise, and 1,000, for the experiments with
noise, data points of the training data for each problem. We only use the full data sets for EndToEnd
(Kamienny et al., 2022) to perform the bagging described in their paper.

Table 5 shows a random subset of the Feynman data set. The complete Feynman data set can be
downloaded from the Penn Machine Learning Benchmarks (MIT license).
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Table 5: Random subset of 15 equations of the Feynman problem set (Udrescu & Tegmark, 2020).

Name Formula

Feynman-III-4-33 y =
hω

2π
(
exp

(
hω

2πTkb

)
− 1
)

Feynman-III-8-54 y = sin2
(
2πEnt

h

)
Feynman-II-15-4 y = −Bmom cos (θ)

Feynman-II-24-17 y =

√
−π2

d2
+

ω2

c2

Feynman-II-34-29b y =
2πBJzgmom

h

Feynman-I-12-5 y = Efq2

Feynman-I-18-4 y =
m1r1 +m2r2
m1 +m2

Feynman-I-38-12 y =
εh2

πmq2

Feynman-I-39-22 y =
Tkbn

V

Feynman-I-40-1 y = n0 exp
(
−gmx

Tkb

)
Feynman-I-43-31 y = Tkbmob

Feynman-I-8-14 y =

√
(−x1 + x2)

2
+ (−y1 + y2)

2

Feynman-I-9-18 y =
Gm1m2

(−x1 + x2)
2
+ (−y1 + y2)

2
+ (−z1 + z2)

2

Feynman-test-17
y =

m2ω2x2
(

αx
y + 1

)
+ p2

2m

Feynman-test-18
y =

3
(
H2

G +
c2kf

r2

)
8πG
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F.2 STROGATZ DATA SET

The Strogatz data set introduced by La Cava et al. (2016) is the second ground-truth problem set
included in SRBench (La Cava et al., 2021). It consists of 14 non-linear differential equations
describing seven chaotic dynamic systems in two dimensions, listed in Appendix F.2. Each problem
set contains 400 samples.

Table 6 shows the complete Strogatz data set. It can be downloaded from the Penn Machine Learning
Benchmarks (MIT license).

Table 6: The Strogatz ODE problem set (La Cava et al., 2016).

Name Formula

Bacterial Respiration
ẋ = − xy

0.5x2+1 − x+ 20

ẏ = − xy
0.5x2+1 + 10

Bar Magnets
ẋ = − sin (x) + 0.5 sin (x− y)

ẏ = − sin (y)− 0.5 sin (x− y)

Glider
ẋ = −0.05x2 − sin (y)

ẏ = x− cos (y)
x

Lotka-Volterra interspecies dynamics
ẋ = −x2 − 2xy + 3x

ẏ = −xy − y2 + 2y

Predator Prey
ẋ = x

(
−x− y

x+1 + 4
)

ẏ = y
(

x
x+1 − 0.075y

)
Shear Flow

ẋ = cos (x) cot (y)

ẏ =
(
0.1 sin2 (y) + cos2 (y)

)
sin (x)

van der Pol oscillator
ẋ = − 10x3

3 + 10x
3 + 10y

ẏ = − x
10

F.3 BLACK-BOX DATA SETS

The black-box data sets comprise 133 complicated, real-world data sets for which the underlying
formula if there even is one, is unknown. The problems are often high-dimensional. As mentioned
in the limitations, ParFam is not yet suited for extremely high-dimensional datasets, so we restrict
our focus to black-box datasets with a dimensionality of 10 or fewer, which leaves us with 77 out of
the total 122 datasets.

G BENCHMARKED ALGORITHMS

For our experiments on the Feynman (Udrescu & Tegmark, 2020) and the Strogatz (La Cava
et al., 2016) datasets we decided to include—besides the algorithms benchmarked in La Cava
et al. (2021)—algorithms which showed state-of-the-art performance in other experiments and pre-
training based methods which uploaded their code and weights to have good comparisons for Par-
Fam and DL-ParFam.

