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Abstract

While Classifier-Free Guidance (CFG) has become standard for improving sample
fidelity in conditional diffusion models, it can harm diversity and induce memoriza-
tion by applying constant guidance regardless of whether a particular sample needs
correction. We propose FeedBack Guidance (FBG), which uses a state-dependent
coefficient to self-regulate guidance amounts based on need. Our approach is
derived from first principles by assuming the learned conditional distribution is lin-
early corrupted by the unconditional distribution, contrasting with CFG’s implicit
multiplicative assumption. Our scheme relies on feedback of its own predictions
about the conditional signal informativeness to adapt guidance dynamically dur-
ing inference, challenging the view of guidance as a fixed hyperparameter. The
approach is benchmarked on ImageNet512x512, where it significantly outperforms
Classifier-Free Guidance and is competitive to Limited Interval Guidance (LIG)
while benefitting from a strong mathematical framework. On Text-To-Image gen-
eration, we demonstrate that, as anticipated, our approach automatically applies
higher guidance scales for complex prompts than for simpler ones and that it can
be easily combined with existing guidance schemes such as CFG or LIG. Our code
is available at this link.

1 Introduction

At the heart of the image and video generation revolution led by diffusion models Sohl-Dickstein et al.
[2015], Ho et al. [2020], Song et al. [2021a,b], Karras et al. [2022] lies the conditioning algorithm
most well-known as the guidance mechanism Dhariwal and Nichol [2021], Ho and Salimans [2021].
The need for diffusion guidance stems from the inherent challenge of learning conditional distributions
with limited paired data, which is why further emphasizing the signal using a parameter referred to
as the guidance scale proves advantageous in practice Dhariwal and Nichol [2021]. This parameter
allows to push the predictions from the conditional model further from those of the unconditional
model, essentially reinforcing the difference between them Ho and Salimans [2021], Karras et al.
[2024a]. This is more well-known as the Classifier-Free Guidance (CFG) algorithm Ho and Salimans
[2021]. It is only after the introduction of the guidance algorithm, that diffusion models gained
the impressive performance they are nowadays known for. Recent works have however made clear
that applying guidance on the entire sampling trajectory is not only unnecessary but also harms
performance Kynkäänniemi et al. [2024], Sadat et al. [2024]. By applying guidance in the beginning
of the generative process, the model tends to converge to specific condition-dependent low frequency
details Dieleman [2024], Ho and Salimans [2021], Kynkäänniemi et al. [2024], severely reducing
the diversity of the generated samples. On the other hand, applying guidance towards the end of the
generative process is largely unnecessary as both unconditional and conditional estimates converge,
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(a) Example conditional diffusion trajectories
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(b) Corresponding dynamic guidance scale

Figure 1: Illustrative diffusion trajectories and their hypothetical guidance scales in a 1D setting.
Trajectories farther from the mode near the decision window (red, orange) receive stronger guidance,
whereas those clearly heading toward the right mode (yellow) receive negligible guidance.

both being equally capable of denoising the high-frequency features Kynkäänniemi et al. [2024],
Karras et al. [2024a].

These results can be understood theoretically based on the recently developed theory of spontaneous
symmetry breaking phase transitions Raya and Ambrogioni [2023], Sclocchi et al. [2024], Ambrogioni
[2025]. This theory predicts that so called ‘speciation’ transitions during generative diffusion
correspond to particular ‘decision points’ when some features of the generations, such as for example
class identity, are maximally sensitive to guidance Biroli et al. [2024], Li and Chen [2024], Handke
et al. [2025]. Since the timing of these critical windows depends on both the data and the conditioning
signal, it is natural to consider dynamic forms of guidance where the guidance scale is determined
state-dependently.

In this work, we provide a principled methodology to obtain dynamic guidance formulas. Our scheme
relies on feedback of a quality estimation of its current predictions, which is why we refer to our
scheme as FeedBack Guidance (FBG) in analogy with control theory. As shown in Fig. 1, if a
trajectory is estimated as more likely to be originating from the unconditional model than from
the conditional model, the guidance scale increases to correct the error and realign the sample
towards the correct class. Similarly to the empirically justified work on Limited Interval Guidance
(LIG)Kynkäänniemi et al. [2024], our self-regulated guidance scale is only present at intermediate
noise levels, which now follows from first principles.

2 Preliminaries

To introduce our FeedBack Guidance scheme (FBG), the working principles behind Denoising
Diffusion Probabilistic Models (DDPMs) and Classifier-Free-Guidance (CFG) are required. These
are summarized in sections 2.1 and 2.2. In section 2.3, an overview of the current stand of literature
with respect to diffusion guidance is given.

2.1 Denoising Diffusion Probabilistic Models (DDPM)

Diffusion models Sohl-Dickstein et al. [2015], Ho et al. [2020], Song et al. [2021a,b], Karras et al.
[2022] are progressive denoisers, that aim to invert a forward noising schedule by learning the score
function, defined as the gradient of the log-likelihood of the marginals ∇x log pt(x; θ). In the case
of Variance Exploding (VE) DDPM, this forward noising process iteratively adds Gaussian noise to
a clean data distribution. This way, the underlying data distribution q(x, 0) is progressively noised
until a Gaussian of very large variance is obtained, i.e. until after T steps q(x, T ) ∼ N (x;0, σ2

T I),
with σT ≫ 1. For any forward noising schedule {σt}Tt=1, whereby xt+1 = xt + σt+1|tϵt (with
ϵt ∼ N (ϵt;0, I) and σ2

t+1|t = σ2
t+1 − σ2

t ), the forward process can be directly sampled at any step t,

according to q(xt|x0) ∼ N (xt;x0, σ
2
t|0I), with σ2

t|0 =
∑t−1

i=0 σ
2
i+1|i = σ2

t . The goal is to learn a
score based model, that is able to iteratively reverse this forward process. This backward process can
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be decomposed into a Markov chain

p(xt:T ; θ) = p(xT )

T∏
i=t+1

pi(xi−1|xi; θ) (1)

Crucially, each step of the Markov chain is by construction approximately Gaussian pt(xt−1|xt; θ) ∼
N (xt−1;µt−1(xt), σ

2
t−1|tI) with σ2

t−1|t = σ2
t−1(1 −

σ2
t−1

σ2
t
). Instead of modeling the mean, µt−1,

it is common to train a denoiser that predicts the final denoised output at any diffusion stage
x̂0|t = Eq(x0|xt)(x0)

1. In the case of a VE-scheduler, the two are connected by the identity:

µθ,t−1 =
σ2
t−1

σ2
t

xt −
(
1−

σ2
t−1

σ2
t

)
x̂0|t (2)

It should also be noted that the sought after score funtion is proportional to the learned denoiser.

