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ABSTRACT

Mixup is a popular data augmentation technique based on taking convex combina-
tions of pairs of examples and their labels. This simple technique has been shown
to substantially improve both the robustness and the generalization of the trained
model. However, it is not well-understood why such improvement occurs. In this
paper, we provide theoretical analysis to demonstrate how using Mixup in training
helps model robustness and generalization. For robustness, we show that minimiz-
ing the Mixup loss corresponds to approximately minimizing an upper bound of
the adversarial loss. This explains why models obtained by Mixup training ex-
hibits robustness to several kinds of adversarial attacks such as Fast Gradient Sign
Method (FGSM). For generalization, we prove that Mixup augmentation corre-
sponds to a specific type of data-adaptive regularization which reduces overfitting.
Our analysis provides new insights and a framework to understand Mixup.

1 INTRODUCTION

Mixup was introduced by Zhang et al. (2018) as a data augmentation technique. It has been em-
pirically shown to substantially improve test performance and robustness to adversarial noise of
state-of-the-art neural network architectures (Zhang et al., 2018; Lamb et al., 2019; Thulasidasan
et al., 2019; Zhang et al., 2018; Arazo et al., 2019). Despite the impressive empirical performance,
it is still not fully understood why Mixup leads to such improvement across the different aspects
mentioned above. We first provide more background about robustness and generalization properties
of deep networks and Mixup. Then we give an overview of our main contributions.

Adversarial robustness. Although neural networks have achieved remarkable success in many areas
such as natural language processing (Devlin et al., 2018) and image recognition (He et al., 2016a),
it has been observed that neural networks are very sensitive to adversarial examples — prediction
can be easily flipped by human imperceptible perturbations (Goodfellow et al., 2014; Szegedy et al.,
2013). Specifically, in Goodfellow et al. (2014), the authors use fast gradient sign method (FGSM)
to generate adversarial examples, which makes an image of panda to be classified as gibbon with
high confidence. Although various defense mechanisms have been proposed against adversarial
attacks, those mechanisms typically sacrifice test accuracy in turn for robustness (Tsipras et al.,
2018) and many of them require a significant amount of additional computation time. In contrast,
Mixup training tends to improve test accuracy and at the same time also exhibits a certain degree of
resistance to adversarial examples, such as those generated by FGSM (Lamb et al., 2019). Moreover,
the corresponding training time is relatively modest. As an illustration, we compare the robust test
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Figure 1: Illustrative examples of the impact of Mixup on robustness and generalization. (a) Adver-
sarial robustness on the SVHN data under FGSM attacks. (b) Generalization gap between test and
train loss. More details regarding the experimental setup are included in Appendix C.1, C.2.

accuracy between a model trained with Mixup and a model trained with standard empirical risk
minimization (ERM) under adversarial attacks generated by FGSM (Fig. 1a). The model trained
with Mixup loss has much better robust accuracy. Robustness of Mixup under other attacks have
also been empirically studied in Lamb et al. (2019).

Generalization. Generalization theory has been a central focus of learning theory (Vapnik, 1979;
2013; Bartlett et al., 2002; Bartlett & Mendelson, 2002; Bousquet & Elisseeff, 2002; Xu & Mannor,
2012), but it still remains a mystery for many modern deep learning algorithms (Zhang et al., 2016;
Kawaguchi et al., 2017). For Mixup, from Fig. (1b), we observe that Mixup training results in
better test performance than the standard empirical risk minimization. That is mainly due to its good
generalization property since the training errors are small for both Mixup training and empirical risk
minimization (experiments with training error results are included in the appendix). While there
have been many enlightening studies trying to establish generalization theory for modern machine
learning algorithms (Sun et al., 2015; Neyshabur et al., 2015; Hardt et al., 2016; Bartlett et al.,
2017; Kawaguchi et al., 2017; Arora et al., 2018; Neyshabur & Li, 2019), few existing studies have
illustrated the generalization behavior of Mixup training in theory.

Our contributions. In this paper, we theoretically investigate how Mixup improves both adver-
sarial robustness and generalization. We begin by relating the loss function induced by Mixup to
the standard loss with additional adaptive regularization terms. Based on the derived regulariza-
tion terms, we show that Mixup training minimizes an upper bound on the adversarial loss,which
leads to the robustness against single-step adversarial attacks. For generalization, we show how the
regularization terms can reduce over-fitting and lead to better generalization behaviors than those of
standard training. Our analyses provides insights and framework to understand the impact of Mixup.

Outline of the paper. Section 2 introduces the notations and problem setup. In Section 3, we
present our main theoretical results, including the regularization effect of Mixup and the subse-
quent analysis to show that such regularization improves adversarial robustness and generalization.
Section 4 concludes with a discussion of future work. Proofs are deferred to the Appendix.

1.1 RELATED WORK

Since its advent, Mixup training (Zhang et al., 2018) has been shown to substantially improve gen-
eralization and single-step adversarial robustness among a wide rage of tasks, on both supervised
(Lamb et al., 2019; Verma et al., 2019a; Guo et al., 2019), and semi-supervised settings (Berth-
elot et al., 2019; Verma et al., 2019b). This has motivated a recent line of work for developing a
number of variants of Mixup, including Manifold Mixup (Verma et al., 2019a), Puzzle Mix (Kim
et al., 2020), CutMix (Yun et al., 2019), Adversarial Mixup Resynthesis (Beckham et al., 2019),
and PatchUp (Faramarzi et al., 2020). However, theoretical understanding of the underlying mech-
anism of why Mixup and its variants perform well on generalization and adversarial robustness is
still limited.
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Some of the theoretical tools we use in this paper are related to Wang & Manning (2013) and Wager
et al. (2013), where the authors use second-order Taylor approximation to derive a regularized loss
function for Dropout training. This technique is then extended to drive more properties of Dropout,
including the inductive bias of Dropout (Helmbold & Long, 2015), the regularization effect in ma-
trix factorization (Mianjy et al., 2018), and the implicit regularization in neural networks (Wei et al.,
2020). This technique has been recently applied to Mixup in a parallel and independent work (Car-
ratino et al., 2020) to derive regularization terms. Compared with the results in Carratino et al.
(2020), our derived regularization enjoys a simpler form and therefore enables the subsequent anal-
ysis of adversarial robustness and generalization. We clarify the detailed differences in Section 3.

To the best of our knowledge, our paper is the first to provide a theoretical treatment to connect the
regularization, adversarial robustness, and generalization for Mixup training.

2 PRELIMINARIES

In this section, we state our notations and briefly recap the definition of Mixup.

Notations. We denote the general parameterized loss as l(θ, z), where θ ∈ Θ ⊆ Rd and z =
(x, y) is the input and output pair. We consider a training dataset S = {(x1, y1), · · · , (xn, yn)},
where xi ∈ X ⊆ Rp and yi ∈ Y ⊆ Rm are i.i.d. drawn from a joint distribution Px,y . We
further denote x̃i,j(λ) = λxi + (1 − λ)xj , ỹi,j(λ) = λyi + (1 − λ)yj for λ ∈ [0, 1] and let
z̃i,j(λ) = (x̃i,j(λ), ỹi,j(λ)). Let L(θ) = Ez∼Px,y l(θ, z) denote the standard population loss and
Lstdn (θ, S) =

∑n
i=1 l(θ, zi)/n denote the standard empirical loss. For the two distributions D1 and

D2, we use pD1 + (1− p)D2 for p ∈ (0, 1) to denote the mixture distribution such that a sample is
drawn with probabilities p and (1 − p) from D1 and D2 respectively. For a parameterized function
fθ(x), we use∇fθ(x) and∇θfθ(x) to respectively denote the gradient with respect to x and θ. For
two vectors a and b, we use cos(x, y) to denote 〈x, y〉/(‖x‖ · ‖y‖).

Mixup. Generally, for classification cases, the output yi is the embedding of the class of xi, i.e.
the one-hot encoding by taking m as the total number of classes and letting yi ∈ {0, 1}m be the
binary vector with all entries equal to zero except for the one corresponding to the class of xi. In
particular, if we take m = 1, it degenerates to the binary classification. For regression cases, yi can
be any real number/vector. The Mixup loss is defined in the following form:

Lmix
n (θ, S) =

1

n2

n∑
i,j=1

Eλ∼Dλ l(θ, z̃ij(λ)), (1)

where Dλ is a distribution supported on [0, 1]. Throughout the paper, we consider the most com-
monly used Dλ – Beta distribution Beta(α, β) for α, β > 0.

