

000
001
002
003

LEARNING A GAME BY PAYING THE AGENTS

004
005
006
007
008009 **Anonymous authors**
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053009 Paper under double-blind review
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

We study the problem of learning the utility functions of no-regret learning agents in a repeated normal-form game. Differing from most prior literature, we introduce a principal with the power to observe the agents playing the game, send agents signals, and give agents *payments* as a function of their actions. We show that the principal can, using a number of rounds polynomial in the size of the game, learn the utility functions of all agents to any desired precision $\varepsilon > 0$, for any no-regret learning algorithms of the agents. Our main technique is to formulate a zero-sum game between the principal and the agents, where the principal’s strategy space is the set of all payment functions. Finally, we discuss implications for the problem of *steering* agents to a desired equilibrium: in particular, we introduce, using our utility-learning algorithm as a subroutine, the first algorithm for steering arbitrary no-regret learning agents without prior knowledge of their utilities.

1 INTRODUCTION

Most literature on game theory aims to understand the behavior of agents in a game given the preferences of the agents. That is, *knowing* what the agents want, how will they act? In this paper, we consider the inverse of this problem: if all we can observe is how agents act, can we infer what they want, that is, their utility functions? The problem of inferring agents’ utility functions from their behavior is known as “learning from revealed preferences” (e.g., [Beigman & Vohra \(2006\)](#); [Zadimoghaddam & Roth \(2012\)](#)) or “inverse game theory” (e.g., [Kuleshov & Schrijvers \(2015\)](#)). Despite a long history, these two lines of work have some limitations. First, they often assume that the observed behavior of the agents is *(Nash) equilibrium behavior*. This is arguably unrealistic, especially because Nash equilibria are PPAD-hard to compute ([Daskalakis et al., 2006](#); [Chen et al., 2009](#)). Second, they mostly focus on *passive* problems, aiming to learn agents’ utility functions from a fixed set of behavior data. Often, this creates trivial impossibility results, stemming from the fact that the behavioral data available is simply not enough to determine the agents’ preferences.

In this paper, we consider an *active, non-equilibrium* inverse game problem. A principal observes the actions of agents playing an unknown repeated game, and seeks to learn the agents’ utility functions from those observations. We do not assume the agents to play equilibria. Instead, they can use *any no-regret algorithms* to learn to choose actions. The principal can actively modify the unknown game by giving *payments* to the agents as a function of their play, as well as providing *signals*, in the spirit of correlated equilibria ([Aumann, 1974](#)). The signaling scheme and payment scheme can change from round to round, depending on the agents’ past actions. Under this setup, we ask:

Can a principal learn the utility functions of no-regret learning agents?

We will give a positive answer to this question, by designing an algorithm for the principal to learn the game via payments and signals. Then, we will apply our algorithm to *steering* no-regret learning agents toward desirable outcomes, a problem introduced by [Zhang et al. \(2024\)](#). Building on their results, we will show that it is possible to steer agents to optimal outcomes even without prior knowledge of their utility functions.

1.1 OVERVIEW OF OUR RESULTS

In our model, agents play a fixed normal-form game Γ repeatedly over T rounds, using arbitrary no-regret learning algorithms. A principal, initially knowing nothing about the agents’ utility functions,

054 can give non-negative *payments* to the agents, that get added to the agents' utilities, to influence
 055 the agents' behavior. The principal aims to learn the utility functions of all agents to a given target
 056 precision $\varepsilon > 0$, based on the actions taken by the agents.

057 Learning the utility functions completely is impossible, because agents' incentives only depend on
 058 *relative* utilities between their actions, not *absolute* utilities. Thus, we only demand that the principal
 059 output utility functions that yield a *strategically-equivalent* game, that is, one in which all agents'
 060 relative utilities are identical to those in the true game. Equivalently, we identify each agent's utility
 061 function up to a term that does not depend on that agent's action.

062 Our main result is an efficient algorithm for the principal to learn the game by paying the agents. Let
 063 n be the number of agents, m_i be the number of actions of each agent i , and $M = \prod_i m_i$ be the total
 064 number of action profiles. Assume that each agent's regret in T rounds is at most $\mathcal{O}(\sqrt{T})$ (satisfied
 065 by typical no-regret algorithms). Our algorithm learns the game in polynomially many rounds:

066 **Theorem 1.1** (Informal version of Theorems 4.3 and 4.4). *There exists a principal algorithm that
 067 learns a game to precision ε in $M^{\mathcal{O}(1)}/\varepsilon^2$ rounds. This is tight up to the exponent hidden by the \mathcal{O} .*

068 The main idea of our algorithm is surprisingly simple but powerful. In the single-agent case, we let
 069 the principal play a zero-sum game with the agent, where the agent chooses actions to maximize its
 070 reward, which is utility plus payment, while the principal chooses payments to minimize the agent's
 071 reward. This game admits a unique equilibrium where the principal's payment function is equal
 072 to the negation of the agent's utility function. By running no-regret algorithms against each other,
 073 the principal and agent can reach such an equilibrium, so the negative average payment function
 074 becomes an accurate estimate of the agent's utility function. In the multi-agent case, we use signals
 075 to separate the learning problems for different agents, reducing the problem to the single-agent case.

076 We then turn to a motivating application, which is the problem of *steering* no-regret learners to
 077 desirable outcomes, introduced by [Zhang et al. \(2024\)](#). Departing from them, we do not require
 078 the principal to have prior knowledge of the agents' utility functions. We define a solution concept
 079 called *correlated equilibrium with payments* (CEP), in which the principal has a utility function, and
 080 wishes to optimize its utility minus the amount of payment that it must give. Departing from [Zhang
 081 et al. \(2024\)](#) again, it is possible for the total amount of payment to be nonzero in equilibrium (i.e.,
 082 linearly increasing in T), so long as the corresponding increase in principal utility is large enough to
 083 justify the payments. We then show that the principal-optimal CEP exactly characterizes the value
 084 (averaged across timesteps) that the principal can achieve in the limit $T \rightarrow \infty$:

085 **Theorem 1.2** (Informal version of Theorems 5.2 and 5.3). *Let $F^*(\Gamma)$ be the objective value for the
 086 principal in the principal-optimal CEP in game Γ . Then, against no-regret agents,*

- 087 • *even knowing the game Γ exactly, the principal cannot achieve time-averaged value better than
 088 $F^*(\Gamma) + \text{poly}(M) \cdot T^{-1/2}$, and*
- 089 • *with no prior knowledge of the agents' utilities, there exists an algorithm for the principal to
 090 achieve time-averaged value at least $F^*(\Gamma) - \text{poly}(M) \cdot T^{-1/4}$.*

091 All our algorithms are implementable by the principal in $\text{poly}(M)$ running time. To our knowledge,
 092 our Result 1 is the first positive result for utility-learning with arbitrary no-regret agents. Our Result
 093 2 is the first in steering any no-regret agents without prior knowledge of their utilities, and the first
 094 exact characterization of the optimal value achievable by the principal in the steering problem.

095 1.2 RELATED RESEARCH

096 *Steering agents to achieve desirable outcomes* is an important subject of study in economics, com-
 097 puter science, and control theory (e.g., [Monderer & Tennenholtz \(2003\)](#); [Zhang et al. \(2024\)](#);
 098 [Canyakmaz et al. \(2024\)](#); [Yao et al. \(2025\)](#)). In particular, [Zhang et al. \(2024\)](#) introduced the prob-
 099 lem of steering no-regret learners via payments. Critically, most prior works on steering assume that
 100 the principal knows the agents' utility functions. We study how the agents' utility functions can be
 101 learned, the solution to which will serve for any downstream applications including steering.

102 Besides the aforementioned works, another literature about learning agents' utility functions from
 103 their behavior is *learning in Stackelberg games*, where the principal cannot pay the agents but can in-
 104 fluence the agents' actions by changing its own strategy, and the agents respond myopically ([Letch-](#)

108 ford et al., 2009; Peng et al., 2019) or by learning algorithms (Haghtalab et al., 2022). Strong
 109 impossibility results are known for this problem: without regularity conditions or without knowing
 110 the details of the agents’ learning algorithms, the principal cannot learn the agent’s utility function
 111 (Zhang et al., 2025). In contrast, we consider a setting where the principal gives payments but does
 112 not take actions. We show that the use of payment makes a significant difference: the principal can
 113 now learn the utility functions of any no-regret agents without knowing their behavioral details.

114 Even with payment, the problem of learning from learning agents is still challenging. As we will
 115 discuss more in Section 4, a key obstacle is the non-forgetfulness of agents’ no-regret algorithms.
 116 The payment given to the agents in the past affect their future behavior. Non-forgetfulness is a
 117 known issue in multi-agent learning dynamics (Wu et al., 2022; Cai et al., 2024; Scheid et al., 2024).
 118 We overcome this obstacle by designing a zero-sum-game-based learning algorithm for the principal
 119 and using signals to influence agents, without requiring the agents’ algorithms to be forgetful.

120 Our use of signals to influence agents is inspired by *information design* (e.g., Kamenica & Gentzkow
 121 (2011)). In fact, Feng et al. (2022); Bacchicocchi et al. (2024) studied how to learn agents’ utility
 122 functions by providing signals to shape agents’ beliefs and behaviors in information design prob-
 123 lems. While they consider myopically best-responding agents, we allow any no-regret learning
 124 agents, a more challenging setting necessitating the combination of signals and payments.

125 The literature on *playing against no-regret agents* studies how the principal should play a game
 126 if they know the agents’ utilities and some properties of the agents’ algorithms (e.g., Braverman
 127 et al. (2018); Deng et al. (2019); Mansour et al. (2022); D’Andrea (2023); Lin & Chen (2025);
 128 Arunachaleswaran et al. (2025)). For example, Deng et al. (2019) show that, if agents run *mean-
 129 based* no-regret algorithms, then the principal can gain *more* than the Stackelberg value in a Stack-
 130 elberg game. Our algorithms and setting, on the other hand, consider *worst-case* no-regret agent
 131 behaviors. While most of the cited papers consider principal-agent problems with a single agent and
 132 with no payment, we consider arbitrary payment-argumented multi-agent games.

