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ABSTRACT

Large language models (LLMs) can handle a variety of tasks conditioned on natu-
ral language instructions. While fine-tuning improves task-specific performance,
adjusting the model weights of LLMs requires a huge amount of computational
resources, and it is impractical for real-time updates. Alternatively, prompting
allows LLMs to adapt to a broad range of tasks without the need for computation-
ally intensive gradient-based optimisation. However, crafting effective prompts
remains a challenge, to the extent that it is even unclear if expert in-domain knowl-
edge is what is needed or experience in writing prompts or something else. Ap-
proaches like meta-prompting and self-feedback seek to alleviate this burden, but
they rely primarily on a numerical feedback signal, leaving the potential of textual
feedback unexplored. These methods also typically require numerous interactions
with the environment to gather sufficient context, leading to significant computa-
tional overhead.
In this work, we propose a novel framework that takes a prompted large language
model as an optimiser and treats the text-based prompt itself as a parameter. By
interacting with the environment to collect feedback, our proposed method con-
structs the updated textual prompt. Our experimental results demonstrate that this
method not only achieves superior performance but also automatically incorpo-
rates domain-specific knowledge, establishing a scientifically motivated, practical
and efficient approach to prompting for future research.

1 INTRODUCTION

Large language models (LLMs) have shown an extraordinary ability to perform a wide range of
tasks, from generating images in various styles to writing code in different programming languages
for diverse purposes. These tasks, once considered extremely challenging for artificial intelligence
and even beyond the average human’s skill set, are now achievable by simply interacting with LLMs.
Recently, increasing research efforts have been put into specialisation of LLMs, i.e. improving its
capability on specific tasks, in the most effective and efficient manner.

The first family of methods belong to the gradient-based optimisation approaches, such as supervised
fine-tuning with low-rank adaptation (Hu et al., 2022), and continuous prompting (Lester et al., 2021;
Qin & Eisner, 2021; Li & Liang, 2021; Liu et al., 2023). Although LLMs fine-tuned in this way can
excel on the specific target tasks, their in-context learning capabilities may be reduced, and they may
also suffer from catastrophic forgetting, losing previously acquired ability when learning the new
skill (Zhai et al., 2023; Luo et al., 2023; Wang et al., 2024). In addition, training LLMs via gradient-
based optimisation is impractical for real-time updates. The computational requirements for the
model size lead to challenges when resources are limited local compute only. More detrimentally,
these methods are simply inapplicable to LLMs with only API access.

The second family of methods focus on precise instructions and task descriptions to adapt LLMs via
natural language prompting, without updating their model weights. However, creating proper and
effective prompts is not straightforward, requiring some tricks, making it at times more similar to art
rather than science. Via trial-and-error, various tricks have been found to improve prompting of lan-
guage models, some of which are widely shared in discussion forums on the internet1. Consequently,

1For example, https://www.reddit.com/r/ChatGPTPromptGenius/
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approaches like self-feedback or meta-prompting have been introduced to enhance the performance
of LLMs without gradient-based optimisation. Self-feedback methods, e.g. LLM-augmenter (Peng
et al., 2023) or Reflexion (Shinn et al., 2023), gather sufficient experience by interacting with the
environment multiple times and refine the model’s response based on verbal summarisation of ex-
periences. In other words, when serving end users, these methods still require numerous queries for
self-reflection and refinement of their response, which can cause a huge cost on computation and
non-negligible inference time.

On the other hand, meta-prompting methods aim to automatically generate a proper prompt based on
a given set of examples or refine a prompt based on scores. Yang et al. (2024) propose Optimisation
by PROmpting (OPRO), which employs LLMs to refine an initial prompt based on a number of per-
formance metrics. Tang et al. (2024) introduce the Gradient-inspired LLM-based Prompt Optimizer
(GPO), which also uses numerical feedback, controlling edit distance via a cosine decay mecha-
nism. Kong et al. (2024) and Cheng et al. (2024) propose sequence-to-sequence prompt rewriters,
trained by reinforcement learning or human preference data, to reduce the difference between hu-
man intention and the understanding of LLMs. Although these methods are capable of generating
a better prompt, they highly rely on numerical feedback, which is not always available when facing
real users.