2.2 Classifier-Free Guidance

Learning a highly complex conditional distribution, such as that required for Text-To-Image (T2I), is
a challenging task. In most situations it is only possible to poorly approximate this target distribution,
which can be seen from the vague predictions generatedby sampling a "pure" conditionally trained
diffusion model, such as the one present in Stable diffusion Rombach et al. [2022]. To amplify the
conditioning signal present during the denoising process, diverse solutions exist. The most widely
used method is that of diffusion guidance, of which the simplest example is that of Classifier (-Free)
Guidance Dhariwal and Nichol [2021], Ho and Salimans [2021]. The guidance mechanism is used in
all variants of diffusion, from Flow Matching Lipman et al. [2023], Zheng et al. [2023] to Discrete
Diffusion Models Schiff et al. [2025]. The reasoning behind guidance is to sharpen the marginals
towards the the posterior likelihood pθ,t(c|xt) using an exponent λ referred to as the guidance scale,
i.e. to consider a λ-sharpened conditional marginal distribution p̃t(xt|c) = pθ,t(xt)pθ,t(c|xt)

λ.
When λ is equal to one this reduces to sampling the conditional model, while setting λ > 1 further
sharpens the marginals towards regions that better satisfy the condition c. To obtain a Classifier-Free
scheme, independent of the posterior pθ,t(c|xt), it suffices to rewrite the posterior probability as
a ratio of the conditional and unconditional likelihoods pθ,t(c|xt) ∝ pθ,t(xt|c)/pθ,t(xt). From a
score-based perspective this results in the well known guidance equation:

∇x log p̃t(xt|c) = ∇x log pθ,t(xt) + λ∇x log pθ,t(c|xt)

= ∇x log pθ,t(xt) + λ
(
∇x log pθ,t(xt|c)−∇x log pθ,t(xt)

) (3)

In the first formulation the gradient of a classifier appears, if this likelihood is directly parametrised
using pretrained networks one obtains what is refered to as training-free guidance Dhariwal and
Nichol [2021], Shen et al. [2024a]. The main challenge of these approaches is that they leverage a
model trained solely on clean samples to offer guidance on noisy samples Shen et al. [2024a], Ye et al.
[2024]. The second equation is that of Classifier-Free Guidance Ho and Salimans [2021], which has
as main inconvenient that it requires joint conditional-unconditional model training Ho and Salimans
[2021], Rombach et al. [2022], Karras et al. [2022, 2024b].

2.3 Related Work

Conditional generation, and in particular the topic of guidance, is a very active research field. As
this paper is centered around Classifier-Free Guidance and its derivatives in the context of Diffusion
Models, this section will provide a concise exploration of the field’s key developments, with readers
seeking comprehensive context directed to existing in-depth survey literature Anonymous [2024],
Adaloglou and Kaiser [2024]. A prominent research direction preserves the core framework of CFG
while introducing various predefined time-varying profiles to replace the rigid constant guidance scale
Sadat et al. [2024], Kynkäänniemi et al. [2024], Wang et al. [2024], Xia et al. [2024]. Noteworthy,
due to its computational advantage, simplicity and its effectiveness, is choosing a limited interval in
which guidance should be applied Kynkäänniemi et al. [2024]. Precisely where this limited interval
is located depends on the underlying quality of the conditional model. The better the model, as is

1Equivalently, the noise ϵ̂t can be predicted, the two are connected by the identity xt = x̂0|t + σtϵ̂t
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the case for the EDM2 models on which that particular paper focuses, the later the guidance can
be activated. Different intervals are found when evaluating performance using the FID Heusel et al.
[2017] or FDDinoV2 Stein et al. [2023], the latter being much wider and earlier.
Less researched is the approach of a state-dependent guidance scale, which has been shown to be
theoretically optimal in the context of negative guidance Koulischer et al. [2025], Kim et al. [2025],
but has only been heuristically proposed for positive guidance Brack et al. [2023], Shen et al. [2024b].
Our work is the first to derive a state- and time-dependent guidance scale from first principles.
Another advance is autoguidance, which replaces the expensive unconditional model by a much
weaker oneKarras et al. [2024a]. The weaker model may be a smaller version of the same architecture,
an undertrained model, or one incorrectly conditioned at earlier timesteps Karras et al. [2024a], Kaiser
et al. [2024], Li et al. [2024]. This approach reinforces not only class-specific details but also image
quality, relying on the smaller model’s errors being of similar nature as those of the stronger one,
simply larger. Our Feedback scheme can be adapted to produce equations fully compatible with these
principles.
A newly emerging research direction, has proposed to step away from guidance as a whole and
instead perform a tree-search over a limited amount of trajectories and selectively choose the most
promising ones using reward models Guo et al. [2025], Ma et al. [2025]. These approaches are still
very recent, but might lead to an entire different era of conditional diffusion generation, in which
instead of relying on guidance, the model has the ability to focus on the most promising trajectories
to obtain the most of the learned models. Our feedback approach, and in particular the posterior
estimation algorithm, could potentially provide a meaningful way of ranking these paths using solely
the pretrained diffusion models.

3 Feedback Guidance

This section presents the theoretical foundation of Feedback Guidance. In section 3.1, we introduce a
framework that reformulates guidance formulas as the result of assumptions about systematic errors
in the learned distributions. In section 3.2 we demonstrate that adopting an additive rather than
multiplicative error assumption naturally produces a dynamic guidance mechanism. The resulting
state- and time-dependent guidance scale requires posterior likelihood estimation, outlined in section
3.3. In section 3.4 the key hyperparameters of FBG are discussed.

3.1 Interpreting guidance schemes through error assumptions

Here, we conceptualize guidance formulas as the result of inverting an error model that determines
how the unconditional distribution ‘corrupts’ the estimated conditional distribution. This form of
corruption is to be expected since the model is far less frequently trained on a given class or prompt,
which implies that a large part of the training signal is unconditional. In the case of CFG, by reversing
Eq. (3) and substituting γ = 1/λ it becomes clear that CFG implicitly assumes that the learned
conditional distribution, denoted by the subscript θ in this work pθ,t(xt|c), is a multiplicative mixture
of the true conditional and unconditional distributions:

pθ,t(xt|c) ∝ pt(xt)
λ−1
λ pt(xt|c)

1
λ

= pt(xt)
1−γpt(xt|c)γ

(4)

In the case when γ ≈ 1 (low guidance regime), the modelled conditional corresponds to the true
conditional. In that setting, sampling the learned conditional is sufficient. However, when γ ≈ 0

Compute scores
µ(xt|c), µ(xt)

Mix scores + Take step
µλ(xt|c) = µ(xt) + λt

(
µ(xt|c)− µ(xt)

)
Update guidance scale value

λt−1 = Update(xt−1, λt, µ(xt|c), µ(xt))

x,λ x,λ

Figure 2: Schematic of Feedback guidance (FBG). The state space consists of both xt and λ, which
are updated iteratively during the denoising process. The guidance scale is updated by tracking the
posterior ratio thanks to Eq. (11), which can then be inserted in Eq. (8).
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(strong guidance regime), the modelled conditional resembles the unconditional distribution, which
is precisely why strong guidance is required during sampling.

