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ABSTRACT

We study the problem of learning the utility functions of no-regret learning agents
in a repeated normal-form game. Differing from most prior literature, we intro-
duce a principal with the power to observe the agents playing the game, send
agents signals, and give agents payments as a function of their actions. We show
that the principal can, using a number of rounds polynomial in the size of the
game, learn the utility functions of all agents to any desired precision ε > 0, for
any no-regret learning algorithms of the agents. Our main technique is to formu-
late a zero-sum game between the principal and the agents, where the principal’s
strategy space is the set of all payment functions. Finally, we discuss implications
for the problem of steering agents to a desired equilibrium: in particular, we in-
troduce, using our utility-learning algorithm as a subroutine, the first algorithm
for steering arbitrary no-regret learning agents without prior knowledge of their
utilities.

1 INTRODUCTION

Most literature on game theory aims to understand the behavior of agents in a game given the pref-
erences of the agents. That is, knowing what the agents want, how will they act? In this paper, we
consider the inverse of this problem: if all we can observe is how agents act, can we infer what
they want, that is, their utility functions? The problem of infering agents’ utility functions from
their behavior is known as “learning from revealed preferences” (e.g., Beigman & Vohra (2006);
Zadimoghaddam & Roth (2012)) or “inverse game theory” (e.g., Kuleshov & Schrijvers (2015)).
Despite a long history, these two lines of work have some limitations. First, they often assume that
the observed behavior of the agents is (Nash) equilibrium behavior. This is arguably unrealistic,
especially because Nash equilibria are PPAD-hard to compute (Daskalakis et al., 2006; Chen et al.,
2009). Second, they mostly focus on passive problems, aiming to learn agents’ utility functions
from a fixed set of behavior data. Often, this creates trivial impossibility results, stemming from the
fact that the behavioral data available is simply not enough to determine the agents’ preferences.

In this paper, we consider an active, non-equilibrium inverse game problem. A principal observes the
actions of agents playing an unknown repeated game, and seeks to learn the agents’ utility functions
from those observations. We do not assume the agents to play equilibria. Instead, they can use any
no-regret algorithms to learn to choose actions. The principal can actively modify the unknown
game by giving payments to the agents as a function of their play, as well as providing signals, in
the spirit of correlated equilibria (Aumann, 1974). The signaling scheme and payment scheme can
change from round to round, depending on the agents’ past actions. Under this setup, we ask:

Can a principal learn the utility functions of no-regret learning agents?

We will give a positive answer to this question, by designing an algorithm for the principal to learn
the game via payments and signals. Then, we will apply our algorithm to steering no-regret learning
agents toward desirable outcomes, a problem introduced by Zhang et al. (2024). Building on their
results, we will show that it is possible to steer agents to optimal outcomes even without prior
knowledge of their utility functions.

1.1 OVERVIEW OF OUR RESULTS

In our model, agents play a fixed normal-form game Γ repeatedly over T rounds, using arbitrary no-
regret learning algorithms. A principal, initially knowing nothing about the agents’ utility functions,
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can give non-negative payments to the agents, that get added to the agents’ utilities, to influence
the agents’ behavior. The principal aims to learn the utility functions of all agents to a given target
precision ε > 0, based on the actions taken by the agents.

Learning the utility functions completely is impossible, because agents’ incentives only depend on
relative utilities between their actions, not absolute utilities. Thus, we only demand that the principal
output utility functions that yield a strategically-equivalent game, that is, one in which all agents’
relative utilities are identical to those in the true game. Equivalently, we identify each agent’s utility
function up to a term that does not depend on that agent’s action.

Our main result is an efficient algorithm for the principal to learn the game by paying the agents. Let
n be the number of agents,mi be the number of actions of each agent i, andM =

∏
imi be the total

number of action profiles. Assume that each agent’s regret in T rounds is at most O(
√
T ) (satisfied

by typical no-regret algorithms). Our algorithm learns the game in polynomially many rounds:

Theorem 1.1 (Informal version of Theorems 4.3 and 4.4). There exists a principal algorithm that
learns a game to precision ε in MO(1)/ε2 rounds. This is tight up to the exponent hidden by the O.

The main idea of our algorithm is surprisingly simple but powerful. In the single-agent case, we let
the principal play a zero-sum game with the agent, where the agent chooses actions to maximize its
reward, which is utility plus payment, while the principal chooses payments to minimize the agent’s
reward. This game admits a unique equilibrium where the principal’s payment function is equal
to the negation of the agent’s utility function. By running no-regret algorithms against each other,
the principal and agent can reach such an equilibrium, so the negative average payment function
becomes an accurate estimate of the agent’s utility function. In the multi-agent case, we use signals
to separate the learning problems for different agents, reducing the problem to the single-agent case.

We then turn to a motivating application, which is the problem of steering no-regret learners to
desirable outcomes, introduced by Zhang et al. (2024). Departing from them, we do not require
the principal to have prior knowledge of the agents’ utility functions. We define a solution concept
called correlated equilibrium with payments (CEP), in which the principal has a utility function, and
wishes to optimize its utility minus the amount of payment that it must give. Departing from Zhang
et al. (2024) again, it is possible for the total amount of payment to be nonzero in equilibrium (i.e.,
linearly increasing in T ), so long as the corresponding increase in principal utility is large enough to
justify the payments. We then show that the principal-optimal CEP exactly characterizes the value
(averaged across timesteps) that the principal can achieve in the limit T →∞:

Theorem 1.2 (Informal version of Theorems 5.2 and 5.3). Let F ∗(Γ) be the objective value for the
principal in the principal-optimal CEP in game Γ. Then, against no-regret agents,

• even knowing the game Γ exactly, the principal cannot achieve time-averaged value better than
F ∗(Γ) + poly(M) · T−1/2, and

• with no prior knowledge of the agents’ utilities, there exists an algorithm for the principal to
achieve time-averaged value at least F ∗(Γ)− poly(M) · T−1/4.

All our algorithms are implementable by the principal in poly(M) running time. To our knowledge,
our Result 1 is the first positive result for utility-learning with arbitrary no-regret agents. Our Result
2 is the first in steering any no-regret agents without prior knowledge of their utilities, and the first
exact characterization of the optimal value achievable by the principal in the steering problem.

1.2 RELATED RESEARCH

Steering agents to achieve desirable outcomes is an important subject of study in economics, com-
puter science, and control theory (e.g., Monderer & Tennenholtz (2003); Zhang et al. (2024);
Canyakmaz et al. (2024); Yao et al. (2025)). In particular, Zhang et al. (2024) introduced the prob-
lem of steering no-regret learners via payments. Critically, most prior works on steering assume that
the principal knows the agents’ utility functions. We study how the agents’ utility functions can be
learned, the solution to which will serve for any downstream applications including steering.

Besides the aforementioned works, another literature about learning agents’ utility functions from
their behavior is learning in Stackelberg games, where the principal cannot pay the agents but can in-
fluence the agents’ actions by changing its own strategy, and the agents respond myopically (Letch-
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ford et al., 2009; Peng et al., 2019) or by learning algorithms (Haghtalab et al., 2022). Strong
impossibility results are known for this problem: without regularity conditions or without knowing
the details of the agents’ learning algorithms, the principal cannot learn the agent’s utility function
(Zhang et al., 2025). In contrast, we consider a setting where the principal gives payments but does
not take actions. We show that the use of payment makes a significant difference: the principal can
now learn the utility functions of any no-regret agents without knowing their behavioral details.

