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ABSTRACT

Robust reinforcement learning (RL) aims to find a policy that optimizes the worst-
case performance in the face of uncertainties. In this paper, we focus on action
robust RL with the probabilistic policy execution uncertainty, in which, instead of
always carrying out the action specified by the policy, the agent will take the action
specified by the policy with probability 1 — p and an alternative adversarial action
with probability p. We establish the existence of an optimal policy on the action
robust MDPs with probabilistic policy execution uncertainty and provide the action
robust Bellman optimality equation for its solution. Furthermore, we develop
Action Robust Reinforcement Learning with Certificates (ARRLC) algorithm that
achieves minimax optimal regret and sample complexity. Furthermore, we conduct
numerical experiments to validate our approach’s robustness, demonstrating that
ARRLC outperforms non-robust RL algorithms and converges faster than the robust
TD algorithm in the presence of action perturbations.

1 INTRODUCTION

Reinforcement learning (RL), a framework of control-theoretic problem that makes decisions over
time under an unknown environment, has many applications in a variety of scenarios such as
recommendation systems (Zhao et al.,2018)), autonomous driving (O’ Kelly et al., 2018)), finance (Liu
et al.} 2020) and business management (Nazari et al.| | 2018)), to name a few. However, the solutions to
standard RL methods are not inherently robust to uncertainties, perturbations, or structural changes in
the environment, which are frequently observed in real-world settings. A trustworthy reinforcement
learning algorithm should be competent in solving challenging real-world problems with robustness
against perturbations and uncertainties. Robust RL aims to improve the worst-case performance of
algorithms deterministically or statistically in the face of uncertainties in different MDP components,
including observations/states (Zhang et al., 2020a}; |Sun et al., 2022)), actions (Tessler et al.l [2019;
Klima et al.,[2019)), transitions (Nilim & EI Ghaouil 2005} Tyengar, 2005} Tamar et al.|[2014; Wang &
Zoul 2021)), and rewards (Huang & Zhu, |2019; Lecarpentier & Rachelsonl 2019).

In this paper, we consider action uncertainties, also called policy execution uncertainties, and
probabilistic uncertainty set proposed in (Tessler et al.|[2019). Robust RL against action uncertainties
focuses on the discrepancy between the actions generated by the RL agent and the conducted actions.
Taking the robot control as an example, such policy execution uncertainty may come from the actuator
noise, limited power range, or actuator failures in the real world. Taking the medication advice
in healthcare as another example, such policy execution uncertainty may come from the patient’s
personal behaviors like drug refusal, forgotten medication, or overdose etc.

To deal with the policy execution uncertainty, robust RL methods (Pinto et al.l 2017 Tessler et al.,
2019) adopt the adversarial training framework (Goodfellow et al.| 2014; Madry et al., 2018) and
assume an adversary conducting adversarial attacks to mimic the naturalistic uncertainties. Training
with an adversary can naturally be formulated as a zero-sum game between the adversary and the RL
agent. However, these interesting works do not provide theoretical guarantee on sample complexity
or regret. In this paper, we aim to fill this gap. The approaches in (Pinto et al| 2017 (Tessler et al.|
2019) iteratively apply two stages: (i) given a fixed adversary policy, it calculates the agent’s optimal
policy; and (ii) update the adversary policy against the updated agent’s policy. The repetition of stage
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(i) requires repeatedly solving MDP to find the optimal policy, which is sample inefficient. Motivated
by the recent theoretical works on transition probability uncertainty that use the robust dynamic
programming method and achieve efficient sample complexity [Wang & Zou| (2021);
[Panaganti & Kalathil| (2022)); [Xu et al]] (2023)), we introduce the action robust Bellman equations
and design sample efficient algorithms based on the action robust Bellman equations. Our methods
simultaneously update the adversary policy and agent’s policy instead of updating one after another
is converged. Our major contributions are summarized as follows:

* We show that the robust problem can be solved by the iteration of the action robust Bellman
optimality equations. Motivated by this, we design two efficient algorithms.

* We develop a model-based algorithm, Action Robust Reinforcement Learning with Certifi-
cates (ARRLC), for episodic action robust MDPs, and show that it achieves minimax order
optimal regret and minimax order optimal sample complexity.

* We develop a model-free algorithm for episodic action robust MDPs, and analyze its regret
and sample complexity. Due to space limitations, this result is shown in the Appendix [D}

* We conduct numerical experiments to validate the robustness of our approach. In our
experiments, our robust algorithm achieves a much higher reward than the non-robust RL
algorithm when being tested with some action perturbations; and our ARRLC algorithm
converges much faster than the robust TD algorithm in (Klima et al.,[2019).

2 RELATED WORK

We mostly focus on papers that are related to sample complexity bounds for the episodic RL and
the two-player zero-sum Markov game, and action robust RL, that are close related to our model.
We remark that there are also related settings, e.g., infinite-horizon discounted MDP (Li et al., 2020
He et al,, 2021), robust RL with other uncertainties (Iyengar, [2005; [Lecarpentier & Rachelson

2019; Zhang et al., [2020a; Wang & Zou, [2021), robust offline RL (Guo et al.| 2022} [Shi & Chi
2022), adversarial training with a generative RL model (Xu et al., 2023} |Panaganti & Kalathil, 2022),

adversarial attacks on RL (Zhang et al} [2020b} [Liu & Lai, 2021} Sun et al.,[2021), etc. These settings

are beyond the scope of this paper, though our techniques may be also related to these settings.

Action robust RL. introduce robust adversarial reinforcement learning to address
the generalization issues in reinforcement learning by training with a destabilizing adversary that
applies disturbance forces to the system. (Tessler et al}[2019) introduce two new criteria of robustness
for reinforcement learning in the face of action uncertainty. We follow its probabilistic action
robust MDP (PR-MDP) in which, instead of the action specified by the policy, an alternative
adversarial action is taken with probability p. They generalize their policy iteration approach to deep
reinforcement learning (DRL) and provide extensive experiments. A similar uncertainty setting was
presented (Klima et al.| [2019), which extends temporal difference (TD) learning algorithms by a
new robust operator and shows that the new algorithms converge to the optimal robust QQ-function.
However, no theoretical guarantee on sample complexity or regret is provided in these works. We
develop a minimax sample efficient algorithm and fill this gap.

Sample complexity bounds for the episodic RL. There is a rich literature on sample complexity
guarantees for episodic tabular RL, for example (Kearns & Singh| 2002; [Strehl et al., 2006; [Auer
et al.l [2008; [Azar et al, 2017; [Dann et al., 2017 [Jin et al.| [2018; [Dann et al., 2019} [Simchowitz &
Jamieson, 2019} [Zhang et al.| [2020c} 2021). However, these methods can not be directly applied
in action robust MDP with small technical changes. Most relevant to our paper is the work about
policy certificates (Dann et al[2019). The algorithm ORLC in (Dann et al.,[2019) calculate both
the upper bound and lower bound of the value functions, and outputs policy certificates that bound
the sub-optimality and return of the policy. Our proposed ARRLC shares a similar structure with
ORLC, but we develop new adversarial trajectory sampling and action robust value iteration method
in ARRLC, and new techniques to bound the sum of variances so that our algorithm suits for action
robust MDPs.

Sample complexity bounds for the two-player zero-sum Markov game. Training with an adversary
can naturally be formulated as a zero-sum game between the adversary and the RL agent. Some
sample efficient algorithms for two-player zero-sum Markov game can be used to train the action
robust RL agent. The efficient multi-agent RL algorithms, like (Ciu et all 2021} [Jin et al [2021)), can
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be used to solve the action robust optimal policy but are not minimax optimal. They are a factor of A
or H? above the minimax lower bound. Our algorithm ARRLC is minimax optimal.

3 PROBLEM FORMULATION

Tabular MDPs. We consider a tabular episodic MDP M = (S, A, H, P, R), where S is the state
space with [S| = S, A is the action space with | A| = A, H € Z™ is the number of steps in each
episode, P is the transition matrix so that Py (-|s, a) represents the probability distribution over states
if action « is taken for state s at step h € [H], and Ry : S x A — [0, 1] represents the reward
function at the step h. In this paper, the probability transition functions and the reward functions can
be different at different steps.

The agent interacts with the MDP in episodes indexed by k. Each episode k is a trajectory
{sk,ay,r, -, sk, ak, r%} of H states sf € S, actions af € A, and rewards rf € [0,1]. At
each step h € [H| of episode k, the agent observes the state sﬁ and chooses an action aﬁ. After
receiving the action, the environment generates a random reward rf € [0, 1] derived from a distribu-
tion with mean Ry, (s}, af’) and next state s, that is drawn from the distribution Py (-|s}, af ). For

notational simplicity, we assume that the initial states s¥ = s; are deterministic in different episode
k.

A (stochastic) Markov policy of the agent is a set of H maps 7 := {7 : & — A a}pe[a), Where A4
denotes the simplex over .A. We use notation 7, (a|s) to denote the probability of taking action « in
state s under stochastic policy 7 at step h. A deterministic policy is a policy that maps each state to
a particular action. Therefore, when it is clear from the context, we abuse the notation 7y, (s) for a
deterministic policy 7 to denote the action a which satisfies 7, (als) = 1.

Action robust MDPs. In the action robust case, the policy execution is not accurate and lies in
some uncertainty set centered on the agent’s policy 7. Denote the actual behavior policy by 7 where
7 € II(x) and II(7) is the uncertainty set of the policy execution. Denote the actual behavior action
at episode k and step h by af where ay ~ 7F. Define the action robust value function of a policy m
as the worst-case expected accumulated reward over following any policy in the uncertainty set IT(7)
centered on a fixed policy 7:

V™ (s) = min E
w (8) i

H
Z Rh/(Sh/,CLh/)|Sh =S,ap ~ 7~1‘h/(-‘8h/), VR > h] . (1)
h'=h

Vi represents the action robust value function of policy 7 at step k. Similarly, define the action
robust Q-function of a policy 7:

T(s,a) = min E
@i(s,0) 7ell(m)

H
Z Rh/(sh/,ah/)|sh = S,ap = a,ap ~ %h/(~|sh/)7 Vh/ > h‘| . (2)
h'=h

The goal of action robust RL is to find the optimal robust policy 7* that maximizes the worst-case
accumulated reward: 7* = arg max, V{"(s),Vs € S. We also denote V™ and Q™ by V* and Q*.

Probabilistic policy execution uncertain set. We follow the setting of the probabilistic action robust
MDP (PR-MDP) introduced in (Tessler et al., 2019) to construct the probabilistic policy execution
uncertain set. For some 0 < p < 1, the policy execution uncertain set is defined as:

0P () == {7 : Vs,Vh, 3}, (-|s) € A4 such that 7, (|s) = (1 — p)mn(:|s) + pm(-]8)}. (3)

The policy execution uncertain set can be even simpler expressed as IT° (1) = (1 — p)7+ p(A4)°*H.

