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Abstract. A text-to-music (TTM) model should synthesize audio that
reflects the concepts in a given prompt as long as it has been trained
on those concepts. If a prompt references concepts that the TTM model
has not been trained on then the audio it synthesizes will likely not
match. This paper investigates the application of a simple gradient-based
approach called textual inversion (TI) to expand the concept vocabulary
of a trained TTM model without compromising the fidelity of concepts on
which it has already been trained. We apply this technique to MusicGen
and measure its reconstruction and editability quality, as well as its
subjective quality. We see TI can expand the concept vocabulary of a
pretrained TTM model, thus making it personalized and more controllable
without having to finetune the entire model.
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1 Introduction

Text-to-music (TTM) models have received significant attention with the emer-
gence of large-scale pretrained models such as MusicGen [3], MusicLM [1], Au-
dioLDM [10], Moûsai [19], Stable Audio [5], and JEN-1 [9]. These models are
able to synthesize plausible music audio from text prompts, offering a wide range
of applications from music composition and music production to live streaming
music synthesis of text sources as a novelty. However, the ability to control
and personalize a TTM model remains a challenging task, particularly when
attempting to express ideas that do not clearly relate to its concept vocabulary.
If the model has not learned a particular concept in a prompt then it will not
produce a relevant output. How might the concept vocabulary of an existing
TTM model be increased, thus personalizing it and increasing its controllability?

There are multiple ways one may be able to increase the controllability of
TTM generation, ranging from finetuning the whole model [16], to adding adapter
layers with feature matching losses [15,20], to zero-shot editing techniques [14],
and an approach we explore here called Textual inversion (TI). TI is a simple
gradient-based method that has been applied to expand the concept vocabulary of
pretrained text-to-image models [6]. By providing a small set of images, a model
can be taught new “words” without affecting the concepts on which it has already
been trained. It should be emphasized that TI does not change the original
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parameters of a model, but rather adds new parameters to its embedding layer
and trains only those. This is attractive as it circumvents risks of catastrophic
forgetting [13], and means that resource-constrained environments do not need
to juggle multiple sets of model weights — which is a practical challenge in terms
of memory and disk space usage within a multi-tenant application deployment.

In this work, we explore TI as a means to control and personalize by audio
reference a specific TTM model: MusicGen [3], a language-model approach to
music generation. DreamSound [16] also considers the personalization of TTM
models using TI, but by latent diffusion models — specifically AudioLDM [10].
They conclude that TI does not sound as good as tuning the entire model [18].
This is corroborated by emerging best practices in online communities focused on
using text-to-image models [2], where a commonly held belief is that tuning the
whole model attains higher quality. However, tuning the entire model comes with
a high computational cost, and requires one model per concept in the vocabulary,
which can be avoided with TI. We thus look at how well TI can perform for
controlling and personalizing a language-model approach to TTM.

2 Personalizing MusicGen with TI

Figure 1 shows the procedure of adapting MusicGen to a new concept using TI.
MusicGen [3] is a language-model approach to TTM generation that consists of
three parts: an audio model A, a text encoder T and a music model M . First,
A converts audio into a token sequence by an autoencoder called EnCodec [4].
Second, T produces another token sequence from textual descriptions of the
music with an encoder-decoder model called T5 [17]. The audio tokens are
autoregressively modelled by M , conditioned on the text tokens. The text token
S∗ represents a concept which we want to introduce to MusicGen. We create
synthetic prompts using the concept with neutral text prompts, such as “A
recording of a S∗”, or “The sound of S∗”, which are linked with an audio reference x
of the target concept. TI involves gradient descent optimization of new parameters
added to the embedding matrix of T using these text-audio pairs.