3.2 Feedback Guidance

In control theory jargon, both standard CFG and LIG are examples of open-loop controllers since the
guidance scale is not a function of the current state xt. This means that the guidance formula will
equally affect all states, regardless of their quality and class alignment. We argue that might lead to
over-saturation and stereotypical generations in situations where the conditional model is already
good enough to be sampled on its own, as is the case for simplistic or memorized prompts.
Here, we derive a guidance formula that implements a form of feedback, or closed-loop control. From
an error perspective we assume that the learned conditional distribution corresponds to an additive
mixture of the true conditional and unconditional distributions:

pθ,t(xt|c) = (1− π)pt(xt) + πpt(xt|c) (5)

The additive assumption can be seen as less restrictive than the multiplicative one as it allows the
learned conditional distribution pθ,t(xt|c) to be non-zero in regions where the true conditional distri-
bution pt(xt|c) is zero, a feat the multiplicative assumption is incapable of. Due to the joint training
pipeline, and the fact that training pairs often contain more than a single element, such an overlap
of the learned distributions is in practice highly likely. Assuming a well-modeled unconditional
distribution, i.e. pθ,t(xt) ≈ pt(xt), this implies sampling:

pt(xt|c) ∝ pθ,t(x|c)− (1− π)pθ,t(x) (6)

In other words, we propose removing a portion of the unconditional distribution from the modeled
conditional before sampling. This, similarly to the approach taken in CFG, helps strengthen the
conditioning signal, as regions that do not satisfy c are pushed towards zero-likelihood.
Of key interest for sampling is the score function of the underlying conditional distribution
∇x log pt(x|c), which can be derived using the chain rule2:

∇x log p(xt|c) = ∇x log pθ,t(xt) + λ(xt, t)
(
∇x log pθ,t(xt|c)−∇xt

log pθ,t(xt)
)
, (7)

with as guidance scale:

λ(xt, t) =
pθ,t(c|xt)/pθ,t(c)

pθ,t(c|xt)/pθ,t(c)− (1− π)
. (8)

The additive error model results in a state- and time-dependent guidance scale that can be expressed
in terms of the posterior likelihood pθ,t(c|xt). The guidance scale is equal to one when the posterior
likelihood is high, and exhibits an asymptotic behavior as the posterior approaches 1−π. The mixing
parameter π determines when guidance is deemed necessary: if π is close to one, indicating a well
learned distribution, guidance is only activated when pθ,t(c|xt) reaches very low values. In contrast,
for poorly learned distributions, with smaller values of π, guidance is easily activated as soon as the
posterior decreases. It should be noted that if 0 < pθ,t(c|xt) < 1− π the guidance scale is negative.
We argue that in the continuous case this situation would never arise since the guidance scale would
need to cross the asymptote, which should in turn increase the posterior. To avoid this happening
in the discretized case, we clamp the posterior to a minimum value pmin, which in practice implies
clamping the guidance scale at λmax

3.
In practice, our dynamic guidance scale defined by Eq. (8) can easily be added on top of any pre-
existing guidance method such as CFG or LIG. To make it clear which methods are used, we introduce
the following notation: FBGpure corresponds to using solely Eq. (8) as guidance scale, FBGCFG and
FBGLIG respectively correspond to adding some base CFG or LIG on top. We refer to FBG as all
approaches that use variants of Eq. (8) for guidance. The corresponding error models assumed for
these schemes are given in Appendix F.3.

2A detailed derivation is provided in Appendix A
3The two are connected by the identity pmin = log

(
(1− π) λmax

λmax−1

)
, for more details see Appendix C.2
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3.3 Posterior approximation by tracking the Markov Chain

Our novel dynamic guidance scale λ(x, t) relies on the posterior likelihood pθ,t(c|x), which is in
general not available using score-based models. Leveraging recent ideas by from Koulischer et al.
[2025], we approximate the required posterior p(c|xt) by estimating the required likelihoods by
tracking the diffusion Markov Chain, defined by Eq. (1) during the denoising process. Key for
this estimation is that the likelihood ratio between the conditional and unconditional models can be
updated iteratively through:

log pθ,t(c|xt:T ) = log pθ,t+1(c|xt+1:T ) + log pθ,t(xt|xt+1, c)− log pθ,t(xt|xt+1) (9)

Both markov transitions likelihoods are parametrised as gaussians, resulting in:

log pθ,t(c|xt) = log pθ,t+1(c|xt+1)−
1

2σ2
t|t−1

(
∥xt − µθ,t(xt+1|c)∥2 − ∥xt − µθ,t(xt+1)∥2

)
(10)

This equation estimates the posterior by comparing conditional and unconditional model performance
at each denoising step, effectively computing a likelihood ratio weighted by the inverse noise variance
σ2
t|t−1. As the transition kernel sharpens, the posterior estimates become increasingly decisive,

allowing for more abrupt shifts in the probability assessment. A crucial advantage of computing the
posterior using the scheme describe above is that it causes negligible computational overhead as all
required quantities, in particular µθ,t(xt+1) and µθ,t(xt+1|c), are already computed.
By tracking the posterior likelihood during inference, we estimate a state- and time-dependent
guidance scale and feed it back to the denoiser. Crucially, posterior computation and denoising are
staggered, effectively solving a joint ODE–SDE system Skreta et al. [2025], Karczewski et al. [2025].
The closed-loop diagram shown in Fig. 2 and described in detail in Alg. 1 summarizes our approach.
This control diagram is progressively unrolled during the denoising process, implying a succession of
computing the score functions, mixing them, applying a denoising step, updating the value of the
guidance scale and repeating a fixed amount of times until a fully denoised image is obtained.

3.4 Defining Practical Hyperparameters

The previously described posterior likelihood estimation via Eq. (10) however suffers from a self-
reference bias: when using the conditional model’s own prediction (xt = µt,θ(xt+1|c)) as the
sampling trajectory, the model effectively evaluates its performance on its own output, artificially
inflating its perceived accuracy. This creates a circular reasoning problem where the conditional
model always appears superior because it evaluates a trajectory it created. We address this by
introducing a linear bias term −δ (Eq. 11), which allows the unconditional model’s predictions to
receive appropriate consideration. This adjustment forces the system to recognize that the conditional
model’s apparent superiority stems from self-comparison rather than objective performance, creating
a more balanced sampling process that better represents the true posterior distribution. In practice, this
forces the posterior to decrease in the early stages of diffusion, enabling the activation of guidance.

log pt(c|xt) = log pt+1(c|xt+1)−
τ

2σ2
t

(
∥xt − µt,θ(xt+1|c)∥2 − ∥xt − µt,θ(xt+1)∥2

)
− δ (11)

The complex non-linear interplay between the three hyperparameters of our approach -π, τ , and
δ- makes it challenging to predict how changing one parameter affects the overall guidance profile.
To address this issue, we propose a more intuitive parameterization that allows users to directly
control the characteristics of the guidance profile through normalized diffusion timesteps. Instead
of directly tuning τ and δ, we express them as functions of two more interpretable parameters: t0
and t1. Here, t0 represents the normalized diffusion time at which the guidance scale reaches a
predefined reference value λref (set to 3 without loss of generality), while t1 represents an estimant of
the normalized diffusion time at which the guidance reaches its maximum value. Details regarding
the hyperparameters are provided in Appendix C.2.
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Guidance scheme FID (↓) FDDinov2 (↓) Prec. (↑) Rec. (↑)
Stoch. PFODE Stoch. PFODE Stoch. PFODE Stoch. PFODE

