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ABSTRACT

Bimanual dexterous manipulation is a critical yet underexplored area in robotics.
Its high-dimensional action space and inherent task complexity present significant
challenges for policy learning, and the limited task diversity in existing bench-
marks hinders general-purpose skill development. Existing approaches largely
depend on reinforcement learning, often constrained by intricately designed re-
ward functions tailored to a narrow set of tasks. In this work, we present a novel
approach for efficiently learning diverse bimanual dexterous skills from abundant
human demonstrations. Specifically, we introduce BiDexHD, a framework that
unifies task construction from existing bimanual datasets and employs teacher-
student policy learning to address all tasks. The teacher learns state-based poli-
cies using a general two-stage reward function across tasks with shared behaviors,
while the student distills the learned multi-task policies into a vision-based policy.
With BiDexHD, scalable learning of numerous bimanual dexterous skills from
auto-constructed tasks becomes feasible, offering promising advances toward uni-
versal bimanual dexterous manipulation. Our empirical evaluation of the TACO
dataset, spanning 141 tasks across six categories, demonstrates a task fulfillment
rate of 74.59% on trained tasks and 51.07% on unseen tasks, showcasing the
effectiveness and competitive zero-shot generalization capabilities of BiDexHD.
For videos and more information, visit our project page.

1 INTRODUCTION

Bimanual manipulation is crucial and beneficial. Humans use both hands to do manipulations like
using scissors, tying shoelaces, or operating kitchen utensils. The ability to manipulate objects with
two hands is fundamental for everyday tasks, because with both hands, we can not only do some
“symmetry” collaborative tasks like carrying a heavy box with two hands, but also do “asymmetry”
tasks (Liu et al., 2024a) like twisting a bottle cap, which means one hand acts as an auxiliary hand
for stabilizing objects and the other acts as an operator.

With the rapid development of embodied artificial intelligence, robotic bimanual dexterous manip-
ulation is getting more and more important in manufacturing, healthcare, agriculture, construction,
and tertiary industry (Zhang et al., 2024b). This emphasizes the effective use of tools or manipula-
tions over objects that are deformable or of irregular shapes, overcoming the limitations of low-DOF
end-effectors like grippers. Moreover, it addresses complicated human-like hand-object interaction
and collaboration. Despite its significance, achieving proficient bimanual manipulation remains a
substantial challenge because it severely struggles with the high-dimensional action space. While a
line of previous work (Grannen et al., 2023; Yu et al., 2024; Kataoka et al., 2022; Liu et al., 2024a)
primarily focuses on bimanual manipulation with grippers, there is still much left to explore for bi-
manual manipulation with dexterous hands. Previous attempts to solve bimanual dexterous manip-
ulation tasks are mainly based on reinforcement learning (RL) (Lin et al., 2024; Huang et al., 2023;
Zhang et al., 2024a). However, they require intricate reward designs tailored to specific manually-
designed tasks. Therefore, these approaches lack scalability and generalizability to a broader range
of tasks. Recent research (Sindhupathiraja et al., 2024; Fu et al., 2024; He et al., 2024) has advanced
robotic bimanual dexterous manipulation through teleoperation. Nevertheless, human intervention
is inevitable. We would ask a question:

“Can we learn diverse bimanual dexterous manipulation skills in a unified and scalable way?”
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Our solution is to use human demonstrations. Compared to robotic demonstrations, human demon-
strations are relatively easier to obtain with haptic gloves or MoCap devices rather than deploying
a trained policy, and contain much more physically compliant and human-aligned behavior. In this
paper, we propose a novel approach to learn diverse bimanual dexterous manipulation skills from
human demonstrations. Upon this setting, we propose BiDexHD, a unified and scalable framework
to automatically turn a human bimanual manipulation dataset into a series of tasks in the simulation
and conduct effective policy learning. The majority of previous bimanual studies primarily focus
on existing benchmarks or a limited range of tasks. For RL-based methods (Lin et al., 2024; Huang
et al., 2023; Zhang et al., 2024a), they tailor specific reward function to specific tasks. For IL-based
methods (Wang et al., 2024a; Cheng et al., 2024), it is inevitable to collect a bulk of data for learning
specific tasks (typically around 50 trajectories for each single task). In contrast, BiDexHD does not
depend on manually-designed tasks or pre-defined tasks in existing benchmarks and instead consis-
tently constructs feasible tasks from any bimanual manipulation trajectory. Furthermore, BiDexHD
gets rid of task-specific reward engineering and instead utilize a unified reward function for all
automatically constructed bimanual tasks. In a word, BiDexHD breaks the bottleneck of limited
tasks and label-intensive manual designs, which is significant to the further development of general-
purpose bimanual dexterous manipulation. Though promising, several challenges must be addressed
to fully realize this. It is essential to figure out how to accurately mimic fine-grained bimanual behav-
iors from human demonstrations and avoid collisions and disturbances while encouraging smooth
trajectories and synchronous collaboration between both hands. To address this, we carefully design
a general two-stage reward function to assign curricula for RL training.

To sum up, our key contributions can be summarized as follows:

• We formalize the problem of learning bimanual dexterous skills from human demonstra-
tions as a preliminary attempt towards universal bimanual skills.

• We propose BiDexHD, a unified and scalable reinforcement learning framework for learn-
ing diverse bimanual dexterous manipulation from human demonstrations, advancing the
capabilities of robots in performing bimanual cooperative tasks.

• We evaluate BiDexHD across 141 auto-constructed tasks over 6 categories from the
TACO (Liu et al., 2024b) dataset and demonstrate the superior training performance and
competitive generalization capabilities of BiDexHD.

2 RELATED WORK

2.1 BIMANUAL DEXTEROUS MANIPULATION

In recent years, the robotics community has increasingly focused on dexterous manipulation due
to its remarkable flexibility and human-like dexterity. Researchers have developed methods using
dexterous hands for tasks such as in-hand manipulation (Arunachalam et al., 2023; Yin et al., 2023;
Handa et al., 2023; Qi et al., 2023; Chen et al., 2023; 2022), grasping (Xu et al., 2023; Wan et al.,
2023; Qin et al., 2023a; Ye et al., 2023; Qin et al., 2022a), and manipulating deformable objects (Bai
et al., 2016; Ficuciello et al., 2018; Li et al., 2023; Hou et al., 2019). However, most existing work
focuses on a single dexterous hand, revealing the potential of bimanual dexterity. In fact, for hu-
mans, bimanual collaboration takes place frequently in daily life such as riding, carrying heavy
objects, and using tools. There are heterogeneous research directions towards bimanual dexterous
manipulation. Some researchers attempt to settle down to specific tasks via reinforcement learning.
For example, recent work (Lin et al., 2024) investigates twisting lids with two multi-fingered hands,
DynamicHandover (Huang et al., 2023) explores throwing and catching, and ArtiGrasp (Zhang et al.,
2024a) focuses on a few grasping and articulation tasks. Gbagbe et al. (2024) leveraged large lan-
guage models to design a system for bimanual robotic dexterous manipulation, while Wang et al.
(2024b) proposed to solve bimanual grasping via physics-aware iterative learning and prediction of
saliency maps. A recent work (Gao et al., 2024) adopts keypoints-based visual imitation learning
to learn bimanual coordination strategies. Unlike existing work, in this paper, we offer a general
solution to learn from bimanual demonstrations by designing a unified reward function to learn a
state-based policy via reinforcement learning and distilling it into a vision-based policy.
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2.2 LEARNING DEXTERITY FROM HUMAN DEMONSTRATIONS

As a sample-efficient data-driven way, learning from human demonstrations has been proven suc-
cessful in robot learning (Jia et al., 2024; Mandlekar et al., 2023; Odesanmi et al., 2023). Com-
pared with learning dexterity via reinforcement learning which is notoriously challenging for policy
learning due to the high degrees of freedom and the necessity of manually designing task-specific
reward functions, learning complex dexterous behaviors from diverse accessible human demonstra-
tions (Smith et al., 2019; Schmeckpeper et al., 2020; Shao et al., 2021) is a more stable and scal-
able approach. A line of previous studies (Arunachalam et al., 2023; Mandikal & Grauman, 2021;
Sivakumar et al., 2022; Qin et al., 2022b; Mandikal & Grauman, 2022; Liu et al., 2023; Shaw et al.,
2023b; Chen et al., 2024) explicitly leverages human demonstrations to facilitate the acquisition
of dexterous manipulation skills mainly by human-robot-arm-hand retargeting and imitation learn-
ing. However, these studies predominantly focus on single-hand manipulation and are often limited
to tasks such as in-hand manipulation (Arunachalam et al., 2023) or video-conditioned teleopera-
tion (Sivakumar et al., 2022). With the recent advent of diverse and comprehensive human bimanual
manipulation datasets (Zhan et al., 2024; Liu et al., 2024b; Fan et al., 2023; Razali & Demiris, 2023)
which naturally provide a rich resource for high-quality posture sequences of dual hands and biman-
ual interaction with diverse real objects, a lot of bimanual manipulation tasks can be automatically
defined. Thus, in this work, we aim to address more challenging and general bimanual dexterous
skill learning purely based on automatically constructed tasks from human demonstrations.