In this setting, an optimal probabilistic robust policy is optimal w.r.t. a scenario in which, with
probability at most p, an adversary takes control and performs the worst possible action. We call 7/
as the adversarial policy. For different agent’s policy 7, the corresponding adversarial policy 7’ that
minimizes the cumulative reward may be different.

Additional notations. We set . = log(25AHK/d) for § > 0. For simplicity of notation, we
treat P as a linear operator such that [P, V](s,a) := Ey_p,(.|s,0)V (s'), and we define two ad-
ditional operators ID and V as follows: [Dr, Q|(s) := Eqwr,(.|s)Q(s,a) and Vp, Vi 11(s,a) :=

o Pa(s']5,0) (Vi1 (') = [PaViia](s,@)* = [Pa(Vig1)?](5,0) = ([PaVisa](s, )%,
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4 EXISTENCE OF THE OPTIMAL ROBUST POLICY

For the standard tabular MDPs, when the state space, action space, and the horizon are all finite, there
always exists an optimal policy. In addition, if the reward functions and the transition probabilities
are known to the agent, the optimal policy can be solved by solving the Bellman optimality equation.
In the following theorem, we show that the optimal policy also always exists in action robust MDPs
and can be solved by the action robust Bellman optimality equation.

Proposition 1 [f the uncertainty set of the policy execution has the form in (B)), the following perfect
duality holds for all s € S and all h € [H]:

max min [E

H
Z Ry (spryans)|sn = s, apr ~ %h’('lsh’)]

™ welle(m) Py
. )
= _ min max[E Z Rh/(sh/,ah/)|sh = S,ap ~ %h’('lsh/) .
TellP(m) = hih

There always exists a deterministic optimal robust policy 7*. The problem can be solved by the
iteration of the action robust Bellman optimality equation on h = H,--- ,1. The action robust
Bellman equation and the action robust Bellman optimality equation are:

Vir(s) = (1 = p)[Dx, Q7 1(s) + pmin Q7 (s, a)

Qp(s,a) = Ru(s,a) + [PhVy[41](s, 0) )
Viii(s)=0,VseS

Vi (9) = (1 ) mas Qi (5,) + pmin Q4 (5,1
Qp(s,a) = Bu(s,a) + [PV a](s, a) : ©)
Viigi(s) =0,VseS

We define C}f’”/’p(s) =E [Z,’f/:h Ry (spryan)|sh = s,ap ~ %h,(-|sh/)}. The perfect duality of

the control problems in (@) is equivalent to max, min, C;Lr’”/’p (s) = min, max, C;LT’”/’p (s). We
provide the detailed proof of the perfect duality and the existence of the optimal policy in Appendix B}
Our proposed model-based algorithm in Section [5]and model-free algorithm in Appendix [D]are based
on the action robust Bellman optimality equation. Using the iteration of the proposed action robust
Bellman equation to solve the robust problem can simultaneously update the adversary policy and
agent policy and avoid inefficient alternating updates.

5 ALGORITHM AND MAIN RESULTS

In this section, we introduce the proposed Action Robust Reinforcement Learning with Certificates
(ARRLC) algorithm and provides its theoretical guarantee. The pseudo code is listed in Algorithm [T}
Here, we highlight the main idea of our algorithm. Algorithm|I]trains the agent in a clean (simulation)
environment and learns a policy that performs well when applied to a perturbed environment with
probabilistic policy execution uncertainty. To simulate the action perturbation, Algorithm[I]chooses
an adversarial action with probability p. To learn the agent’s optimal policy and the corresponding
adversarial policy, Algorithm|l{computes an optimistic estimate () of Q* and a pessimistic estimate

Q of ka . Algorithm|1|uses the optimistic estimates to explore the possible optimal policy 7 and uses
the pessimistic estimates to explore the possible adversarial policy . As shown later in Lemma 2]
V > V* > V™ > V holds with high probabilities. The optimistic and pessimistic estimates V'
and V can provide policy certificates, which bounds the cumulative rewards of the return policy fid
and V' — V bounds the sub-optimality of the return policy 7" with high probabilities. The policy
certificates can give us some insights about the performance of 7* in the perturbed environment with
probabilistic policy execution uncertainty.
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Algorithm 1: ARRLC (Action Robust Reinforcement Learning with Certificates)
I: Initialize V,(s) = H —h +1,Q,,(s,a) = H—h+1,V, (s) =0, Q,(s,a) =0,74(s,a),
Ni(s,a) = 0and Ny(s,a,s’) = 0 for any state s € S, any action a € A and any step h € [H].
Visi(s) =Vgi(s) =0and Qpy(s,a) = QHH(s,a) = 0forany sand a. A = H.

2: for episode k =1,2,..., K do
3 forsteph=1,2,...,H do
4: Observe s¥.
5: Set ﬁﬁ(s) = argmax, Q(s,a), Eﬁ(s) = arg min, Qh(s, a), 7Th =(1- )fﬁ + pgfl.
6 Take action af ~ 75 (-|sF).
7 Receive reward r and observe s¥ ;.
8 Set Nh(sZ, aZ) — Nh(sﬁ, aﬁ) +1, Nh(sh, a’,?t, 5h+1) — Nh(sh, a’,?t, s’,?LH) + 1.
9 Setiy(sy,ap) < 7h(sy,ap) + (v — 7 (sh, ak))/Na(sy, af).
10: Set Pr(-|sf, af) = Nu(sk, af,-)/Na(sf, af).
11:  end for
12:  Output policy 7" with certificates Zj, = [V, (sF), V1(s¥)] and e}, = || .
13:  ife; < A then
14: A « ¢, and 70U — TF,
15:  endif
16: forsteph=H,H—-1,...,1 do
17: for each (s,a) € § x A with N (s,a) > 0do
18: Set 0,,(s,a) =
2Vp, (Vi1 +V,41)/2)(s,a) L[PG Py (Vis1=Vi0)(s.a) | CAHPHTHAT)
Ny (s,a) Ny, (s,a) H 3N (s,a) ’
19: Qp,(s,a) < min{H — h +1,7,(s,a) + P,Vii1(s,a) + 04(s,a)},
20: Q, (s,a) < max{0,7x(s,a) + PrV;, 1 (s, a) — On(s, a)},
21: 7t (s) = argmax, Q,(s,a) , mp " (s) = argmin, @, (s, a),
22: Vh( ) < (1= p)Qus, fgrl( 5)) + pQn (s, WE+1(S))’
23: V), (5) = (1= p)Q, (5,7, () + pQ,, (5.3, (5))-
24: end for
25:  end for
26: end for

27: return 7w°%

5.1 ALGORITHM DESCRIPTION

We now describe the proposed ARRLC algorithm in more details. In each episode, the ARRLC
algorithm can be decomposed into two parts.

* Line 3-11 (Sample trajectory and update the model estimate): Simulates the action robust
MDP, executes the behavior policy 7, collects samples, and updates the estimate of the
reward and the transition.

* Line 16-25 (Adversarial planning from the estimated model): Performs value iteration with
bonus to estimate the robust value functions using the empirical estimate of the transition P,
computes a new policy 7 that is optimal respect to the estimated robust value functions, and
computes a new optimal adversarial policy 7 respect to the agent’s policy 7.

At a high-level, this two-phase policy is standard in the majority of model-based RL algorithms (Azar
et al., 2017; |Dann et al., 2019). Algorithm [1| shares similar structure with ORLC (Optimistic
Reinforcement Learning with Certificates) in (Dann et al.|[2019) but has some significant differences
in line 5-6 and line 18-23. The first main difference is that the ARRLC algorithm simulates the
probabilistic policy execution uncertainty by choosing an adversarial action with probability p. The
adversarial policy and the adversarial actions are computed by the ARRLC algorithm. The second
main difference is that the ARRLC algorithm simultaneously plans the agent policy 7 and the
adversarial policy 7 by the action robust Bellman optimality equation.
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These two main difference brings two main challenges in the design and analysis of our algorithm.

(1) The ARRLC algorithm simultaneously plans the agent policy and the adversarial policy. However
the planned adversarial policy 7 is not necessarily the true optimal adversary policy towards the
agent policy 7 because of the estimation error of the value functions. We carefully design the bonus
items and the update role of the value functions so that V(s) > Vj*(s) > V7 (s) > V,(s) and

Qn(s,a) > Qi(s,a) > QF(s,a) > @, (s,a) hold for all s and a.

(2) A crucial step in many UCB-type algorithms based on Bernstein inequality is bounding the sum
of variance of estimated value function across the planning horizon. The behavior policies in these
UCB-type algorithms are deterministic. However, the behavior policy in our ARRLC algorithm is

not deterministic due to the simulation of the adversary’s behavior. The total variance is the weighted

sum of the sum of variance of estimated value function across two trajectories. Even if action 7(s¥)

or mr(s¥) is not sampled at state s¥, it counts in the total variance. Thus, the sum of variance is no
longer simply the variance of the sum of rewards per episode, and new techniques are introduced.
. _ . kx _k -
For example, the variance of V' 4+ V can be connected to the variance of C™ ™ -#_ where T
k
",

the optimal policy towards the adversary policy 7% with 7¥*(s) = argmax, C}"* ’(s) . Then the
variance of C™ ="+ can be bounded via recursion on the sampled trajectories.

5.2 THEORETICAL GUARANTEE

We define the cumulative regret of the output policy 7* at each episodes k as Regret(K) :=
K * ?k
>k (Vi (s) = ViT (sh)).

Theorem 1 For any § € (0,1], letting v = log(2SAH K /§), then with probability at least 1 — 6,
Algorithm[I|achieves:

e Vit(s1) — V7" (s1) < € if the number of episodes K > QU(SAH3.2 /€2 + S2AH3.2 /e).
* Regret(K) = Y1 (Vi (sh) — VI (s})) < O(VSAH3K 1 + S2AH?2).

For small ¢ < H/S, the sample complexity scales as O(SAH?1?/e?). For the case with a large

number of episodes K > S3 AH?3., the regret scales as O(VSAH3K.). For the standard MDPs, the
information-theoretic sample complexity lower bound is Q(SAH?/e?) provided in (Zhang et al.,

2020c)) and the regret lower bound is Q(v/ SAH3K) provided in (Jin et al., [2018). When p = 0,
the action robust MDPs is equivalent to the standard MDPs. Thus, the information-theoretic sample
complexity lower bound and the regret lower bound of the action robust MDPs should have same
dependency on S, A, H, K or e. The lower bounds show the optimality of our algorithm up to
logarithmic factors.

6 PROOF SKETCH

In this section, we provide sketch of the proof, which will highlight our the main ideas of our proof.
First, we will show that V,(s) > V;*(s) > V7 (s) > V,(s) hold for all s and a. Then, the regret

can be bounded by V; — V/; and then be divided by four items, each of which can then be bounded
separately. The full proof can be found in the appendix contained in the supplementary material.