CFG 5.00 2.97 100.2 88.4 0.85 0.84 0.73 0.75
Weight scheduler 4.58 2.75 103.1 97.1 0.84 0.83 0.74 0.76

CFG++ / 3.66 / 87.8 / 0.86 / 0.73
LIG 3.59 2.31 88.5 77.1 0.86 0.86 0.75 0.77

FBGpure (ours) 3.76 2.50 89.0 75.6 0.86 0.86 0.76 0.77
FBGLIG (ours) 3.62 2.45 87.9 74.6 0.87 0.86 0.75 0.76

Table 1: Evaluation of different guidance methods using EDM2-XS using a stochastic (‘Stoch.’)
and a 2nd-order Heun sampler (‘PFODE’). FID and FDDinov2 values refer to the model optimized
under the respective metrics. Precision and Recall are computed on 10,240 samples with 5 nearest
neighbour with models optimized under FDDinov2 Kynkäänniemi et al. [2019], Stein et al. [2023].

4 Results

We validate our novel state-dependent dynamic guidance scheme on ImageNet512×512 using EDM2
models, where it consistently outperforms CFG and remains competitive with LIG, while benefitting
from a strong mathematical framework. To assess generality, we additionally compute FIDs on
MS-COCO in the T2I setting. Alongside these quantitative results, we provide qualitative examples
showing that the self-regulated feedback guidance scale naturally increases with prompt complexity.

4.1 Comparison of Guidance Schemes on Class Conditional Generation

For class-conditional experiments, we use EDM2-XS Karras et al. [2024b,a] trained on Ima-
geNet512×512 Deng et al. [2009] with 64 function evaluations. Performance is measured via
FID Heusel et al. [2017], FDDinoV2 Stein et al. [2023], and Precision/Recall Kynkäänniemi et al.
[2019], providing a comprehensive view of the quality–diversity trade-off Kynkäänniemi et al. [2019],
Stein et al. [2023], Kynkäänniemi et al. [2024]. Consistent with our posterior estimation framework
based on Markov chain sampling, we focus on stochastic samplers but note similar results using
the probability flow ODE with a 2nd-order Heun solver Karras et al. [2022, 2024b]. Baselines are
optimized per sampler: CFG Ho and Salimans [2021], CFG++ Chung et al. [2025] and the linear
guidance weight scheduler Wang et al. [2024] via a grid search over the guidance scale, and LIG
Kynkäänniemi et al. [2024] via joint search over σmax and guidance scale, followed by σmin tuning4.
For Feedback Guidance, we sweep t0, t0 − t1, and π. We note that CFG++ was originally only tested
on text-to-image generation Chung et al. [2025], while the linear guidance weight scheduler was only
benchmarked using the FID as metric Wang et al. [2024].

To visualize parameter effects, we present FDDinoV2 sweeps as a heatmap in Fig. 3 (FID results
in Appendix F). Optimal hyperparameters are listed in Table 3 and vary across metrics (FID vs.
FDDinoV2) and samplers. Consistent with LIG, optimal FDDinoV2 performance requires earlier and
longer guidance activation, corresponding to larger t0 and t0 − t1 for FBG.
FBGpure outperforms CFG, CFG++ and the linear scheduler on both FDDinoV2 and FID, while remain-
ing competitive with LIG. To assess the quality–diversity trade-off, we compute Precision–Recall
curves on 10,240 images with 5 nearest neighbor with optimal FDDinoV2 settings. CFG and LIG
are swept over guidance scales 1–4, while FBGpure is swept over t0 with fixed t0 − t1 = 0.125
(8/64 steps). Results confirm that CFG improves quality at a large cost to diversity, LIG better
preserves diversity due to its narrow late-stage guidance, and FBG achieves CFG-like Recall but with
substantially higher Precision, offering a better quality–diversity balance.
Finally, we optimize FBGLIG by fixing the LIG interval and solely varying the guidance scale, with π
and t0 taken from FBGpure and t1 adjusted. While a full grid search could further improve results, this
hybrid outperforms its components on FDDinoV2, which aligns closely with human perception Stein
et al. [2023], highlighting the complementarity of our approach. All optimized metrics are provided
in Table 1 and additional details on the various methods are provided in Appendix F. Best performing
metrics per sampler are written in bold and best performing overall are further underlined.

4Contrary to Kynkäänniemi et al. [2024], we find that late-stage guidance is not only unnecessary but also
harmful, particularly for FDDinoV2.
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Figure 3: (a) Grid search over t0 and t1, with FDDinoV2 calibrated to the best value among CFG,
LIG, and FBG. (b) Precision–Recall sweeps at each method’s FDDinoV2 optimum: CFG/LIG sweep
guidance scale, FBG sweeps t0 at fixed t0 − t1. Guidance strength is indicated by color intensity.

4.2 Guidance on Text-To-Image

In the context of Text-To-Image (T2I), our approach is evaluated using Stable diffusion 2 Rombach
et al. [2022], for which a VE-scheduler is implemented Karras et al. [2022, 2024b]. To remain
consistent with the theory a stochastic sampler using 32 function evaluations is used. The purpose of
this section is not to investigate to what extent Feedback Guidance may outperform CFG or LIG in
terms of image quality, but merely to demonstrate the promise of the approach.
On its own, the conditional model used in T2I applications is of far lower quality than is the case for
the EDM2 models, which is precisely why in practice much larger guidance scales are required Ho
and Salimans [2021], Rombach et al. [2022]. For FBG this implies that π has to be chosen much
smaller, all images shown in this section use a value of π = 0.85 in combination with t0 = 0.75 and
t1 = 0.5. In practice, we also find it helpful to remove the offset from the posterior approximation
towards the end of the generative process5. We find that using a limited amount of CFG with
λCFG = 1.5 can help to retrieve low frequency features such as sharp colors, without significantly
harming diversity, which is why in this context we propose to use FBGCFG for visual evaluation.
To assess our approach beyond visual inspection, we compute FID, FDDinoV2 and Aesthetic-Score6

on 3k MS-COCO prompts Lin et al. [2014], Heusel et al. [2017], Oquab et al. [2024]. Results are
given in Tab. 27 and show similar trends to those from the class-conditional setting, underscoring
the method’s generality. Although MS-COCO captions are relatively simple and thus less ideal for
testing guidance methods, most effective on complex prompts, it remains the standard benchmark for
qualitative T2I evaluation.

Guidance Scheme FID (↓) FDDinoV2 (↓) Aesthetic Score (↑)
CFG 19.64 54.56 5.65

LinCFG 19.15 53.26 5.71
LIG 18.81 54.25 5.74

FBGpure (ours) 18.63 53.11 5.75
FBGCFG (ours) 18.63∗ 52.14 5.75

Table 2: Comparison of methods across FID, FDDinoV2, and Aesthetic Score. Evaluated using 3k
prompts from the MS-COCO dataset Lin et al. [2014] using SDv2 Rombach et al. [2022].