We propose the Text-as-Parameter optimisation (TaP), a meta-prompting approach which leverages
natural language textual feedback. Our approach is based on the way humans learn new things:
they need instructions, experiences, and feedback. Various studies have shown humans learn bet-
ter with informative feedback than only simply instruction (Kulhavy, 1977; Mory, 1992; Lyster &
Mori, 2006; Hattie & Gan, 2011). To echo this sentiment, in TaP, we first initialise the prompt via
corpus-based prompt generation, followed by iterative meta-prompting updates through an interac-
tive optimisation. More specifically, the LLM-based system first interacts with the environment, e.g.
real or simulated users trying to complete a particular task such as information seeking or medical
question answering. A feedbacker, e.g. human experts or LLMs, provides textual-based feedback
based on these interactions, then a separate LLM-based rewriter refines the prompt based on the
feedback and the prompt from the previous interaction. The refined prompt is then used by the sys-
tem on the next user interaction, requiring no additional memory to store previous interactions or
past feedback. Textual feedback, which has more information than a scalar or a binary preference,
can provide richer information for prompt optimisation.

Our contributions are as follows:

• We propose a Text-as-Parameter optimisation method which leverages textual feedback
from external resources for improved prompting.

• Our method can be generalised through different prompting styles, applied with different
LLMs, e.g. GPT-4o mini or Gemini-1.5-flash, and is task-agnostic.

• Our method learns domain-specific knowledge through interaction and incorporates it into
the optimised prompt. Our experiments show that this reduces the performance gap be-
tween different initial prompting methods.

2 RELATED WORK

Gradient-based optimisation for LLMs For high parameter counts, training or fine-tuning an
entire large language model is infeasible since it requires a huge amount of computation resources.
As a result, parameter-efficient fine-tuning, such as training only part of the model or freezing the
model and training an adapter, is widely used to refine LLMs (Hu et al., 2022; 2023; Lialin et al.,
2023). On the other hand, continuous prompting, e.g. prefix-tuning and soft-prompting, is also
popular to adapt LLMs to specific tasks or improve their performance (Lester et al., 2021; Qin &
Eisner, 2021; Li & Liang, 2021; Liu et al., 2023). By updating inputs of every attention layer (Li
& Liang, 2021), or task-related vectors (Lester et al., 2021), these methods can achieve comparable
performance to full fine-tuning across various model sizes and tasks (Liu et al., 2022). Although
these methods can improve LLMs effectively, they do not apply to API-access-only LLMs and such
training processes cannot be carried out in real-time.

2
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Self-feedback To improve the performance of text-based prompts, various prompting styles are
proposed, e.g. Chain-of-Thought (Wei et al., 2022) or ReAct (Yao et al., 2023). These prompting
methods encourage LLMs to reason before taking action or generating responses, which leads to
better performance. However, optimising the prompt for better performance by manual trial and
error is inefficient. As a result, self-feedback methods are introduced to refine the LLMs’ response,
e.g., LLM-augmenter generates feedback by itself and leverages external knowledge to rewrite its
response (Peng et al., 2023) and Reflexion summarises previous interactions with the environment
as ‘reflections’ to improve the model’s response (Shinn et al., 2023).

While this demonstrates the ability of LLMs for self-correction, these self-feedback methods rely
on frequent API calls since their original prompt is not optimal. As a result, the computation cost
and latency during inference are not negligible.

Prompt optimisation Meta-prompting methods are widely used to generate a prompt without hu-
man editing. The automatic prompt engineer (APE) method leverages an LLM which is instructed
to generate an initial prompt and selects the prompt with the best performance on the target task
(Zhou et al., 2023). Automatic prompt optimisation (APO) further employs a self-feedback mod-
ule to provide textual feedback which gives suggestions on how to edit the old prompt (Pryzant
et al., 2023). Ye et al. (2024) propose a meta-prompt LLM to edit the original prompt step-by-
step. Kong et al. (2024) and Cheng et al. (2024) train a sequence-to-sequence model for prompt
rewriting by reinforcement learning and preference data, respectively. Yang et al. (2024) propose
optimisation by prompting (OPRO), which leverages LLMs to rewrite the original prompt based
on a corresponding performance score. In addition, to properly include experience for improv-
ing performance, Zhang et al. (2023) treats LLMs as semi-parametric reinforcement learning agents
with a stored experience memory, including task information, observation, action and corresponding
Q value estimation. These experiences are sampled dynamically for few-shot in-context learning.
Zhang et al. (2024) propose Agent-Pro, which constructs policy-level reflections according to the
numerical feedback from the environment and improves its policy incrementally. Tang et al. (2024)
introduce the Gradient-inspired LLM-based Prompt Optimizer (GPO), which updates the prompt
iteratively based on numerical feedback and controls the edit distance through a cosine-based decay
strategy.