We first introduce a few notations. We use @ZVZ Q: ,Kk, N, }’f P,’ff 7 and 0;’? to denote the values of
@h,Vh,Qh,zh, max{Np, 1}, Py, ry, and 0, in the beginning of the k-th episode in Algorithm
6.1 PROOF OF MONOTONICITY

We define £ to be the event where

27F(s,a) n T
Nf(s.0) | 3(NE(s,a)

}fﬁ(s,a) — Rh(s,a)’ <

@)
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holds for all (s, a, h, k) € S x A x [H] x [K]. We also define £’V to be the event where

A 2V Vi (s, a)e TH.
Pk _ py ’ ‘ < h 8
‘( h h) h+1(s CL) - \/ N,If(S, a) * 3(N}]:(Sa a)) ( )
) - 2V 5 Vi (s, a)e TH.
(B~ POV (5,0)] < S ©

NE(s,a) N 3NF(s,a)
holds for all (s, a, h,k) € S x A x [H] x [K].

Event £% means that the estimations of all reward functions stay in certain neighborhood of the true
values. Event E¥V represents that the estimation of the value functions at the next step stay in some
intervals. The following lemma shows £ and £ hold with high probability. The analysis will be
done assuming the successful event £ N £V holds in the rest of this section.

Lemmal P(EfNEPY) > 1 - 36.

Lemma 2 Conditioned on £ N EFY, V:(s) > Vi(s) > V,fk (s) > V5(s) and @Z(s,a) >
Qj.(s,a) > ka(s,a) > Qi(s,a)forall (s,a,h,k) € S x Ax [H] x [K].

6.2 REGRET ANALYSIS

P
8thCh+1 P (s,a)

NF(s,a)

We decompose the regret and analyze the different terms. Set ©F (s, a) = \/

32 +46\/SH4L
Nf(s,a) ' Nf(s,a) ’

where 7% is the optimal policy towards the adversary policy 7% with 7} (s) =

k
arg max, C;Z’E #(s). We define the cumulative regret of the output policy 7" at each episodes k as

Regret(K) = i, (Vi () — VI (s})).

K H Ak A o—k
Let My = 3 Zh=1[1D%,’jP}]f(Vh+1 - K];H-l)(s ) = Pi(Vip — V,,+1)(s],fb,a2)],
K H —k —k
My = 31> ha %[]D%;jph(vhﬂ - V]}YL+1)(5 ) = Pa(Vi — Kﬁ-s-l)(slﬁa ag,)],
K H —k —k
M;3 = Zk 1Zh 1(Pk(vh+1 - Vh+1)(5]ﬁaaﬁ) - (Vh+1 - Vh+1)(5h+1)) and
My = Zk 1 Zh 1[% + ]D%;};»G)’fl(sh)]. Here M; and M, are the cumulative sam-

ple error from the random choices of the adversarial policy or agent’s policy. M3 is the cumulative
sample error from the randomness of Monte Carlo sampling of the next state. My is the camulative
error from the bonus item §. Lemma 3| shows that the regret can be bounded by these four terms.

Lemma 3 With probability at least 1 — (S + 5)9,
K
Regret(K) < S (Vi (sk) = VE(sh) < 20(My + My + My + M). (10)
k=1

We now bound each of these four items separately.

Lemma 4 With probability at least 1 — 6, | < HV2HK..
Lemma 5 With probability at least 1 — 6, | <V2HK..

Lemma 6 Wirh probability at least 1 — 6, |M5| < HV2HK..

| < 252AH?2 + 8VSAH?K . + 4653 AH3.2 +

V24SAH3K 1 + 67/ SAH5..
Putting all together. By Lemmas 3| 4] [5] [6] and[7} we conclude that, with probability 1 — (S + 10)4,
Regret(K) <O(VH3K.+ VSAH2K.+ VSAH3K ., + S?AH?%> + VSAH5.)
=O(VSAH3K. + S?AH??).

Y
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2SAHK
5/(S+10)

Zle(vlf(s’f) — V¥(sh)) < O(VSAH3K . + S2AH?.2), we have that V;*(s1) — Vi (s1) <
miny, V’f(s’f) —Vi(sh) < O(¥SAH 52A£$L2) and we finish the proof of sample complexity.

By rescaling 0, log( ) < ¢ for some constant ¢ and we finish the proof of regret. As

7 SIMULATION RESULTS

We use OpenAl gym framework (Brockman et al., [2016)), and consider two different problems: Cliff
Walking, a toy text environment, and Inverted Pendulum, a control environment with the MuJoCo
(Todorov et al., 2012)) physics simulator. We set H = 100. To demonstrate the robustness, the policy
is learned in a clean environment, and is then tested on the perturbed environment. Specifically,
during the testing, we set a probability p such that after the agent takes an action, with probability p,
the action is chosen by an adversary. The adversary follows a fixed policy. A Monte-Carlo method is
used to evaluate the accumulated reward of the learned policy on the perturbed environment. We take
the average over 100 trajectories.

L s G

Figure 1: Inverted pendulum environment. Figure 2: Cliff walking environment.

Inverted pendulum. The inverted pendulum experiment as shown in Figure|l|is a classic control
problem in RL. An inverted pendulum is attached by a pivot point to a cart, which is restricted to
linear movement in a plane. The cart can be pushed left or right, and the goal is to balance the inverted
pendulum on the top of the cart by applying forces on the cart. A reward of 41 is awarded for each
time step that the inverted pendulum stand upright within a certain angle limit. The fixed adversarial
policy in the inverted pendulum environment is a force of 0.5 N in the left direction.

Cliff walking. The cliff walking experiment as shown in Figure [2|is a classic scenario proposed in
(Sutton & Barto, 2018)). The game starts with the player at location [3, 0] of the 4 x 12 grid world
with the goal located at [3, 11]. A cliff runs along [3, 1 — 10]. If the player moves to a cliff location, it
returns to the start location and receives a reward of —100. For every move which does not lead into
the cliff, the agent receives a reward of —1. The player makes moves until they reach the goal. The
fixed adversarial policy in the cliff walking environment is walking a step to the bottom.

To show the robustness, we compare our algorithm with a non-robust RL algorithm that is ORLC
(Optimistic Reinforcement Learning with Certificates) in (Dann et al. [2019). We set p = 0.2 for
our algorithm, which is the uncertain parameter used during the training. In Figure[3] we plot the
accumulated reward of both algorithms under different p. It can be seen that overall our ARRLC
algorithm achieves a much higher reward than the ORLC algorithm. This demonstrates the robustness
of our ARRLC algorithm to policy execution uncertainty.
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Figure 3: ARRLC v.s. ORLC (Dann et al.,[2019)

To show the efficiency, we compare our algorithm with the robust TD algorithm in (Klima et al.,
2019), which can converge to the optimal robust policy but has no theoretical guarantee on sample
complexity or regret. We set p = 0.2. In Figure ] we plot the accumulated reward of both algorithms
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under different p using a base-10 logarithmic scale on the x-axis and a linear scale on the y-axis. It can
be seen that our ARRLC algorithm converges faster than the robust TD algorithm. This demonstrates
the efficiency of our ARRLC algorithm to learn optimal policy under policy execution uncertainty.
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Figure 4: ARRLC v.s. Robust TD (Klima et al.,[2019)

We also compare our algorithm with the approaches in (Pinto et al.| 2017} [Tessler et al} 2019) that
model the robust problem as a zero-sum game and alternating update the agent policy and adversary
policy. In our implementation, (Pinto et al} 2017) fixes one policy and updates another for 25
episodes, then alternatively updates another in the next 25 episodes. (Tessler et al.}, [2019) does not
alternate the updating until the current policy is converged. Figure [5]shows the efficiency of our
ARRLC algorithm. ARRLC algorithm is more stable than the other algorithms.
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Figure 5: ARRLC v.s. PR-PI (Tessler et al}, 2019) v.s. RARL (Pinto et al.,[2017)

We provide additional experimental results in Appendix [A] We implement the ablation study by
setting different p and p and try different adversary policies in the testing environment. We also
perform cross-comparison experiments in which we use the learned worst-case policies to disturb the
different robust agents.

8 CONCLUSION AND DISCUSSION

In this paper, we have developed a novel approach for solving action robust RL problems with
probabilistic policy execution uncertainty. We have theoretically proved the sample complexity bound
and the regret bound of the algorithms. The upper bound of the sample complexity and the regret of
proposed ARRLC algorithm match the lower bound up to logarithmic factors, which shows the mini-
max optimality of our algorithm. Moreover, we have carried out numerical experiments to validate
our algorithm’s robustness and efficiency, revealing that ARRLC surpasses non-robust algorithms
and converges more rapidly than the robust TD algorithm when faced with action perturbations.

The current theoretical guarantee on the sample complexity and regret of our algorithms are derived
for the tabular setting. In the future work, we will explore action robust RL in continuous state or
action space. Studying efficient action robust RL with function approximation is also an important
direction to pursue. For this purpose, two insights from our work might be useful: (1) The adversary
policy and the agent’s policy can be simultaneously updated to efficiently sample trajectories; (2)
The adversary policies at each episode do not necessarily need be the minimum over the actions,
an approximation of the minimum also works. Based on these insights, a policy-gradient method
could potentially be designed to handle the continuous action space. We could use policy gradient
method, such like PPO, to find an approximation of the adversary policy (the minimum over actions).
In addition, similar to [2023), considering a scalable uncertainty set is also an interesting
direction.
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A ADDITIONAL NUMERICAL RESULTS

A.1 ABLATION STUDY AND MORE COMPARISONS

In Section[7] we compared our algorithm with the robust TD algorithm in (Klima et al, 2019). Here,
we compare our algorithm with the algorithms in (Pinto et al., 2017} [Tessler et al.,[2019). The method
in (Tessler et all,2019) requires an MDP solver to solve the optimal adversarial policy when the agent
policy is given and the optimal agent policy when the adversarial policy is given. The white-box
MDP solver requires knowledge of the underline MDP so that there is no learning curve and sample
complexity discussion in (Tessler et al, 2019). Thus, we implement the algorithms in (Pinto et al.,
2017} [Tessler et al., [2019) with a Q-learning MDP solver, and compared the final evaluation rewards
and the learning curve. In addition, we implement the ablation study by setting different p and p. In
our experiments, the policy is learned in a clean environment, and is then tested on the perturbed
environment. p is the parameter in algorithm when learning the robust policy. p can be considered as
the agent’s guess about the probability of a disturbance occurring. However, p is the probability that
the perturb happens in the perturbed environment. In the perturbed environment, with probability p,
the action is perturbed by an adversarial action.
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In Figure[6 we show the learning curves under different p and p. It can be seen that our ARRLC
algorithm converges faster than the other algorithms. This demonstrates the efficiency of our ARRLC
algorithm to learn optimal policy under policy execution uncertainty.
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Ablation study on InvertedPendulum-v4 with fixed rho
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Figure 7: Ablation study on InvertedPendulum-v4 with fixed p.