3 PRELIMINARIES

3.1 TASK FORMULATION

Dec-POMDP. We formulate each bimanual manipulation task as a decentralized partially observ-
able Markov decision process (Dec-POMDP). The Dec-POMDP can be represented by the tuple
Z = (N ,M, S,O,A, P,R, ρ, γ). Dual hands with arms are separated as N agents, which is rep-
resented by set M. The proprioception of robots and the information about objects are initialized at
s0 ∈ S according to the initial state distribution ρ(s0). At each time step t, the state is represented
by st, and the i-th agent receives an observation oit ∈ O based on st. Subsequently, the policy of the
i-th agent, πi ∈ Π, takes oit as input and outputs an action ait ∈ Ai. The joint action of all agents is
denoted by at ∈ A, where A = A1 ×A2 × · · ·AN . The state transits to the next state according to
the transition function st+1 ∼ P (st+1|st,at). After this, the i-th agent receives a reward rit based
on the reward function R(st,at). The objective is to find the optimal policy π that maximizes the
expected sum of rewards Eπ[

∑T−1
t=0 γt

∑N
i=1 r

i
t] over an episode with T time steps, where γ is the

discount factor.

Environment Setups. The leftmost subgraph in Figure 2 illustrates the setups for each bimanual
manipulation task in IsaacGym (Makoviychuk et al., 2021). In general, there are a tool and a target
object initialized on a table. N = 2 robotic arms are installed in front of the table, with left LEAP
Hand (Shaw et al., 2023a) mounted on the left arm and right hand on the right arm. The right hand
reaches for the tool, and the left hand targets the object. Both hands coordinate to simultaneously
move, pick up, and manipulate the objects above the table. Note that our method applies to all
dexterous hand embodiments. The observation space O contains robot proprioception and object
information. The left and right policies both output 22 joint angles normalized to [−1, 1], and the
robots are controlled via position control. See more details in Appendix B.4.

Dataset Preparation. A human bimanual manipulation dataset consists of M trajectories D =
{τ1, τ2, . . . , τM}, each of which describes a human using a tool with his right hand to manip-
ulate a target object with his left hand. The behavior of each trajectory can be recapped with
a triplet (action, tool, object). Any triplet belongs to a union U = V × Ω × Ω, where Ω de-
notes the set of all objects and tools, and V denotes the set of all human actions. According to
different behaviors depicted in V , we can split all the tasks into |V| categories. Each trajectory
τ i = {htool,hobject, x̂tool

t , q̂tool
t , x̂object

t , q̂object
t ,Θleft

t ,Θright
t }it:1..N involves a pair of meshes of the tool

and object from a object mesh set htool,hobject ∈ H, N -step position x ∈ R3 and orientation q ∈ R4

sequence of the tool and the object, and the pose sequence of hands described in MANO (Romero
et al., 2017) parameters Θ.

3
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Figure 1: The three-phase framework, BiDexHD, unifies constructing and solving tasks from hu-
man bimanual datasets instead of existing benchmarks. In phase one, BiDexHD constructs each
bimanual task from a human demonstration. In phase two, BiDexHD learns diverse state-based
policies from a generally designed two-stage reward function via multi-task reinforcement learning.
A group of learned policies are then distilled into a vision-based policy for inference in phase three.

3.2 TEACHER-STUDENT LEARNING

It is well known (Chen et al., 2022; 2023) that directly learning a multi-task vision-based policy for
dexterous hands is extremely challenging. A more popular and scalable approach is teacher-student
learning (Wan et al., 2023), which not only simplifies the complexity of multi-DoF robot multi-
task learning but also enhances the efficiency of point cloud-based policy learning. In the teacher
learning phase, a single state-based policy is first trained via reinforcement learning, leveraging
privileged information to solve multiple similar tasks. Once trained, multiple teacher policies can
effectively tackle all tasks. In the student learning phase, a vision-based student policy is distilled
from the teacher policies. A key distinction between teacher and student observations is how object
information is represented. While the teacher’s observation space includes precise details about an
object’s position, orientation, and linear and angular velocities, the student’s observation relies on
point clouds consisting of P sampled points from the object’s surface mesh. In this way, the learned
student policy is promising to be deployed in real world to deal with multiple tasks provided that the
real point clouds can be constructed from real-time multi-view RGB-D camera system.

4 LEARNING BIMANUAL DEXTERITY FROM HUMAN DEMONSTRATIONS

4.1 OVERVIEW

As illustrated in Figure 1, we propose a scalable three-phase framework. In the first phase, we paral-
lelize the construction of Dec-POMDP bimanual tasks from a human bimanual manipulation dataset
within IsaacGym (Makoviychuk et al., 2021). After task initialization, the subsequent two phases
adopt a teacher-student policy learning framework. Following the approach of Chen et al. (2022;
2023); Wan et al. (2023), we utilize Independent Proximal Policy Optimization (IPPO) (De Witt
et al., 2020) during the second phase to independently train state-based teacher policies for con-
structed bimanual dexterous tasks in parallel. Each expert focuses on a subset of tasks that require
similar behaviors. In the final phase, the teacher policies are distilled into a vision-based student
policy, integrating skills across related tasks.

4.2 TASK CONSTRUCTION FROM BIMANUAL DATASET

In this work, we primarily focus on bimanual tool using tasks. Recent datasets (Liu et al., 2024b;
Zhan et al., 2024; Fan et al., 2023; Razali & Demiris, 2023) capture a wide range of bimanual
cooperative behaviors, involving the use of tools to manipulate objects via motion capture and 3D
scanning. The rich data, including object pose trajectories and hand-object interaction postures,
provides sufficient information to construct feasible bimanual tasks. The task construction process
from the bimanual dataset involves data preprocessing and simulation initialization.

4
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Data Preprocessing. We extract the wrist and fingertip pose of dual hands at each timestep
{V side

t , J side
t } = MANO(Θside

t ), side ∈ {left, right} with MANO (Romero et al., 2017) parame-
ters Θ = {α, β, x̂w}, where α ∈ R48, β ∈ R10, and x̂w ∈ R3 represent hand pose, hand shape
parameters, and wrist position respectively. V ∈ R778×3 and J ∈ R21×3 represent vertices and
joints on a hand respectively. The quaternion of the wrist q̂w ∈ R4 is translated from axis-angle
β0:3. Given that single LEAP Hand (Shaw et al., 2023a) has only four fingers, we can easily filter
the corresponding positions of these m = 4 fingers in J , denoting them as xft ∈ Rm×3. In the
following sections, τ i is denoted as:

τ i = {x̂tool
t , q̂tool

t , x̂object
t , q̂object

t , x̂lw
t , q̂lw

t , x̂rw
t , q̂rw

t , x̂lft
t , x̂

rft
t }it:1..N . (1)

Simulation Initialization. After data preprocessing, we can construct bimanual manipulation tasks
Γ = {T 1, ..., T M} in Issac Gym in parallel. For each task T i, the mesh of a tool htool and a target
object hobject, along with two arms with hands are initialized with a fixed initial observation vector:

oside
0 = {(j,v)side

, (x,q)
side,w

,xside,ft, (x,q,v,w,id)obj}side
0

where side, obj ∈ {(left, object) , (right, tool)}.
(2)

The robot proprioception includes arm-hand joint angles and velocities, wrist poses, and finger-
tip positions, and object information includes object positions, orientations, linear and angular ve-
locities, and a unique object identifier for multi-task learning. For all tasks, (j,v)0 are all reset
to zero. The initial states of wrist and fingertips are calculated with forward kinematics accord-
ingly. Except identifiers, the initial observations for all tools and target objects keep unchanged.
It is worth noting that we assume the robot to be right-handed by default, i.e., the left hand
handles the target object and the right hand handles the tool. For brevity, the repeated notation
side, obj ∈ {(left, object),(right, tool)} is omitted in subsequent sections.