Although these methods demonstrate promising performance in generating or improving a prompt,
they do not leverage external textual feedback, which could provide abundant information for opti-
misation. The comparison between our method and the mentioned related works is listed in Table 1.

Learnability of LLMs with prompting Although transformers are universal approximators (Yun
et al., 2020) and in-context learning in LLMs can be viewed as implicit fine-tuning (Dai et al., 2023),
the following remain open questions: Can we prompt LLMs for arbitrary tasks, and what are the
limitations of in-context learning?

Petrov et al. (2024) highlight the limitations of context-based fine-tuning methods, e.g. in-context
learning, prompting and prefix tuning, for new task learning in transformers. Specifically, transform-
ers struggle to acquire new tasks solely through prompting, as prompts cannot change the model’s
attention patterns. Instead, they can only bias the output of the attention layers in a fixed direction
and elicit skills learned through pre-training. In other words, only models with billions of param-
eters trained on vast, diverse datasets are capable of in-context learning—adapting to new tasks
through examples or instructions without modifying their underlying weights. Therefore, we focus
on fundamental models large enough to demonstrate their in-context learning ability, to investigate
text-as-parameter prompt optimisation, which is fully composed of in-context learning with LLMs.

Table 1: Comparison of our proposed method and related works

Method What is optimised Frequent API-calls Final feedback

Gradient-based model weights - -
Self-feedback - on inference self-generated
Meta-prompting system prompt on optimisation numerical
Text-as-Parameter (ours) system prompt on optimisation external textual

3
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3 TEXT-AS-PARAMETER

trajectories

System
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Initialisation

update

Interactive optimisation
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interact1

  Rewriter

3

User

Feedbacker
2

trajectories

initialise

data
 Prompt 
 writer

Figure 1: The structure of Text-as-Parameter optimisation. For initialisation, the prompt writer
generates an initial prompt0 based on sampled data. In interactive optimisation, the system will first
interact with the environment, e.g. simulated or real users. The feedbacker, e.g. human experts or
LLMs, will provide textual feedback based on trajectories. The rewriter generates a new prompt
based on the original prompt and the textual feedback to update the system’s original prompt. One
cycle of interactive optimisation is called an epoch.

The structure of the Text-as-Parameter (TaP) optimisation method is shown in Figure 1. The initial
instruction is generated by a prompt writer LLMP in the initialisation phase (the upper part of Figure
1) inspired by the automatic prompt engineer (APE) (Zhou et al., 2023), where we do not provide
demonstrations to the prompt writer but APE does. LLMP will generate an initial instruction for the
system, prompt0, based on a corpus D for the target task, i.e.

prompt0 ← LLMP (D′), (1)

where D′ is sampled interactions from the dataset to fit into the limited context length of LLMs.

In the interactive optimisation (the lower part of Figure 1), the system will interact with the environ-
ment, e.g. human users or simulated users, and generate several trajectories. These trajectories can
be single-turn, e.g. question-answering task, or a multi-turn conversation, e.g. information seeking
or recommendation in task-oriented dialogue. Then the feedbacker, which can be a language model
LLMF or human experts, will provide textual feedback to guide the optimisation direction for the
rewriter LLMR, which will generate a new prompt to improve the system’s performance based on
the feedback and original prompt. The improved prompt is then used by the system in the next
interaction. That is,

feedback = LLMF (trajectories), (2)

promptt+1 ← LLMR(promptt, feedback). (3)

An example of textual feedback is shown in Figure 2b. It may include strengths, suggestions, and an
overall impression for improvement. In contrast, numerical feedback (Yang et al., 2024; Tang et al.,
2024) only includes a number quantifying the overall performances, as shown in Figure 2a.