In Figure [/} given the agents trained with fixed rho, we test the agents in different disturbed
environments with different p. In Figure 8] we compared the different agents trained with different
rho. The x-axis is the different choice of p or p. The y-axis is the final evaluation rewards.
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Figure 8: Ablation study on InvertedPendulum-v4 with fixed p.

The theoretical guarantee on sample complexity and regret of our algorithm relies on the assumption
of known uncertainty parameter. However, in the experimental results shown in[7} the parameter can
mismatch with the true disturb probability. In the main paper Figure[0] we test the mismatch of the
uncertainty parameter p and true uncertainty probability p. We trained the agent with p = 0.2, but we
use p = 0.1 in the test. The proposed robust algorithm still outperforms the non-robust algorithm.

A.2 ROBUSTNESS TO DIFFERENT ADVERSARY

In this section we considered different adversary policies include both the fixed policy in the main
page and a random adversary policy. After the agent takes an action, with probability p, the random
adversary will uniformly randomly choose an adversary action to replace the agent’s action. In
Figure[9]and Figure[I0] "fix" represents that the actions are perturbed by a fixed adversarial policy
during the testing, "random" represents that the actions are randomly perturbed during the testing, p
is the action perturbation probability.

Since we do not know whether the fixed policy or the random policy is the strongest adversary
policy against the agent, a more direct comparison is to use the learned worst-case policy in different
algorithms to do a cross-comparison. We used the learned worst-case policies to disturb the different
robust agents. We report the final evaluation rewards in Table [l We trained our method in 2000
episodes and the approaches of Pinto et al.|(2017); [Tessler et al.|(2019) in 30000 episodes. We set
that p = p = 0.2. The ARRLC agent performs the best against three different adversaries and the
ARRLC adversary impacts the most on three different agents.

Table 1: Final rewards under cross-comparison between ARRLC, PR-PI and RAPL
ARRLC adversary RAPL adversary PR-PI adversary

ARRLC agent 72.536 81.736 89.824
RAPL agent 49.936 72.216 70.6
PR-PI agent 52.788 63.784 86.648
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Figure 10: ARRLC v.s. Robust TD

B PROOF OF PROPOSITION ]

The uncertainty set of the policy execution has the form in:

7 (m) := {7|Vs, Ta(|s) = (1 = p)m(:|s) + pmh(:[s), 75 (|s) € Aa}- (12)
We define
, H
C;:’W ’p(s) = E Z Rh/ (sh/7ah/)|sh = S,ap ~ %h’(’|5h’)
h'=h
, H
Dy P(s,a) = E Z Ry (spryap)|sn = s,ap = a,ap ~ Ty (-|spr)
h'=h

Robust Bellman Equation First we prove the action robust Bellman equation holds for any policy
m, state s action a and step h. From the definition of the robust value function in (]I[), we have
Vii(s)=0,VseS.

We prove the robust Bellman equation by building a policy 7~. Here, policy 7~ is the optimal
adversarial policy towards the policy 7.
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Atstep H, we set m;;(s) = argmin,c 4 Ru (s, a). We have
Vi (s) = min C’Z’W/’p(s)
= (1 = p)[Dry Rl (s) + pmin[Dry, Ryl (s) (13)

= (1= p)[Dx, QR](5) + pmin QF; (s,0) = CF™ *(s),
as Vg4, = 0.

The robust Bellman equation holds at step H and ming )., w(s)C’};’W,’p (s) =
> w(s) ming C’Z’"l’p(s) = Y, w(s)CF™ *(s) for any state s and any weighted function
w:S — As.

Suppose the robust Bellman equation holds at step i + 1 and ming ), w(s)C;:_:l, Ps) =

Yo, w(s) ming C’;erl/’p(s) = >, w(s)Cﬁf{’p(s) for any state s and any weighted function
w:S — Ag.

Now we prove the robust Bellman equation holds at step h. From the definition of the robust
Q-function in (2) and the form of uncertainty set, we have

H

Qr(s,a) = min E Z Ry (Spryan)|sh = s,an = a,ap ~ Tps(¢|Spr)
Tell(n) =

’
= min Dy (s, a)

' \p (14)

=Rp(s,a)+ HTlrl/n Es/wph(.|87a)ch+1 (s)
:Rh(S7 a) + :[ES/NP},,(‘ls,(l) IITlrllIl C’Z:—,:'l’,p(!s)
=Ry (s,a) + [PV)1](s, a).

We also have that Q7 (s,a) = Dp'™ (s, a).

Recall that a (stochastic) Markov policy is a set of H maps 7 := {7, : S = A}pe(m). From the
definition of the robust value function in (]II) and the form of uncertainty set, we have

H

Vhﬂ—(s) :Nmin E Z Rh/(sh/,ah/)|sh = S§,ap ~ %h'('|5h’)
Tell(r) Py

’
= min Crm P (s)

=min  min C’Z’ﬂl’p(s)

' {ﬂ/h/}fj,:h+1

>(1—p) min Eomry (19D " P (s,0) + pmin  min  Eqop oDy (s, a)

(e i A}

’ ’
>(1— p)]anwh(~|s) m}i{n D;’” P(s,a) + prn/in IEGNW;IHS) m}{n Dzm #(s,a)
{0y Th 1SS S

=(1—p)[Dx, Q7](s) + pin Qh(s,a).
(15)

We set 7, (s) = argmin, . 4 QF(s,a) = argmin, 4 DI *(s,a).
At step h, we have
Vir(s) <CR™ (s)
=(1 =)D, D™ () + pmin DI *(s,a) (16)

=(1 - p)[Dx,Qr1(s) + pin Qh(s;a),

16
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where the last equation comes from the robust Bellman equation at step h + 1 and

DZ’”i’p(s, a) = Rp(s,a) + [P;LC';:fli’p](s, a) = Ry(s,a) + [PV 1](s, a).
Thus, the robust Bellman equation holds at step h.

Then, we prove the commutability of the expectation and the minimization operations at step h. For
any weighted function w, we have min., >~ w(s)Cy"™ **(s) > > w(s) miny C;" P (s). Then,
ming 35, w(s)Cp ™ (s) < X, w(s)CRT P (s) = X2, w(s) ming CfT P (s).

By inductionon h = H, - - - | 1, we prove the robust Bellman equation.

Perfect Duality and Robust Bellman Optimality Equation We now prove that the perfect duality
holds and can be solved by the optimal robust Bellman equation.

The control problem in the LHS of (@) is equivalent to

H

E Ry (spryan)|sn = s,ap ~ %h/(-|sh/)] = maxmin C;’ﬂ/’p(s). (17)
s U
h'=h

max min E
T wellr(m)

The control problem in the RHS of (@) is equivalent to

H
Z Rh/(sh/, ah/)|sh = S,ap ~ %h/('|sh’)‘| = mi/nmax C;;’Tr,’p(s). (18)
T T
h'=h

min maxE
wellp(w) =

For step H, we have Ci7™ *(s) = [D((1—pyrtprr) , Bul(8) = (1=p)[Dryy Rir)(5) +p[Dry Rur](s).
Thus, we have

max min C’};’ﬂ,’p(s) =(1 - p) max[Dr, Ryl(s) + pmin[D, Ryl(s)

s ™ ) (19)
=(1-p) I;leaj(RH(S, a) + pmin Ry (s,b),
and
minmax O™ (s) =(1 — p) max[Dy,, Rar)(s) + pin[Ds, Rerl(s)
s Uy ™ us (20)

=(1- R in Ry (s,b).
(1 - p) max Ry (s, a) + pmin Ry (s, b)

At step H, the perfect duality holds for all s and there always exists an optimal robust policy
7y (s) = argmax,c 4 Q3 (s,a) = argmax,c 4 Ry (s, a) and its corresponding optimal adversarial
policy 7, (s) = arg min, ¢ 4 R (s, a) which are deterministic. The action robust Bellman optimality
equation holds at step H for any stats s and action a.

In addition, max, min. Y, w(s)Cg" (s) = Y, w(s) max, min. C’I’fl’”/’p(s) for any weighted
function w : § — Ag. This can be shown as

s€S
~(1 = p)max 3 w(s)[Dy Birl(s) + prmin 3 w(s)[Dr Rirl(5) o
s€S seS
=(1-p) Z w(s) max Ry(s,a)+p Z w(s) %1}41 Rp(s,b).
s€ES seS

Suppose that at steps from h + 1 to H, the perfect duality holds for any s, the action robust
Bellman optimality equation holds for any state s and action a, there always exists an optimal robust
policy 7, = argmax, 4 QJ,(s,a) and its corresponding optimal adversarial policy 7,,(s) =
argmin, 4 Q% (s,a), Yh' > h+ 1, which is deterministic, and max, min, Y, w(s)C},;" " (s) =

’
T, ,p

> w(s) max,; mings Cp;" P (s) for any state s, any weighted function w : S — Ags and any

17
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I > h+1. Wehave Vi (s) = VT (s) = i, ™ *(s) and Q} (s,a) = QF. (s,a) = Dy, "™ (s, a)
for any state s and any A’ > h + 1.

We first prove that the robust Bellman optimality equation holds at step h.
We have
Q3 (s,a) = maxmin DZ’W/”’(S, a)
= max mi/n(Rh(s, a) + [PhC;LTfll’p](s, a)) @
= Ry(s,a) + [Pp(max min C’Zfll’p)](s,a)
= Rh(sv a) + [thi:;rl](sv CL).
and also Q% (s,a) = QF (s,a) = Df’”i’p(s, a).
From the robust Bellman equation, we have

i (o) = (1= D, QFI(9) + oy Q35 )

<U-pmax max D, Qfl(9)+p max minQi(s.a)
a

Th {ﬂ—h}h’:thl Thi il —pt1
<(1—-p)max max [D,,Q}](s)+pmin max Qf(s,a) (23)
A, o a€A {m}F,_, .|

<(1~ p)max[Dy, Q31(s) + pmin Q7 (s,0)
=(1- ; in Q; (s, a).
(1 = p) max @} (s, a) + pmin Q (s, a)
We set 7} (s) = maxqaeca Qj (s, a). According to the robust bellman equation, we have
max Vi (s) > Vi (s) = (1 - p) Dy Q7 1(5) + pmin Qf (s,a)
= (1— " : "
(1= p) maxQF (s, a) + pmin Qj (s, a) (24)
=(1- ; in Q; (s, a).
(1 = p) max @ (s, a) + pmin Qj (s, a)
Thus, the robust Bellman optimality equation holds at step h. There always exists an optimal
robust policy 7, = arg max,c 4 Q7 (s,a) and its corresponding optimal adversarial policy 7, (s) =
argmin, . 4 Q7 (s, ) that is deterministic so that CZ*”Ti’p(s) = Vi (s).