3 MAIN RESULTS

In this section, we first introduce a lemma that characterizes the regularization effect of Mixup.
Based on this lemma, we then derive our main theoretical results on adversarial robustness and
generalization error bound in Sections 3.2 and 3.3 respectively.

3.1 THE REGULARIZATION EFFECT OF MIXUP

As a starting point, we demonstrate how Mixup training is approximately equivalent to optimizing
a regularized version of standard empirical loss Lstdn (θ, S). Throughout the paper, we consider the
following class of loss functions for the prediction function fθ(x) and target y:

L = {l(θ, (x, y))|l(θ, (x, y)) = h(fθ(x))− yfθ(x) for some function h}. (2)

This function class L includes many commonly used losses, including the loss function induced by
Generalized Linear Models (GLMs), such as linear regression and logistic regression, and also cross-
entropy for neural networks. In the following, we introduce a lemma stating that the Mixup training
with λ ∼ Dλ = Beta(α, β) induces a regularized loss function with the weights of each regulariza-
tion specified by a mixture of Beta distributions D̃λ = α

α+βBeta(α+ 1, β) + β
α+βBeta(β + 1, α).
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Lemma 3.1. Consider the loss function l(θ, (x, y)) = h(fθ(x)) − yfθ(x), where h(·) and fθ(·)
for all θ ∈ Θ are twice differentiable. We further denote D̃λ as a uniform mixture of two Beta
distributions, i.e., α

α+βBeta(α+ 1, β) + β
α+βBeta(β+ 1, α), andDX as the empirical distribution

of the training dataset S = (x1, · · · , xn), the corresponding Mixup loss Lmix
n (θ, S), as defined in

Eq. (1) with λ ∼ Dλ = Beta(α, β), can be rewritten as

Lmix
n (θ, S) = Lstdn (θ, S) +

3∑
i=1

Ri(θ, S) + Eλ∼D̃λ [(1− λ)2ϕ(1− λ)],

where lima→0 ϕ(a) = 0 and

R1(θ, S) =
Eλ∼D̃λ [1− λ]

n

n∑
i=1

(h′(fθ(xi))− yi)∇fθ(xi)>Erx∼DX [rx − xi],

R2(θ, S) =
Eλ∼D̃λ [(1− λ)2]

2n

n∑
i=1

h′′(fθ(xi))∇fθ(xi)>Erx∼DX [(rx − xi)(rx − xi)>]∇fθ(xi),

R3(θ, S) =
Eλ∼D̃λ [(1− λ)2]

2n

n∑
i=1

(h′(fθ(xi))− yi)Erx∼DX [(rx − xi)∇2fθ(xi)(rx − xi)>].

By putting the higher order terms of approximation in ϕ(·), this result shows that Mixup is related
to regularizing ∇fθ(xi) and ∇2fθ(xi), which are the first and second directional derivatives with
respect to xi. Throughout the paper, our theory is mainly built upon analysis of the quadratic ap-
proximation of Lmix

n (θ, S), which we further denote as

L̃mix
n (θ, S) := Lstdn (θ, S) +

3∑
i=1

Ri(θ, S). (3)

Comparison with related work. The result in Lemma 3.1 relies on the second-order Taylor ex-
pansion of the loss function Eq. (1). Similar approximations have been proposed before to study the
regularization effect of Dropout training, see Wang & Manning (2013); Wager et al. (2013); Mianjy
et al. (2018); Wei et al. (2020). Recently, Carratino et al. (2020) independently used similar approx-
imation to study the regularization effect of Mixup. However, the regularization terms derived in
Carratino et al. (2020) is much more complicated than those in Lemma 3.1. For example, in GLM,
our technique yields the regularization term as shown in Lemma 3.3, which is much simpler than
those in Corollaries 2 and 3 in Carratino et al. (2020). One technical step we use here to simplify the
regularization expression is to equalize Mixup with input perturbation, see more details in the proof
in the Appendix. This simpler expression enables us to study the robustness and generalization of
Mixup in the subsequent sections.

Validity of the approximation. In the following, we present numerical experiments to support
the approximation in Eq. (3). Following the setup of numerical validations in Wager et al. (2013);
Carratino et al. (2020), we experimentally show that the quadratic approximation is generally very
accurate. Specifically, we train a Logistic Regression model (as one example of a GLM model,
which we study later) and a two layer neural network with ReLU activations. We use the two-moons
dataset (Buitinck et al., 2013). Fig. 2 shows the training and test data’s loss functions for training
two models with different loss functions: the original Mixup loss and the approximate Mixup loss.
Both models had the same random initialization scheme. Throughout training, we compute the
test and training loss of each model using its own loss function. The empirical results shows the
approximation of Mixup loss is quite close to the original Mixup loss.

3.2 MIXUP AND ADVERSARIAL ROBUSTNESS

Having introduced L̃mix
n (θ, S) in Eq. (3), we are now ready to state our main theoretical results. In

this subsection, we illustrate how Mixup helps adversarial robustness. We prove that minimizing
L̃mix
n (θ, S) is equivalent to minimizing an upper bound of the second order Taylor expansion of an

adversarial loss.
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Logistic Regression Two Layer ReLU Neural Network

Figure 2: Comparison of the original Mixup loss with the approximate Mixup loss function.

Throughout this subsection, we study the logistic loss function

l(θ, z) = log(1 + exp(fθ(x)))− yfθ(x),

where y ∈ Y = {0, 1}. In addition, let g be the logistic function such that g(s) = es/(1 + es) and
consider the case where θ is in the data-dependent space Θ, defined as

Θ = {θ ∈ Rd : yifθ(xi) + (yi − 1)fθ(xi) ≥ 0 for all i = 1, . . . , n}.

Notice that Θ contains the set of all θ with zero training errors:

Θ ⊇ {θ ∈ Rq : the label prediction ŷi = 1{fθ(xi) ≥ 0} is equal to yi for all i = 1, . . . , n }. (4)

In many practical cases, the training error (0-1 loss) becomes zero in finite time although the training
loss does not. Equation (4) shows that the condition of θ ∈ Θ is satisfied in finite time in such
practical cases with zero training errors.

Logistic regression. As a starting point, we study the logistic regression with fθ(x) = θ>x,
in which case the number of parameters coincides with the data dimension, i.e. p = d. For a
given ε > 0, we consider the adversarial loss with `2-attack of size ε

√
d, that is, Ladvn (θ, S) =

1/n
∑n
i=1 max‖δi‖2≤ε

√
d l(θ, (xi + δi, yi)). We first present the following second order Taylor ap-

proximation of Ladvn (θ, S).

Lemma 3.2. The second order Taylor approximation of Ladvn (θ, S) is
∑n
i=1 l̃adv(ε

√
d, (xi, yi))/n,

where for any η > 0, x ∈ Rp and y ∈ {0, 1},

l̃adv(η, (x, y)) = l(θ, (x, y)) + η|g(x>θ)− y| · ‖θ‖2 +
η2

2
· g(x>θ)(1− g(x>θ)) · ‖θ‖22. (5)

By comparing l̃adv(δ, (x, y)) and L̃mix
n (θ, S) applied to logistic regression, we prove the following.

Theorem 3.1. Suppose that fθ(x) = x>θ and there exists a constant cx > 0 such that ‖xi‖2 ≥
cx
√
d for all i ∈ {1, . . . , n}. Then, for any θ ∈ Θ, we have

L̃mix
n (θ, S) ≥ 1

n

n∑
i=1

l̃adv(εi
√
d, (xi, yi)) ≥

1

n

n∑
i=1

l̃adv(εmix

√
d, (xi, yi))

where εi = RicxEλ∼D̃λ [1 − λ] with Ri = | cos(θ, xi)|, and εmix = R · cxEλ∼D̃λ [1 − λ] with
R = mini∈{1,...,n} | cos(θ, xi)|.

Theorem 3.1 suggests that L̃mix
n (θ, S) is an upper bound of the second order Taylor expansion of the

adversarial loss with `2-attack of size εmix

√
d. Note that εmix depends on θ; one can think the final

radius is taken at the minimizer of L̃mix
n (θ, S). Therefore, minimizing the Mixup loss would result in

a small adversarial loss. Our analysis suggests that Mixup by itself can improve robustness against
small attacks, which tend to be single-step attacks (Lamb et al., 2019). An interesting direction
for future work is to explore whether combining Mixup with adversarial training is able to provide
robustness against larger and more sophisticated attacks such as iterative projected gradient descent
and other multiple-step attacks.
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Figure 3: The behaviors of the values of R and Ri during training for linear models and artificial
neural network with ReLU (ANN). The subplots (c) and (d) show the histogram of (R1, R2, . . . , Rn)
for ANN before and after training. R and Ri control the radii of adversarial attacks that Mixup
training protects for.