To ensure the feasibility of each task, after initialization, we use retargeting optimizers (Qin et al.,
2023b) to map human hand motions to robot hand joint angles and solve inverse kinematics (IK) to
determine the robot arm joint angles based on the robot’s palm base pose. By replaying all object-
hand trajectories in the simulator, we can easily identify and remove invalid tasks to build up a
complete task set Γ .

4.3 MULTI-TASK STATE-BASED POLICY LEARNING

In the second phase, we focus on learning a multi-task state-based policy for tasks that require
similar behaviors. Broadly, these tasks can generally be divided into two stages: first, aligning the
simulation state with initial τ i0 of a trajectory, and second, following each step of the trajectory.
During the alignment stage, both hands should prioritize approaching their objects as quickly as
possible. The left hand learns to grasp or stabilize the target object, while the right hand learns to
grasp the tool. Once simulation alignment is achieved, both hands are expected to maintain their
hold and follow the pre-defined trajectory derived from the human demonstration dataset to perform
the manipulations in sync. The pipeline is illustrated in Figure 2. We initialize objects and robots
at stage zero, finish simulation alignment at stage one, and conduct trajectory tracking at stage two
via IPPO to learn state-based policies πside

θ (aside
t |oside

t ,aside
t−1) conditioning on the current observation

oside
t = {(j,v)side

, (x,q)
side,w

,xside,ft, (x,q,v,w,id)obj}side
t and previously executed action aside

t−1 for
dual hands.

Stage 1: Simulation Alignment. The central goal of stage one is to align the state of simulation
to the first step in a trajectory by moving the tool and target object from the fixed initial pose to
τ0, which serves as an essential yet challenging prerequisite for subsequent trajectory tracking in
stage two. Through experiments in Section 5.4, we find that it is not feasible to directly acquire
dynamic skills from static poses through imitation. Instead, we adopt reinforcement learning to
develop skills like grasping, twisting and pushing. Some previous work (Luo et al., 2024; Xu et al.,
2023) on grasping prefers introducing additional pre-grasp poses by estimating grasping pose upon
manipulated objects. We adopt a simpler but more generalizable approach by learning skills directly
from the object poses provided in the dataset. Specifically, we anchor the first timestep in the dataset
as the reference timestep to establish a tool-object reference pose pair for each manipulation task.
Stage one is considered complete once both the tool and the object reach the specified pose for a
sustained u-step duration. Rewards are carefully designed to encourage the object to be lifted above

5
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Figure 2: General two-stage teacher learning. For each task T i, at stage zero, all joint poses are
initialized to the zero pose. Both the tool and object are initialized to poses sampled from a fixed
Gaussian distribution centered at a fixed value with added small noise. At stage one, approaching
reward rappro encourages both hands to get close to their grasping centers x̂gc, and lifting reward rlift
along with extra bonus rbonus incentivizes moving both objects to thier reference poses respectively.
After simulation alignment, dual hands will manipulate objects under the guidance of tracking re-
ward rtrack.

the table in reference to the filtered reference poses. The total reward consists of an approaching
reward, a lifting reward, and a bonus reward.

The approaching reward, rappro, encourages both dexterous hands to approach and remain close to
the object. In other words, the goal is to minimize the distance between the robot’s palm, fingertips,
and the grasp center. Since functional grasping is critical for tool using, we do not simply select the
geometric center of the object. Instead, we pre-compute the grasping center x̂gc for each tool and
object based on the dataset. Specifically, for each task, we use the human-demonstrated wrist and
fingertip positions at the reference timestep–x̂lw

0 , x̂rw
0 , x̂lft

0 , x̂
rft
0 –as anchor points. We then uniformly

sample 1024 points from the surface of the object mesh htool,hobject to form a representative point
set P and compute the average grasp center based on the top L = 50 nearest points. rappro penalizes
the distance between the wrist, fingertips, and the grasp center, and is defined as

rside
appro = −∥xside,w

t − x̂obj
gc ∥2 − wr

∑m ∥xside,ft
t − x̂obj

gc ∥2
where x̂obj

gc = 1
L

∑
NN

(
P, L,

x̂side,w
0 +

∑m x̂side,ft
0

m+1

)
.

(3)

The lifting reward rlift encourages holding objects tightly in hands and lifting to desired reference
poses. As long as the lifting conditions are satisfied, the robots receive a lifting reward rlift composed
of a non-negative linear position reward and a negative quaternion distance reward,

rside
lift =

{
rside

pos + wqr
side
quat if I

(
∥xside,w

t − x̂obj
gc ∥2 ≤ λw ∩

∑m ∥xside,ft
t − x̂obj

gc ∥2 ≤ λft

)
0 otherwise

where rside
pos = max

(
1− ∥xobj

t −x̂obj
0 ∥2

∥xobj
0 −x̂obj

0 ∥2
, 0
)
, rside

quat = −Dquat

(
qobj
t , q̂obj

0

)
.

(4)

Here, xobject
0 and xtool

0 respectively represent the initial positions of the target object and tool in the
simulator, while x̂0 denotes the first reference position in a human demonstration.

The bonus reward rbonus incentivizes the target object or the tool to reach and finally stay at their
reference poses, which lays a foundation for the second manipulation stage. rbonus becomes positive
only when the distance between an object’s current position and its reference position becomes lower
than εsucc. Stage one is considered successful only if both rleft

bonus and rright
bonus are positive for at least u

consecutive steps. Thus, the bonus reward rbonus is defined as

rside
bonus =

{
1

1+∥xobj
t −x̂obj

0 ∥2
if I

(
∥xobj

t − x̂obj
0 ∥2 ≤ εsucc

)
0 otherwise.

(5)

The total alignment reward is the linear weighted sum of the three components.

rside
align = w1r

side
appro + w2r

side
lift + w3r

side
bonus (6)
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Stage 2: Trajectory Tracking. Once stage one is completed, the left hand is securely holding the
target object, and the right hand keeps grasping the tool at its desired reference pose. The next step is
to maintain the grasp and follow a trajectory to perform the manipulation. To achieve this, we design
a more fine-grained exponential reward, rtrack, which encourages the dexterous hands to precisely
track the desired positions at each timestep in a trajectory starting from the reference timestep.
Assuming that human hands are more flexible than robotic hands, we introduce a constant tracking
frequency f , where f simulation steps correspond to one step in the dataset. Let x̂obj

i represent the
position of a object at i-th step in a l-step human-demonstrated trajectory and xobj

ti represent the
object’s position at the corresponding simulation step in IsaacGym. We have i = ⌈ti/f⌉ ∈ [0, l),
and the tracking reward is defined as

rside
track =

{
exp

(
−wt∥xobj

ti − x̂obj
i ∥2

)
if stage 1 succeeds

0 otherwise.
(7)

We adopt IPPO to learn a unified policy from the combination of all rewards for the two stages,

rside
total = rside

align + w4r
side
track. (8)

rtotal unifies two stages of bimanual dexterous manipulation, enabling scaling up to multi-task policy
learning for a wide range of constructed bimanual tasks.