Then, we prove the commutability of the expectation, the minimization and the maximization
operations at step h.

In the proof of robust Bellman equation, we have shown that
min Z w(s)C;:’”/”’(s) = Z w(s) min C,f’”/’p(s)
for any policy 7 and any weighted function w. Hence
max min Z w(s)CZ”T/’p(s) Z = max Z w(s) min C,f’”/’p(s).
First, we have

max E w(s) min C;:”T/’p(s) < E w(s) max min C}Tﬂ/’p(s)'
T ! ™ w’
s s
Then, we can show

maxZw(s) min C,j’ﬂ/’p(s) > Zw(s) min C}f*’””p(s)

S S

= > w(s)Cp " (s)

S

= Z w(s) max min C’;’ﬂ,’p(s). (25)

S

18
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In summary,

max min w(s)C’;{"”,”’(s) Z = w(s) maxmin C’Z’”l’p(s).

We can show the perfect duality at step h by
max min C;Lr’ﬂl’p(s) = C;;*’Tr_’p(s) =maxCP" P(s) > min max C}f’ﬂ/’p(s). (26)

By induction on h = H, - - - , 1, we prove Proposition 1]

C PROOF FOR ACTION ROBUST REINFORCEMENT LEARNING WITH
CERTIFICATES

. . —k —k Ak
In this section, we prove Theorem Recall that we use 9,V hQZ ,Kk, N ,’f P,’f,rh and Q,I?L to denote

the values of @h,Vh,Qh,Zh, max{Np, 1}, Ph, rp, and 6y, at the beginning of the k-th episode in
Algorithm ]

C.1 PROOF OF MONOTONICITY
C.1.1 PRrRoOF OF LEMMAII

When Nf(s,a) < 1, §), @) and (7) hold trivially by the bound of the rewards and value functions.

For every h € [H] the empiric Bernstein inequality combined with a union bound argument, to take
into account that N, ;’f (s,a) > 11is a random number, leads to the following inequality w.p. 1 — SAH§
(see Theorem 4 in (Maurer & Pontil, 2009))

. 2V pi Vi (5, a)e TH.

’(Pi]f - Ph)V;;"H(s,a)‘ < \/ ;V}f(:, ) + 3(NE(s, ) 27)
and

(P = POV (v < 5| MR | TH. (28)

Pk = POVT (s, < NE(s,a) | 3(Ni(s.a)’
Similarly, with Azuma’s inequality, w.p. 1 — SAH¢

2Var(rk(s,a))e 7L 27 (s, a)L T
)= R, [ S ey < N Ty @

where Var(rf (s, a)) is the empirical variance of Ry,(s,a) computed by the N (s, a) samples and
Var(rk(s,a)) < (s, a) .

C.1.2 PROOF OF LEMMA[Z]

We first prove that @Z(s,a) > Qj(s,a) for all (s,a,h,k) € S x A x [H] x [K], by backward

induction conditioned on the event £ N XV Firstly, the conclusion holds for h = H + 1 because
Viii(s) = Vg(s) = 0and Qg 4(s,a) = QHH(s,a) = 0 for all s and a. For h € [H],
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assuming the conclusion holds for & + 1, by Algorithm I} we have
h(s,a) + PiViei(s,a) + 65 (s, a) — Qj(s,a)
=7} (s,0) + P Viia(s,0) + 05 (s,0) — Ra(s,a) = PiViiy (s, a)
ﬁ(s,a) Ry (s,a) }’f Vh+1 Vh+1) (s,a) + (P}f — PV 1 (s,a) + 92(5, a)

-
Vel (Vhin + V)2 B (Vi —Vha) (s0)  gp2,

> P - PV
>( 7)Viy1(s, a) N (s, a) + H * Nf(s,a)

>

25y (Vi + Vi) Al P (Vi —Vho) (s0)  sm \/wpm:;l( a).
NE(s,a) H NE(s,a) NE(s,a) ’
(30)

where the first inequality comes from event £%, V1 (s) > V;*, | (s) and the definition of 6} (s, a)
and the last inequality from event £7V. By the relation of V-values in the step (h + 1),

VgtV x
|W15};f <h+12h+1> (s,a) — Wp:Vh+1(s,a)
|1 (Vi + Vh)/22 = (BEViE)?| (5,0) + | BE IV + V) /28 = PRV (5.0)
<4HPf ’(Vthl +Vi)/2 - Vﬁkﬂ‘ (s,a)

§2Hp,lf (Vh_H - K’fL_H) (s,a)

(€29)
and
2Wp:V,j‘+l(s,a)L
NF(s,a)
a—

| Ve T + V30250 0)e 4 AHPE (Vi = Vi) (0
B Njy(s,a)

STak k ok (TF k (32)
< QWP;:[(V}LH + Vi1)/2)(s,a)u L 4H Py (Vh+1 _Kh+1) (s;a)
= NE(s,a) NE(sa)

S Vad k ok (TF k
< QWP;f[(VhH +Vii1)/2)(s,a) . Py (Vh+1 _Zh+1) (s,a) N 8H?2,
- Nf(s,a) H Nf(s,a)’

Plugging (32) back into (30), we have 7 (s,a) + PFV5.1(s,a) + 05 (s,a) > Qi (s,a). Thus,
Qu(sa) = min{H —h+ 1,7} (s,0) + PV, 41 (s.0) + 0} (s,0)} > Qi (s.a).

From the definition of ¥ (s) and 7%, we have

Vi(s) =(1 = p)@y (5, 75(5)) + pQy (5, 75 (5))
>(1 ~ p)Qn (s, () + pQi (5.7 (5)) (33)
(1 = p)Qi(s,m;,(s)) + pmin Qi (s, a) = V' (s)

Similarly, we can prove that Q:(s, a) < sz (s,a) and V}(s) < V}?k (s).
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N(s,a) + PRV, (s,a) — 05 (s, a) — Qh (s,a)
. =k
:TZ(S,CL) + thh-&-l(sva’) 95( ) ) - Rh(sva) - Ph‘/h-l—l(&a)
k
h

N —k ~ =k
) = Ru(s,) + Bf (Vypy = Vil ) (s5,0) + (B = Pa)Viipa (s,) = 04 (5.a)

—~
»
S

—k
. . Qka[(Vh+1 +Kﬁ+1)/2](s,a)b
<(Bf = Pu)ViTa(s,a) — .

NE(s,a)
"
P]f (Vh+1 Vh+1> (s,a) 8H?%, G4
~ Nf(s,a)
_ QWPthH s,a) Pk Vh+1 +Vh+1)/2](5 a)t
= N[ (s,a) Nk(s,a)
Pk (Vh—i-l Vh+1 (s,a) SH2, <0
- " N <

and

IS

>

—~
»

~
Il

(1- P)QZ(SﬁIZ(S)) +pQ) (5,75 (5))
<(1-p)Qf (S,WZ(S))ergggQ’;(&a)

—k _k 35
<(1= QT (5. 74(9) + Q5. arg min QF (5,0) 53

<= P)QF (5.7h(s) +pmin QF (s,0) = VT ().

C.2 REGRET ANALYSIS
C.2.1 PROOF OF LEMMA[3]

We consider the event £ N PV, The following analysis will be done assuming the successful event
ER N EPY holds. By Lemma the regret can be bounded by Regret(K) := Zszl(Vl*(s’f) -

Vi (sh) < SO0 (T (sh) — VB (sh)).

21



Under review as a conference paper at ICLR 2024

By the update steps in Algorithmm, we have
Vi(sh) = VE(sh)
=(1— )@ sk, Th(s5)) + pQi (5, mh(sF)) — (1 — )@ (s, Th (s5)) — pQ" (sh, zh (sF))
S[D%,’;Pflf(vhﬂ — Vi)l(sh) + 2D 01 (s})
=D B (Vi — Vi DIE) — [PE(Viyy — VB, 1)1(sE, a) + 2Dz ()
+ [BE(Vhyr — Vi ))(sE,af)
:[]D%,’jpilf(vlfiﬂ - ZZ-&-I)](S}L) [Ph (V}L+1 Zﬁ-&-l)](slfgu aﬁ) + Q]D%;jeh(si)
+ [PE(Vhyy — VE)I(sh,af) — en PV yy — Vi )(shaf)
+ ClPh(VZH h+1)(52’ af) — 02(Vl:z+1 Vh+1)(5]fz+1) + 02(VZ+1 - KZH)(SEH)
=[Das PE(Viyyy — VEDIE) — [BE (Vs — Vo )I(sh, af)
BE (Vi — Vo ))(sk af) — et Pa(Viyy — VE L )(sh af)
+ e PV = VE ) (s af) — (Vi = VB ) (k) + e2(Vhgy — Vi) (k1)

2V o [(Viosr + V1) /2)(sE, 78 (s5))e 7 (sE 7 (50)0
+2(1_p)¢ O Rk e

o 2(1 — p)(24H2 +7TH + )t
+(1-p) ;]f(V:H Vi) E 7R (sy)/H + ( 3££(Sz7wﬁtsh)))+ :

7r k k _k(k (36)
N ZP\J QWP;f[(Vh-H + Vi5i1)/2)(sy, @y (sy,))e 27K (sk, ok (sk))e

%
+2p 2" h\°h>—h\"h//"
Nf(sy. i (s7:)) Nf(sy.mji(s7))

2p(24H? +TH + 7).
3Nk( hﬂrh(Sh)))
=(1+ 1/H)[D%,’jpllz€(vi+l Vie)l(sh) = (1+ 1/H)[Ph(vh+1 Vie))(shsar)
+ (L+ 1/H)BE(Vy — Ve )1k, ab) — 1 Pu(Viyy = VEL)(sh, af)
(a)
t e Py (Vipy = Vi) (shoal) — ex(Viy = Vi) (k) +ea(Viy — Vi )(sk )

P
+ pPY(Vigr = Vi) (simh(sh)/H +

—k
v 21— )y et Ve i) AR TR () 2k TG
p Ni o T (o) OV VG
(b1)

—k
2(1 — p)(24H? + TH + )t 2/)\] 2V pi [V + Vi 1)/2)(sk, mh(sk)e
3NK (sk, T (s5))) N}y (sh,my(sh))

(b2)
27K (s Tk (sk))e  2p(24H% + TH + )t
NEGh b ) T NEGE 2 6R))

+2p
Bound of the error of the empirical probability estimator (a) By Bennett’s inequality, we have
that wp. 1 — 5§

2P, (s'|s,a)t L
k T ok
Ny(s,a) 3N} (s,a)

|Pr(s'|s,a) — Pu(s'|s,a)| < 37)
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holds for all s, a, h, k, s’.
Thus, we have that
(PF — Pu) (Vs — V1) (s,0)
—Z (PE(s')s,a) — Pu(s']5,0)) (Vp 1 (8') = V1 ()

2P, (s']s,a)t L , SH.
< \%4 -V —
Z Nk; S a) ( h+1( ) 7h+1(5 )) + SN;:(S, Cl)

Pu(s']s, ) I . SH. (38)
< v b 3NF(s, a)
_Zé,:( H +2‘7\7;?((97(1)) ( i (8) = Vi (s )>+3N;’f(3aa)

. . SH? SH.
<P,(Vy, -V H
SPaVis = Vi), )/ H o S s + 58 )

. SH?,
SPh(Vh-i-l - ZZ—&-l)(S’ a)/H + m,

where the second inequality is due to AM-GM inequality.

