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ABSTRACT

Link recommendation algorithms significantly shape online social networks, in-
fluencing both their structural evolution and critical processes such as informa-
tion and behavior spread. This paper investigates how these algorithms affect
simple and complex contagion processes by modeling recommendations as addi-
tional network growth mechanisms. We introduce a synthetic network model that
integrates preferential attachment, triadic closure, and choice homophily, then ex-
tend it with various link recommenders, including heuristics and graph neural net-
works (GNNs). Our findings show that while simple contagions exhibit relatively
modest shifts under most recommenders, complex contagions are highly sensitive
to clustering- and homophily-based recommendations, thriving at moderate rec-
ommendation strengths but sharply diminishing under excessive recommendation
strength. These results underscore the nuanced interplay between network struc-
ture, recommendation strength, and contagion dynamics, highlighting the impor-
tance of incorporating social contagions into the design of link recommendation
algorithms.

1 INTRODUCTION

The access to information and the ability to share information and behaviors are central functions of
online social networks (Easley & Kleinberg, 2010; Myers et al., 2012; Rogers et al., 2008; Centola,
2010). The dynamical processes describing how information and behaviors spread online are often
referred to as social contagion (Centola & Macy, 2007; Granovetter, 1978). Similar to contagious
diseases, simple contagions describe the diffusion of information through a network, often requiring
just a single exposure to an infected source (Kempe et al., 2003). In contrast, complex contagions
involve the propagation of behaviors, movements, and social norms, typically requiring multiple
exposures due to social reinforcement (Centola & Macy, 2007).

Understanding these processes is key to studying how novel information, misinformation, and social
movements spread, as well as how collective behavior emerges. (Bakshy et al., 2012; Vosoughi et al.,
2018; González-Bailón et al., 2011; Fink et al., 2016; Mønsted et al., 2017; Centola, 2010). Like
many dynamic processes on networks, the topology of the underlying network fundamentally shapes
how behavior and information propagate online. Simple contagions leverage weak ties (Bakshy
et al., 2012; Granovetter, 1973) and hubs (Cencetti et al., 2023; Nematzadeh et al., 2014) to spread
rapidly, while complex contagions require local clustering and wide bridges for sufficient social
reinforcement (Centola & Macy, 2007; Guilbeault et al., 2018; Guilbeault & Centola, 2021).

It has been argued that online social networks increasingly favor mechanisms that promote simple
contagions, optimizing for rapid information spread through weak ties and hubs, while undermin-
ing the spread of complex contagions, such as social norms and collective actions (Centola, 2018).
While this argument is a matter of debate, platform design should account for both types of conta-
gion to foster diverse and meaningful social dynamics. One increasingly influential aspect of online
social network design is the use of algorithmic curation (Lazer, 2015). With advancements in ma-
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chine learning, recommender systems have become a powerful tool for curating both content and
connections on social platforms and therefore raise concerns about their impact on social dynamics
(Pappalardo et al., 2024). Among these, link recommenders have been shown to induce profound
structural changes in online social networks. For example, LinkedIn’s weak-tie recommendations
were shown to improve job market outcomes (Rajkumar et al., 2022), while Twitter’s “Who to Fol-
low” algorithm increased clustering and amplified the popularity of already well-connected users
(Su et al., 2016). Synthetic studies further show that link recommenders can drive inequality (Espı́n-
Noboa et al., 2022) or polarization (Santos et al., 2021), underscoring their potential impact on
network evolution and dynamics.

This raises a key question: How do link recommendations influence social contagion? Since simple
and complex contagions thrive in different network structures, it is crucial to examine how link
recommenders reshape these structures. This involves comparing their effects to counterfactual
scenarios, such as organic growth or varying recommendation strengths. However, existing studies
and methodologies often fall short in fulfilling these requirements, limiting their ability to provide
comprehensive insights.

Observational studies, for instance, can leverage quasi-experimental settings, such as examining net-
work measures before and after the introduction of link recommenders (Su et al., 2016). However,
these approaches are constrained by their reliance on data from a single network and the availabil-
ity of suitable quasi-experiments, making it difficult to generalize findings across diverse network
structures. Experimental studies (Su et al., 2020; Rajkumar et al., 2022) offer greater control and
flexibility but face challenges in addressing networked interference, which complicates causal infer-
ence (Gui et al., 2015; Zhang et al., 2023) and rely on corporate collaboration, limiting their feasi-
bility. Synthetic experiments offer an appealing alternative, allowing researchers to systematically
test how different link recommendation algorithms reshape network structures under various con-
ditions. However, many existing synthetic studies adopt a narrow set of initial network topologies,
limiting their applicability (Espı́n-Noboa et al., 2022; Zhang et al., 2023; Stoica et al., 2018). They
also frequently overlook counterfactual scenarios, such as comparing outcomes to organic growth
or assessing varying recommendation strengths.

Contributions. In this paper, we address these challenges by:

1. Proposing a versatile synthetic network model that can generate a wide range of network
topologies through three main growth mechanisms: (i) preferential attachment, (ii) triadic
closure, and (iii) choice homophily.

2. Modeling link recommendations as an additional growth mechanism within the net-
work, enabling us to systematically vary the strength of recommendations relative to or-
ganic growth.