PySR PySR (Cranmer, 2023) uses a multi-population evolutionary algorithm, which consists of
a unique evolve-simplify-optimize loop as its search algorithm. Furthermore, it involves a noise
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filter to become more robust and applicable to real data. In the experiments, we used 6 populations
of size 50 and 500 cycles per iteration. The formulas are restricted to have a maximum depth of
10 and a maximum size of 50. These are the default parameters shown in the tutorial, which also
performed the best on a grid hyperparameter search on the first 20 problems of the Feynman dataset.
Our experiments use the PySR package version 0.18.1 (Apache license 2.0).

uDSR uDSR (Landajuela et al., 2022) is a combination of the recursive problem simplification
introduced in Udrescu & Tegmark (2020), DSR (Petersen et al., 2021), genetic programming, pre-
training, and linear models. It can, therefore, be seen as the extension of the combination of DSR
and genetic programming introduced in Mundhenk et al. (2021). The experiments Landajuela et al.
(2022) performed in their paper on the Feynman and Strogatz were limited to 24CPUh and 2,000,000
evaluations. For this reason, we reran uDSR on our machines with the limits specified by La Cava
et al. (2021): 8CPUh and 1,000,000. Because of this, the performance we report is slightly worse.
We performed the same hyperparameter search as explained for PySR and picked, in the end, their
default hyperparameters (specified in the config regression gp.json commit: 2069d4e). Our experi-
ments use the official DSO github repository (BSD 3-Clause License).

EndToEnd EndToEnd (Kamienny et al., 2022) utilizes a pre-trained transformer to predict the
symbolic form of the formula directly with estimations of the constants as well. To the best of our
knowledge, this is the only pre-trained method that is able to handle 9 dimensions and arbitrary
constants—which is necessary for the Feynman dataset—for which the model weights are available.
Instead of the hyperparameters specified in the paper (100 bagging bags, 10 expression trees per
bag, and 10 trees that are refined) we use 500 bagging bags, 10 expression trees per bag, and 100
trees that are refined since we experienced a better performance with these. Our experiments use the
official github repository (Apache 2.0 license).

NeSymRes NeSymRes (Biggio et al., 2021) works similarly to EndToEnd (Kamienny et al.,
2022), however, they only predict the skeleton of the expression, leaving placeholders for all the
constants. These are learned afterward using BFGS. Since NeSymRes only works for dimensions 1
to 3, we run it on a restricted subset of the Feynman and Strogatz datasets, the results are shown in
Appendix N. Since we experienced the best performance with them, we performed the experiments
with the hyperparameters setting specified in Biggio et al. (2021): beam size of 32 and 4 restarts.
Our experiments use the official github repository (MIT license).

H MODEL PARAMETER SEARCH FOR PARFAM

The success of ParFam depends strongly on a good choice of the model parameters: The set of base
functions g1, ..., gk and the degrees d1i and d2i , i ∈ {1, . . . , k+1}, of the numerator and denominator
polynomials of Q1, ..., Qk+1, respectively. On the one hand, choosing the degrees very small or the
set of base functions narrow might restrict the expressivity of ParFam too strongly and exclude the
target function from its search space. On the other hand, choosing the degrees too high or a very
broad set of base functions can yield a search space that is too high-dimensional to be efficiently
handled by a global optimization method. This might prevent ParFam from identifying even very
simple functions.

To balance this tradeoff, we allow ParFam to iterate through many different choices for the hy-
perparameters describing the model. The user specifies upper bounds on the degrees d1i and d2i
of the polynomials and the set of base functions g1, . . . , gk. ParFam then automatically traverses
through different settings, starting from simple polynomials to rational functions to more complex
structures involving the base functions and ascending degrees of the polynomials. The exact pro-
cedure is shown in Algorithm 1. Note that we refer to the rational functions Q1, ..., Qk, which
will be the inputs to the base functions, as the ’input rationals’ and, therefore, describe the degrees
of their polynomials by ’DegInputNumerator’ and ’DegInputDenominator’. Similarly, we denote
the degrees of the polynomials of the output rational function Qk+1 by ’DegOutputNumerator’ and
’DegOutputDenominator’.
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Algorithm 1: Traversal of the model parameters

Input: Maximal Degree Input Numerator d1max,in,
Maximal Degree Output Numerator d1max,out,
Maximal Degree Input Denominator d2max,in,
Maximal Degree Output Denominator d2max,out,
Maximal number of base functions bmax

Set of base functions Gmax = {g1, . . . , gk}.
Output: List of model parameters L that define the models ParFam can iterate through.