Bound of the error of the empirical variance estimator (bl) & (b2) Here, we bound
Vi (Vi1 + VE1)/2)(sh, af).
Recall that C;” TP (5) = {Zh, _y R (snryans)|sn = s,an ~ 7 (|spy) | in Appendlx@ Set 7k

here is the optimal policy towards the adversary policy % with 7% (s) = argmax;, cr p (s).
Similar to the proof in Appendix , we can show that Vﬁ(s) > Ch s (s). We also have

that CT = P(s) = max, CI'% *(s) > CT = P(s) > V7 (s) > VE(s) . Forany (s,a,h, k) €
S x A x [H] x [K], under event ER N EFV

Vel (Vs +Vh41)/2)(s,0) = Vi, €™ (s,0)
—PE[(Vyyy + V5 41)/2(s,a) - [Ph<vh+1 + V5 1)/2(s,a)
— PU(C ™ ) (s,0) + (PO = ) (5,0)
S[Ph (Vh+1) (Ph Vh+1) Ph(vh+1) (PhVZ+1)2](5» a)
<IBf — Pu)(Vyi1)?1(500) + [(PaV S 40)* — (PEVE 1) (5, 0)
+ (Vi 0)? = (Vh)?I(5,0) + (P yy)? — (PaVE 1) (5, ),

(39)

where the first inequality is due V:(s) > C;Zk*’ﬂk’p(s) > V5 (s). The result of (Weissman et al.,
2003) combined with a union bound on N} (s, a) € [K] implies w.p 1 — &

R 25t
PE(. — Py(- < 40
H h( |S7a‘) h( |S,CL)H1 — N}’f(s,a) ( )
holds for all s, a, h, k.
These terms can be bounded separately by
Sk —k 2 2 251
|(Py = Pr)(Viya)7l(s,0) < H Ni(s,a)’
& 9 250
|(PaV3y1)? (Pth+1) (s, a) < 2H|(P, — PF)VE 41l <2H N q) (41)
h(sva)

—k —k

Ph‘(vh+1)2 - (ZZ-H)Q‘(S, a) < QHPh(Vh-H - KZH)(S:@),
—k —k

|(thh+1)2 - (PhZZ+1)2|(5:a) < ZHPh(Vh-H - Kfz—l—l)(&a)a
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where the first two inequality is due to @I) In addition, 3H?2, / 2fL y < <1+ Q?V%Ié4;) . Thus, we
have

a-p) ka[(Vh+1 + Vi) /2 (kT sk . ka[(Vh+1 + Vi )/20(sk, mh (s5)e
g NE(sf 7h(sf)) ’ NE(s5 xh (5F)
ok . ks gk i )
<(1-p) WPhCh—‘rli P (sp T (sk)e P Vp, O™ sk, mh(sh)e
B NE(sp, T (s5)) Ni(sy, iy (s5))
—k . _ —k .
4 (1-p) AH Py (Vg — KZH)(Sﬁaﬂi(sﬁ))b AHPy(Vjyy — Kﬁﬂ)(Sﬁ,l’ﬁ(SE))b
NE(sk,mh(s7)) Njy(sh,my(sh))
L (1—p) 1 +p 1 +( p)\/9ISH*./2 N p\/ISH*L/2
Nf (sg. T (s7) Nii(spzmp(si)  NE(sE,mh(sp))  Ni(sy,zi(sy)
Jy— _ ks ke
<(1-p) Vp,Cpy™ P(si,ﬂﬁ(sﬁ)ﬁ ) Ve, Cp ™ Psk,mh(sh))e
a Nf(sk,mh(s7)) N (sy,my (s))
—k L
i (PThe —VEGE ) | ova,
2V2H NE(sg, T (sE))

—k o
+p Pr(V54q _K§+1)(827£Z(8£)) " 2v2H%
2v2H NE(sy, mh(sf))

+ (1 _ ) ; + ;
PN NEGEARGR) T NEGE k)
N (1—p)\/95H4L/2+ p/9SH4/2

NE(sg,mh(sp))  Ni(si.mhi(s))
wk* gk, ke
g | VRGE eme | VA G e sk )
NE(sk,mh(s5)) Ny (sp,mh(sy))
ID%EPh(Vh-H Vh+1)( ]Z) Q\f(l— p)H?L 2V2pH?1
2v2H NE(sE,mR(sy)) Ny (sk,mri(sr)

T 1N ey L .
NA(sf, 75 (s5) A CAEACH)
N (1—p)\/9SH4L/2+ P/ ISH* /2

Ny(simh(sh) Ny ()

(42)

where the second inequality is due to AM-GM inequality.
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Recursing on 1 Plugging (38) and (#2) into (36)and setting c; =1+ 1/H and ¢ = (1 + 1/H)3 ,
we have

Vir(sh) — VE(sh)
<L+ 1/H)Da PV yy — Vi DIE) — (1 + L/ H)PE (Vi — V)] (k. af)

(SH + SH?).

—k
+(1/H +1/H)P,(V, ., — VF ¥oak) +
1/ JH?)Py( h+1 —h-i-l)(sh ah) N,’f(s’fb,a’fb)

—k —k —k
+e1Pu(Viyg — Z’Z-s-l)(é’z, ap) — 2V — Vh+1)(5]i§+1) +ea(Vigp — ZIFCL+1)(SZ+1)

L2 - p) 27K (sE TR (sk))e  2(1 — p)(24H? +TH + T)t
WACHRACH) 3N (s}, 7 (1))
L2 27K (sk, mh(sk))e  2p(24H? + TH + )t
Ny (siomi(sy)) — 3NR(sy,mi(s3)

mhk* gk _ mk* gk,
R L R N EL e e
N (sk T (s3)) Ny (sh, @ (sh))

—k
D Ph(Vigr — KZH)(Slﬁ) 8(1—p)H?t 8pH?L
H

Ny (sh.mh(s)) - Ny (sp,mh(sh))

VSH*% n 6pV SH*L
~h o =R s TP — .
NE(sh Th(sh)) Ny (somi(sh)) — NEGsE7h(sE)) Ny (s)
(43)

We set OF (s, a) = \/SWP” ]’\fg}s ) o) Jr\/N,c ) 4]6\,\,52?{14)5 Since r¥(s,a) < 1, by organizing
h\Ss
the items, we have that
—k
Viu(sh) = Vi(sh)
P P
<+ 1/H)Da P (Vi yy = Vi )l(sh) — (L 1/ H)EB (Vg = Vi 1))(shs ak)
(SH + SH?).

—k
V/H+1/H)P,(Vy = V) (sh ab) + 2 22—
+( / + / ) h( h+1 —h+1)(5h’ah)+ N}]LC(SZ;GZ)

—k —k 7k

+ ClPh(Vh+1 - VZH)(SQ, aﬁ) - C2(Vh+1 - KZH)(SZH) + CZ(Vh+1 - ZﬁJrl)(slfiJrl)
—k

4 Dz Pr(Vipyr — Vh+1)(5}u771}3(3;’§))

7 + Dz 05 (sh)
<1+ 1/H)Da PE Vg — Vi DNsE) — U+ 1/ H)PE (Vi — Vi ))(sE af)
D P(Vhy — VE ) (5h) — Pa(Vigs — V) (sh o) (@4
+ (14 3/H +1/H) Py (Vi = Vi) (5h,af) — ex(Vigy — Vi) (s540)
tea(Phpy = V) (shan) + W D, 0k (sh)

3(1+1/H)[D%§pf]f(v:+1 Vi0)l(s5) = (1+1/H)[Ph(vh+1 Vi )(sksaf)
D P (Vhy — VE ) (5h) — PaVigs — Vi) (sh o)

7]6 J—
+ C2Ph(Vh+1 - KZH)(SZa aﬁ) - C2(Vh+1 - ZZ+1)(3;€L+1)
(SH + SH?).

N (sh» ap)

—k )
+eo(Virn = Vi) (shaa) + Dz O} (s7)-
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By induction of 36) on h = 1,--- , H and V:H V§. 1 =0, we have that

K H
Regret(K) <21 ZZ kPh Vh+1 Vii)(sh) — Ph(Vh+1 Vi1)(st, ar)
k=1 h=1

1 —k —k
E[]D%}’jph(vh—i-l - ZZ-H)(S?L) — PV — ZZ+1)(5;€L7 ai)]
—k —k
+ Po(Vigr — K’ZH)(SZ, ap) — (Vg1 — K]ZH)(SZH)
(SH + SH?).

+

Nk( sk, h) ID%’,j@]fL(SZ))'
(45)
Here we use (1 + 1/H)3*H < 21.
C.2.2 PROOF OF LEMMA]
Recall that My = Y4 S Do P (Vi g — Vi )(s5) — BEV 1y — V1) (k. af)).
Since ]Ea,k;w)yk [ﬁf(V:H — Vii)(sf,af)] = D%ﬁﬁ)}’f(viﬂ — Viii1)(sk), we have that

]D%Zﬁ,’f(vhﬂ Vi () - P’“(Vh+1 V5. 1)(sk, ak) is a martingale difference sequence.
By the Azuma-Hoeffding inequality, with probability 1 — J, we have

Z ’“Ph Vh+1 Vh+1)( ") - Ph(Vh+1 Vh+1)(5h»ah)] < HV2HK.. (46)
k=1h=1
C.2.3 PROOF OF LEMMA[3]
Recall that My = 7,2, >0, %[]D%;fph(vﬁ+l Vii)(sp) — Ph(Vh+1 Vi) (sk, af)].
Since IEGEND%[P;L(VZH ~ Vi) af)] = DaPu(Viyy — VE,)(sh). we have that
]]);}?Ph(V:H Vh+1)(5h) Ph(VhJrl KZ+1)(s’fl,a§) is a martingale difference sequence.