Remark 3.1. Note that Theorem 3.1 also implies adversarial robustness against `∞ attacks with size
ε since for any attack δ, ‖δ‖∞ ≤ ε implies ‖δ‖2 ≤ ε

√
d, and therefore max‖δ‖∞≤ε l(θ, (x+δ, y)) ≤

max‖δ‖26
√
d·ε l(θ, (x+ δ, y)).

In the following we provide more discussion about the range of R = mini∈{1,...,n} | cos(θ, xi)|. We
first show that under additional regularity conditions, we can obtain a high probability lower bound
that does not depend on sample size. We then numerically demonstrate that R tends to increase
during training for both cases of linear models and neural networks at the end of this subsection.

A constant lower bound for logistic regression. Now, we show how to obtain a constant lower bound
by adding some additional conditions.

Assumption 3.1. Let us denote Θ̂n ⊆ Θ as the set of minimizers of L̃mix
n (θ, S). We assume there

exists a set Θ∗ 1, such that for all n ≥ N , where N is a positive integer, Θ̂n ⊆ Θ∗ with probability
at least 1− δn where δn → 0 as n→ 0. Moreover, there exists a τ ∈ (0, 1) such that

pτ = P ({x ∈ X : | cos(x, θ)| ≥ τ for all θ ∈ Θ∗}) ∈ (0, 1].

Such condition generally holds for regular optimization problems, where the minimizers are not lo-
cated too dispersedly in the sense of solid angle (instead of Euclidean distance). More specifically,
if we normalize all the minimizers’ `2 norm to 1, this assumption requires that the set of minimizers
should not be located all over the sphere. In addition, Assumption 3.1 only requires that the proba-
bility pτ and the threshold τ to be non-zero. In particular, if the distribution of x has positive mass
in all solid angles, then when the set of minimizers is discrete, this assumption holds. For more
complicated cases in which the set of minimizers consists of sub-manifolds, as long as there exists
a solid angle in X that is disjoint with the set of minimizers, the assumption still holds.

Theorem 3.2. Under Assumption 3.1, for fθ(x) = x>θ, if there exists constants bx, cx > 0 such
that cx

√
d ≤ ‖xi‖2 ≤ bx

√
d for all i ∈ {1, . . . , n}. Then, with probability at least 1 − δn −

2 exp(−np2
τ/2), there exists constants κ > 0, κ2 > κ1 > 0, such that for any θ ∈ Θ̂n, we have

L̃mix
n (θ, S) ≥ 1

n

n∑
i=1

l̃adv(ε̃mix

√
d, (xi, yi))

where ε̃mix = R̃cxEλ∼D̃λ [1− λ] and R̃ = min
{

pτκ1

2κ2−pτ (κ2−κ1) ,
√

4κpτ
2−pτ+4κpτ

}
τ.

Neural networks with ReLU / Max-pooling. The results in the above subsection can be extended
to the case of neural networks with ReLU activation functions and max-pooling. Specifically, we

1Under some well-separation and smoothness conditions, we would expect all elements in Θ̂n will fall into
a neighborhood Nn of minimizers of ESL̃

mix
n (θ, S), and Nn will shrink as n increases, i.e. Nn+1 ⊂ Nn. One

can think Θ∗ is a set containing allNn for n ≥ N .
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consider the logistic loss, l(θ, z) = log(1 + exp(fθ(x))) − yfθ(x) with y ∈ {0, 1}, where fθ(x)
represents a fully connected neural network with ReLU activation function or max-pooling:

fθ(x) = β>σ
(
WN−1 · · · (W2σ(W1x)

)
.

Here, σ represents nonlinearity via ReLU and max pooling, each Wi is a matrix, and β is a column
vector: i.e., θ consists of {Wi}N−1

i=1 and β. With the nonlinearity σ for ReLU and max-pooling,
the function fθ satisfies that fθ(x) = ∇fθ(x)>x and ∇2fθ(x) = 0 almost everywhere, where
the gradient is taken with respect to input x. Under such conditions, similar to Lemma 3.2, the
adversarial loss function

∑n
i=1 max‖δi‖2≤ε

√
d l(θ, (xi + δi, yi))/n can be written as

Lstdn (θ, S)+εmix

√
d(

1

n

n∑
i=1

|g(fθ(xi))−yi|‖∇fθ(xi)‖2)+
ε2

mixd

2
(

1

n

n∑
i=1

|h′′(fθ(xi))|‖∇fθ(xi)‖22).

(6)
With a little abuse of notations, we also denote

l̃adv(δ, (x, y)) = l(θ, (x, y)) + δ|g(fθ(x))− y|‖∇fθ(x)‖2 +
δ2d

2
|h′′(fθ(x))|‖∇fθ(x)‖22.

The following theorem suggests that minimizing the Mixup loss in neural nets also lead to a small
adversarial loss.
Theorem 3.3. Assume that fθ(xi) = ∇fθ(xi)>xi, ∇2fθ(xi) = 0 (which are satisfied by the ReLU
and max-pooling activation functions) and there exists a constant cx > 0 such that ‖xi‖2 ≥ cx

√
d

for all i ∈ {1, . . . , n}. Then, for any θ ∈ Θ, we have

L̃mix
n (θ, S) ≥ 1

n

n∑
i=1

l̃adv(εi
√
d, (xi, yi)) ≥

1

n

n∑
i=1

l̃adv(εmix

√
d, (xi, yi))

where εi = RicxEλ∼D̃λ [1 − λ], εmix = R · cxEλ∼D̃λ [1 − λ] and Ri = | cos(∇fθ(xi), xi)|, R =

mini∈{1,...,n} | cos(∇fθ(xi), xi)|.

Similar constant lower bound can be derived to the setting of neural networsk. Due to limited space,
please see the detailed discussion in the appendix.

On the value of R = miniRi via experiments. For both linear models and neural networks, after
training accuracy reaches 100%, the logistic loss is further minimized when ‖fθ(xi)‖2 increases.
Since ‖fθ(xi)‖2 = ‖∇fθ(xi)>xi‖2 = ‖∇fθ(xi)‖2‖xi‖2Ri, this suggests that Ri and R tend to
increase after training accuracy reaches 100% (e.g., ∇fθ(xi) = θ in the case of linear models). We
confirm this phenomenon in Fig. 3. In the figure, R is initially small but tends to increase after
training accuracy reaches 100%, as expected. For example, for ANN, the value of R was initially
2.27×10−5 but increased to 6.11×10−2 after training. Fig. 3 (c) and (d) also show thatRi for each
i-th data point tends to increase during training and that the values of Ri for many points are much
larger than the pessimistic lower bound R: e.g., whereas R = 6.11 × 10−2, we have Ri > 0.8 for
several data points in Fig. 3 (d). For this experiment, we generated 100 data points as xi ∼ N (0, I)
and yi = 1{x>i θ∗ > 0} where xi ∈ R10 and θ∗ ∼ N (0, I). We used SGD to train linear models
and ANNs with ReLU activations and 50 neurons per each of two hidden layers. We set the learning
rate to be 0.1 and the momentum coefficient to be 0.9. We turned off weight decay so that R is not
maximized as a result of bounding ‖∇fθ(xi)‖, which is a trivial case from the discussion above.

3.3 MIXUP AND GENERALIZATION

In this section, we show that the data-dependent regularization induced by Mixup directly controls
the Rademacher complexity of the underlying function classes, and therefore yields concrete gener-
alization error bounds. We study two models – the Generalized Linear Model (GLM) and two-layer
ReLU nets with squared loss.

Generalized linear model. A Generalized Linear Model is a flexible generalization of ordinary
linear regression, where the corresponding loss takes the following form:

l(θ, (x, y)) = A(θ>x)− yθ>x,

7
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where A(·) is the log-partition function, x ∈ Rp and y ∈ R. For instance, if we take A(θ>x) =

log(1 + eθ
>x) and y ∈ {0, 1}, then the model corresponds to the logistic regression. In this para-

graph, we consider the case where Θ, X and Y are all bounded.