4.4 VISION-BASED POLICY DISTILLATION

We employ DAgger (Ross et al., 2011), an on-policy imitation learning algorithm, to develop a
vision-based policy for each task category ν ∈ V , under the supervision of a group of state-based
teacher policies. To enhance generalization capabilities for new objects or unseen tasks, we pro-
pose transforming the student policy into a trajectory-conditioned in-context policy, denoted as
πside
ϕ (aside

t |oside
t ,pside

t ,aside
t−1), where ot = {(j,v)side, (x,q)side,w,xside,ft, pcobj}t, K-step future pose

pside
t ∈ RK×3, and pcobj

t ∈ RP×3. Specifically, to get point clouds pctool
t and pcobject

t , we pre-sample
4096 points from the surface of htool and hobject for each task during initialization. At each timestep
t, a subset of points are sampled from the pre-sampled point clouds, transformed according to cur-
rent object pose and added with Gaussian noise for robustness. Besides, it is important to note that
during DAgger distillation, we augment traditional vision-based policy πside

ϕ (aside
t |oside

t ,aside
t−1) with

next K positions along the object’s trajectory as additional inputs. This design allows the learned
policy to utilize more information about the motion of objects, such as movement direction and
speed in the near future, facilitating zero-shot transfer to unfamiliar tasks or objects. Notably, we
can easily mask this additional input by setting K = 0. We further investigate the influence of K
future steps in Section 5.4. The whole teacher-student training process is summarized in Appendix
A. More implementation details can be found in Appendix B.

5 EXPERIMENTS

5.1 SETUPS

Dataset. We evaluate the effectiveness of BiDexHD on the TACO (Liu et al., 2024b) dataset,
a large-scale bimanual manipulation dataset that encompasses diverse human demonstrations us-
ing tools to manipulate target objects in real-world scenarios. BiDextHD converts 6 categories
V = {Dust, Empty, Pour in some, Put out, Skim off, Smear} of total 141 human demonstrations in
the TACO dataset to Dec-POMDP tasks (See Appendix D for task examples). Task diversity and
abundance make BiDexHD easy to scale up. All tasks can be separated into 16 semantic groups,
each of which gathers a number of similar demonstrations with the same action, the same tool-
object category but different tool and object instances. BiDextHD constructs a task from single
demonstration, and thus each semantic group correspond to a semantic subtask. We adopt teacher-
student learning to train 16 semantic sub-tasks and distill teacher policies with similar skills into 6
vision-based policies for each category eventually.

To evaluate the effectiveness of the framework as well as the generalizability of the learned policies,
we split 80% tasks for training (Train) and the rest 20% unseen tasks for testing. Detailed descrip-
tions of dataset split are provided in Appendix B.2. For each task in the testing set, if the object and
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tool both occur in the training set it is labeled as a kind of combinational task (Test Comb), and
otherwise it is labeled as a new task (Test New).

Metrics. To measure the quality of our constructed tasks, we introduce two metrics r1 and r2.

• The first is the average success rate r1 of stage one. For a number of n episodes, r1 =
1
n

∑n
e=1 Ie1 averages over the number of episodes that satisfys conditions I1 at stage one.

I1 : ∃0 < t < T−u

t+u∑
t

I
(
∥xobject

t − x̂object
0 ∥2 ≤ εsucc ∩ ∥xtool

t − x̂tool
0 ∥2 ≤ εsucc

)
= u

• The second is the average tracking rate r2 of stage two. Each task corresponds to l-step
human-demonstrated trajectory. For each episode, calculate the proportion of steps where
two objects both effectively follows their desired poses. r2 is the average tracking rate over
n episodes.

r2 =
1

nl

n∑ l−1∑
i=0

I
(
∥xobject

ti − xobject
i ∥2 ≤ εtrack ∩ ∥xtool

ti − xtool
i ∥2 ≤ εtrack

)
It is important to note that r2 serves as the primary metric for indicating task completion while r1 is
an intermediate metric for assessing task progression. Considering the choice of εsucc and εtrack has
a non-legligible impact for the reported results, we will discuss the sensitivity of these thresholds in
Section 5.4. By default, we choose εsucc = εtrack = 0.1 for evaluation.

5.2 TEACHER LEARNING

Upon the framework of BiDexHD, different base RL algorithms can be incorporated. We mainly
compare the performance of independent PPO (BiDexHD-IPPO) and centralized PPO (BiDexHD-
PPO). For BiDexHD-IPPO, two agents possess their own observations and execute their own ac-
tions. For BiDexHD-PPO, a single policy takes as input both observations and is trained to output
all actions that maximize the sum of all total rewards in an episode, which essentially transforms a
Dec-POMDP task into a POMDP task.

Table 1: The average success rate of stage 1 and tracking rate of stage 2 during training and evalua-
tion across all tasks constructed from the TACO dataset under εsucc = εtrack = 0.1.

Method Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

BiDexHD-PPO 90.55 53.88 78.74 36.99 81.42 26.24
BiDexHD-IPPO (w/o stage-1) 25.00 17.52 24.80 18.10 19.85 08.51
BiDexHD-IPPO (w/o gc) 90.53 66.39 91.47 52.11 77.03 22.63
BiDexHD-IPPO (w/o bonus) 97.67 66.65 98.01 59.76 77.96 17.52
BiDexHD-IPPO 98.71 78.18 98.37 59.94 75.48 21.34

BC 00.00 00.00 00.00 00.00 00.00 00.00
BiDexHD-PPO+DAgger 95.35 55.82 76.75 30.42 86.34 30.00
BiDexHD-IPPO+DAgger 99.38 74.59 92.85 48.43 94.79 53.71

RL Results. The first and last rows in the green section of Table 1 present the average performance
across all auto-constructed bimanual tasks. For tasks with seen objects (Train and Test Comb),
BiDexHD-IPPO nearly completes stage 1 by successfully reaching the reference poses and main-
taining high-quality tracking during stage 2, which demonstrates its impressive scalability across di-
verse tasks in the TACO dataset. In contrast, BiDexHD-PPO underperforms compared to BiDexHD-
IPPO, particularly on tasks with seen objects. This discrepancy arises because BiDexHD-IPPO is
more efficient at acquiring robust skills within limited updates by independently learning left and
right policies across a wide range of tasks with smaller observation and action spaces. Further-
more, two independent expert policies focusing solely on specific groups of target objects or tools
adapt more easily to similar combinational tasks than a single policy that must attend to both. Con-
sequently, we select IPPO as our base RL algorithm. Detailed evaluation results are recorded in
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Appendix C.1. We observe that particularly in ‘Pour in some’ tasks, the task diversity is relatively
small. Efficient BiDexHD-IPPO can achieve overwhelming advantages over BiDexHD-PPO.

When applied to tasks with new objects (Test New), both BiDexHD-IPPO and BiDexHD-PPO ex-
perience a noticeable performance decline. The primary reason for this drop is that these approaches
incorporate one-hot object labels in observations during state-based training, leading the policy to
heavily rely on this information. As a result, during evaluation, the introduction of new labels dis-
rupts decision-making. Therefore, we remove one-hot object labels during policy distillation to
enhance generalization.

5.3 ABLATIONS ON TEACHER LEARNING

We conduct ablation studies focusing on the key designs at stage one during teacher learning.

Alignment Stage. To demonstrate the necessity of the design of dataset-simulation alignment
stage, we compare BiDexHD-IPPO with a more naive version, denoted as (w/o stage-1), which
retains only rtrack in RL training at stage 2 and maintains a fixed number of free exploration
steps at stage 1. The second line in the green section of Table 1 reveals a significant perfor-
mance decline. We observe that only 30.5% of relatively easy tasks (See Appendix C.1 for de-
tails) achieve positive r1 and r2, while for the remaining tasks, the success rate of stage 1 and the
tracking rate of stage 2 remain at zero. This emphasizes the importance of ralign during stage 1.