We now emphasize two key, novel, properties of our feedback guidance approach:

Prompt specificity of FBG: A key advantage of Feedback Guidance is that it adapts denoising
behavior per prompt, unlike fixed-profile methods that treat all prompts identically. Well-learned
prompts (e.g., “The Starry Night”) should receive minimal guidance, whereas complex, descriptive

5To be specific in this context we choose δ = 0 if t < 0.3.
6Model accesible at https://github.com/discus0434/aesthetic-predictor-v2-5
7The optimised hyperparameters are given in Table 4
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(a) Examples of dynamic guidance scale (b) Average guidance for various prompt difficulties

Figure 4: Analysis of FBG in the context of T2I. In (a) the dynamic guidance scale of 32 samples are
shown using two prompts: a memorized one ( "The starry night by Van Gogh“) and a more difficult
one ( "A chameleon blending into a graffiti-covered wall“). In (b) the average guidance scale applied
when using FBG is shown as a function of various prompt difficulties specified in Appendix G.

Conditional model

1 2

3 4

CFG (𝝀 = 𝟐. 𝟓)

1 2

3 4

FBG (ours)

1 2

3 4

Figure 5: Guidance scale for different trajectories using the prompt: “A snail crawling on a green
leaf with water droplets". If the conditional prediction is good the guidance is low (top two images).
In contrast when the conditional prediction is poor, the guidance scale increases (bottom two images).

prompts require stronger guidance. To test this, we construct a 60-prompt dataset with four difficulty
levels: memorized, easy, intermediate, and very hard. More detail on this dataset are provided in
Appendix G. We report the average guidance scale obtained with 32 samples per prompt and find, as
shown in Fig. 4b, that FBG applies the strongest guidance for the most difficult prompts, as expected.
We provide further examples in Appendix F.5.

Trajectory specificity of FBG: Another key property of FBG is its state, or trajectory, dependence.
For the same prompt, two trajectories might receive entirely different levels of guidance. This is
illustrated in Fig. 5: if the conditional model is, by chance, already close to the desired result, a
minimal amount of guidance is applied, whereas if the conditional model is far off guidance is much
more present.

5 Limitations and Future Work

Our FBG approach opens several new directions in both theory and practice of guidance. The
adopted additive mixture model was chosen based on its mathematical simplicity, but it is likely not
a close approximation of the true systematic biases in trained models. More precise error models
could potentially be obtained by studying the training dynamics of the models and tracking the
relative error of the learned conditional and unconditional scores, which may lead to more accurate
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dynamic guidance formulas. Similarly, our choice of prior is solely based on simplicity, and other
options should be investigated both theoretically and empirically. Our evaluation currently focuses
on EDM2-XS models. Future work should investigate larger architectures such as EDM2-L or DiT
Peebles and Xie [2022], and extend quantitative T2I evaluation to broader prompt datasets, such as
LAION5B Schuhmann et al. [2022], to better assess guidance performance across different prompt
complexities.

6 Conclusion

In this work, we introduced a novel view of the commonly used guidance mechanism, interpreting
guidance as a way of rectifying the errors made by the learned conditional model. By replacing
the implicitly assumed multiplicative error of Classifier-Free Guidance (CFG) with an additive
one, we obtained Feedback Guidance (FBG), a state- and time-dependent guidance mechanism
that dynamically relies on the model’s own prediction to estimate how much guidance is needed
during inference. This work challenges the view of guidance as a fixed global scheme and instead
allows different trajectories and conditions to behave differently. Our results demonstrate that FBG
significantly outperforms CFG, and is competitive with Limited Interval Guidance (LIG) while
relying on solid theoretical grounds.
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A Detailed derivation of Feedback guidance scheme

Our Feedback Guidance scheme is based on the assumption that the learned conditional distribu-
tion pθ,t(xt|c) can be expressed as an additive mixture of the true conditional and unconditional
distributions, pt(xt|c) and pt(xt), with mixing coefficient π:

pθ,t(xt|c) = πpt(xt|c) + (1− π)pt(xt). (12)

Our objective is to sample from the true conditional distribution. Assuming a well-learned uncondi-
tional model, this can be written as:

pt(xt|c) ∝ pθ,t(xt|c)− (1− π)pt(xt). (13)

For score-based generative models, the relevant quantity is the score function ∇x log pt(xt|c).
Applying the chain rule and using ∇xp(x) = p(x)∇x log p(x), we obtain:

∇x log pt(xt|c) = ∇x log
[
pθ,t(xt|c)− (1− π)pt(xt)

]
=

∇xpθ,t(xt|c)− (1− π)∇xpt(xt)

pθ,t(xt|c)− (1− π)pt(xt)

=
pθ,t(xt|c)∇x log pθ,t(xt|c)− (1− π)pt(xt)∇x log pt(xt)

pθ,t(xt|c)− (1− π)pt(xt)

= ∇x log pt(xt) +
pθ,t(xt|c)

pθ,t(xt|c)− (1− π)pt(xt)

(
∇x log pθ,t(xt|c)−∇x log pt(xt)

)
.

(14)

Defining the feedback guidance scale λ(xt, t) through Eq. (8), a familiar-looking guidance equation
is obtained:

∇x log pt(xt|c) = ∇x log pt(xt) + λ(xt, t)
(
∇x log pθ,t(xt|c)−∇x log pt(xt)

)
. (15)

This final expression summarizes our approach of feedback guidance. This equation generalizes the
typical classifier-free guidance scheme to possess a both state- and time-dependent guidance scale
λ(xt, t) , enabling adaptive control over the denoising process.

B Theoretical shortcomings of CFG resolved by FBG

Despite being standardly used in practice, CFG remains vastly misunderstood Bradley and Nakkiran
[2024], Chidambaram et al. [2024]. The common loose understanding of guidance is that to reinforce
the conditioning signal of the models the aim is to sample from a λ-sharpened ditribution, i.e. from
p̃(x|c) = p(x)p(c|x)λ. From this it is typical to derive ∇x log p̃(x|c) and obtain the standard linear
combination of conditional and unconditional scores used in all variants of guidance Dhariwal and
Nichol [2021], Ho and Salimans [2021].
What it is often overlooked is that this mixing of the distribution is defined locally, at a specific
noise level defied by t. By assuming an equivalent multiplicative mixing at every noise level, as
for instance the case when using a constant guidance scale in CFG, the sampled marginals do not
correspond to the predefined forward process. In essence the common misunderstanding is that the
mixing operation commutes with the noising operation, i.e. that mixing the noise-free distributions
and noising them is equivalent to first noising the distributions and then only mixing them, which is
erroneous. In other words, in the case of a multiplicative mixture one can not simply mix the clean
distributions, add a subscript t everywhere and expect these to sample from the desired marginals.
When following the score functions defined using the CFG equation, one is not sampling from
the intuitively sharpened data distribution p̃(x|c) = p(x)p(c|x)λ Bradley and Nakkiran [2024],
Chidambaram et al. [2024].
To sample the γ-sharpened conditional distribution in the clean image space using the forward
process defined by the diffusion kernel k(xs,xt) the marginals at timestep t should correspond to:

p̃t(xt|c) =
∫

dx0p̃0(x0|c)k(x0,xt)