2 PRELIMINARIES

136 **Notations.** Throughout this paper, $\tilde{\mathcal{O}}$ and $\tilde{\Omega}$ hide factors logarithmic in their argument. The symbol
 137 $[n]$ denotes the set of positive integers $\{1, \dots, n\}$. The notation $f \lesssim g$ means $f \leq \mathcal{O}(g)$, and $f \gtrsim g$
 138 means $f \geq \Omega(g)$. For a vector $\mathbf{v} \in \mathbb{R}^m$, its i -th component is denoted by $\mathbf{v}[i]$ or v_i . Vector of ones
 139 and zeros are $\mathbf{1} = (1, \dots, 1)$ and $\mathbf{0} = (0, \dots, 0)$. $\mathbb{I}\{\cdot\}$ is the indicator function, i.e., for a statement
 140 p , $\mathbb{I}\{p\} = 1$ if p is true and 0 if p is false.

141 **Normal-form games.** A normal-form game $\Gamma = (n, A, U)$ consists of a set of n *agents*, or *players*,
 142 which we will identify with the set of integers $[n]$. Each agent i has an action set A_i of size $m_i \geq 2$.
 143 We will let $m := \max_i m_i$ and $M = \prod_i m_i$. A tuple $\mathbf{a} \in A := A_1 \times \dots \times A_n$ is an *action
 144 profile*. Each agent has a *utility function* $U_i : A \rightarrow [0, 1]$, denoting the utility for agent i when the
 145 agents play action profile $\mathbf{a} \in A$. A *mixed strategy* of agent i is a distribution $\mathbf{x}_i \in \Delta(A_i)$. We will
 146 overload the utility function U_i to accept mixed strategies, so that $U_i(\mathbf{x}_1, \dots, \mathbf{x}_n)$ is the expected
 147 utility for agent i when every agent $j \in [n]$ independently samples $a_j \sim \mathbf{x}_j$. As is standard in game
 148 theory, we use $-\mathbf{i}$ to refer to the tuple of all agents except i . For instance, $U_i(a'_i, \mathbf{a}_{-i})$ is the utility
 149 of agent i when agent i plays action $a'_i \in A_i$ and other agents play $\mathbf{a}_{-i} \in A_{-i} = \times_{j \neq i} A_j$.
 150

151 **No-regret learning.** In *no-regret learning*, a learner has a convex compact strategy set $\mathcal{X} \subset \mathbb{R}^m$,
 152 and interacts with a possibly adversarial environment. On each timestep t , the learner selects a strat-
 153 egy $\mathbf{x}^t \in \mathcal{X}$. Simultaneously, the environment, possibly adversarially, selects a linear utility vector
 154 $\mathbf{u}^t \in \mathbb{R}^m$, which we assume to be bounded: $|\langle \mathbf{u}^t, \mathbf{x} \rangle| \lesssim 1$. The learner’s *regret* after T timesteps is
 155 $R(T) = \max_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T \langle \mathbf{u}^t, \mathbf{x} - \mathbf{x}^t \rangle$. We say that the learner is running a *no-regret algorithm* if its
 156 average regret $R(T)/T \rightarrow 0$ in the limit $T \rightarrow \infty$ for all possible sequences $(\mathbf{u}^1, \dots, \mathbf{u}^T)$.
 157

158 A well-known no-regret algorithm for general strategy set \mathcal{X} is *projected gradient descent/ascent*
 159 (Zinkevich, 2003). Projected gradient ascent selects $\mathbf{x}^1 \in \mathcal{X}$ arbitrarily, and for every timestep
 160 $t > 1$ sets $\mathbf{x}^t = \Pi_{\mathcal{X}}[\mathbf{x}^{t-1} + \eta \mathbf{u}^{t-1}]$ where $\Pi_{\mathcal{X}}$ is the ℓ_2 -projection operator into \mathcal{X} . With step size
 161 $\eta = B/(G\sqrt{T})$, where B is the ℓ_2 -diameter of \mathcal{X} and G bounds the ℓ_2 -norm of \mathbf{u}^t , the algorithm
 achieves a regret of $R(T) \lesssim BG\sqrt{T}$.

To apply no-regret learning to games, each agent i runs a no-regret algorithm over their mixed strategy set $\mathcal{X} = \Delta(m_i)$. For this special case, the most common algorithm is the *multiplicative weights update* (MWU) algorithm (e.g., [Freund & Schapire \(1999\)](#)), which sets $\mathbf{x}^t \propto \exp(\eta \sum_{\tau < t} \mathbf{u}^\tau)$, where $\eta = \sqrt{\log(m_i)/T}$ is an appropriately-chosen step size and $\exp(\cdot)$ is the element-wise exponential function. Multiplicative weights achieves regret bound $R(T) \lesssim \sqrt{T \log m_i}$.

3 OUR PROBLEM: LEARNING FROM LEARNING AGENTS

We study a setting where the principal does not initially know anything about the agents' utility functions U_i except for boundedness. The principal knows the number of agents n and their action sets A_i , oversees the agents playing the game repeatedly over T rounds, and can provide *payments* and *signals* to influence the agents' behavior, in order to learn the utility functions of the agents. More formally, in each round $t = 1, \dots, T$, the following events happen in order:

1. The principal selects *payment function* $P_i^t : A_i \rightarrow [0, B]$ for each agent i , where B is a large constant.¹ The payment $P_i^t(a_i)$ is added to agent i 's reward, creating a new game Γ^t with utility functions given by $U_i^t(a) := U_i(a) + P_i^t(a_i)$.
2. The principal sends a *signal* $s_i^t \in S_i$ to each agent i .
3. Observing s_i^t (but not P_i^t), each agent i selects a mixed strategy $\mathbf{x}_i^t \in \Delta(A_i)$.
4. The principal observes the joint mixed strategy \mathbf{x}^t . Each agent i gets reward $U_i^t(\mathbf{x}^t)$.

Agents' no-regret learning We assume that each agent selects \mathbf{x}_i^t using a no-regret learning algorithm, or more precisely, a *contextual* no-regret learning algorithm where signals are contexts and agents achieve no regret given any signal/context. Formally, there is a (possibly game-dependent) constant $C \leq \text{poly}(M)$ such that, for every agent i , every signal $s_i \in S_i$, every time step $t \leq T$,²

$$\hat{R}_i(t, s_i) := \max_{a_i \in A_i} \sum_{\tau \leq t: s_i^\tau = s_i} [U_i^\tau(a_i, \mathbf{x}_{-i}^\tau) - U_i^\tau(\mathbf{x}^\tau)] \leq C\sqrt{T}. \quad (1)$$

One way to achieve this guarantee is for each agent to run $|S_i|$ independent no-regret algorithms, one for each signal. However, we do not restrict to any specific algorithms: agents can run *any* algorithms satisfying the above no-regret property, such as projected gradient ascent, MWU, Exp3, and so on. In particular, agents can run full-feedback or bandit-feedback no-regret algorithms; our results are unaffected. Indeed, the agents' learning algorithms need not even be independent; they could choose their actions using a centralized algorithm. As typical no-regret algorithms do not require knowledge of the utility functions (they operate on the feedback received after each round), the agents can also be initially ignorant of their own utility functions U_i , just as the principal is.

Mixed strategies and agent randomization Our model stipulates that the principal observes the full joint mixed strategy \mathbf{x}^t , instead of a sampled pure strategy profile $\mathbf{a}^t \sim \mathbf{x}^t$. This stipulation, however, is not at all vital and could be removed with only minimal effect on the results. In particular, suppose that each agent i , instead of announcing a mixed strategy \mathbf{x}_i^t in each round, samples an action $a_i^t \sim \mathbf{x}_i^t$ and announces the "mixed strategy" that assigns all mass to a_i^t . Then the principal only observes a_i^t . The difference now is that, since the agents are randomizing, the regret bound (1) cannot hold *deterministically*; there will be some stochastic approximation error term that can be bounded by Azuma-Hoeffding inequality, so (1) only holds *with high probability*. In that setting, one can think of the results of this paper as conditional on the high-probability event that (1) holds.

In particular, lower bounds that apply to the setting where the principal only observes the realized action profile also apply to the setting where the principal observes the mixed strategy profile. We will use this fact freely to prove lower bounds, in [Theorem 4.4](#).

¹All our positive results will only require $B = 2$, since the utility functions are bounded by 1.

²*Anytime* no-regret is not a strong requirement. We show in [Appendix B.1](#) that any algorithm with the usual no-regret guarantee under adversarial environments automatically satisfies anytime no-regret.

216
217

3.1 OUR GOAL

218 Our goal is to design algorithms for the principal to learn the agents' utility functions U_i by designing the payment functions P_i^t and sending signals s_i^t , for any no-regret learning agents. However, this goal as currently stated is impossible, because agents' regrets and behaviors are only affected by the *utility differences* between actions, because agents' regrets are only affected by the *utility differences* between actions, namely, $U_i(a_i, \mathbf{a}_{-i}) - U_i(a'_i, \mathbf{a}_{-i})$, and the behaviors of typical no-regret algorithms (such as MWU) only depend on those differences. In other words, if we create another game $\tilde{\Gamma}$ with $\tilde{U}(a_i, \mathbf{a}_{-i}) = U_i(a_i, \mathbf{a}_{-i}) + W_i(\mathbf{a}_{-i})$ for all $\mathbf{a} \in A$, where $W_i : A_{-i} \rightarrow \mathbb{R}$ is an arbitrary function not depending on agent i 's action, there is no way to distinguish Γ from $\tilde{\Gamma}$ using only agents' behavioral data – that is, games Γ and $\tilde{\Gamma}$ are *strategically equivalent*. Thus, we can only determine utility functions *up to* strategic equivalence.

228 Our formal goal is thus the following. Given a game Γ and precision ε , we say that the principal's
229 algorithm ε -*learns* the game Γ if it outputs utility functions $\tilde{U}_i : A \rightarrow \mathbb{R}$ such that there exist
230 functions $W_i : A_{-i} \rightarrow \mathbb{R}$ satisfying

$$232 \quad \left| U_i(\mathbf{a}) + W_i(\mathbf{a}_{-i}) - \tilde{U}_i(\mathbf{a}) \right| \leq \varepsilon, \quad \forall i \in [n], \quad \forall \mathbf{a} \in A. \quad (2)$$

233 The goal of the principal is to ε -learn Γ in as few rounds as possible.

235 For all practical purposes, it is enough to learn a game up to strategic equivalence. In particular, for
236 typical notions of equilibrium including Nash equilibria and correlated equilibria, an ε -approximate
237 equilibrium of $\tilde{\Gamma}$ is an $O(\varepsilon)$ -approximate equilibrium of Γ ; thus, learning \tilde{U} is enough to guarantee
238 the (approximate) preservation of equilibrium sets. In Section 5, we will see that it is also enough to
239 enable *steering* the learners toward principal-desirable outcomes. Finally, while our paper focuses
240 on the problem of minimizing the number of *rounds* it takes to learn the game, an alternative goal
241 might be to minimize the total payment to do so. However, we show in Appendix A that the minimal
242 achievable payment is upper-bounded and lower-bounded by the minimal number of rounds up to
243 constant factors, so these two problems are quantitatively similar.