Denote the new parameters as v. Given y as neutral text involving S∗, the
original TI optimization [6] was defined for latent diffusion models as

v∗ = argmin
v

Ez∼E(x)y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, T (y; v))∥22

]
(1)

where the diffusion model ϵθ is fixed.1 In the case of a language-model approach
like MusicGen [3] the optimization instead becomes minimizing the categorical
cross-entropy between left-to-right shifted audio tokens as

v∗ = argmin
v

K∑
k=1

Ck(σ(A(x)),M(A(x), T (y; v))) (2)

1 See Luo et. al [12] for full details on latent diffusion models.
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Fig. 1. Overview of how we apply TI. The audio concept S∗ is optimized to minimize
the music model’s next-token prediction. Text and audio embeddings are combined
by cross-attention X. Target audio tokens are shifted left-to-right by σ and masked
to formulate an autoregressive training setup. All parameters are kept fixed during
finetuning except for the concept embeddings.

where Ck is cross-entropy loss for the k:th codebook in the RVQ-VAE. It is
important to note that σ shifts the audio tokens A(x) by one position to the
right, and applies causal masks by a delay pattern for codebook interleaving [3].
This is what constitutes the autoregressive nature of the model.

There are pretrained MusicGen models available with different sizes and
input conditioning. We use the 3.3-billion parameter model without melody
conditioning. The motivation for this choice is that the melody-conditioned
models prepend text tokens to the audio token sequence, rather than performing
cross-attention at each step. In preliminary experiments we found that prepending
leads to ineffective control. We create ten concept tokens in the T5 tokenizer by
appending new ids after its 32100 tokens. Each token corresponds to one row
in the text embedding weight matrix of T with values initialized by sampling
from a multivariate Gaussian distribution. The parameters of this distribution
are set to the empirical mean and variance of the pretrained T5-base model’s
text embeddings (the same trained T5 that was used in MusicGen pretraining).
With a T5 encoder embedding size of 768, and ten embeddings to represent the
concept, the number of trainable parameters is thus 7680 weights, which embed
240 ms of digital audio at 32 kHz.

The concept parameters are then finetuned with equation 2 as the loss function,
with two-second audio clips forming minibatches of 100 audio tokens per example.
The text was synthesised with a set of 31 neutral text prompts, with a padding
token and length truncation at 512 tokens. With a RTX 3090 the finetuning takes
approximately 10 minutes per concept using 1000 steps and a batch size of 32.
We use the AdamW optimizer [11] with a learning rate warm-up and exponential
decay annealing schedule of

lt =

{
lt−1 × 1

1010−t if t < 10

lt−1 × γ else
(3)

with γ = 0.99, β1 = 0.9, β2 = 0.999 and L1 weight decay of 0.01. After training
we use an exponential moving average of the concept embeddings with a weight
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decay of 0.95 [8]. It is important to note that only the embeddings of the new
concept are optimized, and the rest of the model parameters are kept fixed.
However, the loss function is still computed by going through MusicGen one
forward pass and backpropagating gradients to the new T5 encoder embeddings.

At test-time we sample half of the concept tokens to balance the influence
strength of the new concept in a prompt. If every concept token is used, the
surrounding tokens are ignored in the output. Thus to make sampling be invariant
to the T5 positional embedding we randomly shuffle them in each synthetic text
during training. We also regularize the cosine similarity of the new concept
embeddings with repeatedly sampled T5 embeddings, with the rationale being
that a new concept should be orthogonal to the concepts already trained into
the model, and should not share characteristics with most text tokens, e.g.
“Newspaper” or “Sandwich”.

3 Evaluation

We use the demo audio/text examples from DreamSound [16] for our evaluation.
First, we compute the average pairwise audio distance between a finetuned con-
cept’s audio output and its reference audio. We also compute the distance between
text prompts and the resulting audio. These distances are specifically contrastive
language audio pretraining (CLAP) scores that we produce by running data
through a jointly optimized text and audio encoder to produce text embeddings
Et and audio embeddings Ea. These encoders were pretrained by Wu et. al [21]
with a contrastive learning paradigm over audio/text pairs from AudioSet [7] and
LAION-Audio-630k [21]. By computing the mean distance d(Ea, Et) between
the resulting embeddings, we get a data-driven notion of agreement between text
and audio, or audio and audio depending on input type. Second, we conduct a
listening study asking subjects to select which of two audio syntheses (total of
ten pairs) best matches a prompt. Each subject is also offered to skip when they
cannot decide, and “Neither” when they perceive both outputs as too dissimilar
to the description. We use two different kinds of prompts: “A recording of a S*”
is called “reconstruction”, and “A disco song with a S*” is called “editability”. We
tabulate the number of times each system output is selected and compute the
proportions. All audio stimuli are mono mixed, volume normalized to -24 dB
LUFS, trimmed to ten seconds’ duration and sampled at 32 kHz.