By further taking advantage of the property of shift and scaling invariance of GLM, we can further
simplify the regularization terms in Lemma 3.1 and obtain the following results.

Lemma 3.3. Consider the centralized dataset S, that is, 1/n
∑n
i=1 xi = 0. and denote Σ̂X =

1
nxix

>
i . For a GLM, if A(·) is twice differentiable, then the regularization term obtained by the

second-order approximation of L̃mix
n (θ, S) is given by

1

2n
[

n∑
i=1

A′′(θ>xi)] · Eλ∼D̃λ [
(1− λ)2

λ2
]θ>Σ̂Xθ, (7)

where D̃λ = α
α+βBeta(α+ 1, β) + α

α+βBeta(β + 1, α).

Given the above regularization term, we are ready to investigate the corresponding generalization
gap. Following similar approaches in Arora et al. (2020), we shed light upon the generalization
problem by investigating the following function class that is closely related to the dual problem of
Eq. (7):

Wγ := {x→ θ>x, such that θ satisfying ExA′′(θ>x) · θ>ΣXθ 6 γ},
where α > 0 and ΣX = E[xix

>
i ]. Further, we assume that the distribution of x is ρ-retentive

for some ρ ∈ (0, 1/2], that is, if for any non-zero vector v ∈ Rd,
[
Ex[A′′(x>v)]

]2 ≥ ρ ·
min{1,Ex(v>x)2}. Such an assumption has been similarly assumed in Arora et al. (2020) and
is satisfied by general GLMs when θ has bounded `2 norm. We then have the following theorem.
Theorem 3.4. Assume that the distribution of xi is ρ-retentive, and let ΣX = E[xx>]. Then the
empirical Rademacher complexity ofWγ satisfies

Rad(Wγ , S) ≤ max{(γ
ρ

)1/4, (
γ

ρ
)1/2} ·

√
rank(ΣX)

n
.

The above bound on Rademacher complexity directly implies the following generalization gap of
Mixup training.
Corollary 3.1. Suppose A(·) is LA-Lipchitz continuous, X , Y and Θ are all bounded, then there
exists constantsL,B > 0, such that for all θ satisfying ExA′′(θ>x)·θ>ΣXθ 6 γ (the regularization
induced by Mixup), we have

L(θ) 6 Lstdn (θ, S) + 2L · LA ·

(
max{(γ

ρ
)1/4, (

γ

ρ
)1/2} ·

√
rank(ΣX)

n

)
+B

√
log(1/δ)

2n
,

with probability at least 1− δ.
Remark 3.2. This result shows that the Mixup training would adapt to the intrinsic dimension of
x and therefore has a smaller generalization error. Specifically, if we consider the general ridge
penalty and consider the function class Wridge

γ := {x → θ>x, ‖θ‖2 6 γ}, then the similar tech-
nique would yield a Rademacher complexity bound Rad(Wγ , S) ≤ max{(γ/ρ)1/4, (γ/ρ)1/2} ·√
p/n, where p is the dimension of x. This bound is much larger than the result in Theorem 3.4

when the intrinsic dimension rank(ΣX) is small.

Non-linear cases. The above results on GLM can be extended to the non-linear neural network
case with Manifold Mixup (Verma et al., 2019a). In this section, we consider the two-layer ReLU
neural networks with the squared loss L(θ, S) = 1

n

∑n
i=1(yi − fθ(xi))2, where y ∈ R and fθ(x) is

a two-layer ReLU neural network, with the form of

fθ(x) = θ>1 σ
(
Wx

)
+ θ0.

where W ∈ Rp×d, θ1 ∈ Rd, and θ0 denotes the bias term. Here, θ consists of W , θ0 and θ1.

If we perform Mixup on the second layer (i.e., mix neurons on the hidden layer as proposed by
Verma et al. (2019a)), we then have the following result on the induced regularization.

8
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Lemma 3.4. Denote Σ̂σX as the sample covariance matrix of {σ(Wxi)}ni=1, then the regularization
term obtained by the second-order approximation of L̃mix

n (θ, S) is given by

Eλ∼D̃λ [
(1− λ)2

λ2
]θ>1 Σ̂σXθ1, (8)

where D̃λ ∼ α
α+βBeta(α+ 1, β) + β

α+βBeta(β + 1, α).

To show the generalization property of this regularizer, similar to the last section, we consider the
following distribution-dependent class of functions indexed by θ:

WNN
γ := {x→ fθ(x), such that θ satisfying θ>1 ΣσXθ1 6 γ},

where ΣσX = E[Σ̂σX ] and α > 0. We then have the following result.

Theorem 3.5. Let µσ = E[σ(Wx)] and denote the generalized inverse of ΣσX by Σσ†X . Suppose X ,
Y and Θ are all bounded, then there exists constants L,B > 0, such that for all fθ inWNN

γ (the
regularization induced by Manifold Mixup), we have, with probability at least 1− δ,

L(θ) 6 Lstdn (θ, S) + 4L ·

√
γ · (rank(ΣσX) + ‖Σσ†/2X µσ‖2)

n
+B

√
log(1/δ)

2n
.

4 CONCLUSION AND FUTURE WORK

Mixup is a data augmentation technique that generates new samples by linear interpolation of multi-
ple samples and their labels. The Mixup training method has been empirically shown to have better
generalization and robustness against attacks with adversarial examples than the traditional training
method, but there is a lack of rigorous theoretical understanding. In this paper, we prove that the
Mixup training is approximately a regularized loss minimization. The derived regularization terms
are then used to demonstrate why Mixup has improved generalization and robustness against one-
step adversarial examples. One interesting future direction is to extend our analysis to other Mixup
variants, for example, Puzzle Mix (Kim et al., 2020) and Adversarial Mixup Resynthesis (Beckham
et al., 2019), and investigate if the generalization performance and adversarial robustness can be
further improved by these newly developed Mixup methods.
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Appendix
In this appendix, we provide proofs of the main theorems and the corresponding technical lemmas.
Additional discussion on the range of R in the case of neural nets, and some further numerical
experiments are also provided.

A TECHNIQUE PROOFS

A.1 PROOF OF LEMMA 3.1

Consider the following problem with loss function lx,y(θ) := l(θ, (x, y)) = h(fθ(x))−yfθ(x), that
is

Lstdn (θ, S) =
1

n

n∑
i=1

[h(fθ(xi))− yifθ(xi)].

The corresponding Mixup version, as defined in Eq.(1), is

Lmixn (θ, S) =
1

n2
Eλ∼Beta(α,β)

n∑
i,j=1

[h(fθ(x̃i,j(λ)))− (λyi + (1− λ)yj)fθ(x̃i,j(λ))],

where x̃i,j(λ) = λxi + (1− λ)xj . Further transformation leads to

Lmixn (θ, S) =
1

n2
Eλ∼Beta(α,β)

n∑
i,j=1

{
λh(fθ(x̃i,j(λ))))− λyifθ(x̃i,j(λ))

+ (1− λ)h(fθ(x̃i,j(λ)))− (1− λ)yjfθ(x̃i,j(λ))
}

=
1

n2
Eλ∼Beta(α,β)EB∼Bern(λ)

n∑
i,j=1

{
B[h(fθ(x̃i,j(λ)))− yifθ(x̃i,j(λ))]

+ (1−B)[h(fθ(x̃i,j(λ)))− yjfθ(x̃i,j(λ))]
}

Note that λ ∼ Beta(α, β), B|λ ∼ Bern(λ), by conjugacy, we can exchange them in order and
have

B ∼ Bern(
α

α+ β
), λ | B ∼ Beta(α+B, β + 1−B).

As a result,

Lmixn (θ, S) =
1

n2

n∑
i,j=1

{ α

α+ β
Eλ∼Beta(α+1,β)[h(fθ(x̃i,j(λ)))− yifθ(x̃i,j(λ))]

+
β

α+ β
Eλ∼Beta(α,β+1)[h(fθ(x̃i,j(λ)))− yjfθ(x̃i,j(λ))]

}
.

Using the fact 1−Beta(α, β+1) andBeta(β+1, α) are of the same distribution and x̃ij(1−λ) =
x̃ji(λ), we have ∑

i,j

Eλ∼Beta(α,β+1)[h(fθ(x̃i,j(λ)))− yjfθ(x̃i,j(λ))]

=
∑
i,j

Eλ∼Beta(β+1,α)[h(fθ(x̃i,j(λ)))− yifθ(x̃i,j(λ))].