3. Incorporating feature-based algorithms, specifically Graph Neural Networks (GNNs),
to capture homophily-based recommendations, and comparing them with simpler heuristic
algorithms.

4. Analyzing how simple and complex contagions evolve under different network structures,
recommendation algorithms, and recommendation strengths, to better understand the inter-
play between network topology, recommendation mechanisms, and contagion dynamics.

Our findings highlight that link recommendation algorithms can substantially alter both simple and
complex contagion dynamics, with complex contagions being particularly sensitive to scenarios
involving strong clustering or homophily. These results underscore the importance of tailoring rec-
ommendation strategies to network structures and contagion types, and they emphasize the need for
more nuanced models in studying algorithmic interventions in social networks.

2 RELATED WORK

Impact of Link Recommendation on Social Networks. A widely used synthetic network model
for studying the effects of link recommendations is the DPAH model (Espı́n-Noboa et al., 2022). The
model incorporates preferential attachment for scale-free degree distributions and supports varying
levels of homophily. Once the model is configured, new links are added through various link rec-
ommenders. To isolate the effects of link recommendations from changes in network density, the
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model removes an existing link whenever a new node forms a connection, effectively maintaining
a fixed network density. Using this approach Santos et al. (2021) found that link recommenders
increase levels of affective polarization across different settings, while Ferrara et al. (2022) found
significant effects on the network topology, including amplified popularity bias as well as minority
group visibility disparities (Espı́n-Noboa et al., 2022; Ferrara et al., 2022). However, the model is
limited to comparing networks entirely rewired by recommenders to their initial configurations or
to networks generated by different recommenders. It does not support comparisons with organic
growth or varying recommendation strengths. While the model offers some flexibility in configur-
ing preferential attachment and homophily, it cannot generalize to other network topologies, such as
clustered networks.

An improvement is the work of Zhang et al. (2023), which extends a synthetic clustered network
model (Jackson & Rogers, 2007) to alternate between recommendation-driven and organic growth
phases. This approach enables counterfactual analysis, allowing the estimation of direct and indirect
causal effects of link recommendations. However, their reliance on a single network model limits the
generalizability of their findings to networks with varying structural characteristics. Additionally,
recommendations are modeled as fixed phases of algorithmic intervention, constraining the timing
of recommendation-driven and organic growth.

Stoica et al. (2018) also compare the impact of link recommendation algorithms to organic growth,
showing that recommendation systems significantly amplify demographic disparities—such as the
underrepresentation of women in top social hierarchies—beyond what organic growth alone pro-
duces. Their model introduces a probability parameter, p, that determines whether a given growth
step is organic or recommendation-driven. Organic growth occurs when a new node is added to
the network and connects to existing nodes based on preferential attachment and homophily. In
contrast, during recommendation-driven growth (1− p), a randomly selected existing node forms a
new edge with another existing node based on the recommender’s algorithm and the incoming node
is discarded. This approach neglects organic growth among existing nodes, reducing the model’s
flexibility in capturing interactions between organic and recommendation-driven dynamics. Merg-
ing common network growth mechanisms—such as homophily and preferential attachment (Stoica
et al., 2018; Espı́n-Noboa et al., 2022) as well as clustering (Zhang et al., 2023) - into a unified model
that accounts for the interplay between organic and recommendation-driven dynamics represents a
critical gap in the existing literature.

Link Recommendation and Link Prediction Link recommendation methods often build upon
models for link prediction, which estimate the likelihood of connections forming between pairs
of nodes (Liben-Nowell & Kleinberg, 2003; Li et al., 2017). Among these, graph neural networks
(GNNs) have gained prominence due to their ability to process relational data efficiently while incor-
porating both structural and feature-based information (Zhang & Chen, 2018). As GNN-based meth-
ods achieve higher performance and are increasingly adopted in real-world applications (Borisyuk
et al., 2024), research has begun to explore their implications for fairness (Li et al., 2022) and biases
(Wang & Derr, 2022; Subramonian et al., 2024). However, their impact on the structure and dynam-
ics of social networks remains unclear. A key limitation is the lack of synthetic network models that
integrate node features and enable the evaluation of feature-driven algorithms.

3 METHODOLOGY

3.1 NETWORK GROWTH MODEL

Understanding how networks evolve requires models that capture their fundamental growth mecha-
nisms. A key distinction is whether growth occurs through the addition of nodes (Barabási & Albert,
1999) or through the addition of edges among existing nodes (Leskovec et al., 2007). While both
processes shape online social networks, we focus on edge formation among existing nodes.

Our model operates on a set of n nodes N , fixed over time, with new edges forming over discrete
time steps t ∈ {1, 2, . . . , T}. Let Et denote the set of edges at time t. For simplicity, we consider
undirected graphs, but the model can be extended to directed graphs. Accordingly, At ∈ {0, 1}n×n

denotes the symmetric and unweighted adjacency matrix corresponding to graph Gt(N , Et).
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New connections are formed through three distinct mechanisms: (1) Preferential attachment
(Barabási & Albert, 1999), where nodes connect to others proportional to their degree; (2) Tri-
adic closure (Newman, 2001; Bianconi et al., 2014; Kossinets & Watts, 2009), which captures the
tendency of nodes to connect with the neighbors of their neighbors; and (3) Choice homophily
(McPherson et al., 2001; Kossinets & Watts, 2009; Currarini et al., 2016), where nodes preferen-
tially connect with others sharing similar characteristics.