Functional Grasping Center. In BiDexHD, we pre-compute
the grasping center x̂gc to calculate rappro in Equation 3. In this
section, we explore replacing the grasping center with the object
geometric center, denoted as (w/o gc). The results presented in
the third line of Table 1 show a decrease in r1 and r2, partic-
ularly on tasks involving seen objects compared to BiDexHD-
IPPO. To further investigate their discrepancy in behavior, we
visualize their grasping poses for a typical task (dust, brush, pan)
in Figure 3. BiDexHD-IPPO tends to align more closely with the
calculated grasping centers (red points), exhibiting human-like
grasping behavior. In contrast, BiDexHD-IPPO (w/o gc) with
geometric centers (green points) struggles to find proper poses
for using the brush or holding the pan. In fact, the geometric
center of an object does not often fall within areas suitable for
manipulation. These findings highlight the significance of incor-
porating a functional grasping center, particularly for objects that
are thin, flat, or equipped with handles.

Grasping
Center

Geometric
Center

Figure 3: A comparison of
grasping pose during policy de-
ployment between BiDexHD-
IPPO (w/o gc) and BiDexHD-
IPPO.

Success Bonus. The 4th line in the green section of Table 1 investigates whether removing reward
rbonus defined in Equation 5 affects performance. We observe a decline in r2 on both the training set
and unseen tasks involving new objects. We analyze the additional bonus in Equation 5 effectively
signals the transition between the two stages, enhancing the policy’s awareness of task progression.

5.4 STUDENT LEARNING

For the BiDexHD variants, several trained multi-task state-based teacher policies from one task
category are distilled into a single vision-based policy, which is then tested on all tasks. We also
introduce behavior cloning (BC) as our baseline. To directly learn bimanual skills from a dataset,
we employ Dexpilot (Handa et al., 2020) to retarget human hand motions in the TACO dataset to
joint angles for dexterous hands, solving inverse kinematics (IK) for arm joint angles. All joint
angles are collected and replayed in IsaacGym (Makoviychuk et al., 2021) to gather observations.
BC learns purely from this static observation-action dataset and is ultimately tested under the same
configuration as BiDexHD.

DAgger Results. The blue section of Table 1 displays the performance of the vision-based policies.
Our BiDexHD-IPPO+DAgger significantly outperforms both PPO variant and BC, achieving a high
task completion rate on the training set and an average r2 = 51.07% across all unseen tasks (Test
Comb and Test New). This evidence indicates the scalability and competitive generalization ability
of BiDexHD framework. Among unseen tasks, we observe a slight decline in r2 for combinational
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tasks, while tasks involving new objects show a sharp increase in r2. This suggests that the vision-
based policy relies more on information from the point clouds, such as shape and local features,
rather than specific one-hot identifiers, enabling effective zero-shot generalization. Conversely, BC
performs poorly due to the loss of true dynamics in the simulation, often getting confused by unfa-
miliar observations and stuck in stationary states. This also reflects the challenges associated with
our constructed bimanual tasks. Our framework unifies bimanual skill learning through a combina-
tion of trial-and-error and distillation, providing a robust and scalable solution to diverse challenging
bimanual manipulation tasks. Detailed evaluation results are reported in Appendix C.2. We observe
that in ‘Dust’ and ‘Empty’ task categories, the task diversity is relatively ample. Therefore, the dis-
tilled policy can surpass the average level of expert policies, which proves that distilling similarity
policies bring about positive promotion effects to the final unified policy.

Table 2: The metrics of different K fu-
ture steps under εsucc = εtrack = 0.1.

Metrics (%)
K

0 1 2 5

Train r1 98.01 98.81 98.71 99.38
Train r2 72.09 75.40 75.01 74.59
Test Comb r1 94.36 92.11 93.26 92.85
Test Comb r2 46.64 49.02 48.60 48.43
Test New r1 93.96 94.67 94.38 94.79
Test New r2 49.27 51.00 50.39 53.71

Table 3: The sensitivity analysis of metrics
of BiDexHD-IPPO+DAgger to different ε.

Metrics (%)
ε

0.05 0.075 0.1

Train r1 96.87 98.27 99.38
Train r2 52.58 66.19 74.59
Test Comb r1 49.30 77.74 92.85
Test Comb r2 13.02 24.56 48.43
Test New r1 79.56 88.11 94.79
Test New r2 17.19 37.62 53.71

Future Conditioned Steps. We further examine the selection of K ∈ {0, 1, 2, 5} for future object
positions. Specifically, when K = 0, the vision-based policy relies exclusively on 3D information
from object point clouds and the robot’s proprioception. As shown in Table 2, the performance
across different values of K does not vary significantly. Even when future conditioned steps are
masked (K = 0), r2 only exhibits slight declines of 2.5% on trained tasks and an average of 3.1%
on all unseen tasks compared to K = 5. This evidence suggests that after the multi-task RL training
phase, the teachers have acquired diverse and robust skills, making pure imitation sufficient for a stu-
dent to achieve acceptable performance. Nonetheless, K future steps provide additional informative
and fine-grained, albeit implicit, clues such as motion and intention for more precise tracking.

Discussion. To investigate the impact of different thresholds on the metrics, we re-evaluate
all tasks and report the performance of our BiDexHD-IPPO+DAgger under varying thresholds,
εsucc = εtrack = ε ∈ {0.05, 0.075, 0.1} in Table 3. Notably, stricter metrics have a more pronounced
impact on the performance of unseen tasks compared to trained ones, underscoring the challenges
of continuous spatial-temporal trajectory tracking in bimanual manipulation tasks. We will focus on
addressing more precise behavior tracking in future work.

6 CONCLUSION & LIMITATIONS

In this paper, we introduce a novel approach to learning diverse bimanual dexterous manipulation
skills that utilizes human demonstrations. Our BiDexHD automatically constructs bimanual manip-
ulation tasks from existing datasets and employs a teacher-student learning approach for a vision-
based policy that can tackle similar tasks. Our main technical contributions include designing a uni-
fied two-stage reward function for multi-task RL training and an in-context vision-based policy that
enhances generalization capabilities. Experimental results demonstrate that BiDexHD facilitates ro-
bust RL training and policy distillation, successfully solves six categories of bimanual dexterous
manipulation tasks, and effectively transfers to unseen tasks through zero-shot generalization.

Our work forwards a step toward universal bimanual manipulation skills, and some limitations need
to be addressed in future research. Exploring strategies for achieving more precise spatial and tem-
poral tracking is a valuable direction for future work. Additionally, incorporating a wider variety
of real-world tasks–such as deformable object manipulation and bimanual handover–could reveal
further potential in dynamic collaborative manipulation scenarios with bimanual dexterous hands.
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A ALGORITHM

Algorithm 1: BiDexHD framework.

Input: Human demonstration dataset D = {τ1, τ2, . . . , τM}; Object mesh set Ω; State-based
policies πside

θ ; Vision-based policy πside
ϕ (side ∈ {left,right}).

Output: The learned vision-based policy πside
ϕ .

Task Construction:
for τ i ∈ D do

Preprocess each τ i by translating MANO parameters to pose sequence in Equation 1 ;
Construct task T i with corresponding τ i,htool and hobject.

Teacher learning:

Sample a subset of similar tasks Λ ⊆ Γ = {T 1, ..., T M};
Parallelly initialize T i:1...|Λ| in IsaacGym simulation with oleft

0 and oright
0 in Equation 2;

while not converge do
Get state-based observations oleft

t , oright
t ;

Sample action aleft
t ∼ πleft

θ (aleft
t |oleft

t ,aleft
t−1),a

right
t ∼ πright

θ (aright
t |oright

t ,aright
t−1);

Step the environments to observe oleft
t+1, o

right
t+1 and calculate total reward rleft

total, r
right
total ;

Save (oleft
t ,aleft

t , oleft
t+1, r

left
total) and (oright

t ,aright
t , oright

t+1, r
right
total ) into IPPO buffer;

Update πleft
θ and πright

θ using IPPO with the IPPO buffer.