By the Azuma-Hoeffding inequality, with probability 1 — J, we have

H
—k N —k .
Z[]D%;;'Ph(vhﬂ — Vi) (sh) = Pu(Vier = Vi) (shoa)]| < HV2HKL. (47)

C.2.4 PROOF OF LEMMA[6]

K H —k —k
Recall that M3 = Zk:l Eh:1(Pflf(Vh+1 - Z'Z«H)(Sgy a%) - (Vh+1 - Kﬁﬂ)(sﬁﬂ))-
Let the one-hot vector 1§ (+|s¥, af) to satisfy that 1§ (sf_,|sf,af) = 1 and 1 (s|sf,af) = 0 for

s # sy, Thus, [(PF — ﬂg)(VZH — V5 )(sF,ak) is a martingale difference sequence. By the
Azuma-Hoeffding inequality, with probability 1 — §, we have

K H
POPp—
S EE =15 (Vir — Vi )l(sh,a)| < HV2HKL (48)
k=1h=1

C.2.5 PROOF OF LEMMA[T

We bounded My = Y0 ST [% + ]D%fz,@;j(sﬁ)] by separately bounding the four items.
h h*'"h g

26



Under review as a conference paper at ICLR 2024

2
Bound Zszl Zle % We regroup the summands in a different way.

< (SH + SH*)SAH /.
k=1h=1

L SH+SH2) ul

(49)

Nk NE(s,a) -

Bound Zle Zthl[(l -p) Nk(s k(s IRELY, N},;(sjibh(sh)) We regroup the summands in a

different way. For any policy 7, we have

H N{((s,a)
Z \/i — Z Z }Z ,/% < 8HVSAK.. (50)
k=1h=1 h? h=1(

s,a)ESxA n=1

p
Recall that @ﬁ(s,a) _ \/SWPh ;L+1sa (s,a)e + \/N si - L 16v/SHT

Bound Y"1, S27 (1 - p) T (‘Lﬁsﬁ & 5y + PR (45655’,;( k))] We regroup the summands in a dif-

ferent way. For any policy 7, we have

KA 46@ Ni (5,a)
ZZ = 46v'S Z > >

4653 AH3,2. 51
Nk sh, ) - ' Gb
k= h=1(s,a)eSxA n=1

S|

K H 8Vp, Chf_*l'”k Psh R (sh)e 8thChf_j Psk ok (sh))
Bound Zk:l Zh:l (1 - p) Nk(sk 7k(sh)) + p Nk(s T (SI;L)) By

Cauchy-Schwarz inequality,

K H kx ok _
Vp, Cryr™ (s Th(sh))e

Ny (s 7h(sh))

k=1h=1
K H ok K H L
S L L VAT LY s @
k=1h=1 b1 h=1 Vh \Sh Th{Sh
‘n'k* ko p _
< SAHLZZZW& ht1 P(sk, T (sF))-
k=1h=1

Similarly,

K H kx k
ZZ Vp, C}TLr.H p(sﬁaﬂf(sf)ﬁ

N (s w5 (51))

k=1h=1

(53)
K H . .
<\ SAHR2Y N "V, Cr " P (sh, ik (s])).
k=1 h=1
By (1 — p)a® + pb® > (1 — p)a+ pb)?,
K H . . K H . .
(1—-p) WPhC;:Jrlﬂ (S’ﬁﬁ’ﬁ (sk)) +p ZZW C;Lr+1ﬂ P (s mh(st))
k=1 h=1 k=1 h=1 (54)

K H
ko ok . ko rk
<UD D (A= p) Ve, Cr ™ P (sh, mh(s5) + pV e, Oy ™ 7 (5K, mh (s5))-
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Now we bound the total variance. Let Dzx P, (s'[s) = (1 — p)Pu(s'|s, 7 (s) + pPr(s'|s, 7k (s)),

[Das PaVisal(s) = Y _[(1 = p) Pa(s'ls, Th(5)) + pPu(s'|s, o) () Via (), (55)

s/

and
Vip_, P Var1(s) = > (1= p)Pu(s'|5, 75 (5)) + pPu(s'ls, 75 ()] [Vaga (s)]

ry

(56)
=D (1= p)Puls'15,75(5)) + pPals'|5, 75 (5))) Vara ()],

s’/

‘We have that
W[]D kPh]Ch (SI;L)

= ST = ) Pa( |5 7 (s5)) + pPu(s' sk, ah (sEICT™ ()2

s/

— D2 (1= ) Puls' I35, T (55)) + (sl s, b (5))) Oy ™ ()]

s/

_ " (57)

>(1- )WPhChH’* p( £TE () + PV p, Cryy™ (s, 2l (s])
ok

+(1- p)[PhCh P (s SZ))] + PPh[Cthl ’p(sﬁ,ﬂﬁ

k

Th,

—[Z(l—p)&(s’\sh,ﬂ(s )OIV P () + pPa(s sk, @

’

A
)

( )WPhC}TLr-H,Tr 7p(57w 7rh(sh)) + pw'l:’hC}Tzr-',-l77T 7p<8;€w£;€1,(32))7
where the last inequality is due to (1 — p)a? + pb® > ((1 — p)a + pb)?.
With probability 1 — 29, we also have that

K H
>3 Vb ™ 7 (oh)
k=1h=1
K H kx _k 2
=33 (0a AT Pk - (Dm P 1060) )
k=1h=1
K H x 9
=33 (D P s - (e ko))
k=1h=1
K H
£33 (e b)) - (D ) )
k=1h=1

A kx _k Kk 2 K o
<H? 2Hm+22(<czz =0 (sh)? = (IDs PR ™ )(s5)) )—wa =(sh))

K H
§H%/2HKL+2HZZ|C;k*7£k’9(s’,§) kPhch ate(shy)

k=1h=1
9 K ﬂ,k*ﬂ,kp E H ﬂk*ﬂ,kp k k
<H"V2HK. + QHZ Cy s+ Z (Ch+1’7 P (shy1) — ’“Phch+1 (5h7ah))
k=1 h=1
H*>V2HK.,+ 2H?K + 2H*V2HK..

<3H?K + 9H?./2,
(58)

where the first inequality holds with probability 1 — § by Azuma-Hoeffding inequality, the sec-
ond inequality is due to the bound of V-values, the third inequality is due to Lemma [2] so that

28



Under review as a conference paper at ICLR 2024

Cﬂ-k*wﬂkvp b ﬂk*7ﬂk7p k ﬂ'k*,ﬂk,p k . . .
i (sp) = DzeDy (sp) = DzePyCy ™ " (sy,), the fourth inequality holds with
probability 1 — § by Azuma-Hoeffding inequality, and the last inequality holds with 2ab < a? + b

In summary, with probability at least 1 -8, we have S, S°1_| thVhH(sh,ah) (H>K+H?3).

In  summary, Y, S0, D+ O (s7;) < SVSAH?K: + 46S3AH*? +
V24SAH3K (2 + 36SAH52 < 8V SAH2K . + 4653 AH3.2 + 24SAH3K 1 + 6/ SAH5,.

D MODEL-FREE METHOD

In this section, we develop a model-free algorithm and analyze its theoretical guarantee. We
present the proposed Action Robust Q-learning with UCB-Hoeffding (AR-UCBH) algorithm show in
Algorithm 2] Here, we highlight the main idea of Algorithm[2} Algorithm 2]follows the same idea
of Algorithm [T} which trains the agent in a clean (simulation) environment and learns a policy that
performs well when applied to a perturbed environment with probabilistic policy execution uncertainty.
To simulate the action perturbation, Algorithm [2]chooses an adversarial action with probability p. To
learn the agent’s optimal policy and the corresponding adversarial policy, Algorithm [2] computes an
optimistic estimate Q of Q* and a pessimistic estimate @ of Q*k. Algorithmuses the optimistic
estimates to explore the possible optimal policy 7 and uses the pessimistic estimates to explore the
possible adversarial policy 7. The difference is that Algorithm [2Juse a model-free method to update
(@ and V values.

Algorithm 2: Action Robust Q-learning with UCB-Hoeffding (AR-UCBH)

1: Setoy = g—ﬁ Initialize V,(s) = H —h+1,Q(s,a) = H —h+ 1,V (s) =0,

Q,(s,a) =0,7(s,a), Np(s,a) = 0 for any state s € S, any action a € A and any step
he[H]. Viii(s) =Vy(s) =0and Qp (s, a) = @y, (s,a) = 0forall s and a.

A = H. Initial policy 7}, (a|s) and 7} (a|s) = 1/A for any state s, action a and any step
h € [H].

2: for episode k =1,2,..., K do
3: forsteph=1,2,...,Hdo
4: Observe sk
5: Set @y = argmax, Q,(s¥,a), af = argmin, Q, (s, a), 7F(@y|sk) =1 — pand
i (ahlsh) = p-
6: Take action af ~ 75 (-|s¥).
7: Receive reward 7 and observe sf._ ;.
8: Sett = Ny (sk,ak) < Nu(sk,al) + 1,0, = /H3/t.
9: Qulsk,ap) « (1 —a)Qp(sk, af) + ar(ry + Viga(sfy) + be),
10: Q,(sh,ap) < (1= a0)Q, (s, ap) + ae(ry + Vi (s541) — be).
11: Set*"H(sh) = argmax, Q,(sf,a), 7} (sf) = argmin, Q,(s M a)
12: Vin(sp;) < min{Vy(s}), (1 - )Qh(s’g,ﬁiﬂl( ))+PQh(5h7 k]:ll(si))}-
130 Vy(sh) < max{V,(sp), (1 —p)Qh(Sﬁﬂr;f (s3)) + pQ, (s, 7, " (s5)) }-
V() > (- )@, (5 75 (sE) + pQ, (s, 2 (s5)) then
15: 7’4?"!‘1 _ fk’
. h h.
16: end if
17:  end for

18:  Output policy 7*+1 with certificates Zp,, 1 = [V, (s¥), Vi(s¥)] and €11 = |Tp 1.
19: end for

20: return 71

Here, we highlight the challenges of the model-free planning compared with the model-based planing.
In the model-based planning, we performs value iteration and the () values, V' values, agent policy 7
and adversarial policy m are updated on all (s, a). However, in the model-free method, the ) values,

V values are updated only on (s¥, a¥) which are the samples on the trajectories. Compared with
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the model-based planning, the model-free planning is slower and less stable. We need to update the
output policy carefully. In line 14-16, Algorithm 2] does not update the output policy when the lower
bound on the value function of the new policy does not improve. By this, the output policies are
stably updated.

We provide the regret and sample complexity bounds of Algorithm [2]in the following:

Theorem 2 For any 6 € (0, 1], letting . = log(2SABH K /0), then with probability at least 1 — 6,
Algorithm ) achieves:

s Vi(s1) = V7" (s1) < € if the number of episodes K > Q(SAH51/€2 + SAH?/e).
o Regret(K) = 25 (Vi (sh) — VI (s5)) < O(VSAHS K1+ SAH?).

The detailed proof is provided in Appendix [E]

E PROOF FOR MODEL-FREE ALGORITHM

In this section, we prove Theorem Recall that we use @ﬁ ,V’Z ,Q’Z ,Zﬁ and N ,’f to denote the values
of @h’vthh’Zh and max{ N}, 1} at the beginning of the k-th episode.