Instead of using discrete types or group memberships to represent homophily (Espı́n-Noboa et al.,
2022; Stoica et al., 2018), we model it as similarity across multiple features. This approach is more
compatible with integrating GNNs.

First, each node is assigned a group membership z, analogous to block membership in stochastic
block models. The set of groups K is fixed, and group membership does not change over time,
zi ∈ {1, 2, . . . ,K} for all i ∈ N . While we assume equal group sizes for simplicity, the model
can accommodate arbitrary group size distributions, including majority-minority dynamics (Espı́n-
Noboa et al., 2022).

To generate node features, we borrow ideas from recent advances in benchmarking GNNs with syn-
thetic networks (Tsitsulin et al., 2022; Palowitch et al., 2022). Specifically, group memberships z
are used to create features through Gaussian sampling and covariance structure modeling. Each
group k is assigned a center vector µk, sampled from a multivariate normal distribution with a vari-
ance parameter σ2

c , and a covariance matrix Σk, sampled from an inverse Wishart distribution with
parameters ensuring stability and positive definiteness. Node feature vectors xi are then generated
by sampling from a multivariate normal distribution with the group-specific µk and Σk. This results
in a feature matrix X ∈ Rn×d, where n is the number of nodes and d is the feature dimension.

While Palowitch et al. (2022) use this process to assign features to nodes in a stochastic block
model, we invert this process. We first assign nodes to groups, then generate features based on these
group memberships. The features are subsequently used to model choice homophily and guide the
evolution of the underlying network. For details on the feature generation process, see A.1.

The probability of forming an edge between two unconnected nodes u and v is determined by one
of the three mechanisms:

1. Preferential Attachment (PA): The probability that node u connects to node v is propor-
tional to the relative degree of node v:

pPA(u, v) ∝ kv, (1)

where kv denotes the degree of node v. If all the degrees of unconnected nodes v are zero,
we set pPA(u, v) =

1
|N | for all v.

2. Triadic Closure (TC): The probability that node u connects to node v depends on the
number of their shared neighbors:

pTC(u, v) ∝ |N(u) ∩N(v)|, (2)

where N(u) denotes the neighbors of node u. If N(u) is empty, we set pTC(u, v) =
1

|N |
for all v.

3. Choice Homophily (HP): To model choice homophily, we use the generated node features.
The feature matrix X is normalized column-wise to range between zero and one, and
scaled by

√
d, where d is the feature dimensionality, to standardize their contributions.

Using these normalized features, we compute a pairwise Euclidean distance matrix D,
with Duv = ∥Xu −Xv∥2 The probability of forming an edge between u and v decreases
exponentially with distance, parameterized by a temperature constant T :

pHP (u, v) ∝ exp

(
−Duv

T

)
. (3)

At each time step, a node u is chosen uniformly at random. For u, the probability of forming a new
edge with each unconnected node v (i.e., where Auv = 0 and u ̸= v) is calculated using one of
the three mechanisms: pPA(u, v), pTC(u, v), or pHP (u, v). The mechanism is chosen probabilis-
tically, with weights α, β, and γ for preferential attachment, triadic closure, and choice homophily,
respectively, where α+ β + γ = 1.
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A node v is then sampled from this distribution to form an undirected edge with u. This process
repeats until the desired number of edges is added.

3.2 LINK RECOMMENDATIONS

Given a graph Gt with N nodes and Et undirected edges evolved until t, and a respective feature
vector X ∈ Rd×n, we aim to design a link recommender that scores the likelihood of forming a
link between an unconnected node pair (u, v), where Auv = 0 and u ̸= v. Let Γ(u, v) denote this
function. We then define the link recommendation probability prc(u, v) as:

prc(u, v) =
Γ(u, v)∑

v∈Auv=0 Γ(u, v)
(4)

We incorporate the link recommender as an additional growth mechanism in our model, with its
influence controlled by a parameter θ. At each timestep, for a given candidate node u, unconnected
nodes v are scored according to one of the following probability functions:

pPA(u, v), pTC(u, v), pHP (u, v), or prc(u, v).

These functions are selected probabilistically, with weights α(1 − θ), β(1 − θ), γ(1 − θ), and θ,
respectively.

When a recommendation mechanism is chosen (based on θ), instead of sampling a single edge, the
top j edges from the candidate set are selected based on their probabilities. These selected edges are
then assigned an equal probability of 1

j , ensuring a fair distribution of edge formation across the top
recommendations. In this work we consider j = 3, mimicking the limited recommendations shown
to users (Santos et al., 2021; Espı́n-Noboa et al., 2022; Su et al., 2016)

3.3 SOCIAL CONTAGION

To evaluate changes of the network structure, we consider different models of social contagion: a
simple contagion process, modeled using an independent cascade-like structure (Kempe et al., 2003;
Goldenberg et al., 2001a;b), and a complex contagion process, implemented through a threshold-
based mechanism (Granovetter, 1978; Centola & Macy, 2007). Both models work in discrete time
steps t ∈ [1, 2, . . . , tf ], where tf denotes the final timestep when no new nodes are infected. We
monitor the size and rate of contagion for both models. Let n denote the number of nodes in the
network and I(t) the number of infected nodes at time t. The contagion size CS is then defined as
CS =

I(tf )
N and the contagion rate CR as CR =

I(tf )
tf

.