To alleviate human effort for task-specific manual prompt adjustment, our proposed method creates
and updates the prompt with LLMs only, where the feedback signal can come from simulated envi-
ronments or human users. Note that while the feedbacker and rewriter LLMs also require a prompt,
they are task-independent and therefore they only need to be engineered once, unlike for the system
LLM which may perform a variety of interactive tasks.

The two phases in our method, initialisation and interactive optimisation, are similar to the super-
vised fine-tuning and reinforcement learning from human feedback respectively. In gradient-based
optimisation, the goal is to find the optimal numerical parameters θ, which are initialised by super-
vised fine-tuning with a loss function L(·) and a dataset D. Then they are further refined through

4
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reinforcement learning using a reward model fr(·) and an expected return function J(·). In contrast,
Text-as-Parameter optimisation seeks to generate the optimal instruction, prompt, for an LLM-based
system. The prompt is initialised by a prompt writer LLMP and is iteratively improved by a rewriter
LLMR according to feedback from LLMF . The comparison is summarised in Table 2.

Table 2: Comparison of Gradient-Based Optimisation and Text-as-Parameter Optimisation.

Gradient-based optimisation Text-as-Parameter optimisation

Supervised
fine-tuning

Learned by gradient descent
θ0 ← θ −∇L(D)

Generated by a prompt writer LLMP

prompt0 ← LLMP (D)

Reinforcement
learning

Reward model fr
r = fr(trajectories)

Feedbacker LLMF

feedback = LLMF (trajectories)
Optimised by policy gradient
θt+1 ← θt −∇J(θt)

Optimised by Rewriter LLMR

promptt+1 ← LLMR(promptt, feedback)

I have some prompts along with their corresponding
scores. The texts are arranged in ascending order based
on their scores, where higher scores indicate better quality.

prompt:
You are an intelligent assistant. Your goal is to assist the
user in finding and booking things that fit their specific
needs. You should be polite,...
scores:
0.62
...

Numerical feedback

(a) An example of numerical feedback.

The system did a commendable job assisting the user in planning their trip to Cambridge
by providing relevant information about hotel accommodations and train options. Here
are some areas of strength and suggestions for improvement:

Strengths:
1. Comprehensive Responses: The system provided detailed information about hotel
options, including amenities like free Wi-Fi and parking, as well as the necessary
postcodes.
2. Train Options: ...

Areas for Improvement:
1. Direct Booking Function: ... Incorporating a direct booking capability would enhance
user experience by reducing the need for manual follow-up actions.
2. Inclusion of More Restaurant Options: ...
3. Clarification of Pricing: ...

Overall Impression:
The system performed well in addressing the user's needs, ... Implementing the above
suggestions could further enhance its effectiveness and user satisfaction for future
engagements.

Textual feedback

(b) An example of textual feedback.

Figure 2: Numerical feedback, used in OPRO (Yang et al., 2024) and GPO (Tang et al., 2024),
requires a predefined evaluation function to generate the corresponding score. On the other hand,
textual feedback can be generated by LLMs in a simulated environment or by human users.

4 EXPERIMENT SETTINGS

In this study, we focus on iterative meta-prompting by leveraging textual feedback from the envi-
ronment. Our meta-prompting components are task-agnostic (Section 4.1). They are designed to
optimise the prompt of the interactive LLM-based systems (Section 4.2). We conduct our exper-
iments on two challenging human-machine interaction tasks, task-oriented dialogue and medical
question-answering (Section 4.3). The environment includes simulated users, where the feedbacker
is an LLM-based feedbacker or human expert (Section 4.4). More information on optimisation and
evaluation can be found in Section 4.5.

Furthermore, to assess how different prompts affect the system’s performance, all LLMs in this
study are prompted in a zero-shot in-context learning fashion2, i.e. their prompts solely consist of
task descriptions, without any examples or demonstrations included.

4.1 META-PROMPTING COMPONENTS

The initial prompt writer LLMP in the initialisation phase is built with GPT-4o mini, a cost-efficient
model and outperforming GPT-4 (OpenAI et al., 2024) on chat preferences in the LMSYS leader-
board (Zheng et al., 2023). In the interactive optimisation phase, the rewriter LLMR is built with

2Following the definition by Brown et al. (2020), it is in-context learning since the task description is given
to LLMs as context, but is also zero-shot because there is no demonstration.