Property of Learning Rate a; We refer the readers to the setting of the learning rate o := g—ﬁ
and the Lemma 4.1 in (Jin et al., 2018). For notational convenience, define o := H;Zl (1 — o) and

al = q; H;Zl +1(1 — ). Here, we introduce some useful properties of a! which were proved in
(Jin et al., [2018):

(HY,_ ai=1andaf =0fort > 1;

(2)Zt Lol _Oandat =1fort=0;

(3) <Y féff < \/ for every t > 1,

4) Zz 1(%) <22 for every t > 1;

5) >, ai < (1 —|— L) for every i > 1.

Recursion on ) As shown in (Jin et al.l[2018), at any (s, a,h, k) € S x A x [H] x [K], lett =
Nk (s,a) and suppose (s, a) was previously taken by the agent at step h of episodes k1, ka, . .., k; <
k. By the update equations in Algorithm and the definition of o}, we have

t
—k ; ) —ki )
Qn(s,a) = af(H = h+ 1)+ 3 (1 + Vi (1) + i)

i=1

; (59)
= Zai (Th + Vh+1(5h+1) bz’) .
=1
Thus,
t
(@ = Qi)(s,a) =af(H —h+ 1)+ 3 ai (rf + Vi (k) + )
=1
t
- (a?@;‘;(&a) +Y " af (Ru(s,a) + th,:ﬂ(s,a)))
- (60)

t

—al(H —h+1 - Qi(s.0) + 3 af (Vi = Vi) (k)
=1
t

+ > at (= Ru(s,@) + Viia (ki) = PVitya (s,0) 4 0:)
i=1
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and similarly

t
(@ = QF )(s@) =" af (e + V3 (sh50) — )
=1
t
- (a?cz;;" (s,0)+ Y af (Buls.0) + PV (s a)))
o 61)
== afQ7 (s,0) + Y af (1P (VL — Vil (5,0))
i=1
t

+Y ai ((r;y — Ru(s,a)) + V¥, (shi ) = PR (s,0) — b) .

i=1

In addition, for any &’ < k,lett’' = N ,’f' (s,a). Thus, (s, a) was previously taken by the agent at step
h of episodes k1, ko, ..., ky < k'. We have
t/
’ o o i s 7k
(@~ Q" )(s.0) = = afQF (s,0) + Y b ([P, = VD] (5,0))

i=1

. (62)
+ 3"l (1 = Ruls, @) + V1 (5540) = PuVE,(s,0) = bi)
i=1

Confidence Bounds By the Azuma-Hoeffding inequality, with probability 1 — §, we have that for
all s,a, hand t < K,

t
> ai (= Rils,a) + Vi (sf0) = PaViy (s,0))

i=1

(ai)20/2 < \/H3/t.

(63)

At the same time, with probability 1 — §, we have that for all s, a, h and t < K,

t
< VH3/t. (64)

Zai ((T;]fi — Rp(s,a)) + fo+1(5];11) - th,j+1(s,a)>

i=1
In addition, we have /H3./t < 3! aib; < 21/H31/

Monotonicity Now we prove that V:(s) > Vi(s) > V7 (s) > VP(s) and @Z(s,a)
Qi(s,0) > QF (s,a) > QF(s,a) forall (s,a,h,k) € § x A x [H] x [K].

v

At step H + 1, we have V’;Hl(s) = Vi) = Vg:_l(s) = V% .1(s) = 0 and @’;ﬂ_l(s,a) =
Qir41(s,0) = QZZl(s,a) :Q];H_l(s,a) =0forall (s,a,k) € S x A x [K].

Consider any step h € [H] in any episode k € [K], and suppose that the monotonicity is satisfied for
all previous episodes as well as all steps A’ > h + 1 in the current episode, which is

Vﬁ;( )2 Vi) 2 Vi (s )>V’“?( )V(K' I s) € [k —1] x [H +1] x S,
Qh, s,a) > Q/(s,a) > Qh, (s,a) > QF (s,a) V(K', 1, s,a) € [k — 1] x [H +1] X S x A,
Vh’ ) > Vii(s) > Vi (s) > Vii(s) Y > h+ lands € S,

Qv (s,0) > Qu(s,a) > Q (s,0) > QF (s,a) VI > h + Land (s,a) € S x A.

(
(s
(65)

We first show the monotonicity of () values. We have
t

(@ — Qi)(s:0) = af(H = h+1 = Qi(s,0) + Y ai (Ve = Vi) (ki) = 0. (66)

i=1
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and, by to the update rule of V values (line 13) in Algorithm[2]

(@) - QT )(s0) < = QT (5,0 + 3 (IPa(Vs = Vs )

i=1

(67)
< — Q7 (s,a +Zozf(Ph(Vh+1 ViiDl(s,a)) < 0.
In addition, for any k&’ < k,
’ —k
@~ QT )(os) < — QT (s + 3" (IPa(vhs, = Vil D(s.0))
1= ,1 (68)
—k
- atQh s,a) + Zat’ <Ph(vh+1 Vhﬂ+1)](saa)) <0.
i=1
Then, we show the monotonicity of V' values. We have that
—k —k .
(1= p) max P} (s,0) + pQ} (s, axg min Q¥ (s, )
—k " .
>(1—p) max Qr(s,a) + pQj (s, arg man’Z(s, a)) )

> (1= p)Qh(s,mi(s)) + pmin Qi (s,a)
> (1= p)Qi (s i () + pmin Q7 (s,a) = Vi (s).

By the update rule of V' values (line 12) in Algorithm

V:(s) = min{VZ_l(s)7 (1-p) mgx@:(s, a) + p@ﬁ(s, arg mingz(s, a))} > Vi(s). (70)

Here, we need use the update rule of policy 7 (line 11-16) in Algorithm [2| Define 7(k, h, s) :=

max{k’ : k¥’ < k and Kﬁlﬂ(s) =(1- p)Q:/H(s, arg max, @Z le(s, a)) + pming Q;j/“(s7 a)},

which denotes the last episode (before the beginning of the episode k), in which the 7 and V was

updated at (h, s). For notational simplicity, we use 7 to denote 7(k, h, s) here. After the end of

episode 7 and before the beginning of the episode k, the agent policy 7™ was not updated and V_ was

not updated at (h, s), i.e. V(s) = VTH( )= (1= p)Q (s, @7 (5)) + pmin, Q7 (s,a) and
—=7+1

7 (s) =7, (s) = argmax, Qh (s,a)). Thus,
Vi(s)=(1— P)Q;H(S T (s)) + PII{}HQ;H(S’G)
<(1=p)QF (5,77 (s) + pmin Q7 (s,0)

—r —k 71
<= )T (5,4 (5) + Q] s, argmin Q7 5.0) 7y

<= )QT (5. 7h()) + pmin QF (s,0) = Vi7" (s).

By induction from h = H + 1to 1 and £ = 1 to K, we can conclude that V’Z(s) > Vi(s) >
V,fk (s) > VF(s)and @:(s,a) > Qi (s,a) > ka (s,a) > Qi(s,a) forall (s,a, h, k) € S x A x
[H] x [K].

Regret Analysis According to the monotonicity, the regret can be bounded by

K

Regret(K) :=Y (V7 (s}) -V, Z — VR (shy). (72)

k=1 k=1
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By the update rules in Algorithm 2] we have
—k
Vi(si) = Via(sh)
—k —k —k .
<(1 — p)Qy(sh, arg max @, (s};, @) + pQy, (s}, arg meZ(SZ, a))
—k
= (1= p)Q} (51, arg max Qy (5, 0) + p@;, (s}, arg min Q} (57, a) (73)

=(1 - p)[@n — (s ah) + p[@y, — Q¥I(s}, af)
=(@ — Q¥1(sk, af) + Dz (@ — @O)N(s) — (@ — Q¥1(sh, af).

Set nf = NF(sk, ak) and where k;(sF,af) is the episodekin which (sF,aF) was taken at stelg) h
for the i-th time. For notational simplicity, we set ¢f = V7, (s%) — V¥ (sF) and £F = Dz (@ —

QZ)](SE) — [@: - Qi](s’,‘i, a¥). According to the update rules,

o =Vi(sk) = VE(sh)

k
Ty

i ki(sk,aky &, (s¥,ak) ki(sf,al), k; (s al)
Sa?‘ﬁ(H_h—’—l)—i_Zlan’}; (Vthlh h ( h+1h h ) Vh—i—lh h (Sh+ ) )—‘rQb,)
—k —k
Doy (@~ QM(sH) [T — Q¥1(sha)
nh ) ki(sk a®)
=aly (H = h+1)+ > aly (o5 +2b;) + €

i=1

(74)

nh

<a!? k(H h+1) +ZO‘ "¢h+i @) + & + 4/ H3e/nk.

i=1

—k . .
We add V, (sK) — v (SZ) over k zllcndkregroup the summands in a different way. Note that for any
episode k, the term >, 0‘2; ¢:ﬁh’a’l) takes all the prior episodes k; < k where (s¥, a}) was taken
into account. In other words, for any episode %', the term ¢Z/+1 appears in the summands at all
posterior episodes k > k' where (sﬁl , aﬁl) was taken. The first time it appears we have nﬁ = nﬁl +1,
and the second time it appears we have ”Z = nﬁl + 2, and so on. Thus, we have
K

S (Va(sh) — VE(sh))

x>
=

K
K ny

O (H —h+ 1)+ 33 alanh "“+Z§h+24\/m

k=11i=1 k=1

K npy , K K
’ nk
A0 (H—h+1)+ > 6y D o™ +> &b+ > 4/Ho/n}
k=1 k=1

— _ k/
k=1 t_nh +1

)=

>
Il
—

(75)

M= T

IN
x>

A (H —h+1)+ (14 1/H) Z(thrl-l—th-i-Zﬁl\/H?’L/nh
=1 k=1 =
1

where the final inequality uses the property >, af < (1 + ) forevery i > 1.

Taking the induction from A = 1 to H, we have
K

S (Vi(sh) — Vi(sh)

k

=1
H K H K H K
<3Y D ap(H—h+1)+3% > &+ > 12y/H%/n}

=1k=1 h=1k=1 h=1k=1

(76)

=
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where we use the fact that (1 + 1/H)" < 3 and ¢%;_, = 0 for all k.

We bound the three items separately.
(1) We have 77 7% a0 (H—h+1)= S S ek =0)(H —h+1) < SAHZ.

(2) Similar to Lemma [ by the Azuma-Hoeffding inequality, with probability 1 — &, we have
Sl S € < HV2HKL

(3) We have Y4 S8 12y [H3u/nf = Y1 S SN O /I < HV2HPSAKL.

In summary,

Regret(K) = (Vi (s}) VT (sh) < O(VSAH K. + SAH?)

and
* qout —K+1
Vi(s1) = Vi (s1) <V (s1) = VI (s1)
. —k
= min (Vy(s) = VE(st))

ke[K+1] (77)
5 2
<0 VSAH L+SAH .
K K
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