In the simple contagion model, each infected node has a fixed probability p of infecting its neighbors
upon contact. The model operates in discrete time steps, where each infected node independently
attempts to spread the contagion to its adjacent nodes, with the process repeating until no further
infections occur. Each edge is evaluated once, therefore each infected node has a single chance to
infect a specific neighbor.

The complex contagion model employs a threshold-based approach to simulate scenarios where in-
dividuals require multiple exposures before adopting the contagion. Each node is assigned a thresh-
old value τ , drawn from a truncated normal distribution, N (λ, σ2; a, b). The threshold represents
the fraction of neighbors who must be infected/adopted before a node adopts the contagion. The
term adoption more adequately describes a complex contagion, but to align the terminology with the
simple contagion, we use infection and infected.

Specifically, a node is infected if the fraction of neighbors in the infected state is larger than the
node’s threshold. Let |Iit| denote the number of infected neighbors of node i at time t and |Ni| the
number of neighbors of i. The node i becomes infected if |Iit

|Ni| > τ . The process is controlled by
the mean threshold λ.
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4 EXPERIMENTS

4.1 LINK PREDICTION ALGORITHMS

Below, we describe the different variations for the link scoring function Γ(u, v). Let N(u) the set of
neighbors of node u. For algorithms that don’t require any learning, the implementation of Γ(u, v)
is straightforward:

1. Adamic Adar (AA): The Adamic-Adar index assigns a similarity score to each node pair
by summing the inverse logarithm of each shared neighbor’s degree (Adamic & Adar,
2003). This method gives greater weight to shared neighbors with fewer connections, mak-
ing it especially useful for identifying links where shared neighbors are uncommon but
indicative of a strong connection.

ΓAA(u, v) =
∑

z∈N(u)∩N(v)

1

log |N(v)|
(5)

2. Preferential Attachment (PA): The preferential attachment score is based on the idea
that nodes with higher degrees are more likely to attract new links (Barabási et al., 2002;
Newman, 2001; Liben-Nowell & Kleinberg, 2003). For a given pair of nodes, this score is
computed as the product of their degrees, representing the tendency for high-degree nodes
to form new links due to their popularity. This approach is frequently used in modeling
network growth patterns where ”rich get richer” dynamics are present (Stoica et al., 2018).

ΓPA(u, v) = |N(u)||N(v)| (6)

For the learning algorithms, we consider graph neural networks (GNN) for link prediction. Specif-
ically, the link scoring function Γ(u, v) is defined as the inner product of the node representations
obtained through a GNN-based encoder. This scoring function captures the relationship strength
between two nodes based on their learned representations.

ΓGNN (u, v) = (hl
u)

ThL
v (7)

where hL
u is the final layer representation of node u. In this work we consider graph convolutional

networks (Kipf & Welling, 2017) as a simple yet efficient GNN architecture. However our model
could be extended with any GNN architecture.

1. Graph Convolutional Network (GCN): The GCN aggregates features from neighboring
nodes through a layer-wise propagation rule that incorporates both the adjacency matrix Ã
and a degree matrix D̃. The propagation is given by:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
where H(l) represents the node feature matrix at layer l, W (l) is the weight matrix for layer
l, and σ is a non-linear activation function. The GCN thus learns node representations by
considering the structure of the graph, enabling the model to capture local connectivity
patterns in the feature space.

We generate networks using different combinations of α, β, and γ. Each network consists of n =
500 nodes, evenly split into |K| = 4 groups, with each node having d = 50 features. The network
evolves until ttrain = 2000, resulting in Gtrain.

We train the GCN model on Gtrain using all positive edges, sampling a new set of negative edges
each epoch at a 1:8 positive-to-negative ratio. Training runs for 60 epochs with a learning rate of
0.001. After training, we predict scores for all potential future edges to model prc, without further
retraining in subsequent evaluation steps. This process is repeated 5 times for each combination of
α, β, and γ.
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4.2 RECOMMENDATIONS

After training, we evolve the network for 4000 additional steps, incorporating potential recommen-
dations with strengths θ ∈ (0, 0.5, 1). Every 50 steps, we evaluate the network via contagion pro-
cesses, running 100 simple and complex contagion simulations and reporting the mean infection
size and rate.

For simple contagion, we use an infection probability of p = 0.15, selecting a single infected node at
random. For complex contagion, node thresholds are sampled from a truncated normal distribution
with mean λ = 0.23 and standard deviation σ = 0.1, with 1% of nodes initially infected. At
each evaluation step, both the initial infections and thresholds are resampled for all 100 contagion
processes.