1 Let L = { } be an empty list.
// Start with a polynomial model:

2 Dp = {’DegInputNumerator’: 0, ’DegOutputNumerator’: d1max,out, ’DegInputDenominator’: 0,
’DegOutputDenominator’: 0, ’baseFunctions’: []}

3 L.append(D0)
// Continue with purely rational models with different degrees:

4 for d2out = 1 to d2max,out do
5 for d1out = 1 to d1max,out do
6 Dr = {’DegInputNumerator’: 0, ’DegOutputNumerator’: d1out, ’DegInputDenominator’:

0, ’DegOutputDenominator’: d2out, ’baseFunctions’: []}
7 L.append(Dr)
8 end
9 end
// Include different combinations of base functions:

10 for b = 1 to bmax do
11 for d2out = 0 to d2max,out do
12 for d1out = 1 to d1max,out do
13 for d2in = 0 to d2max,in do
14 for d1in = 1 to d1max,in do
15 for B as a list with b elements of Gmax do

// Note that base functions can be contained in
B multiple times.

16 D = {’DegInputNumerator’: d1in, ’DegOutputNumerator’: d1out,
’DegInputDenominator’: d2in, ’DegOutputDenominator’: d2out,
’baseFunctions’: B}

17 L.append(D)
18 end
19 end
20 end
21 end
22 end
23 end
24 return L

This strategy is comparable to the one proposed by Bartlett et al. (2023), called “Exhaustive Sym-
bolic Regression”. There, they iterate through a list of parameterized functions and use BFGS to
identify the parameters. To create the list of parametrized functions, they construct every possible
function using a given set of base operations and a predefined complexity. Notably, this results in
more than 100,000 functions to evaluate for one-dimensional data, with the same set of base func-
tions as we do, but without cos. Our algorithm, however, only needs to search for the parameters of
around 500 functions since it covers many at the same time by employing the global optimization
strategy.

Due to this high complexity, Bartlett et al. (2023) state that they merely concentrate on one-
dimensional problems and, thus, could benchmark their algorithm only on Feynman-I-6-2a (y =
exp(θ2/2)/

√
2pi), the only one-dimensional problem from the Feynman data set (Udrescu &

Tegmark, 2020). This example shows the benefit of employing global search in the parameter space:
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While ParFam needs five minutes of CPU time to compute the correct function, Bartlett et al. (2023)
need 33 hours (150 hours, if the set of possible functions is not pre-generated).

I HYPERPARAMETER SETTINGS SRBENCH GROUND-TRUTH PROBLEMS

The hyperparameter settings for the SRBench ground-truth problems are summarized in Table 7.

Table 7: The model and optimization parameters for the SRBench ground-truth problems for ParFam
and DL-ParFam

Model parameters

Maximal Degree First Layer Numerator 2
Maximal Degree First Layer Denominator 2
Maximal Degree Second Layer Numerator 4
Maximal Degree Second Layer Denominator 3
Base functions √, cos, exp
Maximal potency of any variable 3

(i.e., x4
1 is excluded but x3

1x2 is allowed)

Optimization parameters

Global optimizer Basin-hopping
Local optimizer BFGS
Maximal number of iterations global optimizer 10 (1 for DL-ParFam)
Maximal data set length 1000
Regularization parameter λ 0.001

J ADDITIONAL PLOTS FOR THE SRBENCH GROUND-TRUTH RESULTS
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Figure 9: Symbolic solution rate on both SRBench ground-truth data sets separated.
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Figure 10: Accuracy solution rate (percentage of data sets with R2 > 0.999 for the test set) on the
SRBench ground-truth problems separately.
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Figure 11: Results on the SRBench ground-truth problems. Points indicate the median test set
performance on all problems. The R2 Test for AIFeynman is missing on the plot since SRBench
used a higher precision data type, such that AIFeynman achieved a median R2 greater than 1−10−16.