Thus, let D̃λ = α
α+βBeta(α+ 1, β) + β

α+βBeta(β + 1, α)

Lmix
n (θ, S) =

1

n

n∑
i=1

Eλ∼D̃λErx∼Dxh(f(θ, λxi + (1− λ)rx)))− yif(θ, λxi + (1− λ)rx)

=
1

n

n∑
i=1

Eλ∼D̃λErx∼Dx lx̌i,yi(θ) (9)
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where Dx is the empirical distribution induced by training samples, and x̌i = λxi + (1− λ)rx.

In the following, denote Š = {(x̌i, yi)}ni=1, and let us analyze Lstdn (θ, Š) = 1
n

∑n
i=1 lx̌i,yi(θ), and

compare it with Lstdn (θ, S). Let α = 1− λ and ψi(α) = lx̌i,yi(θ). Then, using the definition of the
twice-differentiability of function ψi,

lx̌i,yi(θ) = ψi(α) = ψi(0) + ψ′i(0)α+
1

2
ψ′′i (0)α2 + α2ϕi(α), (10)

where limz→0 ϕi(z) = 0. By linearity and chain rule,

ψ′i(α) = h′(fθ(x̌i))
∂fθ(x̌i)

∂x̌i

∂x̌i
∂α
− yi

∂fθ(x̌i)

∂x̌i

∂x̌i
∂α

= h′(fθ(x̌i))
∂fθ(x̌i)

∂x̌i
(rx − xi)− yi

∂fθ(x̌i)

∂x̌i
(rx − xi)

where we used ∂x̌i
∂α = (rx − xi). Since

∂

∂α

∂fθ(x̌i)

∂x̌i
(rx−xi) =

∂

∂α
(rx−xi)>[

∂fθ(x̌i)

∂x̌i
]> = (rx−xi)>∇2fθ(x̌i)

∂x̌i
∂α

= (rx−xi)>∇2fθ(x̌i)(rx−xi),

we have

ψ′′i (α) =h′(fθ(x̌i))(rx − xi)>∇2fθ(x̌i)(rx − xi)

+ h′′(fθ(x̌i))[
∂fθ(x̌i)

∂x̌i
(rx − xi)]2 − yi(rx − xi)>∇2fθ(x̌i)(rx − xi).

Thus,

ψ′i(0) = h′(fθ(xi))∇fθ(xi)>(rx−xi)−yi∇fθ(xi)>(rx−xi) = (h′(fθ(xi))−yi)∇fθ(xi)>(rx−xi)

ψ′′i (0) =h′(fθ(xi))(rx − xi)>∇2fθ(xi)(rx − xi) + h′′(fθ(xi))[∇fθ(xi)>(rx − xi)]2

− yi(rx − xi)>∇2fθ(xi)(rx − xi).
=h′′(fθ(xi))∇fθ(xi)>(rx − xi)(rx − xi)>∇fθ(xi) + (h′(fθ(xi))− yi)(rx − xi)>∇2fθ(xi)(rx − xi)

By substituting these into equation 10 with ϕ(α) = 1
n

∑n
i=1 ϕi(α), we obtain the desired statement.

A.2 PROOFS RELATED TO ADVERSARIAL ROBUSTNESS

A.2.1 PROOF OF LEMMA 3.2

Recall that Ladvn (θ, S) = 1
n

∑n
i=1 max‖δi‖2≤ε

√
d l(θ, (xi + δi, yi)) and g(u) = 1/(1 + e−u). Then

the second-order Taylor expansion of l(θ, (x+ δ, t)) is given by

l(θ, (x+ δ, y)) = l(θ, (x, y)) + (g(θ>x)− y) · δ>θ +
1

2
g(x>θ)(1− g(x>θ)) · (δ>θ)2.

Consequently, for any given η > 0,

max
‖δ‖2≤η

l(θ, (x+ δ, y)) = max
‖δ‖2≤η

l(θ, (x, y)) + (g(θ>x)− y) · δ>θ +
1

2
g(x>θ)(1− g(x>θ)) · (δ>θ)2

=l(θ, (x, y)) + η|g(x>θ)− y| · ‖θ‖2 +
η2

2
(g(x>θ)(1− g(x>θ))) · ‖θ‖2,

where the maximum is taken when δ = sgn(g(x>θ)− y) · θ
‖θ‖ · η.

A.2.2 PROOF OF THEOREM 3.1

Since fθ(x) = x>θ, we have ∇fθ(xi) = θ and ∇2fθ(xi) = 0. Since h(z) = log(1 + ez), we have
h′(z) = ez

1+ez = g(z) ≥ 0 and h′′(z) = ez

(1+ez)2 = g(z)(1 − g(z)) ≥ 0. By substituting these into
the equation of Lemma 3.1 with Erx [rx] = 0,

L̃mix
n (θ, S) = L̃mix

n (θ, S) +R1(θ, S) +R2(θ, S), (11)
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where

R1(θ, S) =
Eλ[(1− λ)]

n

n∑
i=1

(yi − g(x>i θ))θ
>xi

R2(θ, S) =
Eλ[(1− λ)2]

2n

n∑
i=1

|g(x>i θ)(1− g(x>i θ))|θ>Erx [(rx − xi)(rx − xi)>]θ

≥ Eλ[(1− λ)]2

2n

n∑
i=1

|g(x>i θ)(1− g(x>i θ))|θ>Erx [(rx − xi)(rx − xi)>]θ

where we used E[z2] = E[z]2 + Var(z) ≥ E[z]2 and θ>Erx [(rx − xi)(rx − xi)>]θ ≥ 0. Since
Erx [(rx − xi)(rx − xi)

>] = Erx [rxr
>
x − rxx

>
i − xir

>
x + xix

>
i ] = Erx [rxr

>
x ] + xix

>
i where

Erx [rxr
>
x ] is positive semidefinite,

R2(θ, S) ≥ Eλ[(1− λ)]2

2n

n∑
i=1

|g(x>i θ)(1− g(x>i θ))|θ>(Erx [rxr
>
x ] + xix

>
i )θ.

≥ Eλ[(1− λ)]2

2n

n∑
i=1

|g(x>i θ)(1− g(x>i θ))|(θ>xi)2

=
Eλ[(1− λ)]2

2n

n∑
i=1

|g(x>i θ)(1− g(x>i θ))|‖θ‖22‖xi‖22(cos(θ, xi))
2

≥ R2c2xEλ[(1− λ)]2d

2n

n∑
i=1

|g(x>i θ)(1− g(x>i θ))|‖θ‖22

Now we bound E = Eλ[(1−λ)]
n

∑n
i=1(yi − g(x>i θ))(θ

>xi) by using θ ∈ Θ. Since θ ∈ Θ, we have
yifθ(xi) + (yi − 1)fθ(xi) ≥ 0, which implies that (θ>xi) ≥ 0 if yi = 1 and (θ>xi) ≤ 0 if yi = 0.
Thus, if yi = 1,

(yi − g(x>i θ))(θ
>xi) = (1− g(x>i θ))(θ

>xi) ≥ 0,

since (θ>xi) ≥ 0 and (1− g(x>i θ)) ≥ 0 due to g(x>i θ) ∈ (0, 1). If yi = 0,

(yi − g(x>i θ))(θ
>xi) = −g(x>i θ)(θ

>xi) ≥ 0,

since (θ>xi) ≤ 0 and −g(x>i θ) < 0. Therefore, for all i = 1, . . . , n,

(yi − g(x>i θ))(θ
>xi) ≥ 0,

which implies that, since Eλ[(1− λ)] ≥ 0,

R1(θ, S) =
Eλ[(1− λ)]

n

n∑
i=1

|yi − g(x>i θ)||θ>xi|

=
Eλ[(1− λ)]

n

n∑
i=1

|g(x>i θ)− yi|‖θ‖2‖xi‖2| cos(θ, xi)|

≥ RcxEλ[(1− λ)]
√
d

n

n∑
i=1

|g(x>i θ)− yi|‖θ‖2

By substituting these lower bounds ofR1(θ, S) andR2(θ, S) into equation 11, we obtain the desired
statement.

A.2.3 PROOF OF THEOREM 3.2

Recall we assume that θ̂n will fall into the set Θ∗ with probability at least 1 − δn, and δn → 0 as
n→∞. In addition, define the set

XΘ∗(τ) = {x ∈ X : | cos(x, θ)| > τ for all θ ∈ Θ∗},
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there is τ ∈ (0, 1) such that XΘ∗(τ) 6= ∅, and

pτ := P(x ∈ XΘ∗(τ)) ∈ (0, 1).