5 RESULTS

Our experiments show that the introduction of link recommendations can have significant impacts
on the size and rate of both simple and complex contagion processes. However, the effects vary
between simple and complex contagions, between recommender algorithms and their strength and
across different network structures

5.1 STRONG HOMOPHILOUS SCENARIO

First, we examine the effects of link recommendations in a homophilous network GHP with γ = 1,
meaning the network evolves solely through choice homophily. Figure 1 shows that in such a setting,
strong recommendations (θ = 1) significantly reduce simple contagion size, particularly for AA
and GCN. However, weakening recommendation strength (θ = 0.5) mitigates this effect, making
contagion dynamics resemble those under organic growth.

Importance of modeling organic growth. Figure 1 highlights the necessity of organic growth as a
baseline for evaluating recommendation effects over time. Under organic growth, simple contagions
start with almost no spread at t = 0 but expand to reach nearly all nodes by t = 4000. Without this
baseline, one might mistakenly conclude that PA-driven recommendations enhance contagion size
compared to AA and GCN. However, relative to organic growth, all recommendation algorithms
actually reduce contagion size, with PA having the smallest negative impact.

Effects on Complex Contagion. For complex contagions, organic growth initially increases conta-
gion size before it declines over time. Recommendations significantly alter this trajectory, even at
moderate strength (θ = 0.5):

• AA: At θ = 0.5, AA increases contagion size, likely by enhancing local clustering, which
benefits complex contagions. However, at θ = 1, this effect reverses, significantly re-
ducing contagion size. This suggests that high initial homophily combined with excessive
clustering dampens complex contagion spread.

• GCN: At θ = 0.5, GCN slightly boosts contagion size, but at θ = 1, it strongly suppresses
it. Similar to AA, the interaction between initial homophily and GCN’s recommendations
has a pronounced negative impact as θ increases.

Implications of Recommendation Strength. This analysis highlights the importance of modeling
recommendation strength. Without varying θ, one might incorrectly generalize that AA and GCN
recommendations harm complex contagions at θ = 1. However, reducing θ = 0.5 alters the effects
of these algorithms, shifting their implications for contagion processes.

5.2 VARYING NETWORK TOPOLOGY

To study the effect of link recommendations on social contagion, it is crucial to consider networks
with different topologies. In this analysis, we vary triadic closure levels β and set γ = 1 − β. For
each combination of β, algorithm, and recommendation strength θ, we track the average difference
in contagion size relative to organic growth, denoted as ∆CS. Figure 2 illustrates how ∆CS varies
for AA and GCN across different β values.
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Figure 1: The impact of link recommendations on simple and complex contagion for a strong ho-
mophilous graph with γ = 1. The first row show the result for simple and complex contagions with
recommendations strength θ = 0.5. For the second row θ = 1.0. The organic growth (θ = 0) is
included in all plots as a reference point. Error bars represent standard deviations calculated across
5 runs of the same parameters.

AA. Similar to the findings of the strong homophily scenario, there seems to be interplay between
initial levels clustering and additional clustering. While for moderate recommendation strengths
(θ = 0.5), ∆CS is generally positive across all levels of β, this changes for θ = 1. Specifically,
for moderate triadic closure (β = 0.5), AA has strongly positive effects on ∆CS. However, for
extreme clustering (β = 0.95) or strong homophily (β = 0.0), ∆CS becomes mostly negative. In
strong homophily networks (β = 0.0), ∆CS tends towards zero over time, while in highly clustered
networks ∆CS remains negative for longer. This implies that for moderate clustering, strong in-
creases in clustering (θ = 1) enhance complex contagion, while in highly clustered networks, such
increases can actually reduce the spread of complex contagion compared to organic growth.

GCN. For moderate recommendation strength, GCN has minimal effects on ∆CS across most β
values, with differences remaining close to zero. Even at θ = 1, GCN’s impact remains minor for
most β values. However, for moderate clustering, GCN shows a moderate positive effect on ∆CS.
As previously observed, in strong homophily networks, GCN’s impact becomes highly negative.

Our results show that the effects of link recommendations vary significantly across network topolo-
gies, recommender algorithms, and recommendation strength relative to organic growth.

For simple contagions, recommendation algorithms generally have only minor effects on conta-
gion size as the network evolves. In contrast, complex contagions exhibit much stronger effects,
particularly for algorithms that enhance clustering (AA) or rely on graph neural networks (GCN).

Recommendation strength also plays a crucial role. While stronger recommendations typically
amplify differences, in some cases, their effects reverse. In highly clustered networks, moderate rec-
ommendation strength can enhance complex contagions, but strong recommendations through AA
can suppress them. Complex contagions typically thrive in clustered networks (Centola & Macy,
2007), yet excessive clustering appears to hinder their spread. Similarly, in strong homophily net-
works, GCN-based recommendations—which effectively capture homophily (Zhang & Chen, 2018;
Palowitch et al., 2022)—initially boost contagion size at moderate strengths but strongly suppress it
at higher strengths.
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(a) Adamic Adar (b) GCN

Figure 2: The average contagion size difference ∆CS for varying levels of β and γ = 1 − β. The
left column shows the differences for the Adamic Adar (AA) recommender, the right for GCN. The
first row shows recommendations strength θ = 0.5. For the second row θ = 1.0.