Even with payment, the problem of learning from learning agents is still challenging. As we will
discuss more in Section 4, a key obstacle is the non-forgetfulness of agents’ no-regret algorithms.
The payment given to the agents in the past affect their future behavior. Non-forgetfulness is a
known issue in multi-agent learning dynamics (Wu et al., 2022; Cai et al., 2024; Scheid et al., 2024).
We overcome this obstacle by designing a zero-sum-game-based learning algorithm for the principal
and using signals to influence agents, without requiring the agents’ algorithms to be forgetful.

Our use of signals to influence agents is inspired by information design (e.g., Kamenica & Gentzkow
(2011)). In fact, Feng et al. (2022); Bacchiocchi et al. (2024) studied how to learn agents’ utility
functions by providing signals to shape agents’ beliefs and behaviors in information design prob-
lems. While they consider myopically best-responding agents, we allow any no-regret learning
agents, a more challenging setting necessitating the combination of signals and payments.

The literature on playing against no-regret agents studies how the principal should play a game
if they know the agents’ utilities and some properties of the agents’ algorithms (e.g., Braverman
et al. (2018); Deng et al. (2019); Mansour et al. (2022); D’Andrea (2023); Lin & Chen (2025);
Arunachaleswaran et al. (2025)). For example, Deng et al. (2019) show that, if agents run mean-
based no-regret algorithms, then the principal can gain more than the Stackelberg value in a Stack-
elberg game. Our algorithms and setting, on the other hand, consider worst-case no-regret agent
behaviors. While most of the cited papers consider principal-agent problems with a single agent and
with no payment, we consider arbitrary payment-argumented multi-agent games.

2 PRELIMINARIES

Notations. Throughout this paper, Õ and Ω̃ hide factors logarithmic in their argument. The symbol
[n] denotes the set of positive integers {1, . . . , n}. The notation f ≲ g means f ≤ O(g), and f ≳ g
means f ≥ Ω(g). For a vector v ∈ Rm, its i-th component is denoted by v[i] or vi. Vector of ones
and zeros are 1 = (1, . . . , 1) and 0 = (0, . . . , 0). I{·} is the indicator function, i.e., for a statement
p, I{p} = 1 if p is true and 0 if p is false.

Normal-form games. A normal-form game Γ = (n,A,U) consists of a set of n agents, or players,
which we will identify with the set of integers [n]. Each agent i has an action set Ai of size mi ≥ 2.
We will let m := maximi and M =

∏
imi. A tuple a ∈ A := A1 × · · · × An is an action

profile. Each agent has a utility function Ui : A → [0, 1], denoting the utility for agent i when the
agents play action profile a ∈ A. A mixed strategy of agent i is a distribution xi ∈ ∆(Ai). We will
overload the utility function Ui to accept mixed strategies, so that Ui(x1, . . . ,xn) is the expected
utility for agent i when every agent j ∈ [n] independently samples aj ∼ xj . As is standard in game
theory, we use −i to refer to the tuple of all agents except i. For instance, Ui(a′i,a−i) is the utility
of agent i when agent i plays action a′i ∈ Ai and other agents play a−i ∈ A−i =×j ̸=iAj .

No-regret learning. In no-regret learning, a learner has a convex compact strategy set X ⊂ Rm,
and interacts with a possibly adversarial environment. On each timestep t, the learner selects a strat-
egy xt ∈ X . Simultaneously, the environment, possibly adversarially, selects a linear utility vector
ut ∈ Rm, which we assume to be bounded: |⟨ut,x⟩| ≲ 1. The learner’s regret after T timesteps is
R(T ) = maxx∈X

∑T
t=1⟨ut,x− xt⟩. We say that the learner is running a no-regret algorithm if its

average regret R(T )/T → 0 in the limit T →∞ for all possible sequences (u1, . . . ,uT ).

A well-known no-regret algorithm for general strategy set X is projected gradient descent/ascent
(Zinkevich, 2003). Projected gradient ascent selects x1 ∈ X arbitrarily, and for every timestep
t > 1 sets xt = ΠX [xt−1 + ηut−1] where ΠX is the ℓ2-projection operator into X . With step size
η = B/(G

√
T ), where B is the ℓ2-diameter of X and G bounds the ℓ2-norm of ut, the algorithm

achieves a regret of R(T ) ≲ BG
√
T .
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To apply no-regret learning to games, each agent i runs a no-regret algorithm over their mixed strat-
egy set X = ∆(mi). For this special case, the most common algorithm is the multiplicative weights
update (MWU) algorithm (e.g., Freund & Schapire (1999)), which sets xt ∝ exp

(
η
∑
τ<t u

τ
)
,

where η =
√
log(mi)/T is an appropriately-chosen step size and exp(·) is the element-wise expo-

nential function. Multiplicative weights achieves regret bound R(T ) ≲
√
T logmi.

3 OUR PROBLEM: LEARNING FROM LEARNING AGENTS

We study a setting where the principal does not initially know anything about the agents’ utility
functions Ui except for boundedness. The principal knows the number of agents n and their action
sets Ai, oversees the agents playing the game repeatedly over T rounds, and can provide payments
and signals to influence the agents’ behavior, in order to learn the utility functions of the agents.
More formally, in each round t = 1, . . . T , the following events happen in order:

1. The principal selects payment function P ti : Ai → [0, B] for each agent i, where B is a
large constant.1 The payment P ti (ai) is added to agent i’s reward, creating a new game Γt

with utility functions given by U ti (a) := Ui(a) + P ti (ai).

2. The principal sends a signal sti ∈ Si to each agent i.

3. Observing sti (but not P ti ), each agent i selects a mixed strategy xti ∈ ∆(Ai).

4. The principal observes the joint mixed strategy xt. Each agent i gets reward U ti (x
t).

Agents’ no-regret learning We assume that each agent selects xti using a no-regret learning al-
gorithm, or more precisely, a contextual no-regret learning algorithm where signals are contexts and
agents achieve no regret given any signal/context. Formally, there is a (possibly game-dependent)
constant C ≤ poly(M) such that, for every agent i, every signal si ∈ Si, every time step t ≤ T ,2

R̂i(t, si) := max
ai∈Ai

∑
τ≤t:sτi =si

[
Uτi (ai,x

τ
−i)− Uτi (xτ )

]
≤ C

√
T . (1)

One way to achieve this guarantee is for each agent to run |Si| independent no-regret algorithms,
one for each signal. However, we do not restrict to any specific algorithms: agents can run any
algorithms satisfying the above no-regret property, such as projected gradient ascent, MWU, Exp3,
and so on. In particular, agents can run full-feedback or bandit-feedback no-regret algorithms; our
results are unaffected. Indeed, the agents’ learning algorithms need not even be independent; they
could choose their actions using a centralized algorithm. As typical no-regret algorithms do not
require knowledge of the utility functions (they operate on the feedback received after each round),
the agents can also be initially ignorant of their own utility functions Ui, just as the principal is.

Mixed strategies and agent randomization Our model stipulates that the principal observes the
full joint mixed strategy xt, instead of a sampled pure strategy profile at ∼ xt. This stipulation,
however, is not at all vital and could be removed with only minimal effect on the results. In particular,
suppose that each agent i, instead of announcing a mixed strategy xti in each round, samples an
action ati ∼ xti and announces the “mixed strategy” that assigns all mass to ati. Then the principal
only observes ati. The difference now is that, since the agents are randomizing, the regret bound (1)
cannot hold deterministically; there will be some stochastic approximation error term that can be
bounded by Azuma-Hoeffding inequality, so (1) only holds with high probability. In that setting,
one can think of the results of this paper as conditional on the high-probability event that (1) holds.