Figure 2 shows that the average test scores are comparable. Reconstruction
appears to be higher for AudioLDM and DreamSound than textual inversion
with MusicGen. The editability score is somewhat higher for MusicGen than for
AudioLDM, indicating that text and audio matches somewhat better. In terms
of central tendency, spread, and distribution we mostly observe similarities, while
we hear clear differences in audio characteristics between systems in listening
tests, indicating limitations of CLAP scores.

Table 1 shows the results of the listening study, which involved 26 people
selected by convenience sampling. The participants had varying degrees of music
experience, including professional music producers, music information retrieval
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Fig. 2. (left) Comparison of CLAP scores for TI applied to AudioLDM and MusicGen.
Reconstruction is the average pairwise cosine similarity between CLAP audio embeddings
of reference and reconstruction audio excerpts. Editability is the average pairwise cosine
similarity between CLAP text embeddings of editability text prompts and the system
audio output. (right) Comparison of CLAP scores between DreamSound [16] and our
system. The interior lines show quartiles of the data per group, with dashed being the
median and dotted being 25% and 75% percentiles.

researchers, and casual music listeners. We see that participants generally found
the audio output of TI applied MusicGen to match the description best when it
comes to editability, but DreamSound for reconstruction. Note that this listening
study is merely a preliminary counterpart to gauge the sanity of the results of the
comparing CLAP scores. As for any application of computational creativity, the
best method of evaluation is by judging for oneself through interaction with the
system. We thus invite the reader to listen to output examples of these systems.

Table 1. Listening study results comparing TI with DreamSound and MusicGen.

Editability Reconstruction

DreamSound 41.3% 49.4%
MusicGen 44.2% 37.8%
Neither 14.4% 10.9%
Undecided 0.0% 1.9%

4 Discussion

Participants in the listening study remarked that MusicGen appears to provide
more varied output sequences that do not follow the description’s audio dynamics
and melody precisely. This is possibly due to how its prediction is formed autore-
gressively, while AudioLDM iteratively refines the entire ten second sequence by
its reverse diffusion process. Thus the diffusion approach is more strictly following

https://tunecraft.github.io
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the reference audio structure. Whether this is a desirable property of a TTM
control mechanism depends on the intended application but we believe both
modes could become complementary for music creation. Since we have heard
musical examples during experiments that blend a finetuned concept in a genre
prompt convincingly, it would be interesting to understand particularly when
TI with a TTM model based on a language-model approach works well or not.
Extending this investigation to include additional test concepts of different types
of instruments and styles, relying on more test subjects for improved statistical
analysis, and investigating other TTM models such as MusicLM [1] would be
interesting.

It is noteworthy that pretrained models for MusicGen were made publicly
available as creating such a model is prohibitively expensive, and exploration
would otherwise be inaccessible to many researchers. Other TTM models remain
unavailable to the public and there is no standard way of running them so
considerable work is involved in order to include multiple models in studies. While
we cannot freely access private models, we encourage the research community to
collaborate on a shared reconstruction/editability dataset for subject-driven music
generation, and to start comparing approaches for controlling and personalizing
TTM models in a standardized manner for easy comparison. With that said, we
know that automatically judging perceived quality of machine generated music
is challenging. As our goal is to correlate well with human enjoyment of music
creation, we need to acknowledge that the metrics and concepts used in this work
are not necessarily the ones that should be optimized fully on leaderboards. It
remains important to be mindful of eventual limitations of what information
they convey. The underlying encoders for CLAP scores were trained on specific
music and language data from specific data sources [21], and the test example
concepts were taken from DreamSound’s [16] demo page rather than an open
benchmark dataset. Despite this, the subjective assessment seem promising and
we recommend readers to listen to audio examples.
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