244

245 4 LEARNING A GAME BY PAYING NO-REGRET LEARNERS

246

247 We design efficient algorithms for the principal to ε -learn a game by paying no-regret learning
248 agents. We will start with the single-agent case to illustrate the main ideas of our algorithms, before
249 proceeding to the multi-agent case.

250

251

4.1 THE SINGLE-AGENT CASE

252

253 In the single-case case ($n = 1$), it is more convenient to view the single agent's utility function as
254 a vector $\mathbf{u} \in [0, 1]^m$, and similarly the payment $P^t : [m] \rightarrow \mathbb{R}$ as vector $\mathbf{p}^t \in \mathbb{R}^m$ and total utility
255 $\mathbf{u}^t := \mathbf{u} + \mathbf{p}^t$. To simplify notations, we subtract the average utility of all actions from the utility of
256 each action: $\mathbf{u} \leftarrow \mathbf{u} - \frac{\langle \mathbf{1}, \mathbf{u} \rangle}{m} \mathbf{1}$, so that $\mathbf{u} \in [-1, 1]^m$ and $\langle \mathbf{1}, \mathbf{u} \rangle = 0$. By the discussion before (2),
257 this does not change the principal's learning problem. Our algorithm will not need signaling in the
258 single-agent case, so it will be enough to set $|S_i| = 1$.

259

260

261 The main challenge of learning a game from a no-regret agent is the history-dependency of the
262 agent's behavior. To fix ideas, suppose the agent has two actions A and B with unknown utility gap
263 $u_A - u_B = \Delta > 0$. A straightforward attempt to learn the gap Δ is to try different payments for
264 action B (while paying 0 for action A) in a binary-search manner: the payment at which the agent
265 just starts to play action B should reveal the value of Δ . However, that approach does not work for
266 a no-regret learning agent because no-regret algorithms may not respond instantaneously to changes
267 to the payment function. Historical payments affect the agent's future behavior. Moreover, the agent
268 may incur *negative* regret over time, making it difficult to learn anything from the agent's behavior
269 on subsequent rounds. For example, if an agent has regret $-K$ for all actions, then one cannot say
anything at all about how the agent will behave in the next K rounds.

270

271

272 The key idea of our algorithm is to *imagine the principal and the agent as playing a zero-sum game*
273 where the principal selects the payment function \mathbf{p} from some set \mathcal{P} to be specified later, the agent

FIX
NEW
NEW

270 selects mixed strategy $\mathbf{x} \in \Delta(m)$, the agent's utility is given by $\langle \mathbf{u} + \mathbf{p}, \mathbf{x} \rangle$, and the principal's
 271 utility is $-\langle \mathbf{u} + \mathbf{p}, \mathbf{x} \rangle$. Call this game Γ_0 . In particular, by setting $\mathcal{P} = \{\mathbf{p} \in [0, 2]^m : \langle \mathbf{1}, \mathbf{p} \rangle = m\}$,
 272 the zero-sum game Γ_0 has the following property:
 273

274 **Lemma 4.1.** *In the zero-sum game Γ_0 , every ε -Nash equilibrium strategy for the principal has the
 275 form $\mathbf{p} = \mathbf{1} - \mathbf{u} + \mathbf{z}$, where $\|\mathbf{z}\|_1 \leq 4m\varepsilon$.*

277 *Proof.* Setting $\mathbf{p} = \mathbf{1} - \mathbf{u}$ guarantees $\langle \mathbf{u} + \mathbf{p}, \mathbf{x} \rangle = \langle \mathbf{1}, \mathbf{x} \rangle = 1$ for every $\mathbf{x} \in \Delta(m)$. Thus, in every
 278 ε -Nash equilibrium, the agent's utility is at most $1 + \varepsilon$. Now suppose for contradiction that (\mathbf{p}, \mathbf{x}) is
 279 an ε -Nash equilibrium with $\|\mathbf{p} + \mathbf{u} - \mathbf{1}\|_1 > 4m\varepsilon$. Then since $\langle \mathbf{p} + \mathbf{u} - \mathbf{1}, \mathbf{1} \rangle = 0$ by construction,
 280 there must be an action a for which $(\mathbf{p} + \mathbf{u} - \mathbf{1})[a] > 2\varepsilon$, i.e., $(\mathbf{u} + \mathbf{p})[a] > 1 + 2\varepsilon$. But then the
 281 agent has an ε -profitable deviation to action a . \square
 282

283 It is well known that no-regret learning algorithms converge on average to Nash equilibria in zero-
 284 sum games. In particular, if both principal and agent run no-regret algorithms, and R_0 is the regret
 285 after T timesteps for the principal, then the average principal strategy $\frac{1}{T} \sum_{t=1}^T \mathbf{p}^t$ is an ε -Nash
 286 equilibrium for $\varepsilon \lesssim (R_0 + C\sqrt{T})/T$. Here, we use the projected gradient descent algorithm for
 287 the principal. Note that, although the principal's utility function $\mathbf{p} \mapsto -\langle \mathbf{u} + \mathbf{p}, \mathbf{x} \rangle$ depends on \mathbf{u}
 288 (which the principal does not know), the gradient of the principal's utility function is $-\mathbf{x}$, which
 289 does not depend on \mathbf{u} . Thus, the principal can run projected gradient descent without the knowledge
 290 of \mathbf{u} . The resulting algorithm is formalized in Algorithm 1.
 291

292 **Algorithm 1** Principal's learning algorithm for a single no-regret agent

294 1: $\mathbf{p}^1 \leftarrow \mathbf{1}$
 295 2: **for** each time $t = 1, \dots, T$ **do**
 296 3: principal selects payment vector $\mathbf{p}^t \in \mathcal{P}$, observes strategy \mathbf{x}^t played by the agent
 297 4: principal sets $\mathbf{p}^{t+1} \leftarrow \Pi_{\mathcal{P}}[\mathbf{p}^t - \eta \mathbf{x}^t]$ $\triangleright \eta = \sqrt{m/T}$ is the step size
 298 5: **return** $-\frac{1}{T} \sum_{t=1}^T \mathbf{p}^t$
 299

300
 301 **Theorem 4.2.** *Algorithm 1 ε -learns any single-agent game Γ in $T = \mathcal{O}(\frac{m^3 + C^2 m^2}{\varepsilon^2})$ rounds.*
 302

303
 304 *Proof.* Let $\bar{\mathbf{p}} = \frac{1}{T} \sum_{t=1}^T \mathbf{p}^t$ be the average payment. From the preliminaries, the regret bound of
 305 the principal is given by $R_0 \leq BG\sqrt{T}$ where $B \lesssim \sqrt{m}$ and $G = 1$. By the previous paragraph, the
 306 average play between the principal and the agent is an $(R_0 + C\sqrt{T})/T$ -Nash equilibrium. Then, by
 307 Lemma 4.1, we have
 308

$$\varepsilon = \|\bar{\mathbf{p}} + \mathbf{u} - \mathbf{1}\|_\infty \leq \|\bar{\mathbf{p}} + \mathbf{u} - \mathbf{1}\|_1 \lesssim 4m \frac{R_0 + C\sqrt{T}}{T} \lesssim \frac{m}{\sqrt{T}}(C + \sqrt{m}).$$

312 Solving for T yields the desired result. \square
 313

314
 315 The zero-sum-game idea of Algorithm 1 is surprisingly simple and powerful. The principal moves
 316 the payment vector in the opposite direction of the agent's mixed strategy every round, and the neg-
 317 ative average payment vector ultimately becomes an accurate estimate of the agent's utility vector.
 318 This idea works for any no-regret learning algorithm of the agent.

319 Another possible method to overcome history-dependency is to use signals: whenever the payment
 320 vector is changed, send a new signal to the agent to disentangle from the history. Signaling allows us
 321 to implement a binary-search algorithm to learn the game. However, that would require $m \log(1/\varepsilon)$
 322 signals, one for each step of the binary search, and the total number of rounds would be at least
 323 $C^2 m / \varepsilon^2 \cdot \log(1/\varepsilon)$, whereas our Algorithm 1 achieves the better dependence of $1/\varepsilon^2$, saving a
 logarithmic term, without using signals.

324 4.2 THE MULTI-AGENT CASE
325

326 We then consider the multi-agent case. Our algorithm for the multi-agent case will combine the
327 single-agent algorithm with signaling. Intuitively, our algorithm uses signals to induce the action
328 profile \mathbf{a}_{-i} among other agents without increasing their regret by too much. More precisely, we set
329 the signal set as $S_i := A_i \cup \{\perp\}$ where \perp is a special signal indicating that i 's utility is the one being
330 learned at the moment. For every action profile $\mathbf{a}_{-i} \in A_{-i}$, we send signal \perp to agent i and the
331 desired action a_j for each agent $j \neq i$ to learn $U_i(\cdot, \mathbf{a}_{-i})$. This idea is formalized in Algorithm 2.