These strong and varied effects across algorithms and network topologies highlight the importance
of considering social contagion in platform design. However, deriving clear normative implica-
tions is challenging. Simple contagions can drive both the spread of valuable information (Bakshy
et al., 2012) and misinformation (Vosoughi et al., 2018), making their amplification both benefi-
cial and problematic. Similarly, while complex contagions are often viewed positively, they can
also drive harmful behaviors (e.g., radicalization or violent movements). Given concerns that on-
line platforms increasingly favor simple contagions (Centola, 2018), our findings underscore the
need to carefully assess how recommendations affect complex contagions across different network
structures.

6 LIMITATIONS

Synthetic and Real World Data While our synthetic experiments allow for systematic exploration
of underlying mechanisms, they abstract away some complexities of online social networks. Validat-
ing our findings with real-world data remains a challenge due to the difficulty of directly observing
social contagion processes and the limited availability of comprehensive datasets. A promising alter-
native is semi-synthetic validation, where real-world networks with features serve as the foundation
for simulating network growth and recommendation processes (Santos et al., 2021; Wang & Klein-
berg, 2024). This hybrid approach could help bridge the gap between fully synthetic models and
empirical validation. Future work should also explore scaling these experiments to larger, more
realistic network sizes.

Evaluating Social Contagion. Our study relies on extensive simulations of simple and complex
contagions across various parameter settings. However, as network size and density increase, these
simulations become computationally expensive, raising the open question of how to efficiently eval-
uate contagion processes in large-scale datasets. Additionally, integrating the evaluation of simple
and complex contagions into a unified measure remains an open challenge.
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Modeling Recommendation Mechanisms We use simplified recommendation mechanisms to
model link recommendations, which provide valuable insights but lack the complexity of real-world
systems. Future work should explore dynamic, adaptive GNN-based recommenders that evolve
with the network over time, incorporating retraining mechanisms to study emerging biases as social
networks and algorithms coevolve (Pedreschi et al., 2023).

Moreover, future studies should consider diverse recommendation acceptance policies, where nodes
selectively accept or reject recommendations based on different criteria. This could lead to varied
network dynamics and help construct more realistic synthetic models for understanding user behav-
ior in recommendation-driven systems.

7 CONCLUSION

This work examined how link recommendation algorithms influence social contagion across var-
ious network topologies. Our findings reveal that especially complex contagions are sensitive to
link recommendations. Recommendation strategies that enhance clustering or leverage graph neural
networks can substantially shape the spread of complex contagions. Notably, increasing recommen-
dation strength does not always amplify contagion; its effects critically depend on network structure.
In highly clustered or strong homophily networks, moderate recommendation strengths may facili-
tate contagion spread, whereas excessive clustering from stronger recommendations can hinder it.

These insights highlight the importance of incorporating social contagion dynamics into platform
design. Recommendation systems influence both beneficial (e.g., novel idea dissemination) and
harmful (e.g., misinformation, radicalization) contagions, requiring careful calibration. Our find-
ings demonstrate that recommendation design should account for more than just the algorithms,
but also consider the underlying network structure, the composition of growth mechanisms, and
the extent to which users rely on recommendations when forming new connections. Considering
these dimensions can help platforms better understand the broader impact of their recommendation
systems and represents a crucial step towards informed and responsible design choices.

In summary, this work advances the study of AI-driven social dynamics by illustrating the nuanced
interplay between recommendation algorithms and social contagion. While grounded in synthetic
simulations, our findings raise important questions about real-world systems. Future work will
focus on validating these insights through semi-synthetic experiments using real-world networks,
and on integrating more realistic recommender behaviors and user response models. Ultimately, this
work lays the groundwork for building recommendation systems that balance connectivity with the
mitigation of harmful contagion effects.
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Albert-László Barabási and Réka Albert. Emergence of Scaling in Random Networks. Science, 286
(5439):509–512, October 1999. doi: 10.1126/science.286.5439.509. URL https://www.
science.org/doi/abs/10.1126/science.286.5439.509. Publisher: American
Association for the Advancement of Science.

Ginestra Bianconi, Richard K. Darst, Jacopo Iacovacci, and Santo Fortunato. Triadic closure as
a basic generating mechanism of communities in complex networks. Physical Review E, 90(4):
042806, October 2014. doi: 10.1103/PhysRevE.90.042806. URL https://link.aps.org/
doi/10.1103/PhysRevE.90.042806. Publisher: American Physical Society.

Fedor Borisyuk, Shihai He, Yunbo Ouyang, Morteza Ramezani, Peng Du, Xiaochen Hou, Cheng-
ming Jiang, Nitin Pasumarthy, Priya Bannur, Birjodh Tiwana, Ping Liu, Siddharth Dangi, Daqi
Sun, Zhoutao Pei, Xiao Shi, Sirou Zhu, Qianqi Shen, Kuang-Hsuan Lee, David Stein, Baolei
Li, Haichao Wei, Amol Ghoting, and Souvik Ghosh. LiGNN: Graph Neural Networks at
LinkedIn. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD ’24, pp. 4793–4803, New York, NY, USA, August 2024. Associa-
tion for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671566. URL
https://dl.acm.org/doi/10.1145/3637528.3671566.

