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ABSTRACT

Recent works have proposed analytical attacks that can restore batch labels from
gradients of a classification model in Federated Learning (FL). However, these
studies rely on strict assumptions and do not show the scalability of other classifi-
cation loss functions. In this paper, we propose a generalized label recovery attack
by estimating the posterior probabilities. Beginning with the focal loss function,
we derive the relationship among the gradients, labels and posterior probabilities
in a concise form. We also empirically observe that positive or negative samples
of a class have approximate probability distributions. This insight enables us to
estimate the posterior probabilities of the target batch from some auxiliary data.
Integrating the above elements, we present our label attack that can directly re-
cover the class-wise batch labels in realistic FL settings. Evaluation results show
that on an untrained model, our attack can achieve over 95% Instance-level la-
bel Accuracy (InsAcc) and 96% Class-level label Accuracy (ClsAcc) on different
groups of datasets, models and activations. For a training model, our approach
reaches more than 90% InsAcc on different hyper-parameters.

1 INTRODUCTION

Federated Learning (FL) has become a popular paradigm for training machine learning models in
privacy-sensitive applications (McMahan et al., 2017; Yang et al., 2019). In FL, the clients compute
gradients on their local devices and then send the gradients to the server for aggregation and global
model update. Since the private data is preserved on the client side, FL is supposed to offer more pri-
vacy protection. However, Gradient Inversion Attacks (GIAs) have shown that the gradient updates
can be exploited to reconstruct the training data (Zhu et al., 2019; Geiping et al., 2020; Yin et al.,
2021). Moreover, some analytical attacks propose to restore class-wise labels from the gradients by
analyzing the relationship between the gradients and the labels (Zhao et al., 2020; Wainakh et al.,
2022; Ma et al., 2023). However, these works are typically not applicable in realistic FL scenarios,
and they only focus on the cross-entropy loss function.

In this paper, we propose a generalized label recovery attack. Starting with the focal loss function,
we first derive a critical relationship among the gradients, labels and posterior probabilities in a con-
cise form. This conclusion can be applied to a variety of loss functions, which reveals the connection
between the gradients and the labels in a classification task. Then we propose our label attack by
estimating the posterior probabilities of the target batch from an auxiliary dataset. We empirically
observe that the positive or negative samples of a class have approximate probability distributions.
By fitting some auxiliary data into the global model, we can estimate the batch probabilities and
recover the labels of any specified class from the derived equation.

Our main contributions are summarized as follows:

• For the first time, we find that class-wise labels are only related to the posterior probabilities
and gradients in various loss functions, such as focal loss and binary cross-entropy loss.

• We evaluate our attack on a variety of FL settings and classification hyperparameters, and
demonstrate that it outperforms the previous attacks in terms of Class-level label Accuracy
(ClsAcc) and Instance-level label Accuracy (InsAcc).
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Figure 1: The workflow of our label recovery attack. ① Acquire an auxiliary dataset and divide it into
positive and negative subsets for each class. ② Fit the data into the global model for estimating the
posterior probabilities of the target batch. ③ Recover the batch labels by substituting the gradients
and the posterior probabilities into the derived formula.

2 PROBLEM FORMULATION

For a K-class classification task in FL, the FedSGD (McMahan et al., 2017) algorithm is used to
train the global model M. At a given iteration, a victim client v trains the model with its local batch
data xv and labels yv , where {xv, yv} ∼ Dv . Here, Dv denotes the data distribution of client v.
Then, the client calculates the batch-averaged gradient G of the model parameters and sends it to the
server. As an honest-but-curious server or attacker, we aim to recover the batch labels y from the
shared gradient G. The knowledge we have includes the global model M, the shared gradient G,
and an auxiliary dataset xa with the same data distribution as Dv .

In our label attack, we mainly utilize the gradient w.r.t. the bias b in the last fully connected layer,
i.e., ∇b, to recover the target batch labels y. From the auxiliary dataset xa, we randomly sample
a portion of instances x̂a, ensuring that the number of instances in each class equals π. Then we
divide x̂a into positive samples x̂+

j and negative samples x̂−
j for each class j. By fitting the model

M with these samples, we can obtain the averaged posterior probabilities p̂+ and p̂− of the positive
and negative samples. By substituting ∇b, p̂+ and p̂− into our derived formula in Section 3.3, we
can recover the batch labels ŷ. The workflow of our label attack is shown in Figure 1.