332 **Algorithm 2** Principal's learning algorithm for multiple no-regret agents
333

```

334 1:  $t \leftarrow 1$ 
335 2: for every agent  $i = 1, \dots, n$  do
336 3:   for every action profile  $\bar{\mathbf{a}}_{-i} \in A_{-i}$  do
337 4:      $\mathbf{p}^1 \leftarrow \mathbf{1} \in \mathbb{R}^{A_i}$ 
338 5:     for timestep  $\ell = 1, \dots, L$  do
339 6:       principal sets  $P_i^t(\cdot) = \mathbf{p}^\ell[\cdot]$  and  $P_j^t(a_j) = 2\mathbb{I}\{a_j = \bar{a}_j\}$  for every  $j \neq i$ 
340 7:       principal sends signals  $s_i^t = \perp$  and  $s_j^t = \bar{a}_j$  for every  $j \neq i$ 
341 8:       principal observes profile  $\mathbf{x}^t$  played by agents
342 9:       principal sets  $\mathbf{p}^{\ell+1} \leftarrow \Pi_{\mathcal{P}}[\mathbf{p}^\ell - \eta \mathbf{x}_i^t]$   $\triangleright \eta = \sqrt{m_i/L}$  is the step size
343 10:       $t \leftarrow t + 1$ 
344 11:       $\tilde{U}_i(\cdot, \bar{\mathbf{a}}_{-i}) \leftarrow -\frac{1}{L} \sum_{\ell=1}^L \mathbf{p}^\ell$ 
345 12: return  $\tilde{U}$ 

```

346 **Theorem 4.3.** *For some choice of parameter L , Algorithm 2 ε -learns any game in $\frac{\text{poly}(M, C)}{\varepsilon^2}$ rounds.*

349 *Proof Sketch.* Since the principal always gives a large reward to agent who obey signals other than
350 \perp , agent will almost always obey such signals. Thus, agents other than agent i will almost always
351 play profile \mathbf{a}_{-i} . This allows the principal to learn $U_i(\cdot, \bar{\mathbf{a}}_{-i})$ using the one-player algorithm from
352 Theorem 4.2. The formal proof is deferred to Appendix C. \square

354 Signals are vital to this analysis. Without them, it would be possible for players to incur large *negative*
355 regret, which harms the learning process because it allows the players to “delay” the learning
356 until their regrets once again become non-negative. For example, if we were to execute our algo-
357 rithm without signals, then by the time $\bar{T}_n(0)$ at which the outer loop reaches agent n , agent n could
358 have $\Omega(\bar{T}_n(0))$ regret for every action, making it impossible to say anything about how agent n will
359 act for the next $\Omega(\bar{T}_n(0))$ rounds. Using signals allows us to separate out the regret of agent n in
360 previous rounds from the regret of agent n when its own utility function is being learned.

361 4.3 LOWER BOUND
362

363 We now turn to lower bounds. In particular, we show a lower bound that matches Theorem 4.3 up
364 to the exponent on M .

366 **Theorem 4.4.** *In the no-regret model, any algorithm that ε -learns a game must take at least
367 $\max\{\Omega(nM) \cdot \log \frac{1}{\varepsilon}, \frac{C^2}{4\varepsilon^2}\}$ rounds.*

369 *Proof sketch.* If every agent plays a pure action at each round, then the principal can only observe
370 $\log(M)$ bits of information at each round. Learning the game requires $\Omega(nM)$ bits of information,
371 so we need at least $\Omega(nM) \cdot \log \frac{1}{\varepsilon}$ rounds in total. On the other hand, to ε -learn the game from
372 agents' behavior, the agents' time-average regret $\frac{C}{\sqrt{T}}$ must be smaller than 2ε , so T is at least $\frac{C^2}{4\varepsilon^2}$.
373 The full proof is in Appendix C.2. \square

375 Theorem 4.4 shows that it is impossible to exponentially improve the dependence on any of the
376 parameters in Theorem 4.2. For example, it implies that there can be no algorithm taking $C^2/\varepsilon^2 \cdot$
377 $M^{1-\Omega(1)}$ rounds, because that would contradict the lower bound for constant ε and sufficiently

378 large M . We leave it as an interesting open question to close the polynomial gaps between the lower
 379 and upper bounds presented here.
 380

381 5 STEERING NO-REGRET LEARNERS BY LEARNING THE GAME

383 A main motivating application of our result is the problem of *steering* no-regret learners to desirable
 384 outcomes, introduced by [Zhang et al. \(2024\)](#) who assume that the principal knows the game. In this
 385 section, we explore the steering problem with unknown agent utilities.
 386

387 5.1 CORRELATED SIGNALS AND PAYMENTS

389 In this section, we make two modifications to our model in Section 3: (1) we allow the signals to be
 390 *correlated*; (2) we allow payments to each agent i to depend not only on agent i 's action, but also
 391 on the signals and actions of other players. These two assumptions are proven to be necessary for
 392 the steering problem by [Zhang et al. \(2024\)](#). Formally, each agent has a finite signal set S_i . As with
 393 actions, we will write $S = S_1 \times \dots \times S_n$ for the joint signal space. On each round t , the principal
 394 first commits to both a signal distribution $\mu^t \in \Delta(S)$ and a payment function $P_i^t : S \times A \rightarrow [0, B]$.
 395 The agents then select their strategies, which are functions $\phi_i^t : S_i \rightarrow \Delta(A_i)$. Then, the principal
 396 draws the joint signal $\mathbf{s}^t = (s_1^t, \dots, s_n^t) \sim \mu^t$, and each agent plays $\mathbf{x}_i^t = \phi_i^t(s_i^t)$. As before, we
 397 assume that agents have no regret for each signal: for every signal $s_i \in S_i$,
 398

$$\hat{R}_i(t, s_i) := \max_{a_i \in A_i} \sum_{\tau \leq t} \sum_{\mathbf{s}_{-i} \in S_{-i}} \mu^t(\mathbf{s}) \left[U_i^\tau(\mathbf{s}, a_i, \phi_{-i}^\tau(\mathbf{s}_{-i})) - U_i^\tau(\mathbf{s}, \phi^\tau(\mathbf{s})) \right] \leq C\sqrt{T}.$$

400 where now $U_i^\tau(\mathbf{s}, \mathbf{a}) := U_i(\mathbf{a}) + P_i^\tau(\mathbf{s}, \mathbf{a})$.
 401

402 We remark that this correlated model gives strictly more power to the principal than the previous
 403 model: if we restrict the principal to setting μ^t to be a deterministic distribution and P_i^t to be
 404 dependent on agent i 's action a_i only, the two models coincide. Therefore, the previous positive
 405 results, particularly Theorem 4.3, apply to this model as well.

406 The reason for the difference in the models is that the correlated signaling model makes clear in
 407 what formal sense the signals are *private*: the agents' strategies ϕ_i^t can only depend on s_i , not other
 408 agents' signals. This will allow us to steer to *correlated* equilibria.
 409

410 5.2 WHAT OUTCOME SHOULD WE STEER TO?

411 The steering problem, as defined by [Zhang et al. \(2024\)](#), stipulates for their main results that the
 412 principal knows in advance, or be able to compute, the desired outcome that we wish to induce. Of
 413 course, in our setting, such a stipulation is unreasonable: the principal does not initially know the
 414 agents' utilities in the game Γ , so it cannot know what outcome it wishes to induce. We thus take a
 415 more direct approach: we try to maximize the average reward, less payments, of the principal. That
 416 is, we will assume that the principal has a utility function $U_0 : A \rightarrow \mathbb{R}$, and we will attempt to
 417 optimize the principal's objective, defined as the principal's utility minus payments:
 418

$$F(T) := \frac{1}{T} \sum_{t=1}^T \mathbb{E}_{\mathbf{s}^t \sim \mu^t} \left[U_0(\phi^t(\mathbf{s}^t)) - \sum_{i=1}^n P_i^t(\mathbf{s}^t, \phi^t(\mathbf{s}^t)) \right].$$

421 To analyze the above objective, we introduce a solution concept called *correlated equilibrium with*
 422 *payments* (CEP). A CEP is a correlated distribution of signals and payment functions that satisfies
 423 the usual incentive compatibility constraints. Formally, we have the following definition.
 424

425 **Definition 5.1.** A *correlated profile with payments* is a pair $(\mu, P) \in \Delta(A) \times [0, B]^{[n] \times A \times A}$.³ The
 426 vector P consists of n payment functions $P_i : A \times A \rightarrow [0, B]$, where $P_i(\mathbf{s}, \mathbf{a})$ is the payment to
 427 agent i given joint signal $\mathbf{s} \in A$ and joint action $\mathbf{a} \in A$. Given (μ, P) , the *objective value* for the
 428 principal is defined as
 429

$$F(\mu, P) := \mathbb{E}_{\mathbf{a} \sim \mu} \left[U_0(\mathbf{a}) - \sum_{i=1}^n P_i(\mathbf{a}, \mathbf{a}) \right],$$

430
 431 ³Here, we let $S_i = A_i$. This is WLOG due to a *revelation principle* argument (Appendix D.1).

An ε -correlated equilibrium with payments (ε -CEP) is a pair (μ, P) satisfying the incentive compatibility (IC) constraints: for every agent $i \in [n]$ and deviation function $\phi_i : A_i \rightarrow A_i$,

$$\mathbb{E}_{\mathbf{a} \sim \mu} [U_i^P(\mathbf{a}, \phi_i(a_i), \mathbf{a}_{-i}) - U_i^P(\mathbf{a}, \mathbf{a})] \leq \varepsilon,$$

where $U_i^P(\mathbf{s}, \mathbf{a}) := U_i(\mathbf{a}) + P_i(\mathbf{s}, \mathbf{a})$. An 0-CEP is called a CEP.

Let $F^*(\Gamma)$ be the principal's objective value under an *optimal* CEP of game Γ :

$$F^*(\Gamma) = \max_{(\mu, P) : \text{a CEP of game } \Gamma} F(\mu, P).$$

We show that $F^*(\Gamma)$ is an upper bound on the maximum value attainable by a principal in our learning model. Relatedly, [Deng et al. \(2019\)](#); [Lin & Chen \(2025\)](#) show that a principal cannot achieve more than the Stackelberg equilibrium objective against a single no-regret agent in games with no payment. Our result generalizes to multiple no-regret agents and games with payment. The proof of Theorem 5.2 is in Appendix D.3.

Theorem 5.2. *Let Γ be any game, and suppose the signal sets have size $|S_i| \leq \text{poly}(m)$. Then there exist uncoupled no-regret learning algorithms for the agents such that, for any principal algorithm, the principal's objective value $F(T)$ is bounded above by $F^*(\Gamma) + o(1/\sqrt{T})$.*

5.3 STEERING TO OPTIMAL CEP

We now show that the principal *can* achieve the optimal CEP objective $F^*(\Gamma)$ in the limit $T \rightarrow \infty$. The algorithm (Algorithm 3) works in two stages. In the first stage, the principal uses Algorithm 2 to learn the utility functions of the agents. Then, the principal computes an optimal CEP and steers the agents to it. The steering algorithm is adapted from [Zhang et al. \(2024\)](#), and presented in full here for the sake of self-containment. Notably, since the principal learns the game up to an error $\varepsilon > 0$, it must give extra payments of at least 2ε to ensure that agents do not deviate. Theorem 5.3 shows that the principal can learn to steer agents to achieve the optimal objective $F^*(\Gamma)$ at a rate of $\text{poly}(M, C)/T^{1/4}$. The proof is given in Appendix D.4.