Giulia Cencetti, Diego Andrés Contreras, Marco Mancastroppa, and Alain Barrat. Distinguish-
ing Simple and Complex Contagion Processes on Networks. Physical Review Letters, 130(24):
247401, June 2023. doi: 10.1103/PhysRevLett.130.247401. URL https://link.aps.org/
doi/10.1103/PhysRevLett.130.247401. Publisher: American Physical Society.

Damon Centola. The Spread of Behavior in an Online Social Network Experiment. Science, 329
(5996):1194–1197, September 2010. doi: 10.1126/science.1185231. URL https://www.
science.org/doi/full/10.1126/science.1185231. Publisher: American Associ-
ation for the Advancement of Science.

Damon Centola. How Behavior Spreads: The Science of Complex Contagions. In How Behav-
ior Spreads. Princeton University Press, June 2018. ISBN 978-1-4008-9009-5. doi: 10.23943/
9781400890095. URL https://www.degruyter.com/document/doi/10.23943/
9781400890095/html.

Damon Centola and Michael Macy. Complex Contagions and the Weakness of Long Ties. American
Journal of Sociology, 113(3):702–734, November 2007. ISSN 0002-9602. doi: 10.1086/521848.
URL https://www.journals.uchicago.edu/doi/abs/10.1086/521848. Pub-
lisher: The University of Chicago Press.

Sergio Currarini, Jesse Matheson, and Fernando Vega-Redondo. A simple model of homophily
in social networks. European Economic Review, 90:18–39, November 2016. ISSN 0014-
2921. doi: 10.1016/j.euroecorev.2016.03.011. URL https://www.sciencedirect.com/
science/article/pii/S0014292116300642.

David Easley and Jon Kleinberg. Networks, Crowds, and Markets. Cambridge Books, 2010. URL
https://ideas.repec.org//b/cup/cbooks/9780521195331.html. Publisher:
Cambridge University Press.

Lisette Espı́n-Noboa, Claudia Wagner, Markus Strohmaier, and Fariba Karimi. Inequality and
inequity in network-based ranking and recommendation algorithms. Scientific Reports, 12(1):
2012, February 2022. ISSN 2045-2322. doi: 10.1038/s41598-022-05434-1. URL https:
//www.nature.com/articles/s41598-022-05434-1. Publisher: Nature Publishing
Group.

Antonio Ferrara, Lisette Espin-Noboa, Fariba Karimi, and Claudia Wagner. Link recommendations:
Their impact on network structure and minorities. In Proceedings of the 14th ACM Web Sci-
ence Conference 2022, WebSci ’22, pp. 228–238, New York, NY, USA, June 2022. Association
for Computing Machinery. ISBN 978-1-4503-9191-7. doi: 10.1145/3501247.3531583. URL
https://dl.acm.org/doi/10.1145/3501247.3531583.

11

https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://link.aps.org/doi/10.1103/PhysRevE.90.042806
https://link.aps.org/doi/10.1103/PhysRevE.90.042806
https://dl.acm.org/doi/10.1145/3637528.3671566
https://link.aps.org/doi/10.1103/PhysRevLett.130.247401
https://link.aps.org/doi/10.1103/PhysRevLett.130.247401
https://www.science.org/doi/full/10.1126/science.1185231
https://www.science.org/doi/full/10.1126/science.1185231
https://www.degruyter.com/document/doi/10.23943/9781400890095/html
https://www.degruyter.com/document/doi/10.23943/9781400890095/html
https://www.journals.uchicago.edu/doi/abs/10.1086/521848
https://www.sciencedirect.com/science/article/pii/S0014292116300642
https://www.sciencedirect.com/science/article/pii/S0014292116300642
https://ideas.repec.org//b/cup/cbooks/9780521195331.html
https://www.nature.com/articles/s41598-022-05434-1
https://www.nature.com/articles/s41598-022-05434-1
https://dl.acm.org/doi/10.1145/3501247.3531583


Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

Clay Fink, Aurora Schmidt, Vladimir Barash, John Kelly, Christopher Cameron, and Michael Macy.
Investigating the Observability of Complex Contagion in Empirical Social Networks. Proceed-
ings of the International AAAI Conference on Web and Social Media, 10(1):121–130, 2016. ISSN
2334-0770. doi: 10.1609/icwsm.v10i1.14751. URL https://ojs.aaai.org/index.
php/ICWSM/article/view/14751. Number: 1.

Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the Network: A Complex Systems Look
at the Underlying Process of Word-of-Mouth. Marketing Letters, 12(3):211–223, August 2001a.
ISSN 1573-059X. doi: 10.1023/A:1011122126881. URL https://doi.org/10.1023/A:
1011122126881.

Jacob Goldenberg, Barak Libai, and Eitan Muller. Using Complex Systems Analysis to Ad-
vance Marketing Theory Development: Modeling Heterogeneity Effects on New Product Growth
through Stochastic Cellular Automata. 2001b.
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A APPENDIX

You may include other additional sections here.

A.1 DETAILED NODE FEATURE GENERATION PROCESS

We generate node features using the group or block memberships zi of nodes in the following steps:

Each node is assigned a group membership zi ∈ {1, . . . ,K}, defining which community it belongs
to.