3 LABEL RECOVERY ATTACK

3.1 GENERALIZED EXPRESSION OF GRADIENTS

Without loss of generality, we consider a multi-class classification task using focal loss as the loss
function and posterior as the activation function. Focal loss is an extension of the cross-entropy loss,
which is proposed to solve the problem of class imbalance (Lin et al., 2017). The definition of focal
loss in multi-class scenarios can be represented as:

LFL(pt) = −
K∑
t=1

αt(1− pt)
γ log pt, (1)

where pt is the categorical probability of target class t, αt is the weight of the target class, γ is the
focusing parameter that controls the degree of class imbalance, and K is the number of classes.

For the tth class, pt = pi if i = t, and pt = 1 − pi if i ̸= t. Here, pi is the posterior probability
of the ith class1, and yi is the corresponding label. If we set γ = 0 and αt = 1, the focal loss is

1pi is an instance-wise probability, while pt is a class-wise probability incorporating the target label.
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equivalent to the cross-entropy loss LCE(pi) = −
∑K

t=i yi log pi. Under the same setting, if K = 2,
y ∈ {0, 1} and the activation is Sigmoid2, the focal loss is also equivalent to the binary cross-entropy
loss LBCE(p) = −y log p− (1− y) log (1− p). Thus, analyzing from focal loss allows us to derive
a more general conclusion that can be applied to the other classification variants.

Theorem 1 (Gradient of Focal Loss). For a K-class classification task using the focal loss function
and posterior activation, we can derive that the gradient of logit zj as follows:

∇zjLFL =

K∑
t=1

Φ(αt, pt, γ) · (pj − δtj), (2)

where Φ(αt, pt, γ) = αt(1− pt)
γ
(
1− γ pt log pt

1−pt

)
and ∀t ∈ K, we have Φ(αt, pt, γ) ≥ 0. Besides,

δtj is the Kronecker delta, which equals 1 if t = j and 0 otherwise.

Proof. See Appendix C.1.

From Theorem 1, we find that ∇zjLFL is a summation of K terms, where each term is a product of
Φ(αt, pt, γ) and (pj − δtj). The item Φ(αt, pt, γ) can be regarded as the weight of the tth class,
and (pj − δtj) indicates the distance between the posterior probability of the jth class and the target
categorical expectation at the tth class. In particular, an interesting observation can be made from
the latter item is that (pj − δtj) is only negative when t = j, and positive otherwise, which supports
the following conclusions of different loss functions.

From this generalized relationship, we can also derive the gradient of logits z (i.e., ∇z) in other
classification variants by setting different values for αt or γ, and choosing different label embeddings
or activation functions. We summarize the commonly used loss functions, argument settings and the
corresponding gradients in Table 1. We can find that the gradient ∇z is only related to the posterior
probabilities p and the target labels y. This finding reveals the connection between the gradient ∇z
and the target label y, which is the key to label recovery attacks.

Table 1: Relationships between different loss function and its gradient ∇z.

Loss function γ α Label Activation3 Gradient ∇z

Focal loss - - one-hot posterior (τ ) 1
τ
Φ(αc, pc, γ)(p− y)

Cross-entropy loss 0 1 - posterior (τ ) 1
τ
(p− y)

Binary cross-entropy loss 0 1 binary Sigmoid p− y

3.2 KEY OBSERVATION

In a multi-class classification task using a neural network, the model first outputs the logits z accord-
ing to forward propagation, and then normalizes the logits into probabilities p through the posterior
function. By analyzing these posterior probabilities, we empirically observe that different positive
(negative) samples of a class have approximate probability distributions.

We carry out the experiments on MNIST (LeCun et al., 1998) and CIFAR-10 Krizhevsky & Hinton
(2009) datasets, which are trained on the LeNet-5 (LeCun et al., 1998) and ResNet-18 (He et al.,
2016) models, respectively. To eliminate the influence of the activation function, we choose Tanh for
LeNet-5 and ReLU (Nair & Hinton, 2010) for ResNet-18. For each class, we treat the data belonging
to this category as positive samples, and the others as negative samples. Then we aggregate the
positive and negative samples from each class during the training procedure to show the correlations
and variations in their corresponding probabilities. For ease of demonstration, we only display the
results of the first 500 training iterations.