K SENSITIVITY ANALYSIS FOR λ

In Table K, we present the results for ParFam on the ground-truth SRBench data sets for different
values of λ. Note, that this has been done afterwards as a sensitivity analysis and not to choose
λ. Our selection of λ = 0.001 was based on theoretical considerations and prior observations
on toy examples while debugging ParFam. Table 8 shows that ParFam is robust with respect to λ.
Surprisingly, the complexity of the learned formulas increases for increasing λ. This counterintuitive
phenomenon might be due to various reasons. First, the 1 norm does not enforce sparsity but favors
it, since it is only a proxy for it. So, a lower 1 norm does not necessarily imply a lower sparsity.
Furthermore, the enumeration through the model parameters breaks the monotonous influence of
the regularization. For example, a smaller parametric family might have been the best for a lower
regularization parameter.
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Table 8: Results of ParFam on the ground-truth SRBench data sets for different values of λ.

λ Accuracy solution rate Symbolic solution rate Complexity

0.0001 94.7% 50% 227

0.001 91.7% 55.6% 131

0.01 94.7% 52.2% 243

L BLACK-BOX DATA SETS: DL-PARFAM

The current implementation of DL-ParFam can only handle 9 independent variables at most. For
this reason, we benchmark DL-ParFam against the other algorithms on the black-box data sets,
which have at most 9 independent variables. The result on the remaining 50 data sets can be seen in
Figure12.
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Figure 12: Median R2, formula complexity, and training time on the 50 black-box problems from
SRBench (La Cava et al., 2021) with at most 9 independent variables. The asterisk indicates that it
is a symbolic regression method.

M COMPARING PARFAM TO EQL ON SRBENCH

As described in the introduction, EQL (Martius & Lampert, 2017) is the closest method to ParFam,
since both make use of non-linear parametric models to translate SR to a continuous optimization
problem. Because of this similarity, we believe that it is important to also show numerical compar-
isons between these two. Even though Sahoo et al. (2018) extended EQL to include the division
operator, also their version of EQL (EQL with division) is not able to express the square root, log-
arithm, and exponential, which is why we created a reduced version of the ground-truth SRBench,
which omits all equations using any of these base functions. In total, this covers 96 formulas. The
results of EQL with division on these can be seen in Table 9.

To ensure a fair comparison for EQL, we first tried to run it using the default learning parameters and
model parameter search recommended by the authors. However, since EQL will then quickly use
up the computing budget given by SRBench (8 hours of CPU time) we tested EQL for multiple dif-
ferent hyperparameters on the first 20 problems from SRBench. We then chose the best-performing
hyperparameters (epoch factor: 1000, penalty every: 50, maximal number of layers: 4, l1: 10) and
reran the whole benchmark. This, together with the initial run using the recommended parameters,
gives two formulas per equation. In the results shown in Table 9 we chose the formula with the
better R2 on the validation data set. Note, that we did not make use of the information, that the
square root, logarithm, and exponential are never parts of the formulas when running ParFam, i.e.,
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we included these base functions in the dictionary. In our experiments we used the code from the
official EQL github repository (GNU General Public License v3.0).

Table 9: Results of ParFam and EQL with division (Martius & Lampert, 2017; Sahoo et al., 2018)
on the 96 SRBench ground-truth equations, which do not include the square root, logarithm, and
exponential.