Sampling Steps. 1. Group Centers: For each group k, we sample a center vector µk ∈ RD:

µk ∼ N (0, σ2
cID),

where ID is the D-dimensional identity matrix, and σ2
c controls the spread of the group centers

around the origin.

2. Covariance Matrices: For each group k, we sample a covariance matrix Σk from the inverse
Wishart distribution:

Σk ∼ W−1(ν, σ2
KID),

where σ2
K determines the spread within each cluster, and ν is chosen to ensure stability (typically

ν ≥ D + 2).

3. Node Features: For each node i in group k, we generate a feature vector xi by sampling from a
multivariate normal distribution:

xi ∼ N (µk,Σk).

Final Feature Matrix. The resulting feature matrix X ∈ RN×D, where N is the total number of
nodes, is constructed by stacking the feature vectors xi for all nodes.

A.2 ADDITIONAL RESULTS

Figure 3 shows changes in infection rates across two different network topologies. In figure 3a, the
network is generated with β = 0.5 and γ = 0.5. Here PA always decreases the average infection
size of a complex contagion, with stronger effects as the strength of recommendations increases.
In contrast AA always increases the average infection sizes of a complex contagion with stronger
effects as the strength of recommendation increases. However as we change β = 0.95 and γ = 0.05,
the initial positive effect of AA for θ = 0.5 turns strongly negative for θ = 1. PA remains strongly
negative.
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(a) α = 0 β = 0.5 and γ = 0.5. (b) α = 0, β = 0.95 and γ = 0.05.

Figure 3: The impact of link recommendations on complex contagion processes for different levels
of clustering. Figure 3a (left) corresponds to a network grown with equal parts of triadic closure
β and homophily γ. Figure 3b corresponds to a network with high clustering (β = 0.95). The
first rows shows medium recommendations strengths (θ = 0.5), the second pure recommendations
(θ = 1.0). The errorbars indicate standard deviations across 5 runs of different networks with
the same growth parameters. For mixed clustering and increase in recommendation strength can
leads to stronger positive effect in the case of AA, and stronger negative effects in the case of PA.
However for the network with high clustering, an increase in recommendation strength turns the
initial positive effect of AA from positive at θ = 0.5 to negative at θ = 1.

A.3 RESULTS FOR INFECTION RATES

If we consider the infection rate instead of the infection size, the differences between algorithms
become partly clearer. PA across all topologies generally increases the rate of infection for simple
contagions and decreases for complex contagions. For simple contagions, the effect of AA and GCN
mostly align, with expection of the strong clustering case with θ = 1, where the infection rate of AA
is significantly lower. For complex contagion AA has positive effects besides the strong clustering
case and the strong homophilous case with θ = 1. The changes of complex contagion infection rates
of the GCN recommender mostly align with the organic growth. Exceptions are for high levels of
γ. For γ = 0.75 or γ = 1, and recommendation strength θ = 1, GCN decreases infection rates
significantly. This difference is further illustrated in figure 5, which summarizes above findings.

A.4 IMPACT OF RECOMMENDATIONS ON NETWORK STRUCTURE

To understand why the impact of link recommendations on social contagions differs across network
topologies, recommender algorithms and strengths as well as simple and complex contagions, a first
step is to consider changes in the network structure. In similar fashion to figure 2, we compare the
difference in average clustering and average shortest path length across different β, γ combinations
in figure 6. Differences refer to organic growth (θ = 0). A first observation is that the differences
in graph measures are much stronger than the differences in contagion sizes might suggest. For
instance differences in average clustering are up to 0.7 high while the average shortest path length
can increase up to 2. We find that the average clustering in figure 6a increases across all β and
θ configurations for AA. The increases are stronger for θ = 1. Similarly for GCN the average
clustering increases with recommendations. However, the effects are not as strong as for AA. For
β = 0.95 the increases of clustering are the smallest, with partially negative effects.

For average shortest path length, we find that AA significantly increases the length of average short-
est paths. However these effects are only visible for recommendation strength θ = 1. Moreover,

16



Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

(a) α, β = 0, γ = 1 (b) α, β = 0.25, γ = 0.75

(c) α, β = 0.5, γ = 0.5 (d) α, β = 0.95, γ = 0.05

Figure 4: The effect of link recommendations on the rate of infection for both simple and complex
contagion processes. We consider the strong homophilous case 4a, low clustering 4b, medium
clustering 4c and strong clustering 4d.

(a) Adamic Adar (b) GCN

Figure 5: Contagion Rate differences ∆CS for varying levels of β. The first row presents differences
for θ = 0.5, the second for θ = 1.
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(a) Average Clustering (b) Average Shortest Path Length

Figure 6: Differences of graph measures for varying levels of β and γ = 1 − β. 6a left shows
the difference of average clustering and 6b differences in average shortest path length. For each
subfigure, the left column shows the differences for Adamic Adar (AA) recommender, the right for
GCN. The first row shows recommendations strength θ = 0.5. For the second row θ = 1.0.

these differences are more pronounced for the high homphily and the high clustering network. The
same holds for GCN, however there are some initial decreases in shortest path length for the highly
clustered network.
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