Let us first study

1

n

n∑
i=1

|g(x>i θ)(1− g(x>i θ))|(cos(θ, xi))
2

Since we assume Θ∗ is bounded and cx
√
d 6 ‖xi‖2 6 bx

√
d for all i, there exists κ > 0, such that

|g(x>i θ)(1− g(x>i θ))| > κ.

If we denote p̂ = {number of x′is such that xi ∈ XΘ∗(τ)}/n. Then, it is easy to see

1
n

∑
xi∈X cΘ∗ (τ) |g(x>i θ)(1− g(x>i θ))|

1
n

∑
xi∈XΘ∗ (τ) |g(x>i θ)(1− g(x>i θ))|

6
(1− p̂)/4

p̂κ

For η2 satisfying

η2(1 +
(1− p̂)/4

p̂κ
) 6 τ2

we have

1

n

n∑
i=1

|g(x>i θ)(1− g(x>i θ))|(cos(θ, xi))
2 >

1

n

∑
xi∈XΘ∗ (τ)

|g(x>i θ)(1− g(x>i θ))|τ2

>
1

n

∑
xi∈XΘ∗ (τ)

|g(x>i θ)(1− g(x>i θ))|η2 +
1

n

∑
xi∈X cΘ∗ (τ)

|g(x>i θ)(1− g(x>i θ))|η2.

Lastly by Hoeffding’s inequality, if we take ε = pτ/2

(1 +
(1− p̂)/4

p̂κ
) 6 (1 +

(1− pτ/2)/4

(pτ/2)κ
)

with probability at least 1− 2 exp(−2nε2)

η 6 τ

√
4κpτ

2− pτ + 4κpτ
.

Similarly, if we study
n∑
i=1

|g(x>i θ)− yi|| cos(θ, x)|

By boundedness of θ, x and y ∈ {0, 1}, we know there are constants κ1, κ2 > 0, such that

κ1 6 |g(fθ(xi))− yi| 6 κ2

Similarly, we know

η 6
pτκ1

2κ2 − pτ (κ2 − κ1)
τ.

Combined together, we can obtain the result:

η 6 min{ pτκ1

2κ2 − pτ (κ2 − κ1)
,

√
4κpτ

2− pτ + 4κpτ
}τ
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A.2.4 PROOF OF THEOREM 3.3

From the assumption, we have fθ(xi) = ∇fθ(xi)>xi and∇2fθ(xi) = 0. Since h(z) = log(1+ez),
we have h′(z) = ez

1+ez = g(z) ≥ 0 and h′′(z) = ez

(1+ez)2 = g(z)(1 − g(z)) ≥ 0. By substituting
these into the equation of Lemma 3.1 with Erx [rx] = 0,

L̃mix
n (θ, S) = L̃mix

n (θ, S) +R1(θ, S) +R2(θ, S), (12)

where

R1(θ, S) =
Eλ[(1− λ)]

n

n∑
i=1

(yi − g(fθ(xi)))fθ(xi)

R2(θ, S) =
Eλ[(1− λ)2]

2n

n∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))|∇fθ(xi)>Erx [(rx − xi)(rx − xi)>]∇fθ(xi)

≥ Eλ[(1− λ)]2

2n

n∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))|∇fθ(xi)>Erx [(rx − xi)(rx − xi)>]∇fθ(xi)

where we used E[z2] = E[z]2 +Var(z) ≥ E[z]2 and∇fθ(xi)>Erx [(rx−xi)(rx−xi)>]∇fθ(xi) ≥
0. Since Erx [(rx − xi)(rx − xi)>] = Erx [rxr

>
x − rxx>i − xir>x + xix

>
i ] = Erx [rxr

>
x ] + xix

>
i

where Erx [rxr
>
x ] is positive semidefinite,

R2(θ, S) ≥ Eλ[(1− λ)]2

2n

n∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))|∇fθ(xi)>(Erx [rxr
>
x ] + xix

>
i )∇fθ(xi).

≥ Eλ[(1− λ)]2

2n

n∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))|(∇fθ(xi)>xi)2

=
Eλ[(1− λ)]2

2n

n∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))|‖∇fθ(xi)‖22‖xi‖22(cos(∇fθ(xi), xi))2

≥ R2c2xEλ[(1− λ)]2d

2n

n∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))|‖∇fθ(xi)‖22

Now we bound E = Eλ[(1−λ)]
n

∑n
i=1(yi − g(fθ(xi)))fθ(xi) by using θ ∈ Θ. Since θ ∈ Θ, we have

yifθ(xi) + (yi − 1)fθ(xi) ≥ 0, which implies that fθ(xi) ≥ 0 if yi = 1 and fθ(xi) ≤ 0 if yi = 0.
Thus, if yi = 1,

(yi − g(fθ(xi)))(fθ(xi)) = (1− g(fθ(xi)))(fθ(xi)) ≥ 0,

since (fθ(xi)) ≥ 0 and (1− g(fθ(xi))) ≥ 0 due to g(fθ(xi)) ∈ (0, 1). If yi = 0,

(yi − g(fθ(xi)))(fθ(xi)) = −g(fθ(xi))(fθ(xi)) ≥ 0,

since (fθ(xi)) ≤ 0 and −g(fθ(xi)) < 0. Therefore, for all i = 1, . . . , n,

(yi − g(fθ(xi)))(fθ(xi)) ≥ 0,

which implies that, since Eλ[(1− λ)] ≥ 0,

R1(θ, S) =
Eλ[(1− λ)]

n

n∑
i=1

|yi − g(fθ(xi))||fθ(xi)|

=
Eλ[(1− λ)]

n

n∑
i=1

|g(fθ(xi))− yi|‖∇fθ(xi)‖2‖xi‖2| cos(∇fθ(xi), xi)|

≥ RcxEλ[(1− λ)]
√
d

n

n∑
i=1

|g(fθ(xi))− yi|‖∇fθ(xi)‖2

By substituting these lower bounds of E and F into equation 12, we obtain the desired statement.
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A.3 PROOFS RELATED TO GENERALIZATION

A.3.1 PROOF OF LEMMA 3.3 AND LEMMA 3.4

We first prove Lemma 3.3. The proof of Lemma 3.4 is similar.

By Eq. (9), we have Lmix
n (θ, S) = Lstdn (θ, Š), where Š = {(x̌i, yi)}ni=1 with x̌i = λxi + (1− λ)rx

and λ ∼ D̃λ = α
α+βBeta(α + 1, β) + β

α+βBeta(β + 1, α). Since for Generalized Linear Model
(GLM), the prediction is invariant to the scaling of the training data, so it suffices to consider S̃ =
{(x̃i, yi)}ni=1 with x̃i = 1

λ̄
(λxi + (1− λ)rx).

In the following, we analyze Lstdn (θ, S̃). For GLM the loss function is

Lstdn (θ, S̃) =
1

n

n∑
i=1

lx̃i,yi(θ) =
1

n

n∑
i=1

−(yix̃
>
i θ −A(x̃>i θ)),

where A(·) is the log-partition function in GLMs.

Denote the randomness (of λ and rx) by ξ, then the second order Taylor expansion yields

Eξ[A(x̃>i θ)−A(x>i θ)]
2nd−order approx.

= Eξ[A′(x>i θ)(x̃i − xi)>θ +A′′(x>i θ)V ar(x̃
>
i θ)]

Notice Eξ[x̃i − xi] = 0 and V arξ(x̃i) = 1
n

∑n
i=1 xix

>
i = Σ̂X , then we have the RHS of the last

equation equal to

A′′(x>i θ)(
E(1− λ)2

λ̄2
)θ>Σ̂Xθ.

As a result, the second-order Taylor approximation of the Mixup loss Lstdn (θ, S̃) is

n∑
i=1

−(yix
>
i θ −A(x>i θ)) +

1

2n
[

n∑
i=1

A′′(x>i θ)]E(
(1− λ)2

λ2
)θ>Σ̂Xθ

=Lstdn (θ, S) +
1

2n
[

n∑
i=1

A′′(x>i θ)]E(
(1− λ)2

λ2
)θ>Σ̂Xθ.