=

∫
dx0pθ,0(x0|c)λpθ,0(x0)

1−λk(x0,xt)

(16)
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However, when sampling using the score function defined by CFG we are implicitly assuming that
the marginals at timestep t keep the mixing property:

p̃t,CFG(xt|c) = pθ,t(xt|c)λpθ,t(xt)
1−λ

=
(∫

dx0p̃0(x0|c)k(x0,xt)
)λ(∫

dx0p̃0(x0)k(x0,xt)
)1−λ (17)

These two expressions are not equal and can in fact differ significantly especially at higher noise levels,
at which the overlap between pt(x|c) and pt(x) is significant as the information of the underlying
distributions has been nearly entirely removed, i.e. both distributions start to ressemble gaussian
distributions. This implies that the trajectories sampled under CFG simply do not correspond to the
predefined forward process, especially at high noise levels. The main consequence of this is that
sampling using CFG can be very misleading.
Mathematically the non-commutability of the mixing and noising operations in the case of CFG
is due to the non-commutability of the multiplication and convolution operations. The proposed
additive error at the heart of our FBG approach does not suffer from the same flaws. Thanks to the
commutability of the addition and the convolution, the mixing and noising operations become inter-
changeable. This implies that when using the scores provided by Feedback guidance the predefined
distribution is retrieved8.
Resolving this issue is not the main purpose of this work, which is why we for instance propose com-
bining FBG with other guidance scheme such as CFGHo and Salimans [2021] or LIGKynkäänniemi
et al. [2024]. Nonetheless, we believe this to be an insightful discussion worth mentioning and
exploring.

C Posterior likelihood estimation

The estimation of the posterior likelihood is central to the proposed Feedback Guidance. Multiple
approaches in the literature provide ways of estimating such densities Koulischer et al. [2025], Skreta
et al. [2025], Chewi et al. [2025], Karczewski et al. [2025]. Seeing the similarities of the present
work with the Dynamic Negative Guidance (DNG) approach, we keep the same notation Koulischer
et al. [2025]. For an intuitive explanation of the estimation, we refer the reader to the afore mentioned
paper. The continuous limit is then derived in C.1. The key hyperparameters introduced in the main
body are described in more detail in C.2.

C.1 Continuous limit

In this section, we derive the continuous-time limit of the posterior approximation used in Feedback
Guidance (FBG). To this end, it suffices to consider the posterior update under the guided prediction:
xt−1 = µ(xt) + λ(µ(xt|c)− µ(xt)) + σt−1|tϵ with ϵ ∼ N (0, I). This results in:

log p(c|xt−1) = log pt(c|xt)−
1

2σ2
t−1|t

(
∥xt−1 − µ(xt|c)∥2 − ∥xt−1 − µ(xt)∥2

)
= log pt(c|xt)−

1

2σ2
t−1|t

(
∥µ(xt) + λ(xt, t)(µ(xt|c)− µ(xt)) + σt−1|tϵ− µ(xt|c)∥2

− ∥µ(xt) + λ(xt, t)(µ(xt|c)− µ(xt)) + σt−1|tϵ− µ(xt)∥2
)

= log pt(c|xt)−
τ

2σ2
t−1|t

(
∥(λ(xt, t)− 1)(µ(xt|c)− µ(xt)) + σt−1|tϵ∥2

− ∥λ(xt, t)(µ(xt|c)− µ(xt)) + σt−1|tϵ∥2
)

= log pt(c|xt)−
τ

2σ2
t−1|t

(
(1− 2λ(xt, t))∥µ(xt|c)− µ(xt)∥2 + 2σt−1|tϵ · (µ(xt|c)− µ(xt))

)
(18)

The term added to the log posterior likelihood can be decomposed into two separate contributions. The
first corresponds to a deterministic measure, evaluating how much the conditional and unconditional

8At least in the case that an exact posterior is available and that the to-be-sampled distribution is valid, i.e.
satisfies positivity constraints.

15



(a) Guidance as function of posterior (b) Average term added at each timestep

Figure 6: In (a) the guidane scale is plotted as a function of the posterior. Here it is important to note
that we argue that in practice the negative part of the curve is never reached as in a continuous process
the crossing of the assymptote would result in an infinite amount of guidance. In practice to avoid this
happening upon discretisation a maximal guidance value can be set, as shown in the light blue line.
In (b) an average of the added term is shown. The red line corresponds to the euclidean difference,
whereas the light-blue line includes the reweighting by the transition kernel variance σ2

t−1|t

predictions differ ∥µ(xt)− µ(xt)∥2, while the second is a stochastic term that measures the overlap
between this difference and the added stochastic noise. The former measures how much on average
the predictions differ, while the latter measures if by chance the stochastic process has favored one
over the other.

Using this understanding, a continuous form of the equations is recognisable. For this one has to
realise that in the continuous case the backward and forward transition kernels become of equal
variance, i.e. limdt→0 σ

2
t−dt|t = σ2

t|t−dt. Therefore up to first order one can approximate that
σ2
t−dt|t ≈ σ2

t|t−dt = σ2
t −σ2

t−1 = dσ2
t /dt = 2σtσ̇t. This results in the following continuous integral:

log p(c|xt) =

∫ T

t

τ

4σsσ̇s
(2λ(xs, s)−1)∥µ(xs|c)−µ(xs)∥2ds+2

∫ T

t

√
2σsσ̇s

(
µ(xs|c)−µ(xs)

)
·dW

(19)

The first integral is a path integral, capturing the cumulative deterministic contribution over the
diffusion path. The second integral is a stochastic Itô integral over the Wiener process dW , capturing
how the stochastic noises influence over the posterior likelihood.

C.2 Understanding the hyperparameters for the posterior estimation

The hyperparameters π, τ , and δ play a central role in Feedback Guidance (FBG), but their inter-
dependence and abstract nature can hinder accessibility and ease of tuning. To mitigate this, we
propose a reparametrization of the temperature and offset parameters, τ and δ, in terms of the mixing
parameter π and two new hyperparameters—t0 and t1—which correspond to normalized diffusion
times (t = 0 denotes clean data; t = 1 denotes fully noised data).

Understanding the influence of these parameters requires analyzing how the posterior, and thereby
the guidance scale λ(x, t), depends on them.

Effect of mixing parameter π

The mixing parameter π controls the point at which the guidance scale λ(x, t) becomes large.
Specifically, λ diverges when p(c|xt) ≈ 1 − π. Thus, adjusting π shifts the asymptotic region of
the guidance curve. In Fig. 7a, we illustrate this behavior by plotting the posterior values at which
λ = 3 for various values of π. As π increases, stronger confidence (i.e., lower posterior values) is
required to activate a given level of guidance. Intuitively, when π → 1, the conditional model closely
approximates the true posterior, and additional guidance is only necessary when uncertainty is high.
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Figure 7: Illustration of the interplay between π and δ in (a) and t0 in (b). When specifying t0 the
value of δ is chosen such that the intersection of the red and blue lines is located at t0.