5
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GPT-4o mini or Gemini-1.5-flash (Team et al., 2024). Across different tasks, we keep the prompts
of LLMP and LLMR fixed, highlighting the task-independent role of these components.

4.2 INTERACTIVE SYSTEM

Task-oriented dialogue The dialogue system is built with GPT-4o mini and prompted in two
ways, standard and ReAct (Yao et al., 2023). The standard prompt instructs the system to generate
responses directly for the user’s response (Figure 5a). The ReAct prompt instructs the system to
generate its thoughts before responding (Figure 10a). The dialogue system takes the user history as
a query and retrieves relevant entities based on Okapi BM25 (Robertson et al., 1995) implemented
in langchain3.

Medical question-answering The system is built with GPT-4o mini and prompted only in the
standard way. It responds to users’ questions through a single-turn or multiple-turn interaction. In
addition, it operates without access to external knowledge bases, relying solely on its knowledge
from pre-training for generating answers.

4.3 DATASET

Task-oriented dialogue We conduct our experiments on MultiWOZ 2.1 (Budzianowski et al.,
2018; Eric et al., 2020), which includes 10k human-to-human conversations related to information-
seeking, recommendation and reservation booking over multiple domains. We focus on the attrac-
tion, hotel, restaurant, and train domains, i.e., the database is composed of entities from these 4
domains and the requirements include user goals related to these domains.

Medical question-answering We conduct our experiments on two Chinese medicine datasets,
Huatuo-26M (Li et al., 2023) and ShenNong-TCM (Wei Zhu & Wang, 2023). The medical questions
in Huatuo-26M and ShenNong-TCM are collected from the internet, e.g. encyclopedias, books,
literature, and web corpus, or generated by an LLM based on a traditional Chinese medicine entity
graph in Huatuo-26M and ShenNong-TCM, respectively.

4.4 USER AND FEEDBACKER

Users are all built with GPT-4o mini for both tasks. The instructions are shown in Figure 8. The
simulated users will act based on the user goals, which are descriptions in plain text, such as “You
are looking for a place to stay, the hotel should be in the cheap price range and in the city centre. You
also need to find a restaurant nearby.”, or “我只有咳嗽這一個症狀，請幫我推薦中藥或者方
劑。(I only have a cough as a symptom. Please recommend Chinese medicine or a prescription.)”

While the feedbacker in task-oriented dialogue is built with GPT-4o mini, the feedbacker for the
medical question-answering task is human experts, i.e., doctors on general medicine and traditional
Chinese medicine. The instructions for the LLM feedbacker are shown in Figure 9.

4.5 OPTIMISATION AND EVALUATION

For both tasks, we start by collecting 100 interactions between the user and the system using the
initial prompt and goals sampled from the training set. 10 interactions are then sampled randomly
and fed to the feedbacker. The sampling is done due to the context length limitation of the LLM-
based feedbacker, as well as to leverage the human expert feedbacker wisely. At each epoch, the
rewriter generates 5 new prompts based on the previous prompt and feedbacker output. We collect a
further 100 interactions for each prompt using user goals sampled from the training set, and the one
with the highest score, evaluated by the human expert in medical question-answering or simulated
users in task-oriented dialogue, is picked as the new prompt.

Task-oriented dialogue At the end of each turn in the interaction, the user model is instructed to
check whether the task is completed, i.e. “Is the user goal fulfilled? Please check the user goal and
the dialogue history carefully. The suggestions from the system must fulfil the user goal, the booked

3https://github.com/langchain-ai/langchain
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information should be confirmed, and all requested information should be answered. Please answer
‘fulfilled’ or ‘not finished’.”. The conversation will stop when the goal is fulfilled, i.e. Complete, or
be forced to quit by the user, i.e. fail. For the final evaluation, we collect 100 dialogues with user
goals sampled from the test set.