This completes the proof of Lemma 3.3. For Lemma 3.4, since the Mixup is performed on the final
layer of the neural nets, the setting is the same as the least square with covariates σ(w>j x). Moreover,
since we include both the linear coefficients vector θ1 and bias term θ0, the prediction is invariant to
the shifting and scaling of σ(w>j x). Therefore, we can consider training θ1 and θ0 on the covariates
{(σ(Wxi) − σ̄W ) + 1−λ

λ (σ(Wrx) − σ̄W )}ni=1, where σ̄W = 1
n

∑n
i=1 σ(Wxi). Moreover, since

we consider the least square loss, which is a special case of GLM loss with A(u) = 1
2u

2, we have
A′′ = 1. Plugging these quantities into Lemma 3.3, we get the desired result of Lemma 3.4.

A.3.2 PROOF OF THEOREM 3.4 AND COROLLARY 3.1

By definition, given n i.i.d. Rademacher rv. ξ1, ..., ξn, the empirical Rademacher complexity is

Rad(Wγ , S) = Eξ sup
a(θ)·θ>ΣXθ≤γ

1

n

n∑
i=1

ξiθ
>xi

Let x̃i = Σ
†/2
X xi, a(θ) = Ex[A′′(x>θ)] and v = Σ

1/2
X θ, then ρ-retentiveness condition implies

a(θ)2 ≥ ρ ·min{1,Ex(θ>x)2} ≥ ρ ·min{1, θ>ΣXθ} and therefore a(θ) · θ>ΣXθ ≤ γ implies that
‖v‖2 = θ>ΣXθ ≤ max{(γρ )1/2, γρ}.
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As a result,

Rad(Wγ , S) =Eξ sup
a(θ)·θ>ΣXθ≤γ

1

n

n∑
i=1

ξiθ
>xi

=Eξ sup
a(θ)·θ>ΣXθ≤γ

1

n

n∑
i=1

ξiv
>x̃i

≤Eξ sup
‖v‖2≤( γρ )1/2∨ γρ

1

n

n∑
i=1

ξiv
>x̃i

≤ 1

n
· (γ
ρ

)1/4 ∨ (
γ

ρ
)1/2 · Eξ‖

n∑
i=1

ξix̃i ‖

≤ 1

n
· (γ
ρ

)1/4 ∨ (
γ

ρ
)1/2 ·

√√√√Eξ‖
n∑
i=1

ξix̃i ‖2

≤ 1

n
· (γ
ρ

)1/4 ∨ (
γ

ρ
)1/2 ·

√√√√ n∑
i=1

x̃>i x̃i .

Consequently,

Rad(Wγ , S) = ES [Rad(Wγ , S)] ≤ 1

n
· (γ
ρ

)1/4 ∨ (
γ

ρ
)1/2 ·

√√√√ n∑
i=1

Exi [x̃>i x̃i]

≤ 1√
n
· (γ
ρ

)1/4 ∨ (
γ

ρ
)1/2 · rank(ΣX).

Based on this bound on Rademacher complexity, Corollary 3.1 can be proved by directly applying
the following theorem.

Lemma A.1 (Result from Bartlett & Mendelson (2002)). For any B-uniformly bounded and L-
Lipchitz function ζ, for all φ ∈ Φ, with probability at least 1− δ,

Eζ(φ(xi)) ≤
1

n

n∑
i=1

ζ(φ(xi)) + 2LRad(Φ, S) +B

√
log(1/δ)

2n
.

A.3.3 PROOF OF THEOREM 3.5

To prove Theorem 3.5, by Lemma A.1, it suffices to show the following bound on Rademacher
complexity.

Theorem A.1. The empirical Rademacher complexity ofWNN
γ satisfies

Rad(WNN
γ , S) ≤ 2

√
γ · (rank(ΣσX) + ‖Σσ†/2X µσ‖2)

n
.

By definition, given n i.i.d. Rademacher rv. ξ1, ..., ξn, the empirical Rademacher complexity is

Rad(Wγ , S) =Eξ sup
Wγ

1

n

n∑
i=1

ξiθ
>
1 σ(Wxi).
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Let θ̃1 = Σ
σ1/2
X θ1 and µσ = E[σ(Wx)], then

RS(WNN
γ ) =Eξ sup

WNN
γ

1

n

n∑
i=1

ξiθ̃
>
1 Σ

σ†/2
X (σ(Wxi)− µσ) + Eξ sup

WNN
γ

1

n

n∑
i=1

ξiθ̃
>
1 Σ

σ†/2
X µσ

≤‖θ̃1‖2 · ‖Eξ[
1

n

n∑
i=1

ξiΣ
σ†/2
X σ(Wxi)]‖+ ‖θ̃1‖ ·

1√
n
‖Σσ†/2X µσ‖

≤2

√
γ · (rank(ΣσX) + ‖Σσ†/2X µσ‖2)

n
,

where the last inequality is obtained by using the same technique as in the proof of Lemma 3.4.

Combining all the pieces, we get

Rad(Wγ , S) ≤
√
γ · rank(ΣσX)

n
.

B DISCUSSION OF R IN THE NEURAL NETWORK CASE

(B.1). On the value of R = miniRi via experiments for neural networks. After training accuracy
reaches 100%, the loss is further minimized when ‖fθ(xi)‖2 increases. Since

‖fθ(xi)‖2 = ‖∇fθ(xi)>xi‖2 = ‖∇fθ(xi)‖2‖xi‖2Ri,

this suggests that Ri and R tend to increase after training accuracy reaches 100%. We confirm this
phenomenon in Figure 3. In the figure,R is initially small but tend to increase after training accuracy
reaches 100%, as expected. For example, for ANN, the values of R were initially 2.27 × 10−5 but
increased to 6.11 × 10−2 after training. Figure 3 (c) and (d) also show that Ri for each i-th data
point tends to increase during training and that the values of Ri for many points are much larger
than the pessimistic lower bound R: e.g., whereas R = 6.11× 10−2, we have Ri > 0.8 for several
data points in Figure 3 (d). For this experiment, we generated 100 data points as xi ∼ N (0, I) and
yi = 1{x>i θ∗ > 0} where xi ∈ R10 and θ∗ ∼ N (0, I). We used SGD to train linear models and
ANNs with ReLU activations and 50 neurons per each of two hidden layers. We set the learning
rate to be 0.1 and the momentum coefficient to be 0.9. We turned off weight decay so that R is not
maximized as a result of bounding ‖∇fθ(xi)‖, which is a trivial case from the above discussion.

(B.2). A constant lower bound for neural networks. Similarly, we can obtain a constant lower bound
by adding some additional conditions.

Assumption B.1. Let us denote Θ̂n ⊆ Θ as the set of minimizers of L̃mix
n (θ, S). We assume there

exists a set Θ∗, such that for all n ≥ N , where N is a positive integer, Θ̂n ⊆ Θ∗ with probability at
least 1− δn and δn → 0 as n→ 0. Moreover, there exists τ, τ ′ ∈ (0, 1) such that

XΘ∗(τ, τ
′) = {x ∈ X : | cos(x,∇fθ(x))| > τ, ‖∇fθ(x)‖ > τ ′, for all θ ∈ Θ∗},

has probability pτ,τ ′ ∈ (0, 1).

Theorem B.1. Define

FΘ := {fθ|fθ(xi) = ∇fθ(xi)>xi,∇2fθ(xi) = 0 almost everywhere, θ ∈ Θ}.

Under Assumption B.1, for any fθ(x) ∈ FΘ, if there exists constants bx, cx > 0 such that cx
√
d ≤

‖xi‖2 ≤ bx
√
d for all i ∈ {1, . . . , n}. Then, with probability at least 1 − δn − 2 exp(−np2

τ,τ ′/2),
there exist constants κ > 0, κ2 > κ1 > 0, if we further have θ ∈ Θ̂n, then

L̃mix
n (θ, S) ≥ 1

n

n∑
i=1

l̃adv(ε̃mix

√
d, (xi, yi))

where ε̃mix = R̃cxEλ∼D̃λ [1−λ] and R̃ = min{
√

pτ,τ′κτ
′2

(2−pτ,τ′ )/4τ ′′2+pτ,τ′κτ
′2 ,

pτ,τ′κ1τ
′

pτ,τ′κ1τ ′+(2−pτ,τ′ )κ2τ ′′
}τ.
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B.1 PROOF OF THEOREM B.1

Notice if we assume for

XΘ∗(τ, τ
′) = {x ∈ X : | cos(x,∇fθ(x))| > τ, ‖∇fθ(x)‖ > τ ′, for all θ ∈ Θ∗},

there is τ, τ ′ ∈ (0, 1) such that XΘ∗(τ, τ
′) 6= ∅, and

pτ,τ ′ := P(x ∈ XΘ∗(τ, τ
′)) ∈ (0, 1).