In particular, lower bounds that apply to the setting where the principal only observes the realized
action profile also apply to the setting where the principal observes the mixed strategy profile. We
will use this fact freely to prove lower bounds, in Theorem 4.4.

1All our positive results will only require B = 2, since the utility functions are bounded by 1.
2Anytime no-regret is not a strong requirement. We show in Appendix B.1 that any algorithm with the usual

no-regret guarantee under adversarial environments automatically satisfies anytime no-regret.
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3.1 OUR GOAL

Our goal is to design algorithms for the principal to learn the agents’ utility functions Ui by design-
ing the payment functions P ti and sending signals sti, for any no-regret learning agents. However,
this goal as currently stated is impossible, because agents’ regrets and behaviors are only affected FIX
by the utility differences between actions, because agents’ regrets are only affected by the utility dif- NEW
ferences between actions, namely, Ui(ai,a−i)−Ui(a′i,a−i), and the behaviors of typical no-regret NEW
algorithms (such as MWU) only depend on those differences. In other words, if we create another
game Γ̃ with Ũ(ai,a−i) = Ui(ai,a−i) +Wi(a−i) for all a ∈ A, where Wi : A−i → R is an
arbitrary function not depending on agent i’s action, there is no way to distinguish Γ from Γ̃ using
only agents’ behavioral data – that is, games Γ and Γ̃ are strategically equivalent. Thus, we can only
determine utility functions up to strategic equivalence.

Our formal goal is thus the following. Given a game Γ and precision ε, we say that the principal’s
algorithm ε-learns the game Γ if it outputs utility functions Ũi : A → R such that there exist
functions Wi : A−i → R satisfying∣∣∣Ui(a) +Wi(a−i)− Ũi(a)

∣∣∣ ≤ ε, ∀i ∈ [n], ∀a ∈ A. (2)

The goal of the principal is to ε-learn Γ in as few rounds as possible.

For all practical purposes, it is enough to learn a game up to strategic equivalence. In particular, for
typical notions of equilibrium including Nash equilibria and correlated equilibria, an ε-approximate
equilibrium of Γ̃ is an O(ε)-approximate equilibrium of Γ; thus, learning Ũ is enough to guarantee
the (approximate) preservation of equilibrium sets. In Section 5, we will see that it is also enough to
enable steering the learners toward principal-desirable outcomes. Finally, while our paper focuses
on the problem of minimizing the number of rounds it takes to learn the game, an alternative goal
might be to minimize the total payment to do so. However, we show in Appendix A that the minimal
achievable payment is upper-bounded and lower-bounded by the minimal number of rounds up to
constant factors, so these two problems are quantitatively similar.

4 LEARNING A GAME BY PAYING NO-REGRET LEARNERS

We design efficient algorithms for the principal to ε-learn a game by paying no-regret learning
agents. We will start with the single-agent case to illustrate the main ideas of our algorithms, before
proceeding to the multi-agent case.

4.1 THE SINGLE-AGENT CASE

In the single-case case (n = 1), it is more convenient to view the single agent’s utility function as
a vector u ∈ [0, 1]m, and similarly the payment P t : [m] → R as vector pt ∈ Rm and total utility
ut := u+ pt. To simplify notations, we subtract the average utility of all actions from the utility of
each action: u ← u − ⟨1,u⟩

m 1, so that u ∈ [−1, 1]m and ⟨1,u⟩ = 0. By the discussion before (2),
this does not change the principal’s learning problem. Our algorithm will not need signaling in the
single-agent case, so it will be enough to set |Si| = 1.

The main challenge of learning a game from a no-regret agent is the history-dependency of the
agent’s behavior. To fix ideas, suppose the agents has two actionsA andB with unknown utility gap
uA − uB = ∆ > 0. A straightforward attempt to learn the gap ∆ is to try different payments for
action B (while paying 0 for action A) in a binary-search manner: the payment at which the agent
just starts to play action B should reveal the value of ∆. However, that approach does not work for
a no-regret learning agent because no-regret algorithms may not respond instantaneously to changes
to the payment function. Historical payments affect the agent’s future behavior. Moreover, the agent
may incur negative regret over time, making it difficult to learn anything from the agent’s behavior
on subsequent rounds. For example, if an agent has regret −K for all actions, then one cannot say
anything at all about how the agent will behave in the next K rounds.

The key idea of our algorithm is to imagine the principal and the agent as playing a zero-sum game
where the principal selects the payment function p from some set P to be specified later, the agent

5
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selects mixed strategy x ∈ ∆(m), the agent’s utility is given by ⟨u+ p,x⟩, and the principal’s
utility is −⟨u+ p,x⟩. Call this game Γ0. In particular, by setting P = {p ∈ [0, 2]m : ⟨1,p⟩ = m},
the zero-sum game Γ0 has the following property:

Lemma 4.1. In the zero-sum game Γ0, every ε-Nash equilibrium strategy for the principal has the
form p = 1− u+ z, where ∥z∥1 ≤ 4mε.

Proof. Setting p = 1−u guarantees ⟨u+ p,x⟩ = ⟨1,x⟩ = 1 for every x ∈ ∆(m). Thus, in every
ε-Nash equilibrium, the agent’s utility is at most 1+ ε. Now suppose for contradiction that (p,x) is
an ε-Nash equilibrium with ∥p+ u− 1∥1 > 4mε. Then since ⟨p+ u− 1,1⟩ = 0 by construction,
there must be an action a for which (p + u − 1)[a] > 2ε, i.e., (u + p)[a] > 1 + 2ε. But then the
agent has an ε-profitable deviation to action a.

It is well known that no-regret learning algorithms converge on average to Nash equilibria in zero-
sum games. In particular, if both principal and agent run no-regret algorithms, and R0 is the regret
after T timesteps for the principal, then the average principal strategy 1

T

∑T
t=1 p

t is an ε-Nash
equilibrium for ε ≲ (R0 + C

√
T )/T . Here, we use the projected gradient descent algorithm for

the principal. Note that, although the principal’s utility function p 7→ −⟨u+ p,x⟩ depends on u
(which the principal does not know), the gradient of the principal’s utility function is −x, which
does not depend on u. Thus, the principal can run projected gradient descent without the knowledge
of u. The resulting algorithm is formalized in Algorithm 1.

Algorithm 1 Principal’s learning algorithm for a single no-regret agent
1: p1 ← 1
2: for each time t = 1, . . . , T do
3: principal selects payment vector pt ∈ P , observes strategy xt played by the agent
4: principal sets pt+1 ← ΠP [p

t − ηxt] ▷ η =
√
m/T is the step size

5: return − 1
T

∑T
t=1 p

t

Theorem 4.2. Algorithm 1 ε-learns any single-agent game Γ in T = O(m
3+C2m2

ε2 ) rounds.

Proof. Let p̄ = 1
T

∑T
t=1 p

t be the average payment. From the preliminaries, the regret bound of
the principal is given by R0 ≤ BG

√
T where B ≲

√
m and G = 1. By the previous paragraph, the

average play between the principal and the agent is an (R0 +C
√
T )/T -Nash equilibrium. Then, by

Lemma 4.1, we have

ε = ∥p̄+ u− 1∥∞ ≤ ∥p̄+ u− 1∥1 ≲ 4m
R0 + C

√
T

T
≲

m√
T
(C +

√
m).

Solving for T yields the desired result.

The zero-sum-game idea of Algorithm 1 is surprisingly simple and powerful. The principal moves
the payment vector in the opposite direction of the agent’s mixed strategy every round, and the neg-
ative average payment vector ultimately becomes an accurate estimate of the agent’s utility vector.
This idea works for any no-regret learning algorithm of the agent.