Accuracy solution (R2 > 0.999) Symbolic solution

ParFam 93.8% 69.8%

EQL 75% 16.7%

N COMPARING DL-PARFAM TO NESYMRES ON SRBENCH

Since NeSymRes (Biggio et al., 2021) allows at most 3 independent variables, we compare it with
DL-ParFam on a corresponding subset of SRBench. We perform the experiments with the same
settings as the experiments shown in Section 3 and the same hyperparameters for DL-ParFam, which
are reported in Appendix I. The hyperparameters for NeSymRes are reported in Appendix G. The
results are summarized in Table 10, which shows that DL-ParFam outperforms NeSymRes in the
symbolic solution rate as well as the accuracy solution rate while being more than 20 times faster,
even though the model was trained for dimensions 1 to 9.

O COMPARISON WITH BAYESIAN OPTIMIZATION

The goal of DL-ParFam is to simplify the model-parameter search, which is usually done by per-
forming a grid search for ParFam, where we start with testing simple configurations first and slowly
increase the complexity of the parametric families. Another standard approach to accelerate the
hyper-parameter optimization is Bayesian optimization (Shahriari et al., 2015). To evaluate the im-
pact by pre-training a SET Transformer first, to guide the model-parameter selection, we compare
the performance of DL-ParFam with ParFam with Bayesian optimization using Gaussian processes
to guide the model-parameter selection and ParFam with structured grid search. The Bayesian op-
timization searches through the same model parameters as ParFam with grid-search (Algorithm 1),
i.e., the values shown in Table 7. Table 11 presents the results on the ground-truth problems of
SRBench. While Bayesian hyperparameter optimization manages to speed up the training as well,
DL-ParFam outperforms it with respect to symbolic solution rate and training time.

P NGUYEN BENCHMARK

To compare ParFam with SPL (Sun et al., 2022) and NGGP (Mundhenk et al., 2021), which are the
current state-of-the-art on some SR benchmarks (like Nguyen (Uy et al., 2011)), but no results of
them on SRBench were reported, we evaluate ParFam on Nguyen. Interestingly, we observed that
the original domain on which the data was sampled is not big enough to specify the functions, as

Table 10: Results on the subset of the SRBench ground-truth problems containing only expression
with at most 3 variables. Following SRBench terminology, training time refers to the time each
algorithm requires to compute a result for a specific problem, which corresponds to inference time
for pre-trained methods.

Symbolic solution Accuracy solution (R2 > 0.999) Training time (in s)

DL-ParFam 58.1% 87.1% 53

NeSymRes 48.7% 59.0% 1389
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Symbolic solution rate Accuracy solution rate Training time

Bayesian (max. 50 calls) 34.9% 85.3% 7678s

Bayesian (max. 500 calls) 38.0% 89.1% 10937s

DL-ParFam 45.9% 83.5% 234s

Grid search 55.6% 93.2% 12860s

Table 11: Comparison of symbolic solution rate, accuracy solution rate, and training time on the
ground-truth problems of SRBench for ParFam with model-parameter selection guided by Bayesian
optimization, a SET Transformer, and grid search.

ParFam was able to find simple and near indistinguishable approximations to the data that are not
the target formula. For example, it found 0.569x2 − 0.742 sin(1.241x2 − 2.059) − 1.655 instead
of sin(x2) cos(x) − 1, since both are almost identical on the domain [−1, 1]. For this reason, we
extended the data domain for some of the problems. The results for the Nguyen data set can be seen
in Table 12. We used the hyperparameters shown in Table 13. Following Sun et al. (2022), from
whom we take the results of the competitors, we use sin and exp as the standard basis functions for
ParFam and add √ and log for the problems 7, 8, 11, and 8c. Note that the formula Nguyen-11 can
not be expressed by ParFam and hence the symbolic solution rate is 0.
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Table 12: Results on the Nguyen benchmarks. The results for ParFam are averaged over 6 inde-
pendent runs. The results from SPL (Sun et al., 2022), NGGP (Mundhenk et al., 2021), and GP (a
genetic programming-based SR algorithm) are taken from Sun et al. (2022).