Medical question-answering Different systems will interact with simulated patients. Three ex-
perts assess these interactions and give their preference based on three factors: safety, profession-
alism, and fluency. All experts evaluate 30 pairs of interactions on general medicine and 30 on
traditional Chinese medicine, where user goals are randomly sampled from the test set.

5 RESULTS AND DISCUSSION

5.1 TEXTUAL FEEDBACK PROVIDES RICHER INFORMATION FOR OPTIMISATION

Table 3 shows the complete rates of systems optimised by different methods, i.e. without prompt op-
timisation, optimised with numerical feedback (GPO (Tang et al., 2024)), or our proposed method,
optimised with textual feedback (TaP), interacting with an LLM-based user simulator for task-
oriented dialogue.

When the rewriter is built with GPT-4o mini, our TaP optimisation pipeline improves the system
with a standard prompt by 21% in absolute terms, and the system with a ReAct prompt by 9%. In
contrast, the GPO optimisation improves the system with a standard prompt by only 13.1%, with no
significant improvement for the system using the ReAct prompt. We observe consistent result on the
experiments using Gemini-1.5-flash, as shown in Figure 3. In addition, Figure 3 shows that GPO is
barely improved after the first epoch. On the other hand, TaP can still improve the system with more
interaction, suggesting a more optimal performance.

These results show that our proposed method is able to improve the model on different prompting
styles, standard or ReAct, without limitation between the choice of LLMs, GPT-4o mini or Gemini-
1.5-flash. In addition, our proposed method also reduces the gap between the difference between
prompting styles, i.e., the performance difference between the standard and ReAct prompt is reduced
from 21.6% to 0.32% after optimised by our proposed method with a Gemini-1.5-flash rewrite for
5 epochs. This result suggests our method can provide a more stable, systematic, and scientifically
grounded prompt optimisation.

Table 3: Complete rates on 100 MultiWOZ interactions with different optimisation methods. The
system is instructed by a standard prompt, i.e. generating responses directly, or by a ReAct prompt
(Yao et al., 2023). F represents the optimisation algorithm, i.e. without prompt optimisation (-),
optimised with numerical feedback (GPO (Tang et al., 2024)), or our proposed method, optimised
with textual feedback (TaP). R stands for which LLM used by rewriter, i.e. GPT-4o mini (GPT) or
Gemini-1.5-flash (Gemini).

System F R Complete rate System F R Complete rate
Standard - - 0.628±0.049 ReAct - - 0.844±0.037

Standard GPO GPT 0.759±0.043 ReAct GPO GPT 0.881±0.033

Standard TaP GPT 0.846±0.036 ReAct TaP GPT 0.934±0.025

Standard GPO Gemini 0.829±0.038 ReAct GPO Gemini 0.887±0.032

Standard TaP Gemini 0.974±0.016 ReAct TaP Gemini 0.942±0.024

5.2 WHY THE MODEL’S PERFORMANCE IS IMPROVED THROUGH TAP

Token counts Figure 4b shows that no matter which prompting style the system instruction is
or which LLM is used for the rewriter, the number of tokens in the prompt is increasing through
the optimisation. However, the complete rate is not monotonically increasing, as shown in Figure
4a. This result suggests that simply increasing the length of the prompt does not guarantee an
improvement on performance, and that finding specific prompt tokens is important.

7
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Figure 3: Result on the Task-oriented dialogue task during optimisation. Systems are updated by
GPO and TaP where rewriters are built with different LLMs, i.e. GPT-4o-mini (GPT) or Gemini-
1.5-flash (Gemini)
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Figure 4: The rewriter tends to increase the number of tokens in the instructions, but the complete
rate is not always improved.

Domain-specific information is learned through interaction The initial standard prompt (Figure
5a) only includes vague task definitions such as “finding and booking things”, and the initial ReAct
prompt (Figure 10a) includes limited task-related information, such as “book train ticket, hotel room,
restaurant reservation, and attraction tickets” and general booking related slots dates and times.

Figure 5 and Figure 10 show that the domain-specific information is learnt through interaction.
After 5 epochs, more slots related to information seeking, recommendation, and reservation booking
are included in the prompt automatically, e.g. cuisine and dietary preferences for the restaurant
domain in Figure 5b, and number of guests and check-in/check-out duration for the hotel domain in
Figure 10b. More booking-related slots, such as contact information and reference numbers are also
included. It is worth mentioning that neither the simulated user, feedbacker nor rewriter have access
to any d task-oriented dialogue information since the user goal, dialogues, and system prompts are
all presented as plain texts.