Another possible method to overcome history-dependency is to use signals: whenever the payment
vector is changed, send a new signal to the agent to disentangle from the history. Signaling allows us
to implement a binary-search algorithm to learn the game. However, that would require m log(1/ε)
signals, one for each step of the binary search, and the total number of rounds would be at least
C2m/ε2 · log(1/ε), whereas our Algorithm 1 achieves the better dependence of 1/ε2, saving a
logarithmic term, without using signals.

6
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4.2 THE MULTI-AGENT CASE

We then consider the multi-agent case. Our algorithm for the multi-agent case will combine the
single-agent algorithm with signaling. Intuitively, our algorithm uses signals to induce the action
profile a−i among other agents without increasing their regret by too much. More precisely, we set
the signal set as Si := Ai∪{⊥} where⊥ is a special signal indicating that i’s utility is the one being
learned at the moment. For every action profile a−i ∈ A−i, we send signal ⊥ to agent i and the
desired action aj for each agent j ̸= i to learn Ui(·,a−i). This idea is formalized in Algorithm 2.

Algorithm 2 Principal’s learning algorithm for multiple no-regret agents
1: t← 1
2: for every agent i = 1, . . . , n do
3: for every action profile ā−i ∈ A−i do
4: p1 ← 1 ∈ RAi

5: for timestep ℓ = 1, . . . , L do
6: principal sets P ti (·) = pℓ[·] and P tj (aj) = 2I{aj = āj} for every j ̸= i

7: principal sends signals sti = ⊥ and stj = āj for every j ̸= i

8: principal observes profile xt played by agents
9: principal sets pℓ+1 ← ΠP

[
pℓ − ηxti

]
▷ η =

√
mi/L is the step size

10: t← t+ 1
11: Ũi(·, ā−i)← − 1

L

∑L
ℓ=1 p

ℓ

12: return Ũ

Theorem 4.3. For some choice of parameter L, Algorithm 2 ε-learns any game in poly(M,C)
ε2 rounds.

Proof Sketch. Since the principal always gives a large reward to agent who obey signals other than
⊥, agent will almost always obey such signals. Thus, agents other than agent i will almost always
play profile a−i. This allows the principal to learn Ui(·, ā−i) using the one-player algorithm from
Theorem 4.2. The formal proof is deferred to Appendix C.

Signals are vital to this analysis. Without them, it would be possible for players to incur large neg-
ative regret, which harms the learning process because it allows the players to “delay” the learning
until their regrets once again become non-negative. For example, if we were to execute our algo-
rithm without signals, then by the time Tn(0) at which the outer loop reaches agent n, agent n could
have Ω(Tn(0)) regret for every action, making it impossible to say anything about how agent n will
act for the next Ω(Tn(0)) rounds. Using signals allows us to separate out the regret of agent n in
previous rounds from the regret of agent n when its own utility function is being learned.

4.3 LOWER BOUND

We now turn to lower bounds. In particular, we show a lower bound that matches Theorem 4.3 up
to the exponent on M .

Theorem 4.4. In the no-regret model, any algorithm that ε-learns a game must take at least
max{Ω(nM) · log 1

ε ,
C2

4ε2 } rounds.

Proof sketch. If every agent plays a pure action at each round, then the principal can only observe
log(M) bits of information at each round. Learning the game requires Ω(nM) bits of information,
so we need at least Ω(nM) · log 1

ε rounds in total. On the other hand, to ε-learn the game from
agents’ behavior, the agents’ time-average regret C√

T
must be smaller than 2ε, so T is at least C2

4ε2 .
The full proof is in Appendix C.2.

Theorem 4.4 shows that it is impossible to exponentially improve the dependence on any of the
parameters in Theorem 4.2. For example, it implies that there can be no algorithm taking C2/ε2 ·
M1−Ω(1) rounds, because that would contradict the lower bound for constant ε and suffficiently
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large M . We leave it as an interesting open question to close the polynomial gaps between the lower
and upper bounds presented here.

5 STEERING NO-REGRET LEARNERS BY LEARNING THE GAME

A main motivating application of our result is the problem of steering no-regret learners to desirable
outcomes, introduced by Zhang et al. (2024) who assume that the principal knows the game. In this
section, we explore the steering problem with unknown agent utilities.

5.1 CORRELATED SIGNALS AND PAYMENTS

In this section, we make two modifications to our model in Section 3: (1) we allow the signals to be
correlated; (2) we allow payments to each agent i to depend not only on agent i’s action, but also
on the signals and actions of other players. These two assumptions are proven to be necessary for
the steering problem by Zhang et al. (2024). Formally, each agent has a finite signal set Si. As with
actions, we will write S = S1 × · · · × Sn for the joint signal space. On each round t, the principal
first commits to both a signal distribution µt ∈ ∆(S) and a payment function P ti : S ×A→ [0, B].
The agents then select their strategies, which are functions ϕti : Si → ∆(Ai). Then, the principal
draws the joint signal st = (st1, . . . , s

t
n) ∼ µt, and each agent plays xti = ϕti(s

t
i). As before, we

assume that agents have no regret for each signal: for every signal si ∈ Si,

R̂i(t, si) := max
ai∈Ai

∑
τ≤t

∑
s−i∈S−i

µt(s)
[
Uτi (s, ai, ϕ

τ
−i(s−i))− Uτi (s, ϕτ (s))

]
≤ C
√
T .

where now Uτi (s,a) := Ui(a) + P τi (s,a).

We remark that this correlated model gives strictly more power to the principal than the previous
model: if we restrict the principal to setting µt to be a deterministic distribution and P ti to be
dependent on agent i’s action ai only, the two models coincide. Therefore, the previous positive
results, particularly Theorem 4.3, apply to this model as well.

The reason for the difference in the models is that the correlated signaling model makes clear in
what formal sense the signals are private: the agents’ strategies ϕti can only depend on si, not other
agents’ signals. This will allow us to steer to correlated equilibria.

5.2 WHAT OUTCOME SHOULD WE STEER TO?

The steering problem, as defined by Zhang et al. (2024), stipulates for their main results that the
principal knows in advance, or be able to compute, the desired outcome that we wish to induce. Of
course, in our setting, such a stipulation is unreasonable: the principal does not initially know the
agents’ utilities in the game Γ, so it cannot know what outcome it wishes to induce. We thus take a
more direct approach: we try to maximize the average reward, less payments, of the principal. That
is, we will assume that the principal has a utility function U0 : A → R, and we will attempt to
optimize the principal’s objective, defined as the principal’s utility minus payments:

F (T ) :=
1

T

T∑
t=1

E
st∼µt

[
U0(ϕ

t(st))−
n∑
i=1

P ti (s
t, ϕt(st))

]
.

To analyze the above objective, we introduce a solution concept called correlated equilibrium with
payments (CEP). A CEP is a correlated distribution of signals and payment functions that satisfies
the usual incentive compatibility constraints. Formally, we have the following definition.

Definition 5.1. A correlated profile with payments is a pair (µ, P ) ∈ ∆(A)× [0, B][n]×A×A.3 The
vector P consists of n payment functions Pi : A × A → [0, B], where Pi(s,a) is the payment to
agent i given joint signal s ∈ A and joint action a ∈ A. Given (µ, P ), the objective value for the
principal is defined as

F (µ, P ) := E
a∼µ

[
U0(a)−

n∑
i=1

Pi(a,a)

]
,

3Here, we let Si = Ai. This is WLOG due to a revelation principle argument (Appendix D.1).
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An ε-correlated equilibrium with payments (ε-CEP) is a pair (µ, P ) satisfying the incentive com-
patibility (IC) constraints: for every agent i ∈ [n] and deviation function ϕi : Ai → Ai,

E
a∼µ

[
UPi (a, ϕi(ai),a−i)− UPi (a,a)

]
≤ ε,

where UPi (s,a) := Ui(a) + Pi(s,a). An 0-CEP is called a CEP.