Benchmark Expression ParFam SPL NGGP GP

Nguyen-1 x3 + x2 + x 100% 100% 100% 99%

Nguyen-2 x4 + x3 + x2 + x 100% 100% 100% 90%

Nguyen-3 x5 + x4 + x3 + x2 + x 100% 100% 100% 34%

Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 100% 99% 100% 54%

Nguyen-5 sin
(
x2
)
cos (x)− 1 83% 95% 80% 12%

Nguyen-6 sin (x) + sin
(
x2 + x

)
83% 100% 100% 11%

Nguyen-7 log (x+ 1) + log
(
x2 + 1

)
100% 100% 100% 17%

Nguyen-8
√
x 100% 100% 100% 100%

Nguyen-9 sin (x0) + sin
(
x2
1

)
100% 100% 100% 76%

Nguyen-10 2 sin (x0) cos (x1) 100% 100% 100% 86%

Nguyen-11 xy 0% 100% 100% 13%

Nguyen-12 x4
0 − x3

0 + 0.5x2
1 − x1 100% 28% 4% 0%

Nguyen-1c 3.39x3 + 2.12x2 + 1.78x 100% 100% 100% 0%

Nguyen-2c 0.48x4 + 3.39x3 + 2.12x2 + 1.78 100% 94% 100% 0%

Nguyen-5c sin
(
x2
)
cos (x)− 0.75 83% 95% 98% 1%

Nguyen-8c
√
1.23x 100% 100% 100% 56%

Nguyen-9c sin (1.5x0) + sin
(
0.5x2

1

)
100% 96% 90% 0%

Average 91.2% 94.5% 92.4% 38.2%

Table 13: The model and optimization parameters for the Nguyen benchmark.

Model parameters

Maximal Degree Input Numerator 2
Maximal Degree Input Denominator 0
Maximal Degree Output Numerator 6
Maximal Degree Input Denominator 0
Base functions cos, exp (√, log)
Maximal potence of any variable 6

Optimization parameters

Global optimizer Basin-hopping
Local optimizer BFGS
Maximal number of iterations global optimizer 30
Regularization parameter λ 0.1
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Table 14: Results on SRSD-Feynman easy

Symbolic solution Accuracy solution (R2 > 0.999) Training time (in s)

ParFam 76.7% 93.3% 7620

DL-ParFam 60% 66.7% 72

PySR 90% 93.3% 5796

uDSR 66.7% 86.7% 7470

Table 15: Results on SRSD-Feynman medium

Symbolic solution Accuracy solution (R2 > 0.999) Training time (in s)

ParFam 47.5% 80% 8478

DL-ParFam 40% 65% 138

PySR 62.5% 85% 8022

uDSR 40% 82.5% 7740

Q SRSD FEYNMAN

Matsubara et al. (2024) introduced the SRSD-Feynman benchmarks (Creative Commons Attribution
4.0 International) building on the Feynman datasets (Udrescu & Tegmark, 2020) to substitute the
artificial ranges and coefficients imposed by the original datasets with the physical ones, resulting in
the same formulas with coefficients and variables ranging from 10−30 to 108. The best-performing
algorithms in their benchmark are PySR (Cranmer, 2023) and uDSR (Landajuela et al., 2022), which
is why we test ParFam and DL-ParFam against those two.

We ran the experiments for the easy and medium difficulty for ParFam and DL-ParFam and the two
best-performing algorithms from Matsubara et al. (2024) since these seem to be the strongest in the
field currently, as also supported by our experiments on SRBench. We use the same settings as for
the Feynman data sets (8CPUh and 1,000,000 function evaluations) and the same hyperparameters
for all algorithms as shown in Appendix I and G.

The results are shown in Table 14 and 15. Note that our results differ from those reported in Mat-
subara et al. (2024) since we normalize the data for each algorithm. The results show that ParFam
performs slightly worse than PySR but better than uDSR. Furthermore, DL-ParFam is only slightly
worse than its competitors, while being up to 50 to 100 times faster. It is particularly interesting
to see that DL-ParFam has a reasonable performance even on data sampled from a very different
domain than the one it was trained on, probably due to the normalization of the input data during its
training.
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