Algorithm 3 Principal's algorithm for steering without prior knowledge of utilities

1: using Algorithm 2, estimate the utility functions to precision ε
 2: compute an optimal CEP $(\tilde{\mu}^*, \tilde{P}^*)$ of the estimated game $\tilde{\Gamma}$
 3: **for** remaining rounds **do**
 4: set $\mu^t = \mu^*$ and $P_i^t(\mathbf{s}, \mathbf{a}) = \begin{cases} \tilde{P}_i^*(\mathbf{a}, \mathbf{a}) + 2\varepsilon + \rho & \text{if } \mathbf{s} = \mathbf{a} \\ 2 & \text{if } s_i = a_i, \mathbf{s}_{-i} \neq \mathbf{a}_{-i} \\ 0 & \text{otherwise} \end{cases}$

Theorem 5.3. *For appropriate choices of parameters L (from Algorithm 2) and ρ , Algorithm 3 guarantees principal objective $F(T) \geq F^*(\Gamma) - \text{poly}(M, C)/T^{1/4}$ on average in T rounds.*

6 CONCLUSIONS AND FUTURE DIRECTIONS

We showed that a principal can efficiently learn the utility functions of agents in games through payments and signals, and applied our algorithms to achieve optimal steering without prior knowledge of the game. We gave upper and lower bounds for both problems. Our results apply to arbitrary no-regret agents. We leave a few directions for future research:

- We did not optimize the polynomial dependencies on M , so our upper and lower bounds are off by $\text{poly}(M)$ factors. We leave it as an interesting open problem to close these gaps.
- Our techniques are specialized to normal-form games, and require, for example, that the principal observe the strategy \mathbf{x}^t of the agents at every timestep. This may no longer be a reasonable assumption in, *e.g.*, *extensive-form games*, where one may wish instead to assume that we only observe *on-path* agent actions. We leave it as future work to extend our results to such settings.

486 • While our single-agent utility-learning algorithm only uses payments, our multi-agent algorithm
 487 additionally uses signals. The limit of learning agents' utility functions by payments only, without
 488 using signals, is worth exploring.
 489

490 • Similarly worth exploring is the problem of steering without utility learning. We proved that
 491 agents' utility functions require $\Omega(nM) \log \frac{1}{\varepsilon}$ rounds to learn. Can we avoid this bottleneck by
 492 steering agents to desirable outcomes without learning their entire utility functions?

493 REFERENCES

495 Eshwar Ram Arunachaleswaran, Natalie Collina, and Jon Schneider. Learning to Play Against Un-
 496 known Opponents. In *Proceedings of the 26th ACM Conference on Economics and Computation*,
 497 pp. 478–504, Stanford University Stanford CA USA, July 2025. ACM.

498 Robert Aumann. Subjectivity and correlation in randomized strategies. *Journal of Mathematical
 499 Economics*, 1(1):67–96, 1974.

501 Francesco Bacchicocchi, Matteo Bollini, Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti.
 502 Online bayesian persuasion without a clue. In *Neural Information Processing Systems (NeurIPS)*,
 503 2024.

505 Eyal Beigman and Rakesh Vohra. Learning from revealed preference. In *Proceedings of the 7th
 506 ACM conference on Electronic commerce*, pp. 36–42, Ann Arbor Michigan USA, June 2006.
 507 ACM.

508 Mark Braverman, Jieming Mao, Jon Schneider, and Matt Weinberg. Selling to a No-Regret Buyer. In
 509 *Proceedings of the 2018 ACM Conference on Economics and Computation*, pp. 523–538, Ithaca
 510 NY USA, June 2018. ACM. ISBN 978-1-4503-5829-3.

512 Yang Cai, Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, Haipeng Luo,
 513 and Weiqiang Zheng. Fast last-iterate convergence of learning in games requires forgetful al-
 514 gorithms. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 515 2024.

516 Ilayda Canyakmaz, Iosif Sakos, Wayne Lin, Antonios Varvitsiotis, and Georgios Piliouras. Learning
 517 and steering game dynamics towards desirable outcomes. *arXiv preprint arXiv:2404.01066*, 2024.

519 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
 520 Nash equilibria. *Journal of the ACM*, 56(3):14, 2009.

521 Maurizio D'Andrea. Playing against no-regret players. *Operations Research Letters*, 51(2):142–
 522 145, March 2023.

524 Constantinos Daskalakis, Paul Goldberg, and Christos Papadimitriou. The complexity of computing
 525 a Nash equilibrium. In *Symposium on Theory of Computing (STOC)*, 2006.

527 Yuan Deng, Jon Schneider, and Balasubramanian Sivan. Strategizing against no-regret learners. In
 528 *Neural Information Processing Systems (NeurIPS)*, 2019.

529 Yiding Feng, Wei Tang, and Haifeng Xu. Online Bayesian Recommendation with No Regret. In
 530 *Proceedings of the 23rd ACM Conference on Economics and Computation*, pp. 818–819, Boulder
 531 CO USA, July 2022. ACM.

532 Yoav Freund and Robert Schapire. Adaptive game playing using multiplicative weights. *Games and
 533 Economic Behavior*, 29:79–103, 1999.

535 Nika Haghtalab, Thodoris Lykouris, Sloan Nietert, and Alexander Wei. Learning in stackelberg
 536 games with non-myopic agents. In *ACM Conference on Economics and Computation (EC)*, pp.
 537 917–918, 2022.

539 Emir Kamenica and Matthew Gentzkow. Bayesian Persuasion. *American Economic Review*, 101
 (6):2590–2615, October 2011.

540 Volodymyr Kuleshov and Okke Schrijvers. Inverse game theory: Learning utilities in succinct
 541 games. In *International Workshop On Internet And Network Economics (WINE)*, pp. 413–427.
 542 Springer, 2015.

543 Joshua Letchford, Vincent Conitzer, and Kamesh Munagala. Learning and approximating the opti-
 544 mal strategy to commit to. In *International Symposium on Algorithmic Game Theory*, pp. 250–
 545 262. Springer, 2009.

546 Tao Lin and Yiling Chen. Generalized Principal-Agent Problem with a Learning Agent. In *The*
 547 *Thirteenth International Conference on Learning Representations*, 2025.

548 Yishay Mansour, Mehryar Mohri, Jon Schneider, and Balasubramanian Sivan. Strategizing against
 549 learners in bayesian games. In *Conference on Learning Theory (COLT)*, 2022.

550 Dov Monderer and Moshe Tennenholtz. k-Implementation. In *ACM Conference on Electronic*
 551 *Commerce (ACM-EC)*, pp. 19–28, San Diego, CA, 2003.

552 Binghui Peng, Weiran Shen, Pingzhong Tang, and Song Zuo. Learning Optimal Strategies to Com-
 553 mit To. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):2149–2156, July
 554 2019.

555 Antoine Scheid, Aymeric Capitaine, Etienne Boursier, Eric Moulines, Michael Jordan, and Alain
 556 Durmus. Learning to Mitigate Externalities: the Coase Theorem with Hindsight Rationality.
 557 In *Advances in Neural Information Processing Systems*, volume 37, pp. 15149–15183. Curran
 558 Associates, Inc., 2024.

559 Jibang Wu, Haifeng Xu, and Fan Yao. Multi-Agent Learning for Iterative Dominance Elimination:
 560 Formal Barriers and New Algorithms. In *Proceedings of Thirty Fifth Conference on Learning*
 561 *Theory*, volume 178 of *Proceedings of Machine Learning Research*, pp. 543–543. PMLR, July
 562 2022.

563 Fan Yao, Yuwei Cheng, Ermin Wei, and Haifeng Xu. Single-agent Poisoning Attacks Suffice to Ruin
 564 Multi-Agent Learning. In *The Thirteenth International Conference on Learning Representations*,
 565 2025.

566 Morteza Zadimoghaddam and Aaron Roth. Efficiently Learning from Revealed Preference. In
 567 *Internet and Network Economics*, volume 7695, pp. 114–127. Springer Berlin Heidelberg, Berlin,
 568 Heidelberg, 2012. Series Title: Lecture Notes in Computer Science.

569 Brian Hu Zhang, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani, Stephen Marcus
 570 McAleer, Andreas Alexander Haupt, Andrea Celli, Nicola Gatti, Vincent Conitzer, and Tuomas
 571 Sandholm. Steering no-regret learners to a desired equilibrium. In *ACM Conference on Economics*
 572 *and Computation (EC)*, 2024.

573 Yizhou Zhang, Yian Ma, and Eric Mazumdar. Learning to steer learners in games. In *Forty-second*
 574 *International Conference on Machine Learning*, 2025.

575 Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
 576 *Proceedings of the 20th International Conference on Machine Learning (ICML-03)*, pp. 928–936,
 577 2003.

578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593

594

A MINIMIZING PAYMENT

596 Most of our paper focuses on ε -learning a game in as few rounds as possible. This section discusses
 597 an alternative goal: ε -learning a game while minimizing the total payment to the agents. We show
 598 that the minimal achievable payment is upper-bounded and lower-bounded by the number of rounds
 599 up to constant factors, so the payment minimization problem is quantitatively similar to round com-
 600 plexity minimization.

601 Formally, we define the *payment complexity* $PC(n, \varepsilon)$ to be the minimal total payment required to
 602 ε -learn a game with n agents (in the worst case over all games), and the *round complexity* $RC(n, \varepsilon)$
 603 to be the minimal number of rounds to do so. Then, we have:

604 **Proposition A.1.** *There exist games and no-regret agents such that*

$$606 \quad \Omega(RC(n-1, \varepsilon)) \leq PC(n, \varepsilon) \leq \mathcal{O}(n \cdot RC(n, \varepsilon)).$$

608 *Proof.* The inequality $PC(n, \varepsilon) \leq \mathcal{O}(n \cdot RC(n, \varepsilon))$ is straightforward because the payment to each
 609 agent is bounded by $O(1)$ at each round.

611 To prove $\Omega(RC(n-1, \varepsilon)) \leq PC(n, \varepsilon)$, we reduce the utility learning problem with $n-1$ agents to
 612 the problem with n agents. Let Γ_{n-1} be an $(n-1)$ -agent game with utility functions U_1, \dots, U_{n-1} .
 613 Consider an n -agent game Γ_n where the n -th agent has two actions $A_n = \{0, 1\}$. If the n -th agent
 614 takes 1, then the first $n-1$ agents all obtain utility 0 regardless of their actions; if the n -th agent
 615 takes 0, then the first $n-1$ agents have the same utility functions as in game Γ_{n-1} . Further assume
 616 that the n -th agent's utility depends on his own action only, and in particular, $U_n(a_n = 0) = 0$ and
 617 $U_n(a_n = 1) = 1$, so the n -th agent takes action 1 by default. Intuitively, in order to learn the utility
 618 functions of game Γ_n , we have to incentivize the n -th agent to play action 0 by paying him 1 at each
 619 round, so that we can learn the first $n-1$ agents' utility functions. This means that the total payment
 620 is lower bounded by the number of rounds to learn the $(n-1)$ -agent game.