2A special case of posterior with one neuron: ez1

ez1+ez2
= 1

1+e−(z1−z2) = 1
1+e−z , where z = z1 − z2.

3τ denotes the temperature parameter in posterior for softness control.
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Figure 2: posterior probability distribution of different classes.

We exhibit the box plots of the probability distributions of all the classes in Figure 2, whose training
iteration is 100 for MNIST and 200 for CIFAR-10. It is shown that the positive or negative proba-
bilities of each class are gathered around a certain value, although the values are slightly different.
For some easily distinguishable classes, the positive and negative probabilities are already separated,
such as class 1 in MNIST and class 4 in CIFAR-10.

We can interpret the above observations from the model’s representation capability. For an untrained
model, it cannot discriminate which class the instance belongs to, other than random guesses. Thus,
the posterior probabilities of the positive and negative samples are almost the same, equal to 1

K . As
training proceeds, the model gradually learns the data distribution and can distinguish the positive
(negative) samples per class. Although the degree of learning varies moderately for different classes,
a robust model can give similar confidence scores (i.e., posterior probabilities) for the same class.
This explains why the positive (negative) samples per class have similar probability distributions.

3.3 ANALYTICAL LABEL RECOVERY

Based on the observation in Section 3.2, we can estimate the posterior probabilities of the target
batch from an auxiliary dataset, whose data distribution is the same as the training data. Hence, we
denote the estimated positive and negative probabilities of the jth class as p̂+j and p̂−j , respectively.
Combined with the conclusions in Section 3.1, we can derive the following theorem for restoring
the batch labels λj for each class j.

Theorem 2 (Label Recovery Formula). Having an auxiliary dataset with the same distribution of
training data, we can recover the class-wise labels λj in the target batch according to the averaged
gradient ∇bj and the estimated posterior probabilities p̂+j and p̂−j as follows:

λj = B ·
(p̂−j − y−j )−∇bj/φ̂j

(p̂−j − y−j )− (p̂+j − y+j )
, (3)

where y+j and y−j are the pre-set label embeddings of class j, φ̂j =
1
τΦ(αj , p̂

+
j , γ) is an coefficient

related to the jth class, and B is the batch size.

Proof. See Appendix C.2.

Specifically, the label embeddings are pre-defined by the FL protocol, which could be one-hot labels
or smoothed labels. For one-hot labels, we have y+j = 1 and y−j = 0. For smoothed labels, we
have y+j = 1− ϵ and y−j = ϵ

K−1 , where ϵ is the smoothing factor. Since Φ(αj , pj , γ) is determined
by pj , we can use p̂+j for replacement and obtain φ̂j . By substituting the gradient ∇bj , estimated
coefficient φ̂j , positive probabilities p̂+j , p̂−j and label embeddings y+j , y−j into the above formula,
we can directly recover the number of labels λj for each class j.
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Table 2: Comparison of our attack with the baselines on diverse scenarios.

Dataset Model Activation
LLG iLRG Ours

ClsAcc InsAcc ClsAcc InsAcc ClsAcc InsAcc

MNIST LeNet-5
Sigmoid 0.954 0.973 0.946 0.880 1.000 1.000

Tanh 0.506 0.163 1.000 1.000 1.000 1.000

CIFAR10 VGG-16
ReLU 0.995 0.997 1.000 1.000 1.000 1.000
ELU 0.965 0.979 1.000 1.000 1.000 1.000

CIFAR100 ResNet-50
ReLU 0.937 0.952 1.000 1.000 1.000 1.000
SELU 0.028 0.005 0.922 0.832 0.968 0.951

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset, Model and Activation. We evaluate our attack on three datasets, including MNIST (Le-
Cun et al., 1998), CIFAR-10 (Krizhevsky & Hinton, 2009) and CIFAR-100 (Krizhevsky & Hinton,
2009). These datasets are widely used in FL research and cover a variety of classification tasks, such
as handwritten digit recognition, object recognition and image classification. We choose LeNet-5
(LeCun et al., 1998), VGG-16 (Simonyan & Zisserman, 2014) and ResNet-50 (He et al., 2016) as
the models for the above datasets, respectively. In addition, we select a bunch of activation func-
tions, including Sigmoid, Tanh, ReLU (Nair & Hinton, 2010), ELU (Clevert et al., 2016) and SELU
(Klambauer et al., 2017), to verify the universality of our attack.