Let F ∗(Γ) be the principal’s objective value under an optimal CEP of game Γ:

F ∗(Γ) = max
(µ,P ): a CEP of game Γ

F (µ, P ).

We show that F ∗(Γ) is an upper bound on the maximum value attainable by a principal in our
learning model. Relatedly, Deng et al. (2019); Lin & Chen (2025) show that a principal cannot
achieve more than the Stackelberg equilibrium objective against a single no-regret agent in games
with no payment. Our result generalizes to multiple no-regret agents and games with payment. The
proof of Theorem 5.2 is in Appendix D.3.

Theorem 5.2. Let Γ be any game, and suppose the signal sets have size |Si| ≤ poly(m). Then there
exist uncoupled no-regret learning algorithms for the agents such that, for any principal algorithm,
the principal’s objective value F (T ) is bounded above by F ∗(Γ) + o(1/

√
T ).

5.3 STEERING TO OPTIMAL CEP

We now show that the principal can achieve the optimal CEP objective F ∗(Γ) in the limit T →∞.
The algorithm (Algorithm 3) works in two stages. In the first stage, the principal uses Algorithm 2
to learn the utility functions of the agents. Then, the principal computes an optimal CEP and steers
the agents to it. The steering algorithm is adapted from Zhang et al. (2024), and presented in full
here for the sake of self-containment. Notably, since the principal learns the game up to an error
ε > 0, it must give extra payments of at least 2ε to ensure that agents do not deviate. Theorem 5.3
shows that the principal can learn to steer agents to achieve the optimal objective F ∗(Γ) at a rate of
poly(M,C)/T 1/4. The proof is given in Appendix D.4.

Algorithm 3 Principal’s algorithm for steering without prior knowledge of utilities
1: using Algorithm 2, estimate the utility functions to precision ε
2: compute an optimal CEP (µ̃∗, P̃ ∗) of the estimated game Γ̃
3: for remaining rounds do

4: set µt = µ∗ and P ti (s,a) =


P̃ ∗
i (a,a) + 2ε+ ρ if s = a

2 if si = ai, s−i ̸= a−i
0 otherwise

.

Theorem 5.3. For appropriate choices of parameters L (from Algorithm 2) and ρ, Algorithm 3
guarantees principal objective F (T ) ≥ F ∗(Γ)− poly(M,C)/T 1/4 on average in T rounds.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We showed that a principal can efficiently learn the utility functions of agents in games through pay-
ments and signals, and applied our algorithms to achieve optimal steering without prior knowledge
of the game. We gave upper and lower bounds for both problems. Our results apply to arbitrary
no-regret agents. We leave a few directions for future research:

• We did not optimize the polynomial dependencies on M , so our upper and lower bounds are off
by poly(M) factors. We leave it as an interesting open problem to close these gaps.

• Our techniques are specialized to normal-form games, and require, for example, that the principal
observe the strategy xt of the agents at every timestep. This may no longer be a reasonable
assumption in, e.g., extensive-form games, where one may wish instead to assume that we only
observe on-path agent actions. We leave it as future work to extend our results to such settings.
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• While our single-agent utility-learning algorithm only uses payments, our mutli-agent algorithm
additionally uses signals. The limit of learning agents’ utility functions by payments only, without
using signals, is worth exploring.

• Similarly worth exploring is the problem of steering without utility learning. We proved that
agents’ utility functions require Ω(nM) log 1

ε rounds to learn. Can we avoid this bottleneck by
steering agents to desirable outcomes without learning their entire utility functions?
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A MINIMIZING PAYMENT

Most of our paper focuses on ε-learning a game in as few rounds as possible. This section discusses
an alternative goal: ε-learning a game while minimizing the total payment to the agents. We show
that the minimal achievable payment is upper-bounded and lower-bounded by the number of rounds
up to constant factors, so the payment minimization problem is quantitatively similar to round com-
plexity minimization.

Formally, we define the payment complexity PC(n, ε) to be the minimal total payment required to
ε-learn a game with n agents (in the worst case over all games), and the round complexity RC(n, ε)
to be the minimal number of rounds to do so. Then, we have:

Proposition A.1. There exist games and no-regret agents such that

Ω
(
RC(n− 1, ε)

)
≤ PC(n, ε) ≤ O

(
n · RC(n, ε)

)
.

Proof. The inequality PC(n, ε) ≤ O
(
n ·RC(n, ε)

)
is straightforward because the payment to each

agent is bounded by O(1) at each round.

To prove Ω
(
RC(n− 1, ε)

)
≤ PC(n, ε), we reduce the utility learning problem with n− 1 agents to

the problem with n agents. Let Γn−1 be an (n−1)-agent game with utility functions U1, . . . , Un−1.
Consider an n-agent game Γn where the n-th agent has two actions An = {0, 1}. If the n-th agent
takes 1, then the first n − 1 agents all obtain utility 0 regardless of their actions; if the n-th agent
takes 0, then the first n− 1 agents have the same utility functions as in game Γn−1. Further assume
that the n-th agent’s utility depends on his own action only, and in particular, Un(an = 0) = 0 and
Un(an = 1) = 1, so the n-th agent takes action 1 by default. Intuitively, in order to learn the utility
functions of game Γn, we have to incentivize the n-th agent to play action 0 by paying him 1 at each
round, so that we can learn the first n−1 agents’ utility functions. This means that the total payment
is lower bounded by the number of rounds to learn the (n− 1)-agent game.

Formally, let ALG be an algorithm for learning Γn with payment complexity PC(n, ε). We use
ALG to construct an algorithm to learn Γn−1 as follows:

• At each round t, do:

– Obtain payment functions P t1 , . . . , P
t
n−1, P

t
n from ALG.

– If P tn(an = 0) < P tn(an = 1)+1, then let atn = 1 and ati = argmaxai∈Ai
P ti (ai) for

i ∈ {1, . . . , n− 1}. Return the action profile (at−n, a
t
n) to ALG.

– If P tn(an = 0) ≥ P tn(an = 1) + 1, then let atn = 0 and send the payment functions
P t1 , . . . , P

t
n−1 to the first n − 1 agents. Observe their actions at−n in game Γn−1.

Return (at−n, a
t
n) to ALG.

• Obtain utility functions Ũ1, . . . , Ũn from ALG. Output Ũ1(·, an = 0), . . . , Ũn−1(·, an =
0).

By definition, if ALG outputs Ũ1, . . . , Ũn that are ε-close to the utility functions of Γn, then the
outputs Ũ1(·, an = 0), . . . , Ũn−1(·, an = 0) are ε-close to the utility functions U1, . . . , Un−1 of
Γn−1. Each time “P tn(an = 0) ≥ P tn(an = 1) + 1” happens, agent n takes action atn = 0, we
pay at least 1, and we interact with the first n − 1 agents once. So, the total payment is at least
PC(n, ε) ≥ RC(n− 1, ε).