621 Formally, let ALG be an algorithm for learning Γ_n with payment complexity $PC(n, \varepsilon)$. We use
 622 ALG to construct an algorithm to learn Γ_{n-1} as follows:

- 623 • At each round t , do:
 - 625 – Obtain payment functions $P_1^t, \dots, P_{n-1}^t, P_n^t$ from ALG .
 - 626 – If $P_n^t(a_n = 0) < P_n^t(a_n = 1) + 1$, then let $a_n^t = 1$ and $a_i^t = \text{argmax}_{a_i \in A_i} P_i^t(a_i)$ for
 $i \in \{1, \dots, n-1\}$. Return the action profile (a_{-n}^t, a_n^t) to ALG .
 - 628 – If $P_n^t(a_n = 0) \geq P_n^t(a_n = 1) + 1$, then let $a_n^t = 0$ and send the payment functions
 P_1^t, \dots, P_{n-1}^t to the first $n-1$ agents. Observe their actions a_{-n}^t in game Γ_{n-1} .
 Return (a_{-n}^t, a_n^t) to ALG .
- 632 • Obtain utility functions $\tilde{U}_1, \dots, \tilde{U}_n$ from ALG . Output $\tilde{U}_1(\cdot, a_n = 0), \dots, \tilde{U}_{n-1}(\cdot, a_n = 0)$.

635 By definition, if ALG outputs $\tilde{U}_1, \dots, \tilde{U}_n$ that are ε -close to the utility functions of Γ_n , then the
 636 outputs $\tilde{U}_1(\cdot, a_n = 0), \dots, \tilde{U}_{n-1}(\cdot, a_n = 0)$ are ε -close to the utility functions U_1, \dots, U_{n-1} of
 637 Γ_{n-1} . Each time " $P_n^t(a_n = 0) \geq P_n^t(a_n = 1) + 1$ " happens, agent n takes action $a_n^t = 0$, we
 638 pay at least 1, and we interact with the first $n-1$ agents once. So, the total payment is at least
 639 $PC(n, \varepsilon) \geq RC(n-1, \varepsilon)$. \square

640

B DETAILS OMITTED FROM SECTION 3

643

B.1 ANYTIME NO REGRET

645 Our condition on no-regret learning is that, for every signal s_i (here omitted as a superscript for
 646 notational clarity), the regret $R_i(t)$ is bounded by $C\sqrt{T}$ for every timestep $t \leq T$, not just at $t = T$
 647 as is conventionally required by adversarial no-regret algorithms. This is not a significantly stronger
 requirement:

648 **Proposition B.1.** *If a (possibly randomized) adversarial no-regret algorithm satisfies $R_i(T) \leq B$
649 with probability $1 - \delta$ against any adversary, then with probability $1 - \delta$ it also satisfies $R_i(t) \leq B$
650 simultaneously for all $t \leq T$ against any adversary.*

651 *Proof.* Suppose not, i.e., suppose that there is some adversary \mathcal{A} such that, with probability $> \delta$,
652 there exists some $t \leq T$ for which $R_i(t) > B$. Then consider the adversary \mathcal{A}' that acts as follows.
653 At every time t , if $R_i(t-1) \leq B$, it copies \mathcal{A} . Otherwise, it outputs $\mathbf{u}^t = \mathbf{0}$ for all remaining
654 timesteps. In the latter case, which by definition occurs with probability $> \delta$, adversary \mathcal{A}' will also
655 achieve $R_i(T) > B$. \square

658 C DETAILS OMITTED FROM SECTION 4

660 C.1 PROOF OF THEOREM 4.3

662 As in Theorem 4.2, we will assume without loss of generality that $\sum_{a_i \in A_i} U_i(a_i, \mathbf{a}_{-i}) = 0$ for all
663 agents i and opponent profiles \mathbf{a}_{-i} .

664 We first claim that, for any agent i and any given signal $s_i^t = a_i \in A_i$, the total probability mass that
665 i plays actions *other than* a_i is bounded by $C\sqrt{T}$. To see this, note that whenever the principal sends
666 signal a_i , the payment is always set such that $U_i^t(a_i, \mathbf{a}_{-i}) \geq 1 + U_i^t(a_i', \mathbf{a}_{-i})$. Thus, the number of
667 times i does not play $a_i^t = a_i$ quantity lower-bounds the regret $\hat{R}(T, a_i)$. The claim follows from
668 the regret guarantee $\hat{R}(T, a_i) \leq C\sqrt{T}$.
669

670 We will refer to the iterations of the inner loop over action profiles \mathbf{a}_{-i} as *phases*. Fix an agent i ,
671 and number the phases for that agent using integers $k \in \{1, \dots, M_i = \prod_{j \neq i} m_j\}$, corresponding
672 to strategy profiles $\bar{\mathbf{a}}_{-i}^1, \dots, \bar{\mathbf{a}}_{-i}^{M_i} \in A_{-i}$. Let $\mathcal{T}_i(k) = \{\mathcal{T}_i(k), \dots, \bar{\mathcal{T}}_i(k)\}$ be the set of timesteps in
673 agent i 's k th phase. The length of each phase is $|\mathcal{T}_i(k)| = L$. Let B_K be the total probability mass
674 placed by all agents $j \neq i$ on strategy profiles other than $\bar{\mathbf{a}}_{-i}^k$ throughout phases $1, \dots, K$. By the
675 previous claim, we have

$$676 B_K := \sum_{k \leq K, t \in \mathcal{T}_i(k)} \left(1 - \prod_{j \neq i} \mathbf{x}_j^t(\bar{\mathbf{a}}_j^k)\right) \leq \sum_{k \leq K, t \in \mathcal{T}_i(k), j \neq i} (1 - \mathbf{x}_j^t(\bar{\mathbf{a}}_j^k)) \leq nmC\sqrt{T}.$$

677 By the principal's regret bound in each phase, we must have

$$678 \begin{aligned} \sum_{t \in \mathcal{T}_i(k)} U_i^t(\mathbf{x}_i^t, \bar{\mathbf{a}}_{-i}^k) &= \sum_{t \in \mathcal{T}_i(k)} U_i(\mathbf{x}_i^t, \bar{\mathbf{a}}_{-i}^k) + \sum_{t \in \mathcal{T}_i(k)} P_i^t(\mathbf{x}_i^t) \\ 680 &\leq \sum_{t \in \mathcal{T}_i(k)} U_i(\mathbf{x}_i^t, \bar{\mathbf{a}}_{-i}^k) + \sum_{t \in \mathcal{T}_i(k)} [1 - U_i(\mathbf{x}_i^t, \bar{\mathbf{a}}_{-i}^k)] + R_0 \\ 682 &= L + R_0 \end{aligned}$$

684 where the inequality follows from the facts that 1) the principal's regret is bounded, 2) $P_i^t(\cdot) = 1 - U_i(\cdot, \bar{\mathbf{a}}_{-i}^k)$ is a valid unilateral deviation for the principal.
685

686 Fix some $K \leq M_i$ and $a_i \in A_i$. By the anytime regret bound of agent i under signal \perp , we have
687

$$688 \begin{aligned} \sum_{k \leq K, t \in \mathcal{T}_i(k)} U_i^t(a_i, \mathbf{x}_{-i}^t) &\leq \sum_{k \leq K, t \in \mathcal{T}_i(k)} U_i^t(\mathbf{x}_i^t, \mathbf{x}_{-i}^t) + \hat{R}_i(T_i(k), \perp) \\ 690 &\leq 2B_K + \sum_{k \leq K, t \in \mathcal{T}_i(k)} U_i^t(\mathbf{x}_i^t, \bar{\mathbf{a}}_{-i}^k) + \hat{R}_i(T_i(k), \perp) \\ 692 &\leq 2nmC\sqrt{T} + K(L + R_0) + nC\sqrt{T}. \end{aligned}$$

694 Moving KL to the left and writing $U_i^t(a_i, \mathbf{x}_{-i}^t)$ as $U_i(a_i, \mathbf{x}_{-i}^t) + P_i^t(a_i)$,
696

$$698 \sum_{k=1}^K \underbrace{\frac{1}{L} \sum_{t \in \mathcal{T}_i(k)} [U_i(a_i, \mathbf{x}_{-i}^t) + P_i^t(a_i) - 1]}_{\text{denoted by } \varepsilon_i(k, a_i)} \leq \frac{1}{L} (R_0 K + 3nmC\sqrt{T}).$$

The error we need to bound is $\|\varepsilon_i(k, \cdot)\|_\infty$. Since the above inequality holds for any a_i , and $\sum_{a_i} \varepsilon_i(k, \cdot) = 0$ by definition, it follows that

$$\left\| \sum_{k=1}^K \varepsilon_i(k, \cdot) \right\|_\infty = \max_{a_i \in A_i} \left| \sum_{k=1}^K \frac{1}{L} \sum_{t \in \mathcal{T}_i(k)} [U_i(a_i, \mathbf{x}_{-i}^t) + P_i^t(a_i) - 1] \right| \leq \frac{m}{L} (R_0 K + 3nmC\sqrt{T}).$$

By triangle inequality, we have

$$\|\varepsilon_i(k, \cdot)\|_\infty = \left\| \sum_{k'=1}^k \varepsilon_i(k', \cdot) - \sum_{k'=1}^{k-1} \varepsilon_i(k', \cdot) \right\|_\infty \leq \frac{2m}{L} (R_0 M + 3nmC\sqrt{T}).$$

Finally, substituting $R_0 \lesssim \sqrt{mL}$ and $T \leq nML$, we arrive at

$$\|\varepsilon_i(k, \cdot)\|_\infty \lesssim \frac{1}{\sqrt{L}} (m^{3/2}M + n^{3/2}m^2CM^{1/2}).$$

Taking $L = \mathcal{O}(\frac{m^3M^2 + n^3m^4MC^2}{\varepsilon^2})$ completes the proof, with $T \leq nML = \mathcal{O}(\frac{nm^3M^3 + n^4m^4M^2C^2}{\varepsilon^2})$.