Evaluation Metrics. To quantitatively evaluate the performance of our label recovery attack, we
use the following two metrics: (1) Class-level label Accuracy (ClsAcc): the accuracy measures the
proportion of correctly recovered classes; (2) Instance-level label Accuracy (InsAcc): the accuracy
measures the proportion of correctly recovered labels in the target batch. In particular, both of these
two metrics are realized through Jaccard similarity.

Baselines. Since iDLG (Zhao et al., 2020) only applies to single batch training and non-negative
activation functions, we exclude it from the comparison. We mainly compare our attack with LLG
(Wainakh et al., 2022) and iLRG (Ma et al., 2023), which do not limit the batch size or activation
function. For LLG, we generate the dummy data with the same number as the target batch size and
average the results of 10 runs. Since LLG and iLRG are all designed for the untrained models, we
mainly compare our attack with them in the untrained setting to be fair.

4.2 COMPARISON WITH BASELINES

To exhibit the versatility of our attack, we compare it with the baselines in 3 different groups of
settings. We set the batch size to 32 for MNIST and CIFAR10, and 256 for CIFAR100. Without loss
of generality, we assume that the training data of each class is uniformly distributed, and the auxiliary
dataset is randomly sampled from the validation dataset with 100 samples per class. Furthermore,
since the baselines are designed for untrained models, we also use initialized models for comparison
to be fair. We run each experiment 20 times and report the average results in Table 2.

From the results, we can see that our attack performs better than the baselines and even achieves
100% ClsAcc and 100% InsAcc in most of the scenarios. In addition, the evaluation results also
illustrate that compared with the dataset and model structure, the activation function has a greater
impact on the performance of all label recovery attacks. This could be explained by the fact that some
activation functions, like SELU, produce high variance, which causes the probability distribution of
positive and negative samples from the same class to diverge significantly. Therefore, the attack
performance of SELU is worse than that of ReLU and ELU. Nevertheless, our attack still shows
good results, which demonstrates its effectiveness and universality.
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4.3 COMPARISON OF VARIOUS FL SETTINGS

From Table 2, it is shown that the attack baselines have the best performance for CIFAR10 on VGG-
16 with ReLU activation. So we chose this scenario to analyze the effects of batch size and class
imbalance. The batch size varies from 64 to 1024, which is closer to a realistic FL scenario. Class
imbalance is a prevalent issue in FL, typically brought on by the unequal distribution of data across
various clients. We compare the class proportions from 10% to 90% to simulate the class imbalance.
Before launching the attacks, we train the model for 1 epoch with a learning rate of 0.001.

It is shown in Figure 3 that our label recovery is robust to various batch sizes and class imbalance
ratios, which maintains over 90% accuracy in all of these settings. As the batch size increases, the
InsAcc of our attack gradually improves, which is mainly because the larger the batch size, the more
robust the estimation of the averaged posterior probabilities. In addition, since we have the prior
distribution of the training data, we can constrain and regularize the estimated labels to improve the
success rate of label recovery.
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Figure 3: Instance accuracy with different batch sizes and class imbalances.

4.4 ABLATION STUDIES

We conduct ablation studies to analyze the effectiveness of our attack under different classification
variants and scales of auxiliary data. Table 3 shows the InsAcc of our attack on an untrained model
with the focal loss and cross-entropy loss under different hyper-parameters. The results indicate
that our attack is robust to these variants, which can achieve 100% InsAcc in all of these settings.
Moreover, we also show the attack performance with different scales of auxiliary data in Figure 4.
For an untrained model, the attack performance is not sensitive to the scale of auxiliary data per
class, which can achieve 100% InsAcc in all of these settings.

Table 3: InsAcc with classification variants.