According to Table 3, we can find out the system has better performance when more domain-specific
information is included in the instruction. This observation is further supported by the fact that hu-
man experts also integrate domain-specific knowledge, such as available domains or slots within the
context (Heck et al., 2023; Hudeček & Dusek, 2023). In other words, this result suggests our pro-
posed optimisation method can generate a better prompt through interaction because more important
domain-specific information is added to the instruction.
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You are an intelligent assistant. Your goal is to assist the
user in finding and booking things that fit their specific
needs. You should be polite,...

1. Identify User's Needs: ...
2. Provide Options: ...
3. Booking Process:...
4. Confirmation:...
5. Polite Closure: ...

(a) The initial standard prompt.

You are an advanced intelligent assistant designed to help users find and book 
accommodations, transportation, and dining options tailored to their specific needs. …
1. Identify User's Needs: ...
  - Ask targeted questions about requirements, such as parking, pet policies, accessibility 
needs, dietary preferences, and transportation logistics …
2. Provide Diverse Options: 
- Search for and present a range of options that meet the user's criteria, ensuring diversity 
in price points, amenities, and types of cuisine. …
3. Booking Process Guidance: 
- Confirm booking details, including the number of guests, duration of stay, and start date. 
…
4. Availability Check and Amenities:   
- Provide the availability status of hotels, along with their addresses, amenities, and 
relevant contact information, to support informed decisions. …

(b) The standard prompt updated by TaP after 5 epochs.

Figure 5: Examples of domain-specific information being learned through interactive prompt opti-
misation for standard prompts. For illustration, ontology terms, e.g. intent (orange), domain (blue),
and slot (green), are manually highlighted based on the ontology in MultiWOZ.

5.3 THE LEARNABILITY OF PROMPTING

We compare our method against three systems: a standard system, built with GPT-4o mini with
the initial prompt, a standard system updated via GPO, and HuatuoGPT-II (Chen et al., 2024), a
large language model which is fully fine-tuned on medical data and demonstrates the state-of-the-
art performance on Chinese medicine benchmarks. In other words, except HuatuoGPT-II, a fully
fine-tuned 7B model, all systems are built with GPT-4o mini by prompting.

In general medicine, our method consistently outperforms the fully fine-tuned HuatuoGPT-II with an
86.7% win rate and is preferred over other prompting-based baselines. On the other hand, traditional
Chinese medicine is more challenging. For example, our system’s preference rate drops by 41%
compared to Huatuo when transitioning from general medicine to traditional Chinese medicine.
However, despite this drop in preference, our proposed method is still favoured in general.

This observation is aligned with the findings by Petrov et al. (2024). Our method performs better
in general medicine because the skills present in the pre-training data of LLMs can be elicited by
prompting. However, tasks which are unseen or under-represented in pre-training data are hard to
learn through prompting. How to properly leverage external knowledge to improve the performance
on unseen or under-represented tasks is important in the future.

0% 20% 40% 60% 80% 100%

Huatuo

Standard

GPO

86.7%

40.0%

40.0%

56.7%

33.3%

10.0%

26.7%

Ours win tie Ours lose

(a) Result on general medicine.

0% 20% 40% 60% 80% 100%

Huatuo

Standard

GPO

45.5%

42.4%

51.5%

24.2%

30.3%

21.2%

30.3%

27.3%

27.3%

Ours win tie Ours lose

(b) Results on traditional Chinese medicine.

Figure 6: Overall preference between our method and a standard system (Standard), GPO, and
HuatuoGPT-II (Huatuo) on the medical question-answering task. The overall recommendation by
human experts is based on safety, professionalism and fluency.

6 CONCLUSIONS

Our proposed method treats text-based instructions for large language models (LLMs) as parameters.
These textual prompts are initialised and optimised by LLMs, without the need for domain-specific
manual prompt editing. As shown in Table 3, the method is robust to the choice of LLM used
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for rewriting, as it works effectively with both GPT-4o mini and Gemini-1.5-flash. Additionally, it
supports various prompting styles, such as standard and ReAct, and reduces the performance gap
between these strategies after optimisation over several epochs. By using the optimised prompt, the
system can minimise the need for extensive self-feedback loops, reducing computational overhead
and API call frequency during inference.