Policy Distillation:

Index {τ1, . . . , τ |Λ|} and pre-sample 4096 points for the tool and target object in each T i;
Parallelly initialize T i:1...|Λ| in IsaacGym simulation;
while not converge do

The students get vision-based observations oleft
t ,oright

t with sampled point clouds and
K-step future trajectories and sample action
aleft
t ∼ πleft

ϕ (aleft
t |oleft

t ,aleft
t−1),a

right
t ∼ πright

ϕ (aright
t |oright

t ,aright
t−1);

The experts πleft
θ , πright

θ observe the corresponding oleft
t , oright

t and labels âleft
t , âright

t ;
Step the environments;
Save (oleft

t , âleft
t ) and (oright

t , âleft
t ) into DAgger buffer;

Update πright
ϕ and πright

ϕ by minimizing MSE loss with the DAgger buffer.

B IMPLEMENTATION DETAILS

B.1 DATASET PREPROCESSING

Reference Timestep. Considering there are a number of useless preparation timesteps before grasp-
ing, the reference timestep in Section 4.2 is actually chosen based on the first sudden change of the
distance between an object and a tool, because the distance between the tool and object almost stays
unchanged before grasping.

More Details. We further align the coordinates of human wrist to the coordinates of robot palm base
to ensure the same dual-hand manipulation behavior. Besides, due to the geometric discrepancy
of objects, we found that the initial height of objects differ a lot in different tasks. Therefore, a
translation offset in z-axis is added to all poses in the dataset to keep all the object at the same initial
height on the same table.

B.2 CONSTRUCTED TASKS

Task Composition. Table 4 describes the detailed task categories, sub-task names, the split of
training and testing set and the diversity of tools and target objects.
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Table 4: 141 constructed tasks across 6 categories for BiDexHD. “All” refers to the total number of
a kind of sub-task. “Train” refers to the number of tasks in the training set. “Test Comb” and “Test
New” refer to the number of tasks in two types of testing sets. “Tool” and “Object” refer to number
of objects in the corresponding sub-tasks.

Action Sub-Task Name All Train Test Comb Test New Tool Object

Empty (empty, bowl, bowl) 10 7 1 2 5 5
(empty, bowl, plate) 34 26 1 7 8 9
(empty, cup, plate) 1 1 0 0 1 1
(empty, teapot, plate) 12 8 1 3 2 6
(empty, teapot, teapot) 3 3 0 0 2 2

Pour in some (pour in some, cup, cup) 1 1 0 0 1 1
(pour in some, cup, plate) 2 2 0 0 2 2
(pour in some, cup, teapot) 1 1 0 0 1 1
(pour in some, teapot, bowl) 1 1 0 0 1 1
(pour in some, teapot, cup) 2 1 0 1 2 2

Dust (dust, brush, bowl) 20 5 0 15 5 9
(dust, brush, pan) 9 6 3 0 4 3

Put out (put out, bowl, bowl) 10 7 2 1 5 5
(put out, bowl, plate) 16 11 1 4 3 8

Skim off (skim off, bowl, plate) 17 12 0 5 5 8

Smear (smear, glue gun, plate) 2 2 0 0 1 2

Total – 141 94 9 38 – –

B.3 DEXTEROUS HANDS

Currently we use LEAP Hands (Shaw et al., 2023a). In future work, we will introduce more kinds
of dexterous hands.

B.4 SIMULATION SETUP

Two 6-DOF RealMan arms, spaced 0.68 meters apart, are placed in front of a table of 0.7 meters.
The 16-DOF LEAP hands are Shaw et al. (2023a) mounted on the left and right arms, with an initial
stretching pose. The tool and target object are spaced 0.4m apart horizontally, 0.5m distant from the
robotic arm base.

B.5 TRAINING DETAILS

BC Details. To get the arm and hand action labels for imitation learning, we employ Dexpi-
lot (Handa et al., 2020) to retarget human hand motions in the TACO dataset to hand joint angles for
dexterous hands and solve inverse kinematics (IK) to convert Mocap 6D wrist pose to 6-DOF arm
joint angles. Since each task is built from a single demonstration, we use vanilla imitation learning
to directly learn a vision-based policy πside

ϕ (aside
t |oside

t ,aside
t−1), where the observation ot is defined

as ot = {(j,v)side, (x,q)side,w,xside,ft, pcobj}t. The policy is trained for each task from a single
observation-action sequence after retargeting. The policy model consists of two 1D convolutional
layers to encode point clouds, a dense layer to encode robot states followed by two dense layers to
output all joint angles. The architecture (see Appendix B.7), configurations, and hyperparameters
are identical to the ones in DAgger vision-based policy learning. The loss function is the standard
MSE loss. Experimental results show that imitation learning from a single trajectory fails. To inves-
tigate this, we visualize the behavior of the learned BC policy in Figure 4. The results reveal that
the learned policy fails to reach or manipulate the object, instead getting stuck in stationary states
or self-collision. We identify two primary reasons for this failure. The most obvious one is limited
demonstrations. With only one demonstration, large portions of the observation space remain un-
explored. As a result, BC struggles with unvisited states. More importantly, lack of kinematics and
dynamics affects a lot. Retargeted actions approximate human demonstrations spatially and tempo-
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Figure 4: Two failure case examples of baseline BC in ‘empty’ and ‘dust’ tasks respectively. The
learned policy does not show a tendency to reach and manipulate the objects. Instead, the robots
tend to get stuck in a stationary state or self-collision.

rally but fail to account for true kinematics and dynamics. This results in fragile policies prone to
failure and stationary states, as shown in the video on our project page.

DAgger Details. To make student policy learn more efficiently, especially at the early training
stage, we mix a few imitation samples into DAgger buffer. Specifically, we choose to use the actions
labeled by experts with probability p = 0.05 and otherwise the actions that are output by the policy
itself. This has often proven desirable in practice, as the naive policy can make more mistakes and
visit states that are irrelevant at the early stage of training with relatively few data points (Ross et al.,
2011).

Hyperparameters. Tables 5 and 6 outline the hyperparameters for IPPO, PPO, DAgger, and BC in
BiDexHD, respectively.

Table 5: Hyperparameters of IPPO or PPO.

Hyperparameter Value
wr 2.0
wt 15.0
w1 0.5
w2 1.0
w3 1.0
w4 1.0
λw 0.12
λft 0.48
Episode Length 1000
Parallel rollout steps per iteration 8
Training epochs per iteration 5
Number of mini-batch 3
Mini-batch size 32
Discount factor 0.96
GAE lambda 0.95
Clip range 0.2
Optimizer AdamW
Learning Rate 3e-4
Number of Environments 15000
Type of GPUs A100, or Nvidia RTX 4090 Ti

B.6 DATASET EXTENSION

To demonstrate BiDexHD is scalable and transferable in heterogeneous bimanual tasks, we extend
our BiDexHD framework to a new bimanual dataset Arctic (Fan et al., 2023), which mainly focuses
on bimanual cooperative tasks of a single object. We build up four tasks ‘Mixer Holding’, ‘Cap-
sulemachine Grabbing’, ‘Box Flipping’, ‘Ketchup Lifting’ from four trajectories in Arctic dataset
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Table 6: Hyperparameters of DAgger and BC.

Hyperparameter Value
P 512
K 5
Parallel rollout steps per iteration 8
Training epochs per iteration 5
Number of mini-batch 3
Mini-batch size 32
Optimizer AdamW
Learning Rate 3e-4
Number of Environments 5000
Type of GPUs A100, or Nvidia RTX 4090 Ti

and follow the pipeline of teacher learning to learn a state-based policy for each task. The average
success rate of stage one r1 and trajectory tracking rate r2 shown in Table 7 demonstrate the effec-
tiveness and generalizability of BiDexHD in collaborative bimanual manipulation tasks. Refer to
our project page for video demonstrations of Arctic tasks.

Table 7: Metrics of BiDexHD-IPPO for four Arctic tasks.

Task Train r1(%) Train r2(%)

Mixer Holding 90.01 79.24
Capsulemachine Grabbing 96.47 93.45

Box Flipping 94.10 91.23
Ketchup Lifting 93.98 82.99

B.7 MODEL ARCHITECTURE

Our codebase for RL and DAgger is built upon UniDexGrasp++ (Wan et al., 2023). For each state-
based policy, we employ five-layer multi-layer perceptrons (MLPs) for both the actor and the critic,
featuring hidden layers with dimensions [1024, 1024, 512, 512] and using ELU activation functions.
For the vision-based policy, we utilize a simplified PointNet (Qi et al., 2017) backbone that incor-
porates two 1D convolutional layers, a mixture of maximum and average pooling operations, and
two MLP layers to process the object point cloud, resulting in an output dimension of 128. Both the
actor and the critic share the output of this backbone. The same network architecture is adapted to
BC baselines and all PPO variants both for Arctic tasks and TACO tasks.