Loss function
Temperature τ Label smoothing ε

0.8 1.2 0.1 0.25

Focal loss 1.000 1.000 1.000 1.000
Cross-entropy 1.000 1.000 1.000 1.000

Figure 4: InsAcc with scales.
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5 CONCLUSION

In this paper, we investigate the label recovery threats of FL and reveal the connections between
the gradients and the labels. We propose an analytical method to recover the batch labels from the
estimated posterior probabilities and the gradients. The experiments show that our attack is robust
to various FL settings and classification variants, which is validated by extensive experiments on
various datasets and models. We leave the exploration of defense mechanisms as the future work.
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A RELATED WORK

Zhao et al. (2020) propose an analytical label attack named iDLG, which can directly infer the
label from ∇W of the classification layer. They derive that the gradient w.r.t the logit zj equals to
σ(zj) − 1 if j is the target index c of the one-hot label, and σ(zj) if j ̸= c, where σ(·) denotes the
posterior function. When the model uses a non-negative activation, such as ReLU or Sigmoid, ∇Wc

consists of negative values, while the other rows are positive. Thus, the attacker can extract the label
by simply comparing the signs of the gradient ∇W . However, iDLG only applies to single-batch
labels, and the activation of the model must be non-negative. Wainakh et al. (2022) exploit the
direction and magnitude of ∇W to determine how many instances of each class are in the target
batch. They formulate the problem as

∑M
i=1 ∇Wj = λjm + sj , where λj is the number of batch

labels of the jth class, m is the impact factor related to the input features, and sj is a class-specific
offset caused by misclassification. Using known data and labels, impact m and offset sj can be
estimated from multiple sets of gradients, and then λj can be calculated. Ma et al. (2023) transform
the label recovery problem into solving a system of linear equations. For each class j, they regard
σ(zj) − 1 and σ(zj) as the coefficients of the target label and the other labels, respectively. By
constructing these coefficients into a matrix A, they can solve the label vector y from the equation
Ay = ∇b, where ∇b is the gradient w.r.t the bias term of the last layer. However, none of these
works explain the essence of label leakage from gradients, or address the issue of whether the label
attacks can apply to other classification variants.

B SUPPLEMENTARY DEFINITIONS

B.1 FOCAL LOSS IN MULTI-CLASS CLASSIFICATION

According to the derivation of the binary Focal Loss in (Lin et al., 2017), we extend it into the multi-
class scenarios. In a multi-class classification task using Cross-entropy (CE) Loss, the CE loss can
be written as follows:

LCE(p,y) = −
K∑
i=1

yi log(pi) =


− log(p1) if y1 = 1
− log(p2) if y2 = 1

...
− log(pK) if yK = 1,

where y is the one-hot embeded label.

For any class i, we use pt to represent the confidence degree of the model’s prediction as the follow-
ing:

pt =

{
pi if yi = 1

1− pi otherwise,

where t = i. To be consistent with the original Focal Loss in (Lin et al., 2017), we use t to represent
the class index instead of i, and t is actually identical to i.

In order to solve class imbalance, Focal Loss assigns an auto-determined weight (1−pt)
γ and a pre-

determined weight αt to each class t. Finally, we define the Focal Loss for multi-class classification
tasks as:

LFL(pt) = −
K∑
t=1

αt(1− pt)
γ log(pt).

B.2 CLASS-WISE LABELS AND PROBABILITIES

In a multi-class classification problem, each instance in the dataset belongs to one of several classes.
Let’s denote the set of classes as K and a particular class of interest as k ∈ K. In this context, we
can define positive and negative samples for class k.

• Positive Samples (X+
k ): The positive samples of class k satisfy that: X+

k = {xi : yi = k},
where xi is the input and yi is the corresponding label.
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• Negative Samples (X−
k ): Similarly, the negative samples of class k satisfy that: X−

k =
{xi : yi ̸= k}

According to the positive and negative samples, we can then get the positive and negative probability
for class k.

• Positive Probability (p+k ): When a positive instance is fed into the model, the predicted
probability of class k is termed the positive probability. Since the posterior activation func-
tion is used in the output layer, the output posterior probability p+ is a vector of length k.
Therefore, the positive probability for class k can be expressed as p+k .

• Negative Probability (p−k ): Similarly, when a negative sample is input into the model, the
kth element of the output probability vector represents the negative probability, denoted as
p−k . It’s essential to note that any negative sample associated with the other (K−1) classes
contributes to p−k .

When using an auxiliary dataset to estimate the probabilities of the target training batch in FL, we
denote the estimated positive and negative probabilities as p̂+k and p̂−k , respectively.

In a batch size of B, we aim to recover the labels of each instance within the batch, i.e., y =
[y(1), y(2), · · · , y(B)]. As this is a multi-class classification problem, the ground-truth labels y can
also be represented by the occurrences of each class: y = [n1, n2, · · · , nK ], where nk is the number
of samples belonging to class k and K is the number of total classes.