C.2 PROOF OF THEOREM 4.4

We prove both terms in the max separately. For the first term, suppose that $U_i(1, \cdot) = 0$ for all agents i , and $U_i(a_i, a_{-i}) \sim \{0, 2\varepsilon, 4\varepsilon, \dots, 1\}$ i.i.d. for $2 \leq a \leq m_i$ and $a_{-i} \in A_{-i}$. Thus the utility U is uniformly sampled from a set of $\Omega(1/\varepsilon)^K$ possible utilities, where

$$K = \sum_{i=1}^n \left((m_i - 1) \prod_{j \neq i} m_j \right) \geq \frac{nM}{2}.$$

Each utility function differs by 2ε , it follows that ε -learning a game sampled from this family entails exactly outputting the utility U . Suppose that, as discussed in Section 3, the no-regret algorithms always output pure strategies $a_i^t \in A_i$. Then on each round, the principal only observes a single action profile $a \in A$, which only conveys $\log M$ bits of information. Therefore, ε -learning the game takes at least

$$\frac{K \log(\Omega(1/\varepsilon))}{\log M} \gtrsim \frac{nM \log(1/\varepsilon)}{\log M}$$

rounds, as desired.

For the second term, suppose $\varepsilon \leq \frac{C}{2\sqrt{T}}$. Let $Z_i : A \rightarrow [0, \varepsilon]$ be any function, and suppose that every agent plays according to utility function $U_i + Z_i$ instead of U_i using an algorithm with $\frac{C}{2}\sqrt{T}$ regret. Such an agent incurs at most $\frac{C}{2}\sqrt{T} + \varepsilon T \leq C\sqrt{T}$ regret with respect to U_i . Such an agent is completely indistinguishable from an agent who has true utility $U_i + Z_i$ and runs an algorithm with regret $C\sqrt{T}$, and therefore the principal can never distinguish between these two possibilities. Since this is true for any Z_i , this means that the principal cannot learn U_i to accuracy better than $\varepsilon \leq \frac{C}{2\sqrt{T}}$. Thus, T must be at least $\frac{C^2}{4\varepsilon^2}$ for the principal to ε -learn the game.

D DETAILS OMITTED FROM SECTION 5

D.1 REVELATION PRINCIPLE FOR CEPs

In this section, we formulate a general version of the revelation principle for CEPs.

Definition D.1 (Non-canonical CEP). A (non-canonical, agent-form) ε -CEP is a distribution $\pi \in \Delta(S \times \mathcal{P} \times A_1^{S_1} \times \dots \times A_n^{S_n})$, where $\mathcal{P} = [0, B]^{[n] \times A \times A}$ is the set of payment functions, such that, for any player i and any map $\psi_i : A_i \rightarrow \Delta(A_i)$, we have

$$\mathbb{E}_{(\mathbf{s}, P, \phi) \sim \pi} [U_i^P(\mathbf{s}, (\psi_i \circ \phi_i)(s_i), \phi_{-i}(\mathbf{s}_{-i})) - U_i^P(\mathbf{s}, \phi(\mathbf{s}))] \leq 0.$$

The objective value is given by

$$\mathbb{E}_{(\mathbf{s}, P, \phi) \sim \pi} [U_0(\phi(\mathbf{s})) - P(\mathbf{s}, \phi(\mathbf{s}))].$$

We say that π is *canonical* if the payment function $P \sim \pi$ is constant, and for every player i , $S_i = A_i$ and ϕ_i is the identity map. Note that canonical CEPs are precisely the CEPs according to Definition 5.1.

Proposition D.2 (Revelation principle for CEPs). *Every CEP is equivalent to a canonical CEP, in the sense that, for every CEP π , there is a canonical CEP (μ', P') achieving the same principal objective value.*

Proof. Given a CEP π , set $\mu' \in \Delta(A)$ to be the distribution that samples $(s, \phi) \sim \pi$ and then samples and outputs $a \sim \phi(s)$. Then define $P'_i : A \times A \rightarrow [0, B]$ by

$$P'_i(a, a') = \mathbb{E}_{(s, P) \sim \pi | a} P_i(s, a'),$$

where $(s, P) \sim \pi | a$ denotes sampling (s, P) with probability proportional to $\pi(s, P) \cdot \phi(a | s)$. Then note that, for any $\psi_i : A_i \rightarrow A_i$, we have

$$\begin{aligned} \mathbb{E}_{a \sim \mu'} [U_i^{P'}(a, \psi_i(a_i), a_{-i})] &= \mathbb{E}_{a \sim \mu'} [U_i(\psi_i(a_i), a_{-i}) + P'_i(a, \psi_i(a_i), a_{-i})] \\ &= \mathbb{E}_{\substack{a \sim \mu' \\ (s, P) \sim \pi | a}} [U_i(\psi_i(a_i), a_{-i}) + P_i(s, \psi_i(a_i), a_{-i})] \\ &= \mathbb{E}_{\substack{(s, P, \phi) \sim \mu \\ a \sim \phi(s)}} [U_i(\psi_i(a_i), a_{-i}) + P_i(s, \psi_i(a_i), a_{-i})] \\ &= \mathbb{E}_{(s, P, \phi) \sim \pi} [U_i^P(s, (\psi_i \circ \phi_i)(s_i), \phi_{-i}(s_{-i}))] \end{aligned}$$

Thus, if ψ_i is a profitable deviation for agent i in (μ', P') , then it is also a profitable deviation in π . But the non-canonical CEP π does not have profitable deviations, so (μ', P') is also a CEP. \square

D.2 ADDITIONAL PROPERTIES OF CEPs

We present some additional properties of CEPs.

First, optimal CEPs can be efficiently computed when the game is known.

Proposition D.3. *Given a game Γ of size M , an optimal CEP (μ^*, P^*) and its principal objective $F^*(\Gamma)$ can be computed in $\text{poly}(M)$ -time by a linear program.*

Proof. Define change of variables

$$Q_i(a_i) := \mu(a_i) \cdot \mathbb{E}_{a \sim \mu | a_i} P_i(a, a).$$

That is, $Q_i(a_i)$ is the μ -weighted total payment given to agent i across all strategy profiles on which agent i is recommended action a_i . Consider the following linear program:

$$\begin{aligned} \max_{\mu, Q_i, \varepsilon_i} \quad & \sum_{a \in A} \mu(a) U_0(a) - \sum_{\substack{i \in [n] \\ a_i \in A_i}} Q_i(a_i) \quad \text{s.t.} \\ & \sum_{\substack{a \in A \\ a_{-i} \in A_{-i}}} \mu(a) [U_i(a'_i, a_{-i}) - U_i(a)] - Q_i(a_i) \leq \varepsilon_i(a_i) \quad \forall i \in [n], a_i, a'_i \in A_i \\ & \sum_{a_i \in A_i} \varepsilon_i(a_i) \leq 0 \quad \forall i \in [n] \\ & \sum_{a \in A} \mu(a) = 1 \\ & 0 \leq Q_i(a_i) \leq \mu(a_i) \quad \forall i \in [n], a_i, a'_i \in A_i. \end{aligned} \tag{3}$$

This LP is equivalent to computing the optimal 0-CEP because for any feasible solution (μ, Q) of the LP, the payment functions defined by $P_i(a, a) = \frac{Q_i(a_i)}{\mu(a_i)}$ and $P_i(a, a') = 0$ if $a' \neq a$ together with μ constitute a feasible 0-CEP with the same objective value. This LP has $\text{poly}(M)$ variables and constraints, so the proof is complete. \square

Second, we show that the assumption that the payments can be signal-dependent is not innocuous, except when the payment at equilibrium is zero. There exist games where a CEP with signal-dependent payment is strictly better than a CEP with signal-independent payment.

Proposition D.4 (Correlation does not help when no payments are allowed in equilibrium). *The 0-CEPs with $\mathbb{E}_{\mathbf{a} \sim \mu} P(\mathbf{a}, \mathbf{a}) = 0$ are exactly the correlated equilibria.*

Proof. In the LP (3), this is equivalent to setting $Q_i(\cdot) = 0$ for every agent i , in which case (3) is just the LP characterizing correlated equilibria. \square

However, when the payment at equilibrium is positive, it is possible for signal-dependent payments to help the principal.

Proposition D.5 (Signal-dependent payments can help in general). *There exists a game Γ , and principal utility function U_0 , such that the optimal value of (3) is greater than the objective value of the optimal CEP in which $P(\mathbf{s}, \mathbf{a})$ depends on \mathbf{a} but not \mathbf{s} .*

Proof sketch. In the normal-form game below, P1 and P2 play matching pennies, and the principal is willing to pay a large amount to avoid a particular pure profile.

	X	Y
X	$-\infty, 0, 1$	$0, 1, 0$
Y	$0, 1, 0$	$0, 0, 1$

P1 chooses the row, P2 chooses the column. In each cell, the principal's utility is listed first, then P1's, then P2's. Now consider the following CEP: The principal mixes evenly between recommending (X, Y) , (Y, X) , and (Y, Y) . If the principal recommends (Y, X) , it also promises a payment of 1 to P2 if P2 follows the recommendation X . This CEP has principal objective value $-1/3$, and no signal-independent CEP can match that value. The full proof is given in Appendix D.2.1. \square

In the language of [Monderer & Tennenholtz \(2003\)](#), a CEP with $k = \mathbb{E}_{\mathbf{a} \sim \mu} P(\mathbf{a})$ is called a *k-implementable correlated equilibrium*.⁴ They show that all correlated equilibria are 0-implementable, but do not show the converse. Our results improve upon theirs by 1) showing the converse (Proposition D.4), and 2) analyzing the $k > 0$ case, in particular, by incorporating a principal objective and showing how to compute the optimal CEP.

D.2.1 COMPLETE PROOF OF PROPOSITION D.5

We first show that the claimed CEP is actually a CEP.

- Conditioned on P1 being recommended X , P2's action is deterministically Y , against which X is the best response for P1.
- Conditioned on P1 being recommended Y , P2's action is uniform random, against which Y is a best response for P1.
- Conditioned on P2 being recommended X , P1's action is deterministically Y , against which the principal's promised payment of 1 makes X a best response for P2.
- Conditioned on P2 being recommended Y , P1's action is uniform random, against which Y is a best response for P2.