B.8 COMPUTATION RESOURCES

we train a state-based IPPO policy for single sub-tasks for around two days, and distill teacher
policies into a vision-based policy for each action category for around one day on single 40G A100
GPUs. All the evaluations are done on a 24G Nvidia RTX 4090 Ti GPU for about half an hour.

C EVALUATION RESULTS

C.1 RESULTS OF TEACHER LEARNING

Tables below record the detailed evaluation results for each sub-task. ‘–’ represents the absence of
testing tasks. The last row of each table shows the average results over all sub-tasks.
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Table 8: Detailed Metrics of BiDexHD-PPO for each sub-task under εsucc = εtrack = 0.1.

Action Sub-Task Name Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Empty (empty, bowl, bowl) 99.38 69.28 99.30 62.24 93.64 53.13
(empty, bowl, plate) 97.88 50.38 100.00 35.93 65.91 8.95
(empty, cup, plate) 77.03 33.41 – – – –
(empty, teapot, plate) 100.00 82.09 71.83 23.62 96.84 28.04
(empty, teapot, teapot) 100.00 27.89 42.42 7.63 – –

Pour in some (pour in some, cup, cup) 25.50 22.71 – – – –
(pour in some, cup, plate) 99.88 82.16 – – – –
(pour in some, cup, teapot) 100.00 69.69 – – – –
(pour in some, teapot, bowl) 99.56 5.85 – – – –
(pour in some, teapot, cup) 85.48 31.26 – – – –

Dust (dust, brush, bowl) 99.61 77.70 – – 78.57 17.54
(dust, brush, pan) 73.68 48.22 41.58 15.69 – –

Put out (put out, bowl, bowl) 91.54 39.80 100.00 46.25 67.74 5.48
(put out, bowl, plate) 99.57 69.75 96.08 67.54 81.51 34.51

Skim off (skim off, bowl, plate) 99.68 74.59 – – 85.76 36.01

Smear (smear, glue gun, plate) 100.00 77.26 – – – –

Average – 90.55 53.88 78.74 36.99 81.42 26.24

Table 9: Detailed Metrics of BiDexHD-IPPO for each sub-task under εsucc = εtrack = 0.1.

Action Sub-Task Name Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Empty (empty, bowl, bowl) 99.74 79.02 97.67 37.55 98.34 48.72
(empty, bowl, plate) 97.90 75.76 100.00 62.13 85.00 9.10
(empty, cup, plate) 99.84 79.47 – – – –
(empty, teapot, plate) 100.00 84.29 90.91 16.84 100.00 25.80
(empty, teapot, teapot) 100.00 84.87 100.00 87.06 – –

Pour in some (pour in some, cup, cup) 100.00 99.70 – – – –
(pour in some, cup, plate) 89.78 55.95 – – – –
(pour in some, cup, teapot) 99.47 74.43 – – – –
(pour in some, teapot, bowl) 100.00 75.48 – – – –
(pour in some, teapot, cup) 95.76 57.23 – – – –

Dust (dust, brush, bowl) 100.00 91.24 – – 84.34 32.10
(dust, brush, pan) 100.00 86.08 100.00 58.09 – –

Put out (put out, bowl, bowl) 100.00 75.09 100.00 72.92 81.25 17.87
(put out, bowl, plate) 96.98 77.97 100.00 84.97 29.41 7.03

Skim off (skim off, bowl, plate) 100.00 73.11 – – 50.00 8.74

Smear (smear, glue gun, plate) 99.88 81.24 – – – –

Average – 98.71 78.18 98.37 59.94 75.48 21.34
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Table 10: Detailed Metrics of BiDexHD-IPPO(w.o. stage-1) for each sub-task under εsucc = εtrack =
0.1.

Action Sub-Task Name Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Empty (empty, bowl, bowl) 100.00 73.94 64.63 49.10 58.08 45.91
(empty, bowl, plate) 0.00 0.00 0.00 0.00 0.00 0.00
(empty, cup, plate) 0.00 0.00 – – – –
(empty, teapot, plate) 0.00 0.00 0.00 0.00 0.00 0.00
(empty, teapot, teapot) 100.00 83.77 61.32 45.78 – –

Pour in some (pour in some, cup, cup) 0.00 0.00 – – – –
(pour in some, cup, plate) 0.00 0.00 – – – –
(pour in some, cup, teapot) 0.00 0.00 – – – –
(pour in some, teapot, bowl) 0.00 0.00 – – – –
(pour in some, teapot, cup) 0.00 0.00 – – – –

Dust (dust, brush, bowl) 0.00 0.00 – – 0.00 0.00
(dust, brush, pan) 0.00 0.00 0.00 0.00 – –

Put out (put out, bowl, bowl) 100.00 71.32 47.65 31.80 11.02 6.79
(put out, bowl, plate) 0.00 0.00 0.00 0.00 0.00 0.00

Skim off (skim off, bowl, plate) 100.00 51.37 – – 69.88 6.86

Smear (smear, glue gun, plate) 0.00 0.00 – – – –

Average – 25.00 17.52 24.80 18.10 19.85 8.51

Table 11: Detailed Metrics of BiDexHD-IPPO(w.o. gc) for each sub-task under εsucc = εtrack = 0.1.

Action Sub-Task Name Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Empty (empty, bowl, bowl) 100.00 75.66 100.00 49.28 100.00 50.27
(empty, bowl, plate) 78.68 45.56 65.00 16.44 56.67 10.62
(empty, cup, plate) 52.53 19.67 – – – –
(empty, teapot, plate) 69.73 47.65 91.23 14.89 83.00 35.43
(empty, teapot, teapot) 100.00 83.56 100.00 86.58 – –

Pour in some (pour in some, cup, cup) 100.00 99.71 – – – –
(pour in some, cup, plate) 98.06 44.36 – – – –
(pour in some, cup, teapot) 99.90 91.03 – – – –
(pour in some, teapot, bowl) 100.00 74.71 – – – –
(pour in some, teapot, cup) 94.41 56.88 – – – –

Dust (dust, brush, bowl) 99.78 88.39 – – 80.15 27.45
(dust, brush, pan) 94.03 74.31 84.03 55.75 – –

Put out (put out, bowl, bowl) 99.95 62.07 100.00 61.41 84.51 11.88
(put out, bowl, plate) 84.15 66.27 100.00 80.39 79.59 18.73

Skim off (skim off, bowl, plate) 91.40 70.22 – – 55.26 4.06

Smear (smear, glue gun, plate) 85.93 62.13 – – – –

Average – 90.53 66.39 91.47 52.11 77.03 22.63
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Table 12: Detailed Metrics of BiDexHD-IPPO(w.o. bonus) for each sub-task under εsucc = εtrack =
0.1.

Action Sub-Task Name Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Empty (empty, bowl, bowl) 100.00 52.77 98.91 44.44 96.49 24.22
(empty, bowl, plate) 98.95 66.06 99.51 63.93 84.87 8.59
(empty, cup, plate) 99.77 43.87 – – – –
(empty, teapot, plate) 100.00 83.39 92.66 24.63 86.70 26.44
(empty, teapot, teapot) 100.00 84.03 99.61 85.76 – –

Pour in some (pour in some, cup, cup) 100.00 98.99 – – – –
(pour in some, cup, plate) 89.91 31.76 – – – –
(pour in some, cup, teapot) 100.00 86.55 – – – –
(pour in some, teapot, bowl) 76.43 11.27 – – – –
(pour in some, teapot, cup) 100.00 67.22 – – – –

Dust (dust, brush, bowl) 99.77 86.93 – – 88.34 35.45
(dust, brush, pan) 99.44 72.85 95.41 46.95 – –

Put out (put out, bowl, bowl) 100.00 62.52 100.00 68.21 95.45 16.13
(put out, bowl, plate) 98.80 75.67 100.00 84.37 48.82 5.16

Skim off (skim off, bowl, plate) 100.00 58.47 – – 45.03 6.66

Smear (smear, glue gun, plate) 99.70 84.10 – – – –

Average – 97.67 66.65 98.01 59.76 77.96 17.52

C.2 RESULTS OF STUDENT LEARNING

Tables below record the detailed evaluation results for each task category. The last row of each table
shows the average results over all sub-tasks in all task categories. ‘–’ in the table represents the
absence of testing tasks.