Let us first study
1

n

n∑
i=1

|g(fθ(xi))− yi|‖∇fθ(xi)‖2| cos(∇fθ(xi), xi)|

By boundedness of θ, x and y ∈ {0, 1}, we know there is κ1, κ2 > 0, such that

κ1 6 |g(fθ(xi))− yi| 6 κ2

If we denote p̂ = {number of x′is such that xi ∈ XΘ∗(τ, τ
′)}/n. Then, it is easy to see

1
n

∑
xi∈X cΘ∗ (τ,τ ′) ||g(fθ(xi))− yi|‖∇fθ(xi)‖2

1
n

∑
xi∈XΘ∗ (τ,τ ′) |g(fθ(xi))− yi|‖∇fθ(xi)‖2

6
(1− p̂)κ2τ

′′

p̂κ1τ ′

For η2 satisfying

η(1 +
(1− p̂)κ2τ

′′

p̂κ1τ ′
) 6 τ

we have

1

n

n∑
i=1

|g(fθ(xi))− yi|‖∇fθ(xi)‖2 cos(∇fθ(xi), xi)| >
1

n

n∑
i=1

|g(fθ(xi))− yi|‖∇fθ(xi)‖2η

Besides, if we consider
n∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))|‖∇fθ(xi)‖22(cos(∇fθ(xi), xi))2

Thus, we have

η2(1 +
(1− p̂)/4τ ′′2

p̂κτ ′2
) 6 τ2

With probability at least 1− 2 exp(−2nε2), for ε = pτ,τ ′/2, we have

η 6 min{

√
pτ,τ ′κτ ′2

(2− pτ,τ ′)/4τ ′′2 + pτ,τ ′κτ ′2
,

pτ,τ ′κ1τ
′

pτ,τ ′κ1τ ′ + (2− pτ,τ ′)κ2τ ′′
}τ

B.2 PROOFS OF THE CLAIM fθ(x) = ∇fθ(x)>x AND ∇2fθ(x) = 0 FOR NN WITH
RELU/MAX-POOLING

Consider the neural networks with ReLU and max-pooling:

fθ(x) = W [L]σ[L−1]
(
z[L−1]

)
, z[l](x, θ) = W [l]σ(l−1)

(
z[l−1](x, θ)

)
, l = 1, 2, . . . , L− 1,

with σ(0)
(
z[0](x, θ)

)
= x, where σ represents nonlinear function due to ReLU and/or max-pooling,

and W [l] ∈ RNl×Nl−1 is a matrix of weight parameters connecting the (l − 1)-th layer to the l-
th layer. For the nonlinear function σ due to ReLU and/or max-pooling, we can define σ̇[l](x, θ)
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such that σ̇[l](x, θ) is a diagonal matrix with each element being 0 or 1, and σ[l]
(
z[l](x, θ)

)
=

σ̇[l](x, θ)z[l](x, θ). Using this, we can rewrite the model as:

fθ(x) = W [L]σ̇[L−1](x, θ)W [L−1]σ̇[L−2](x, θ) · · ·W [2]σ̇[1](x, θ)W [1]x.

Since ∂σ̇[l](x,θ)
∂x = 0 almost everywhere for all l, which will cancel all derivatives except for

d
dxW

[1]x, we then have that

∂fθ(x)

∂x
= W [L]σ̇[L−1](x, θ)W [L−1]σ̇[L−2](x, θ) · · ·W [2]σ̇[1](x, θ)W [1]. (13)

Therefore,

∂fθ(x)

∂x
x = W [L]σ̇[L−1](x, θ)W [L−1]σ̇[L−2](x, θ) · · ·W [2]σ̇[1](x, θ)W [1]x = fθ(x).

This proves that fθ(x) = ∇fθ(x)>x for deep neural networks with ReLU/Max-pooling.

Moreover, from equation 13, we have that

∇2fθ(x) = ∇x(W [L]σ̇[L−1](x, θ)W [L−1]σ̇[L−2](x, θ) · · ·W [2]σ̇[1](x, θ)W [1]) = 0,

since ∂σ̇[l](x,θ)
∂x = 0 almost everywhere for all l. This proves that ∇2fθ(x) = 0 for deep neural

networks with ReLU/Max-pooling.

C MORE ABOUT EXPERIMENTS

C.1 ADVERSARIAL ATTACK AND MIXUP

We demonstrate the comparison between Mixup and standard training against adversarial attacks
created by FGSM. We train two WideResNet-16-8 (Zagoruyko & Komodakis, 2016) architectures
on the Street View House Numbers SVHN (Netzer et al., 2011)) dataset; one model with regular
empirical risk minimization and the other one with Mixup loss (α = 5, β = 0.5). We create FGSM
adversarial attacks (Goodfellow et al., 2014) for 1000 randomly selected test images. Fig. (1a)
describes the results for the two models. It can be observed that the model trained with Mixup loss
has better robustness.

C.2 VALIDITY OF THE APPROXIMATION OF ADVERSARIAL LOSS

In this subsection, we present numerical experiments to support the approximation in Eq. (5) and (6).
Under the same setup of our numerical experiments of Figure 2, we experimentally show that the
quadratic approximation of the adversarial loss is valid. Specifically, we train a Logistic Regression
model (as one example of a GLM model, which we study later) and a two layer neural network with
ReLU activations. We use the two-moons dataset (Buitinck et al., 2013). Fig. 4, and compare the
approximated adversarial loss and the original one along the iterations of computing the original
adversarial loss against `2 attacks. The attack size is chosen such that ε

√
d = 0.5, and both models

had the same random initialization scheme. This experiment shows that using second order Taylor
expansion yields a good approximation of the original adversarial loss.

Logistc Regression Two Layer ReLu Neural Network

Figure 4: Comparison of the original adversarial loss with the approximate adversarial loss function.

22



Published as a conference paper at ICLR 2021

C.3 GENERALIZATION AND MIXUP

Figures 5–8 show the results of experiments for generalization with various datasets that moti-
vated us to mathematically study Mixup. We followed the standard experimental setups without
any modification as follows. We adopted the standard image datasets, CIFAR-10 (Krizhevsky &
Hinton, 2009), CIFAR-100 (Krizhevsky & Hinton, 2009), Fashion-MNIST (Xiao et al., 2017), and
Kuzushiji-MNIST (Clanuwat et al., 2019). For each dataset, we consider two cases: with and with-
out standard additional data augmentation for each dataset. We used the standard pre-activation
ResNet with 18 layers (He et al., 2016b). Stochastic gradient descent (SGD) was used to train the
models with mini-batch size = 64, the momentum coefficient = 0.9, and the learning rate = 0.1. All
experiments were implemented in PyTorch (Paszke et al., 2019).
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Figure 5: Generalization: CIFAR-10
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Figure 6: Generalization: CIFAR-100
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Figure 7: Generalization: Fashion-MNIST

0 50 100 150 200
epoch

100

101

102

te
st 

er
ro

r mixup
ERM

0 50 100 150 200
epoch

10 1

100

te
st 

los
s

0 50 100 150 200
epoch

0

20

40

60

80

tra
in 

er
ro

r

0 50 100 150 200
epoch

10 5

10 3

10 1

tra
in 

los
s

0 50 100 150 200
epoch

0.0

0.5

1.0

1.5

2.0

ge
ne

ra
liz

tio
n g

ap
 (e

rro
r)

0 50 100 150 200
epoch

10 3

10 2

10 1

ge
ne

ra
liz

tio
n g

ap
 (l

os
s)

(a) Without extra data augmentation

0 100 200 300 400
epoch

100

101

102

te
st 

er
ro

r mixup
ERM

0 100 200 300 400
epoch

10 1

100

te
st 

los
s

0 100 200 300 400
epoch

0

20

40

60

80

tra
in 

er
ro

r

0 100 200 300 400
epoch

10 5

10 3

10 1

tra
in 

los
s

0 100 200 300 400
epoch

0.5

1.0

1.5

2.0

ge
ne

ra
liz

tio
n g

ap
 (e

rro
r)

0 100 200 300 400
epoch

10 3

10 2

10 1

ge
ne

ra
liz

tio
n g

ap
 (l

os
s)

(b) With extra data augmentation

Figure 8: Generalization: Kuzushiji-MNIST
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