It remains to show that the objective value $-1/3$ cannot be achieved by any CEP in which payments are signal-independent. We prove it by contradiction. Suppose there is a CEP (μ, P) with signal-independent P that achieves objective value at least $-1/3$. Note that $\mu \in \Delta(A)$ is a correlated

⁴Instead of our condition of *ex-interim* IC, [Monderer & Tennenholtz \(2003\)](#) insist on *dominant-strategy* IC, that is, they insist that $U_i^P(s, s_i, a_{-i}) \geq U_i^P(s, a)$ for every s and a . However, this requirement does not change anything in equilibrium, because one can always set $P(s, s_i, a_{-i})$ when $s_i = a_i$ and $s \neq a$ to be so large that playing a_i becomes dominant. Indeed, [Monderer & Tennenholtz \(2003\)](#) do this to establish their results on implementation; [Zhang et al. \(2024\)](#) do this in their steering algorithms; and we will do the same in Section 5.

equilibrium of the game with utility function $U + P$. Because the principal's utility without the payment part is always non-positive, for the objective to be at least $-1/3$, the expected payment to the two players $\sum_{\mathbf{a}} \mu(\mathbf{a})P(\mathbf{a})$ cannot exceed $1/3$.

Since $U_P(X, X) = -\infty$, we must have $\mu(X, X) = 0$. We then analyze the incentive compatibility constraints for the two players:

- When P2 is recommended X , P2 knows that P1 is recommended Y (because (X, X) is not possible), so in order to ensure P2 has no incentive to deviate from X to Y , we must have

$$U_2^P(Y, X) \geq U_2^P(Y, Y) \iff 0 + P_2(Y, X) \geq 1 + P_2(Y, Y) \implies P_2(Y, X) \geq 1.$$

Since the expected payment is at least $\mu(Y, X)P_2(Y, X)$ but is at most $1/3$, we must have

$$\mu(Y, X) \leq 1/3.$$

- When P2 is recommended Y , P2 believes that the recommendation to P1 is X and Y with probability $\mu(X, Y)$ and $\mu(Y, Y)$, respectively, so to prevent P2 from deviation $Y \rightarrow X$, the expected utilities of P2 under actions Y and X should satisfy:

$$\underbrace{\mu(X, Y) \cdot (U_2(X, Y) + P_2(X, Y)) + \mu(Y, Y) \cdot (U_2(Y, Y) + P_2(Y, Y))}_{\text{P2's expected utility when taking action } Y \text{ given recommendation } Y}$$

$$\geq \underbrace{\mu(X, Y) \cdot (U_2(X, X) + P_2(X, X)) + \mu(Y, Y) \cdot (U_2(Y, X) + P_2(Y, X))}_{\text{P2's expected utility when taking action } X \text{ given recommendation } Y}$$

$$\iff \mu(X, Y) \cdot (0 + P_2(X, Y)) + \mu(Y, Y) \cdot (1 + P_2(Y, Y))$$

$$\geq \mu(X, Y) \cdot (1 + P_2(X, X)) + \mu(Y, Y) \cdot (0 + P_2(Y, X))$$

$$\implies \mu(X, Y) \cdot P_2(X, Y) + \mu(Y, Y) \cdot P_2(Y, Y)$$

$$\geq \mu(X, Y) \cdot (1 + P_2(X, X)) + \mu(Y, Y) \cdot P_2(Y, X) - \mu(Y, Y).$$

Because payments are non-negative and $P_2(Y, X) \geq 1$, the above implies

$$\mu(X, Y) \cdot P_2(X, Y) + \mu(Y, Y) \cdot P_2(Y, Y)$$

$$\geq \mu(X, Y) \cdot (1 + P_2(X, X)) + \mu(Y, Y) \cdot P_2(Y, X) - \mu(Y, Y).$$

$$\geq \mu(X, Y).$$

So, the total expected payment to P2 is at least

$$\mu(X, Y)P_2(X, Y) + \mu(Y, Y)P_2(Y, Y) + \mu(Y, X)P_2(Y, X) \quad (4)$$

$$\geq \mu(X, Y) + \mu(Y, X).$$

- When P1 is recommended Y , P1 knows that P2's action is X with probability $\mu(Y, X)$ and Y with probability $\mu(Y, Y)$, so to prevent P1 from deviation $Y \rightarrow X$, P1's expected utilities under actions Y and X should satisfy:

$$\underbrace{\mu(Y, X) \cdot (U_1(Y, X) + P_1(Y, X)) + \mu(Y, Y) \cdot (U_1(Y, Y) + P_1(Y, Y))}_{\text{P1's expected utility when taking action } Y \text{ given recommendation } Y}$$

$$\geq \underbrace{\mu(Y, X) \cdot (U_1(X, X) + P_1(X, X)) + \mu(Y, Y) \cdot (U_1(Y, X) + P_1(Y, X))}_{\text{P1's expected utility when taking action } X \text{ given recommendation } Y}$$

$$\iff \mu(Y, X) \cdot (1 + P_1(Y, X)) + \mu(Y, Y) \cdot (0 + P_1(Y, Y))$$

$$\geq \mu(Y, X) \cdot (0 + P_1(X, X)) + \mu(Y, Y) \cdot (1 + P_1(Y, Y)).$$

Since payments are non-negative, the above implies

$$\mu(Y, X) \cdot P_1(Y, X) + \mu(Y, Y) \cdot P_1(Y, Y) \quad (5)$$

$$\geq \mu(Y, X) \cdot P_1(X, X) + \mu(Y, Y) + \mu(Y, Y) \cdot P_1(Y, Y) - \mu(Y, X)$$

$$\geq \mu(Y, Y) - \mu(Y, X).$$

Now, adding (4) and (5), the total expected payment to the two players is at least

$$\sum_{\mathbf{a}} \mu(\mathbf{a})P(\mathbf{a}) \geq \mu(X, Y) + \mu(Y, X) + \mu(Y, Y) - \mu(Y, X)$$

$$= \mu(X, Y) + \mu(Y, Y) = 1 - \mu(Y, X) \geq 2/3 > 1/3$$

because $\mu(Y, X) \leq 1/3$, which contradicts the condition that the expected payment is at most $1/3$.

918 D.3 PROOF OF THEOREM 5.2
919920 Suppose that the agents run *no contextual swap regret* algorithms. Concretely, an agent has no
921 contextual swap regret if

922
$$\hat{R}_i(t, s_i) := \max_{\psi_i: A_i \rightarrow A_i} \sum_{\tau \leq t} \sum_{s_{-i} \in S_{-i}} \mu^t(s) \left[U_i^\tau(s, (\psi_i \circ \phi_i)(s_i), \phi_{-i}^\tau(s_{-i})) - U_i^\tau(s, \phi^\tau(s)) \right] \leq \varepsilon T.$$

923

924 where $\varepsilon \rightarrow 0$ as $T \rightarrow \infty$. For typical no contextual swap regret algorithms, $\varepsilon = \mathcal{O}(\frac{C}{\sqrt{T}})$ where
925 C depends on the game and the number of signals. Clearly, contextual swap regret is a stronger
926 benchmark than the standard (external) notion of regret.
927928 Then, after sufficiently many rounds T , by definition, we have that the correlated strategy profile
929

930
$$\pi := \frac{1}{T} \sum_{t=1}^T (\mu^t, P^t, \phi^t) \in \Delta(S \times [0, B]^{[n] \times A \times A} \times A_1^{S_1} \times \dots \times A_n^{S_n})$$

931

932 is a non-canonical $(\varepsilon \cdot \max_i |S_i|)$ -CEP in the sense of Appendix D.1. Therefore, by the revelation
933 principle for CEPs (Proposition D.2), the principal objective value is bounded by that of the best
934 $(\varepsilon \cdot \max_i |S_i|)$ -CEP, which is then bounded by $F^*(\Gamma) + \mathcal{O}(\varepsilon)$.
935936 D.4 PROOF OF THEOREM 5.3
937938 From the analysis of Theorem 4.3, Algorithm 2 learns a game to precision $\varepsilon = \text{poly}(M, C)/\sqrt{L}$.
939 (Note that we do not express ε as a function of T because T is now the total number of rounds across
940 both learning and steering stages.)
941942 Since \tilde{U} and U differ by only ε (up to agent-independent terms), every CEP of $\tilde{\Gamma}$ is a 2ε -CEP of
943 Γ . The payment function P_i^t for the steering stage then ensures that, when given signal s_i , it is
944 *dominant* for agent i to play $a_i = s_i$. Formally, regardless of how other agents act, we have
945

946
$$U_i^t(s, a_i, \mathbf{a}_{-i}) - U_i^t(s, a'_i, \mathbf{a}_{-i}) \geq \rho, \quad \forall s \in A, a_i = s_i, \forall a'_i \neq s_i, \forall \mathbf{a}_{-i} \in A_{-i}.$$

947

948 Further, from the analysis of Theorem 4.3, agent i 's regret against following signals $s_i \neq \perp$ is always
949 nonnegative. Therefore, by agent i 's regret bound, there are at most $C\sqrt{T}/\rho$ rounds on which agent
950 i fails to obey recommendation s_i in the steering stage. By a union bound, there are therefore
951 $mnC\sqrt{T}/\rho$ rounds in the steering stage on which $\mathbf{a}^t \neq s^t$. Thus, the principal's suboptimality is
952 bounded by

953
$$\begin{aligned} F^*(\Gamma) - F(T) &\leq \underbrace{F^*(\Gamma) - F^*(\tilde{\Gamma})}_{(1)} + \underbrace{\frac{(2n+1)nML}{T}}_{(2)} + \underbrace{n(2\varepsilon + \rho)}_{(3)} + \underbrace{\frac{(2n+1)mnC}{\rho\sqrt{T}}}_{(4)} \\ &\leq \text{poly}(M) \cdot \left(\frac{L}{T} + \frac{1}{\sqrt{L}} + \rho + \frac{1}{\rho\sqrt{T}} \right) \end{aligned}$$

954

955 where the four terms are:
956957

- (1) The difference between the optimal objectives on games Γ and $\tilde{\Gamma}$. It is at most $2n\varepsilon$ because
958 $F^*(\Gamma) = F(\mu^*, P^*) \leq F(\mu^*, P^* + 2\varepsilon) + 2n\varepsilon \leq F(\tilde{\mu}^*, \tilde{P}^*) + 2n\varepsilon = F^*(\tilde{\Gamma}) + 2n\varepsilon$.
- (2) The suboptimality and payments in the utility learning stage,
- (3) The bonus payments to ensure strict incentive compatibility in the steering stage, and
- (4) The suboptimality and payments in rounds on which $a^t \neq s^t$.

959 Setting $\rho = T^{-1/4}$ and $L = T^{2/3}$ then completes the proof.
960961
962
963
964
965
966
967
968
969
970
971