Domain-specific information is learned and encoded in the prompt throughout the interaction with
textual feedback (as shown in Figure 5 and Figure 10), enhancing both model performance and
explainability. Furthermore, our method can incorporate feedback from simulated environments as
well as human experts, which enables a more feasible way to incorporate human expert knowledge.
Our method offers a stable, practical, and efficient approach for automatic prompt optimisation,
which could be valuable for future LLM research.

ETHIC STATEMENT

This work uses open-source datasets, such as MultiWOZ, Huatuo-26M, and ShenNong-TCM. The
MultiWOZ dataset is widely used in research on task-oriented dialogue. The Huatuo-26M dataset
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A PROMPTS FOR LLMS IN TAP

Here are the prompts for components in our proposed method.

You are an assistant tasked with improving the prompt instruction of another large language model assistant.
You will be given the previous instruction prompt and its feedback.
Please generate a new instruction prompt for the next iteration, with performance improvement. 
Please output the new instruction prompt directly without any extra description, since the result would be fed back into
the assistant directly. The new prompt should not be longer than 512 tokens.

Here is the previous instruction [OLD PROMPT] and the feedback [FEEDBACK]

Figure 7: The prompt for the rewriter.

You are a user and try to use a task-oriented dialogue system to accomplish your goal. Here are the guidelines for the
conversation:

1. Provide Information:
Answer the assistant's questions clearly and provide all necessary information.

2. Ask for Clarification:
If you are unsure about something, ask the assistant to clarify.

3. Confirm Booking:
Check the booking details provided by the assistant and confirm if they are correct and align with the user goal.

4. End the Conversation:
Say 'goodbye' after the system fulfils your user goal, e.g. providing all information in the user goal, answering all your
requests, or making a reservation correctly.

If you are unsatisfied, e.g. the system keeps providing recommendations which do not fulfil your goal or the system is
not helpful, you should say 'quit' at any time.

Here is the user goal: [USER GOAL]

Figure 8: The prompt for user simulators in task-oriented dialogue systems
.
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Based on the user goal and the dialog history, please provide feedback to the system. The feedback should be
constructive and helpful for the system to improve.

Here are the user goals [USER GOALS] and the dialogs [DIALOG]

Figure 9: The prompt for feedbacker in task-oriented dialogue systems
.

You are an intelligent assistant tasked with helping users book 
train tickets, hotel rooms, restaurant reservations, and 
attraction tickets, as well as providing information ...
1. Break down the user's request into specific subtasks.
2. Reason through each step before taking any action.
3. Ask the user for necessary information to complete the task, 
such as dates, times, preferences, or other relevant details.
4. Provide available options ...
5. Respond clearly, concisely, and politely.
Please generate your reasoning first, starting with [Think], 
and then your response, starting with [Response].

(a) The initial ReAct prompt.

You are an intelligent assistant designed to help users book train tickets, hotel rooms, 
restaurant reservations, and attraction entries. ...
1. Strictly Follow User Specifications: ...
2. Decompose Requests: ...
3. Clarify User Preferences: Actively prompt users to share detailed preferences, such as cuisine, 
ambience, and specific needs, to provide personalized recommendations.
4. Gather Comprehensive Information: Collect all necessary details for bookings, including travel 
dates, number of guests, and specific requirements. Suggest standard options like typical check-
in/check-out durations to facilitate quicker decisions.
5. Present Varied Choices: Offer a range of relevant options, summarizing key details like pricing 
and location.  ....
7. Deliver Detailed Confirmations: Provide thorough confirmations for all bookings, including 
dates, times, reference numbers, ....
Please generate your reasoning first, starting with [Think], and then your response, starting 
with [Response].

(b) The ReAct prompt updated by TaP after 5 epochs.

Figure 10: The domain-specific information is learned through the interactive prompt optimisation
for ReAct prompts. The ontology terms, e.g. intent (orange), domain (blue), and slot (green), are
manually highlighted based on the ontology in MultiWOZ.
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