B DETAILS OMITTED FROM SECTION 3

B.1 ANYTIME NO REGRET

Our condition on no-regret learning is that, for every signal si (here omitted as a superscript for
notational clarity), the regret Ri(t) is bounded by C

√
T for every timestep t ≤ T , not just at t = T

as is conventionally required by adversarial no-regret algorithms. This is not a significantly stronger
requirement:
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Proposition B.1. If a (possibly randomized) adversarial no-regret algorithm satisfies Ri(T ) ≤ B
with probability 1− δ against any adversary, then with probability 1− δ it also satisfies Ri(t) ≤ B
simultaneously for all t ≤ T against any adversary.

Proof. Suppose not, i.e., suppose that there is some adversary A such that, with probability > δ,
there exists some t ≤ T for which Ri(t) > B. Then consider the adversary A′ that acts as follows.
At every time t, if Ri(t − 1) ≤ B, it copies A. Otherwise, it outputs ut = 0 for all remaining
timesteps. In the latter case, which by definition occurs with probability > δ, adversary A′ will also
achieve Ri(T ) > B.

C DETAILS OMITTED FROM SECTION 4

C.1 PROOF OF THEOREM 4.3

As in Theorem 4.2, we will assume without loss of generality that
∑
ai∈Ai

Ui(ai,a−i) = 0 for all
agents i and opponent profiles a−i.

We first claim that, for any agent i and any given signal sti = ai ∈ Ai, the total probability mass that
i plays actions other than ai is bounded byC

√
T . To see this, note that whenever the principal sends

signal ai, the payment is always set such that U ti (ai,a−i) ≥ 1 + U ti (a
′
i,a−i). Thus, the number of

times i does not play ati = ai quantity lower-bounds the regret R̂(T, ai). The claim follows from
the regret guarantee R̂(T, ai) ≤ C

√
T .

We will refer to the iterations of the inner loop over action profiles a−i as phases. Fix an agent i,
and number the phases for that agent using integers k ∈ {1, · · · ,Mi =

∏
j ̸=imj}, corresponding

to strategy profiles ā1
−i, . . . , ā

Mi
−i ∈ A−i. Let Ti(k) = {T i(k), . . . , T i(k)} be the set of timesteps in

agent i’s kth phase. The length of each phase is |Ti(k)| = L. Let BK be the total probability mass
placed by all agents j ̸= i on strategy profiles other than āk−i throughout phases 1, . . . ,K. By the
previous claim, we have

BK :=
∑

k≤K,t∈Ti(k)

(
1−

∏
j ̸=i

xtj(ā
k
j )
)
≤

∑
k≤K,t∈Ti(k),j ̸=i

(
1− xtj(ā

k
j )
)
≤ nmC

√
T .

By the principal’s regret bound in each phase, we must have∑
t∈Ti(k)

U ti (x
t
i, ā

k
−i) =

∑
t∈Ti(k)

Ui(x
t
i, ā

k
−i) +

∑
t∈Ti(k)

P ti (x
t
i)

≤
∑

t∈Ti(k)

Ui(x
t
i, ā

k
−i) +

∑
t∈Ti(k)

[
1− Ui(xti, āk−i)

]
+R0

= L+R0

where the inequality follows from the facts that 1) the principal’s regret is bounded, 2) P ti (·) =
1− Ui(·, āk−i) is a valid unilateral deviation for the principal.

Fix some K ≤Mi and ai ∈ Ai. By the anytime regret bound of agent i under signal ⊥, we have∑
k≤K,t∈Ti(k)

U ti (ai,x
t
−i) ≤

∑
k≤K,t∈Ti(k)

U ti (x
t
i,x

t
−i) + R̂i(Ti(k),⊥)

≤ 2BK +
∑

k≤K,t∈Ti(k)

U ti (x
t
i, ā

k
−i) + R̂i(Ti(k),⊥)

≤ 2nmC
√
T +K(L+R0) + nC

√
T .

Moving KL to the left and writing U ti (ai,x
t
−i) as Ui(ai,xt−i) + P ti (ai),

K∑
k=1

1

L

∑
t∈Ti(k)

[Ui(ai,x
t
−i) + P ti (ai)− 1]

︸ ︷︷ ︸
denoted by εi(k,ai)

≤ 1

L

(
R0K + 3nmC

√
T
)
.
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The error we need to bound is ∥εi(k, ·)∥∞. Since the above inequality holds for any ai, and∑
ai
εi(k, ·) = 0 by definition, it follows that∥∥∥∥∥

K∑
k=1

εi(k, ·)

∥∥∥∥∥
∞

= max
ai∈Ai

∣∣∣∣ K∑
k=1

1

L

∑
t∈Ti(k)

[Ui(ai,x
t
−i) + P ti (ai)− 1]

∣∣∣∣ ≤ m

L

(
R0K + 3nmC

√
T
)
.

By triangle inequality, we have

∥εi(k, ·)∥∞ =

∥∥∥∥∥
k∑

k′=1

εi(k
′, ·)−

k−1∑
k′=1

εi(k
′, ·)

∥∥∥∥∥
∞

≤ 2m

L

(
R0M + 3nmC

√
T
)
.

Finally, substituting R0 ≲
√
mL and T ≤ nML, we arrive at

∥εi(k, ·)∥∞ ≲
1√
L

(
m3/2M + n3/2m2CM1/2

)
.

Taking L = O(m
3M2+n3m4MC2

ε2 ) completes the proof, with T ≤ nML = O(nm
3M3+n4m4M2C2

ε2 ).

C.2 PROOF OF THEOREM 4.4

We prove both terms in the max separately. For the first term, suppose that Ui(1, ·) = 0 for all agents
i, and Ui(ai, a−i) ∼ {0, 2ε, 4ε, . . . , 1} i.i.d. for 2 ≤ a ≤ mi and a−i ∈ A−i. Thus the utility U is
uniformly sampled from a set of Ω(1/ε)K possible utilities, where

K =

n∑
i=1

(mi − 1)
∏
j ̸=i

mj

 ≥ nM

2
.

Each utility function differs by 2ε, it follows that ε-learning a game sampled from this family entails
exactly outputting the utility U . Suppose that, as discussed in Section 3, the no-regret algorithms
always output pure strategies ati ∈ Ai. Then on each round, the principal only observes a single
action profile a ∈ A, which only conveys logM bits of information. Therefore, ε-learning the game
takes at least

K log(Ω(1/ε))

logM
≳
nM log(1/ε)

logM

rounds, as desired.

For the second term, suppose ε ≤ C
2
√
T

. Let Zi : A → [0, ε] be any function, and suppose that

every agent plays according to utility function Ui + Zi instead of Ui using an algorithm with C
2

√
T

regret. Such an agent incurs at most C2
√
T + εT ≤ C

√
T regret with respect to Ui. Such an agent

is completely indistinguishable from an agent who has true utility Ui + Zi and runs an algorithm
with regret C

√
T , and therefore the principal can never distinguish between these two possibilities.

Since this is true for any Zi, this means that the principal cannot learn Ui to accuracy better than
ε ≤ C

2
√
T

. Thus, T must be at least C2

4ε2 for the principal to ε-learn the game.

D DETAILS OMITTED FROM SECTION 5

D.1 REVELATION PRINCIPLE FOR CEPS

In this section, we formulate a general version of the revelation principle for CEPs.

Definition D.1 (Non-canonical CEP). A (non-canonical, agent-form) ϵ-CEP is a distribution π ∈
∆(S×P ×AS1

1 ×· · ·×ASn
n ), where P = [0, B][n]×A×A is the set of payment functions, such that,

for any player i and any map ψi : Ai → ∆(Ai), we have

E
(s,P,ϕ)∼π

[
UPi (s, (ψi ◦ ϕi)(si), ϕ−i(s−i))− UPi (s, ϕ(s))

]
≤ 0.