Table 13: Detailed Metrics of BiDexHD-PPO+DAgger for each task category under εsucc = εtrack =
0.1.

Action Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Dust (2) 95.42 72.49 72.41 19.13 94.92 40.79
Empty (5) 96.61 56.95 70.18 24.58 90.91 27.63
Put out (2) 98.04 52.33 97.52 56.31 88.41 29.75
Pour in some (5) 91.73 42.96 – – – –
Skim off (1) 97.60 71.54 – – 42.19 20.79
Smear (1) 99.40 72.46 – – – –

Average 95.35 55.82 76.75 30.42 86.34 30.00

Table 14: Detailed Metrics of BiDexHD-IPPO+DAgger(K=5) for task category under εsucc =
εtrack = 0.1.

Action Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Dust (2) 100.00 86.91 100.00 49.94 100.00 48.37
Empty (5) 99.04 73.20 87.13 36.62 96.61 61.96
Put out (2) 98.22 71.89 100.00 76.43 93.63 42.40
Pour in some (5) 100.00 72.31 – – – –
Skim off (1) 98.78 71.59 – – 77.58 45.71
Smear (1) 99.70 76.69 – – – –

Average 99.38 74.59 92.85 48.43 94.79 53.71
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Table 15: Detailed Metrics of BiDexHD-IPPO+DAgger(K=5) for each task category under εsucc =
εtrack = 0.075.

Action Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Dust (2) 99.64 75.79 97.06 22.34 96.97 28.81
Empty (5) 97.26 63.39 61.11 10.62 96.59 48.16
Put out (2) 94.44 60.38 100.00 61.64 62.50 20.29
Pour in some (5) 100.00 68.38 – – – –
Skim off (1) 98.53 60.74 – – 79.17 37.23
Smear (1) 99.40 67.15 – – – –

Average 98.27 66.19 77.74 24.56 88.11 37.62

Table 16: Detailed Metrics of BiDexHD-IPPO+DAgger(K=5) for each task category under εsucc =
εtrack = 0.05.

Action Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Dust (2) 97.51 58.09 52.38 5.22 84.62 14.20
Empty (5) 94.52 50.47 27.78 6.65 88.89 21.71
Put out (2) 93.05 41.78 100.00 36.75 56.25 10.49
Pour in some (5) 100.00 59.37 – – – –
Skim off (1) 98.75 42.11 – – 69.39 13.94
Smear (1) 97.44 50.18 – – – –

Average 96.87 52.58 49.30 13.02 79.56 17.19

Table 17: Detailed Metrics of BiDexHD-IPPO+DAgger(K=2) for each task category under εsucc =
εtrack = 0.1.

Action Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Dust (2) 99.81 86.47 98.33 48.19 99.79 52.57
Empty (5) 98.42 73.13 88.54 36.51 97.30 55.76
Put out (2) 98.37 70.56 100.00 79.25 91.41 39.62
Pour in some (5) 98.47 74.59 – – – –
Skim off (1) 98.55 70.32 – – 74.87 40.77
Smear (1) 100.00 77.14 – – – –

Average 98.71 75.01 93.26 48.60 94.38 50.39
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Table 18: Detailed Metrics of BiDexHD-IPPO+DAgger(K=1) for each task category under εsucc =
εtrack = 0.1.

Action Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Dust (2) 99.89 85.90 99.19 45.88 100.00 47.51
Empty (5) 98.55 73.04 86.13 39.56 98.44 59.65
Put out (2) 97.90 72.42 100.00 75.80 90.91 38.03
Pour in some (5) 98.78 74.90 – – – –
Skim off (1) 98.94 71.45 – – 72.65 40.66
Smear (1) 99.87 78.54 – – – –

Average 98.81 75.40 92.11 49.02 94.67 51.00

Table 19: Detailed Metrics of BiDexHD-IPPO+DAgger(K=0) for each task category under εsucc =
εtrack = 0.1.

Action Train
r1(%)

Train
r2(%)

Test Comb
r1(%)

Test Comb
r2(%)

Test New
r1(%)

Test New
r2(%)

Dust (2) 100.00 86.27 98.21 44.53 98.72 42.01
Empty (5) 95.77 64.37 90.57 35.44 96.20 59.15
Put out (2) 98.08 72.92 100.00 76.74 90.84 39.50
Pour in some (5) 99.01 73.35 – – – –
Skim off (1) 98.39 69.76 – – 79.44 33.94
Smear (1) 99.70 76.63 – – – –

Average 98.01 72.09 94.36 46.64 93.96 49.27

D ADDITIONAL VISUALIZATIONS

Figures below visualize samples of bimanual human demonstrations and policy deployment of con-
structed bimanual dexterous manipulation tasks.

Figure 5: Task visualization of (pour in some, cup, teapot).
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Figure 6: Task visualization of (empty, bowl, bowl).

E COMPARISONS WITH PREVIOUS WORK

PGDM Dasari et al. (2023) plans with given pre-grasp pose and trains policies to track the human
trajectories from object trajectories via reinforcement learning. Although the methodology shows
some similarity to BiDexHD and diverse single-hand manipulation tasks are also addressed, there
are significant differences between PGDM and BiDexHD:

• Stage Division. PGDM divides the task into distinct stages: planning a pre-grasp pose
(reaching stage) and learning to grasp and move through reinforcement learning (grasping
and moving stages). Their planning-based reaching stage is limited to performing hand-
reaching behaviors, while our BiDexHD can perform general, contact-rich behaviors in
the RL-based alignment stage. BiDexHD employs unified reinforcement learning, start-
ing with aligning both hands and objects to a ready state (alignment stage), followed by
trajectory tracking (tracking stage). This design allows BiDexHD to flexibly learn diverse
skills like twisting and pushing, going beyond simple reaching and grasping. Once both
hands securely hold the objects, they maintain their relative states and learn to track desired
poses with ease. Our design properly strikes a balance between policy quality and training
difficulty.

• Data requirement. PGDM relies on human-annotated pre-grasp poses in the TCDM bench-
mark for planning. BiDexHD uses RL to learn to align the simulation with the datasets
without extra annotations, enhancing its scalability.

• Application Scope. PGDM primarily focuses on single Adroit Hand grasping in Mujoco
simulations, while BiDexHD extends to more complex bimanual arm-hand systems and
diverse manipulation tasks in highly parallelized IsaacGym simulations.

Dexcap Wang et al. (2024a) proposes a novel motion capture and vision-based data collection sys-
tem for bimanual task learning via imitation. It is worth noting that data collected by Dexcap alone
is insufficient to derive feasible policies. Further human-in-the-loop finetuning is necessary to in-
corporate more kinematics and dynamics. In contrast, BiDexHD uses online reinforcement learning
with a general reward function to learn diverse bimanual skills from object motion capture data
through trial and error, without additional fine-tuning.
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① ②

③ ④
A B

C

D

Figure 7: The alignment stage of (empty, teapot, plate) task. We target to align the state described
in the 4th frame with the initial state of the demonstrated trajectory. During the alignment stage in
BiDexHD, the right hand is supposed to learn to approach, grasp, re-orient, and lift the teapot and the
left hand needs to learn to approach and push the plate via reinforcement learning. Object trajectory
tracking starts only after the simulation-dataset alignment has been successfully completed, and no
additional trajectory information is provided before this in the dataset. Therefore, it is hard to realize
the intensive hand-object interaction only through planning-based methods like PGDM Dasari et al.
(2023).
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