Motivation for Offset parameter δ

In the early diffusion steps, when noise dominates, the trajectory of the generated sample is best
approximated by the conditional model itself, i.e., xt−1 ≈ µt,θ(xt|c). Neglecting stochasticity, the
posterior update simplifies to:

log pt(c|xt) = log pt+1(c|xt+1)−
1

2σ2
t|t+1

(
∥xt − µt,θ(xt+1|c)∥2 − ∥xt − µt,θ(xt+1)∥2

)
≈ log pt+1(c|xt+1) +

1

2σ2
t|t+1

∥xt − µt,θ(xt+1)∥2
(20)

This leads to a monotonically increasing posterior, which artificially inflates model confidence and
suppresses guidance activation. To address this, we introduce a linear transformation with an offset δ:

log pt(c|xt) = log pt+1(c|xt+1)−
τ

2σ2
t|t+1

(
∥xt − µt,θ(xt+1|c)∥2 − ∥xt − µt,θ(xt+1)∥2

)
− δ

(21)

This correction is especially important in the early diffusion regime, where the signal-to-noise ratio
is low and the posterior estimate is dominated by the offset. Under the EDM scheduler, where
σ2
t ∈ [0.002, 80], the transition variance σ2

t−1|t = σ2
t (1− σ2

t−1/σ
2
t ) spans an extremely wide range,

exacerbating this effect.

To make this more interpretable, we define δ in terms of π and a new hyperparameter t0, defined as
the timestep at which the guidance scale reaches a reference value λref = 3 under a purely linear
model. This yields:

δ =
1

Nsteps(1− t0)
log

(
(1− π) · λref

λref − 1

)
(22)

Reparameterising the temperature τ

We now reparametrize τ using t0 and t1, where t1 represents the timestep at which the additive
Euclidean term matches the magnitude of the offset δ. To estimate this, we compute the average
contribution ∆ of the Euclidean difference across sampled trajectories (see Fig. 6b). For the EDM2-
XS model, we find ∆ ≈ 10 around t = 0.5.

This gives:
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Algorithm 1 Feedback Guidance (FBG)

Input: Pre-trained conditional and unconditional network with prediction µθ(xt|c) and µθ(xt), mixing
factor π, the two timestep hyperparameters t0 and t1 and a maximal guidance scale value λmax
Derive δ, τ from π, t0, t1 and pmin from λmax Set hyperparameters (App. C.2)
xT ∼ N (0, I) Initialize state
log p(c|xT ) = 0 Initialize posterior and guidance scale

λT (xT ) =
p(c|xT )

p(c|xT )−(1−π)

for t = T, . . . , 1 do
µθ,guid(xt|c) = µθ(xt) + λt(xt)

(
µθ(xt|c)− µθ(xt)

)
Compute and mix scores

xt−1 = µθ,guid(xt|c) + σt−1|tz with z ∼ N (0, I) DDPM Step
log p(c|xt−1) = log p(c|xt) Update the log posterior

+ τ
2σ2

t−1|t

(
∥xt−1 − µθ(xt|c)∥2 − ∥xt−1 − µθ(xt)∥2

)
− δ

log p(c|xt−1) = max
(
log p(c|xt−1), log pmin

)
Clamp the posterior

λt(xt−1) =
p(c|xt−1)

1−p(c|xt−1)
Update the guidance scale

end for

τ =
2σ̃t0

∆
· δ (23)

While ∆ is not a tunable hyperparameter, using it improves interpretability: t1 now corresponds to the
point at which guidance begins to decrease, marking the transition to effective conditional denoising.

Summary

By reparametrizing the abstract hyperparameters τ and δ in terms of normalized diffusion times t0
and t1, we provide a more intuitive interface for tuning Feedback Guidance. This improves both
usability and interpretability, which we consider essential for practical deployment.

D Pseudocode of Feedback Guidance

Our Feedback Guidance procedure is summarized in Algorithm 1. At each denoising step, given a
noisy state xt, we compute both the unconditional prediction µθ(xt) and the conditional prediction
µθ(xt|c). These predictions are then combined using a guidance scale determined by the previously
estimated posterior through eq.(8). The resulting mixture is used to predict the next, less noisy state
xt−1. After this step, the posterior is updated based on the new state, and the process is repeated for
a fixed number of iterations until a fully denoised image is produced.
Our code, compatible with the EDM2 repository Karras et al. [2024b,a], is provided to the reviewers
as supplementary material.

E Stochastic sampling for Variance Exploding Diffusion Models

It is well known the forward process can be freely chosen. Two very standard cases are those of a
Variance Preserving (VP) and that of a Variance Exploding (VE) forward process.
In the VP case, the information is progressively destroyed by both downscaling the fea-
tures by a factor

√
αt and adding normal noise with standard deviation

√
1− αt, i.e.

xt+1 =
√
αtxt +

√
1− αtϵ with ϵ ∼ N (0, I). This forward transition can alternatively

be described by xt+1 ∼ q(xt+1|xt) with q(xt+1|xt) = N (
√
αtxt, (1− αt)I). Thanks to a nice

property of the Gaussian function, this Markov chain can be reparameterised as xt+1 ∼ q(xt+1|x0)

with q(xt+1|x0) = N (
√
ᾱtx0, (1 − ᾱt)I) and ᾱt =

∏t
s=0 αt. This forward process can then be

inverted according to xt−1 ∼ p(xt−1|xt) with p(xt−1|xt) = N (µt, σ̃
2
t I). In this case, it is well

known that µ = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵt
)

and σ̃t =
1−ᾱt−1

1−ᾱt
βt.

The case of VE is far less often described using the discrete markov chain framework, which is why
we think it wise to derive the precise shape of xt−1 ∼ p(xt−1|xt) with p(xt−1|xt) = N (µt, σ̃

2
t I).

In the VE case, the forward process simply consists of adding gaussian noise of increasing scale
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xt+1 = xt +
√

σ2
t+1 − σ2

t ϵ with ϵ ∼ N (0, I). Similarly to the VP case, the previous process can

be reparameterise xt+1 ∼ q(xt+1|x0) with q(xt+1|x0) = N (x0, σ
2
t|0I) and σ2

t|0 =
∑

s = 0tσ2
s .