The objective value is given by

E
(s,P,ϕ)∼π

[U0(ϕ(s))− P (s, ϕ(s))].

14
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We say that π is canonical if the payment function P ∼ π is constant, and for every player i,
Si = Ai and ϕi is the identity map. Note that canonical CEPs are precisely the CEPs according to
Definition 5.1.

Proposition D.2 (Revelation principle for CEPs). Every CEP is equivalent to a canonical CEP, in
the sense that, for every CEP π, there is a canonical CEP (µ′, P ′) achieving the same principal
objective value.

Proof. Given a CEP π, set µ′ ∈ ∆(A) to be the distribution that samples (s, ϕ) ∼ π and then
samples and outputs a ∼ ϕ(s). Then define P ′

i : A×A→ [0, B] by

P ′
i (a,a

′) = E
(s,P )∼π|a

Pi(s,a
′),

where (s, P ) ∼ π|a denotes sampling (s, P ) with probability proportional to π(s, P ) · ϕ(a|s).
Then note that, for any ψi : Ai → Ai, we have

E
a∼µ′

[UP
′

i (a, ψi(ai),a−i)] = E
a∼µ′

[Ui(ψi(ai),a−i) + P ′
i (a, ψi(ai),a−i)]

= E
a∼µ′

(s,P )∼π|a

[Ui(ψi(ai),a−i) + Pi(s, ψi(ai),a−i)]

= E
(s,P,ϕ)∼µ
a∼ϕ(s)

[Ui(ψi(ai),a−i) + Pi(s, ψi(ai),a−i)]

= E
(s,P,ϕ)∼π

[
UPi (s, (ψi ◦ ϕi)(si), ϕ−i(s−i))

]
Thus, if ψi is a profitable deviation for agent i in (µ′, P ′), then it is also a profitable deviation in π.
But the non-canonical CEP π does not have profitable deviations, so (µ′, P ′) is also a CEP.

D.2 ADDITIONAL PROPERTIES OF CEPS

We present some additional properties of CEPs.

First, optimal CEPs can be efficiently computed when the game is known.

Proposition D.3. Given a game Γ of size M , an optimal CEP (µ∗, P ∗) and its principal objective
F ∗(Γ) can be computed in poly(M)-time by a linear program.

Proof. Define change of variables

Qi(ai) := µ(ai) · E
a∼µ|ai

Pi(a,a).

That is, Qi(ai) is the µ-weighted total payment given to agent i across all strategy profiles on which
agent i is recommended action ai. Consider the following linear program:

max
µ,Qi,εi

∑
a∈A

µ(a)U0(a)−
∑
i∈[n]
ai∈Ai

Qi(ai) s.t.

∑
a−i∈A−i

µ(a)[Ui(a
′
i,a−i)− Ui(a)]−Qi(ai) ≤ εi(ai) ∀i ∈ [n], ai, a

′
i ∈ Ai∑

ai∈Ai

εi(ai) ≤ 0 ∀i ∈ [n]

∑
a∈A

µ(a) = 1

0 ≤ Qi(ai) ≤ µ(ai) ∀i ∈ [n], ai, a
′
i ∈ Ai.

(3)

This LP is equivalent to computing the optimal 0-CEP because for any feasible solution (µ,Q) of
the LP, the payment functions defined by Pi(a,a) =

Qi(ai)
µ(ai)

and Pi(a,a′) = 0 if a′ ̸= a together
with µ constitute a feasible 0-CEP with the same objective value. This LP has poly(M) variables
and constraints, so the proof is complete.
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Second, we show that the assumption that the payments can be signal-dependent is not innocuous,
except when the payment at equilibrium is zero. There exist games where a CEP with signal-
dependent payment is strictly better than a CEP with signal-independent payment.

Proposition D.4 (Correlation does not help when no payments are allowed in equilibrium). The
0-CEPs with Ea∼µ P (a,a) = 0 are exactly the correlated equilibria.

Proof. In the LP (3), this is equivalent to setting Qi(·) = 0 for every agent i, in which case (3) is
just the LP characterizing correlated equilibria.

However, when the payment at equilibrium is positive, it is possible for signal-dependent payments
to help the principal.

Proposition D.5 (Signal-dependent payments can help in general). There exists a game Γ, and
principal utility function U0, such that the optimal value of (3) is greater than the objective value of
the optimal CEP in which P (s,a) depends on a but not s.

Proof sketch. In the normal-form game below, P1 and P2 play matching pennies, and the principal
is willing to pay a large amount to avoid a particular pure profile.

X Y
X −∞, 0, 1 0, 1, 0
Y 0, 1, 0 0, 0, 1

P1 chooses the row, P2 chooses the column. In each cell, the principal’s utility is listed first, then
P1’s, then P2’s. Now consider the following CEP: The principal mixes evenly between recommend-
ing (X,Y ), (Y,X), and (Y, Y ). If the principal recommends (Y,X), it also promises a payment of
1 to P2 if P2 follows the recommendation X . This CEP has principal objective value −1/3, and no
signal-independent CEP can match that value. The full proof is given in Appendix D.2.1.

In the language of Monderer & Tennenholtz (2003), a CEP with k = Ea∼µ P (a) is called
a k-implementable correlated equilibrium.4 They show that all correlated equilibria are 0-
implementable, but do not show the converse. Our results improve upon theirs by 1) showing
the converse (Proposition D.4), and 2) analyzing the k > 0 case, in particular, by incorporating
a principal objective and showing how to compute the optimal CEP.

D.2.1 COMPLETE PROOF OF PROPOSITION D.5

We first show that the claimed CEP is actually a CEP.

• Conditioned on P1 being recommended X , P2’s action is deterministically Y , against
which X is the best response for P1.

• Conditioned on P1 being recommended Y , P2’s action is uniform random, against which
Y is a best response for P1.

• Conditioned on P2 being recommended X , P1’s action is deterministically Y , against
which the principal’s promised payment of 1 makes X a best response for P2.

• Conditioned on P2 being recommended Y , P1’s action is uniform random, against which
Y is a best response for P2.

It remains to show that the objective value−1/3 cannot be achieved by any CEP in which payments
are signal-independent. We prove it by contradiction. Suppose there is a CEP (µ, P ) with signal-
independent P that achieves objective value at least −1/3. Note that µ ∈ ∆(A) is a correlated

4Instead of our condition of ex-interim IC, Monderer & Tennenholtz (2003) insist on dominant-strategy IC,
that is, they insist that UP

i (s, si, a−i) ≥ UP
i (s, a) for every s and a. However, this requirement does not

change anything in equilibrium, because one can always set P (s, si, a−i) when si = ai and s ̸= a to be so
large that playing ai becomes dominant. Indeed, Monderer & Tennenholtz (2003) do this to establish their
results on implementation; Zhang et al. (2024) do this in their steering algorithms; and we will do the same in
Section 5.
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equilibrium of the game with utility function U + P . Because the principal’s utility without the
payment part is always non-positive, for the objective to be at least −1/3, the expected payment to
the two players

∑
a µ(a)P (a) cannot exceed 1/3.

Since UP (X,X) = −∞, we must have µ(X,X) = 0. We then analyze the incentive compatibility
constraints for the two players:

• When P2 is recommended X , P2 knows that P1 is recommended Y (because (X,X) is not
possible), so in order to ensure P2 has no incentive to deviate from X to Y , we must have
UP2 (Y,X) ≥ UP2 (Y, Y ) ⇐⇒ 0 + P2(Y,X) ≥ 1 + P2(Y, Y ) =⇒ P2(Y,X) ≥ 1.