• Class-wise Labels: The class-wise labels can be defined as: nk =
∑B

i=1 δ(y
(i) = k).

Here, nk is the number of samples belonging to class k, B is the batch size, y(i) is the true
class label of the ith instance in the batch, and δ(·) is the Kronecker delta function, which
equals 1 if the condition inside is true and 0 otherwise.

C PROOFS

C.1 PROOF OF THEOREM 1

Theorem 3 (Gradient of Focal Loss). For a K-class classification task using the focal loss function
and posterior activation, we can derive that the gradient of logit zj as follows:

∇zjLFL =

K∑
t=1

Φ(αt, pt, γ) · (pj − δtj),

where Φ(αt, pt, γ) = αt(1− pt)
γ
(
1− γ pt log pt

1−pt

)
and ∀t ∈ K, we have Φ(αt, pt, γ) ≥ 0. Besides,

δtj is the Kronecker delta, which equals 1 if t = j and 0 otherwise.

Proof. According to Equation (1), we substitute the last pt with its posterior formula pt = ezt∑K
k=1 ezk

,
and obtain the transformed focal loss function:

LFL = −
K∑
t=1

αt(1− pt)
γ log

ezt∑K
k=1 e

zk

=

K∑
t=1

αt(1− pt)
γ log

K∑
k=1

ezk −
K∑
t=1

αt(1− pt)
γzt.

9
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Let ℏ = (1− pt)
γ , then we can deduce the gradient of logit zj as follows:

∇zjLFL =

K∑
t=1

αt
∂ℏ
∂zj

log

K∑
k=1

ezk +

K∑
t=1

αt(1− pt)
γpj −

K∑
t=1

αt
∂ℏ
∂zj

zt − αj(1− pj)
γ

=

K∑
t=1

αt
∂ℏ
∂zj

(
log

K∑
k=1

ezk − zt

)
+

K∑
t=1

αt(1− pt)
γ(pj − δtj)

=

K∑
t=1

αt(1− pt)
γ

(
1− γ

pt log pt
1− pt

)
(pj − δtj)

=

K∑
t=1

Φ(αt, pt, γ) · (pj − δtj).

C.2 PROOF OF THEOREM 2

Theorem 4 (Label Recovery Attack). For the attacker with an auxiliary dataset, he can recover the
class-wise labels λj of the target batch according to the averaged gradient ∇bj and the estimated
posterior probabilities p̂+j and p̂−j as follows:

λj = B ·
(p̂−j − y−j )−∇bj/φ̂j

(p̂−j − y−j )− (p̂+j − y+j )
,

where y+j and y−j are the pre-set label embeddings of class j, φ̂j =
1
τΦ(αj , p̂

+
j , γ) is an coefficient

related to the jth class, and B is the batch size.

Proof. Since z = Wx+b, we can deduce that ∇b = ∇z and ∇bj = ∇zj . We expand the averaged
gradient ∇zj as a summation of B terms and replace the posterior probability p

(n)
j of each sample

n with its estimated probabilities p̂+j and p̂−j . Because Φ(αj , p
(n)
j , γ) is only related to the positive

samples of the jth class, we can replace p
(n)
j with p̂+j . So we have:

φ̂j =
1

τ
Φ(αj , p̂

+
j , γ) =

1

τ
αj(1− p̂+j )

γ

(
1− γ

p̂+j log p̂+j

1− p̂+j

)
.

Assume that the first λj samples belong to the jth class, and the rest (B − λj) samples belong to
other classes. Then from the first row of Table 1, we can derive that:

∇bj =
1

B

B∑
n=1

∇b
(n)
j =

1

B


λj∑
n=1

φ
(n)
j

[
p
(n)
j − y

(n)
j

]
+

B∑
n=λj+1

φ
(n)
j

[
p
(n)
j − y

(n)
j

]
≈ 1

B

{
λj φ̂j

(
p̂+j − y+j

)
+ (B − λj)φ̂j

(
p̂−j − y−j

)}
.

Therefore, we can finally derive that:

λj = B ·
φ̂j

(
p̂−j − y−j

)
−∇bj

φ̂j

(
p̂−j − y−j

)
− φ̂j

(
p̂+j − y+j

) = B ·
(p̂−j − y−j )−∇bj/φ̂j

(p̂−j − y−j )− (p̂+j − y+j )
.
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