Since the expected payment is at least µ(Y,X)P2(Y,X) but is at most 1/3, we must have
µ(Y,X) ≤ 1/3.

• When P2 is recommended Y , P2 believes that the recommendation to P1 is X and Y with
probability µ(X,Y ) and µ(Y, Y ), respectively, so to prevent P2 from deviation Y → X , the
expected utilities of P2 under actions Y and X should satisfy:

µ(X,Y ) ·
(
U2(X,Y ) + P2(X,Y )

)
+ µ(Y, Y ) · (U2(Y, Y ) + P2(Y, Y )

)︸ ︷︷ ︸
P2’s expected utility when taking action Y given recommendation Y

≥ µ(X,Y ) ·
(
U2(X,X) + P2(X,X)

)
+ µ(Y, Y ) ·

(
U2(Y,X) + P2(Y,X)

)︸ ︷︷ ︸
P2’s expected utility when taking actionX given recommendation Y

⇐⇒ µ(X,Y ) ·
(
0 + P2(X,Y )

)
+ µ(Y, Y ) · (1 + P2(Y, Y )

)
≥ µ(X,Y ) ·

(
1 + P2(X,X)

)
+ µ(Y, Y ) ·

(
0 + P2(Y,X)

)
=⇒ µ(X,Y ) · P2(X,Y ) + µ(Y, Y ) · P2(Y, Y )

≥ µ(X,Y ) ·
(
1 + P2(X,X)

)
+ µ(Y, Y ) · P2(Y,X)− µ(Y, Y ).

Because payments are non-negative and P2(Y,X) ≥ 1, the above implies
µ(X,Y ) · P2(X,Y ) + µ(Y, Y ) · P2(Y, Y )

≥ µ(X,Y ) ·
(
1 + P2(X,X)

)
+ µ(Y, Y ) · P2(Y,X)− µ(Y, Y ).

≥ µ(X,Y ).

So, the total expected payment to P2 is at least
µ(X,Y )P2(X,Y ) + µ(Y, Y )P2(Y, Y ) + µ(Y,X)P2(Y,X) (4)
≥ µ(X,Y ) + µ(Y,X).

• When P1 is recommended Y , P1 knows that P2’s action is X with probability µ(Y,X) and
Y with probability µ(Y, Y ), so to prevent P1 from deviation Y → X , P1’s expected utilities
under actions Y and X should satisfy:

µ(Y,X) ·
(
U1(Y,X) + P1(Y,X)

)
+ µ(Y, Y ) ·

(
U1(Y, Y ) + P1(Y, Y )

)︸ ︷︷ ︸
P1’s expected utility when taking action Y given recommendation Y

≥ µ(Y,X) ·
(
U1(X,X) + P1(X,X)

)
+ µ(Y, Y ) ·

(
U1(Y, Y ) + P1(Y, Y )

)︸ ︷︷ ︸
P1’s expected utility when taking actionX given recommendation Y

⇐⇒ µ(Y,X) ·
(
1 + P1(Y,X)

)
+ µ(Y, Y ) ·

(
0 + P1(Y, Y )

)
≥ µ(Y,X) ·

(
0 + P1(X,X)

)
+ µ(Y, Y ) ·

(
1 + P1(Y, Y )

)
.

Since payments are non-negative, the above implies
µ(Y,X) · P1(Y,X) + µ(Y, Y ) · P1(Y, Y ) (5)
≥ µ(Y,X) · P1(X,X) + µ(Y, Y ) + µ(Y, Y ) · P1(Y, Y )− µ(Y,X)

≥ µ(Y, Y )− µ(Y,X).

Now, adding (4) and (5), the total expected payment to the two players is at least∑
a

µ(a)P (a) ≥ µ(X,Y ) + µ(Y,X) + µ(Y, Y )− µ(Y,X)

= µ(X,Y ) + µ(Y, Y ) = 1− µ(Y,X) ≥ 2/3 > 1/3

because µ(Y,X) ≤ 1/3, which contradicts the condition that the expected payment is at most 1/3.
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D.3 PROOF OF THEOREM 5.2

Suppose that the agents run no contextual swap regret algorithms. Concretely, an agent has no
contextual swap regret if

R̂i(t, si) := max
ψi:Ai→Ai

∑
τ≤t

∑
s−i∈S−i

µt(s)
[
Uτi (s, (ψi ◦ ϕi)(si), ϕτ−i(s−i))− Uτi (s, ϕτ (s))

]
≤ εT.

where ε → 0 as T → ∞. For typical no contextual swap regret algorithms, ε = O( C√
T
) where

C depends on the game and the number of signals. Clearly, contextual swap regret is a stronger
benchmark than the standard (external) notion of regret.

Then, after sufficiently many rounds T , by definition, we have that the correlated strategy profile

π :=
1

T

T∑
t=1

(µt, P t, ϕt) ∈ ∆(S × [0, B][n]×A×A ×AS1
1 × · · · ×ASn

n )

is a non-canonical (ε · maxi |Si|)-CEP in the sense of Appendix D.1. Therefore, by the revelation
principle for CEPs (Proposition D.2), the principal objective value is bounded by that of the best
(ε ·maxi |Si|)-CEP, which is then bounded by F ∗(Γ) +O(ε).

D.4 PROOF OF THEOREM 5.3

From the analysis of Theorem 4.3, Algorithm 2 learns a game to precision ε = poly(M,C)/
√
L.

(Note that we do not express ε as a funciton of T because T is now the total number of rounds across
both learning and steering stages. )

Since Ũ and U differ by only ε (up to agent-independent terms), every CEP of Γ̃ is a 2ε-CEP of
Γ. The payment function P ti for the steering stage then ensures that, when given signal si, it is
dominant for agent i to play ai = si. Formally, regardless of how other agents act, we have

U ti (s, ai,a−i)− U ti (s, a′i,a−i) ≥ ρ, ∀s ∈ A, ai = si,∀a′i ̸= si,∀a−i ∈ A−i.

Further, from the analysis of Theorem 4.3, agent i’s regret against following signals si ̸= ⊥ is always
nonnegative. Therefore, by agent i’s regret bound, there are at most C

√
T/ρ rounds on which agent

i fails to obey recommendation si in the steering stage. By a union bound, there are therefore
mnC

√
T/ρ rounds in the steering stage on which at ̸= st. Thus, the principal’s suboptimality is

bounded by

F ∗(Γ)− F (T ) ≤ F ∗(Γ)− F ∗(Γ̃)︸ ︷︷ ︸
(1)

+
(2n+ 1)nML

T︸ ︷︷ ︸
(2)

+ n(2ε+ ρ)︸ ︷︷ ︸
(3)

+
(2n+ 1)mnC

ρ
√
T︸ ︷︷ ︸

(4)

≤ poly(M) ·
(
L

T
+

1√
L

+ ρ+
1

ρ
√
T

)
where the four terms are:

(1) The difference between the optimal objectives on games Γ and Γ̃. It is at most 2nε because
F ∗(Γ) = F (µ∗, P ∗) ≤ F (µ∗, P ∗ + 2ε) + 2nε ≤ F (µ̃∗, P̃ ∗) + 2nε = F ∗(Γ̃) + 2nε.

(2) The suboptimality and payments in the utility learning stage,
(3) The bonus payments to ensure strict incentive compatibility in the steering stage, and
(4) The suboptimality and payments in rounds on which at ̸= st.

Setting ρ = T−1/4 and L = T 2/3 then completes the proof.
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