To obtain the form of p(xt−1|xt) = N (µtσ
2
t−1|tI) we need to obtain q(xt−1|xt,x0) which is

obtainable thanks to the conditioning on x0. One finds:

p(xt−1|xt,x0) = q(xt|xt−1,x0)
q(xt−1|x0)

q(xt|x0)

∝ exp
(
− 1

2

[∥xt − xt−1∥2

σ2
t − σ2

t−1

+
∥xt−1 − x0∥2

σ2
t−1

+
∥xt − x0∥2

σ2
t

])
= exp

(
− 1

2

[( 1

σ2
t − σ2

t−1

+
1

σ2
t−1

)
∥xt−1∥2

− 2
( 1

σ2
t − σ2

t−1

xt +
1

σ2
t−1

x0

)
xt−1 + c(xt,x0)

])
∝ exp

(
− ∥xt−1 − µt∥2

2σ2
t−1|t

)
(24)

Rewriting the clean data points x0 using the ground truth noise ϵt through x0 = xt − σtϵt. This
is done because this is precisely how our denoising network will be parametrized. Using this, one
recognizes:

σ2
t−1|t = (σ2

t − σ2
t−1)

σ2
t−1

σ2
t

µt = xt −
(
1−

σ2
t−1

σ2
t

)
σtϵt

(25)

Or alternatively using the score function, i.e. ϵt = σt∇x log pt, we have:

µt = xt −
(
σ2
t − σ2

t−1

)
∇x log pt (26)

Or equivalently, the very intuitive equation:

∇x log pt =
xt − µt

σ2
t − σ2

t−1

(27)

F Additional results and ablations

In this appendix all the additional ablations and obtained results are provided and described in more
detail.

F.1 Detailed description of class-conditional experiments

First and foremost the hyperparameters of the different guidance schemes that minimize the FID
or FDDinoV2 are provided in Table 3. It should also be noted that CFG++ Chung et al. [2025]
was originally not analyzed in the context of class-conditional image generation such as we do
on Imagenet, explaining the performance observed in Table 1. On the other hand, the guidance
weight-schedulers introduces by Wang et al. [2024], were only verified using the FID-metric, much
less sensible to late stage guidance than the FDDinoV2, explaining the underperformance in that regime.
For CFG Ho and Salimans [2021] a sweep over the guidance scale is performed at a resolution of
λ = 0.1.
To compare our method with adaptive CFG weight schedulers, we follow Wang et al. [2024] and
benchmark against their best-performing variant, the linearly increasing scheduler, which we denote
as LinCFG. The reported guidance scale corresponds to the trajectory-averaged value, and we sweep
over λ with a resolution of 0.1. As expected, the optimal scales of LinCFG strongly correlate with
those of standard CFG.
For CFG++ Chung et al. [2025], we perform a sweep with a finer resolution of λ = 0.025. Unlike
other guidance schemes, CFG++ constrains λ ∈ [0, 1], since it modifies not only the score function
prediction but also the coupling between forward and reverse diffusion processes. This design
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Guidance scheme CFG LinCFG CFG++ LIG FBGpure FBGLIG
λ λ λ λ σmax σmin π σt0 σt1 λ σt1

Stoch. (FID) 1.4 1.5 / 2.8 1.6 0.15 0.999 1.10 0.56 1.4 4.64
PFODE (FID) 1.4 1.5 0.35 2.2 2.9 0.41 0.999 1.61 0.60 2.6 2.7

Stoch. (FDDinoV2) 2.1 2.1 / 2.9 6.8 0.48 0.999 4.07 1.29 2.6 2.34
PFODE (FDDinoV2) 2.3 2.2 0.6 2.8 16.6 0.80 0.999 6.46 1.17 1.6 1.61

Table 3: Optimal hyperparameters for different sampling approaches. To facilitate the comparison
between the schemes we follow the nomenclature introduced of the EDM framework Karras et al.
[2022] and refer to the noise levels σt0 , σt1 instead of normalized diffusion times t0 and t1 for FBG.
For FBGLIG the unspecified parameters (π, t0, σmax and σmin) are left unaltered from the separately
optimised methods.

precludes its use with purely stochastic DDPM samplers, which do not rely on forward noising during
denoising. In essence, CFG++ is conceptually distinct from conventional guidance schemes and
could, in principle, be combined with methods such as LIG or other weight schedulers. We include
this benchmark to provide a more comprehensive comparison with alternative approaches proposed
in the literature.
For LIG a joint sweep over the guidance scale and the starting point of guidance is done. The sweep
over the guidance scale is performed at a resolution of λ = 0.25 and the starting point σmax is chosen
at the discretised step values. The influence of the end point of guidance is not analysed, instead a
low value of σmin = 0.28 is chosen. As higlighted in the work in which the method is introduced,
increasing σmin leaves the FID unaltered and is simply beneficial from a computational point of view
Kynkäänniemi et al. [2024].
For FBG a joint sweep over t0 and t0 − t1 is performed defined as the normalised diffusion times
corresponding with the discrete step values. For instance in the case of stochastic sampling where 64
sampling steps are used we perform a sweep at a resolution of t0 = 1/64 ≃ 0.0156. We prefer to
define t1 as a function of t0, as their difference gives an estimate for how large the guidance interval
is. This is then repeated for three values of π = 0.999, 0.9999, 0.99999. These values were chosen
after a preliminary finetuning by hand. We find that although the guidance profiles do differ slightly
between different choices of π, mainly being sharper as π increases, the optimal FID/FDDinoV2 remain
very similar. Due to this we choose to focus our limited resources on a proper ablation at a fixed
value of π = 0.9999. To illustrate the weak dependence of FBG on values of π a sweep is performed
using the optmal values for t0 and t1 given in table 3. The results are shown in Fig. 9, where it can be
seen that both FID and FDDinoV2 values remain fairly constant over a wide range of π-values.
It should also be noted that at some point in the research process we tried adding a late start to the
offset parameter, i.e. to set δ = 0 for t > tstart-offset, and slightly modify the way we parameterise
δ as a function of t0 such that its interpretation remains true. This however did not significantly
modify the performance of the approach, so this research track was dropped to avoid any unnecessary
convolutions. For all methods we find that the FDDinoV2-optimal hyperparameter values result in a
much higher amount of guidance than the FID-optimized values, hinting that the metrics are not
sensitive to the same features Stein et al. [2023]. This fact highlights that only providing one of the
two metrics when benchmarking a new approach might not provide the full story.

Figure 8 is the corresponding figure to Fig. 3 in the main body, but for the FID-optimised stochastic
sampling, rather than for FDDinoV2.

F.2 Detailed description of T2I experiments

First and foremost the hyperparameters of the three guidance schemes that minimize the FID or
FDDinoV2 are provided in Table 4.
For CFG Ho and Salimans [2021] a sweep over the guidance scale is performed at a resolution of
λ = 0.25.
For LIG Kynkäänniemi et al. [2024], we follow the recommendations of Kynkäänniemi et al. [2024],
and perform a joint sweep over the guidance scale and σmax at a resolution of λ = 0.25. Thereafter,
σmin is optimized. As expected, we find that the FDDinoV2 optimal interval is much larger and earlier.
For FBG, we perform a sweep over t0 and t0 − t1 at a resolution of 0.05. We then perform a sweep
over π on a logarithmic scale, similar to that used in Fig. 9.
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10 510 410 310 2

1
2

3

4

5

FI
D

CFG (Stoch.)
FBG (Stoch.)
CFG (PFODE)
FBG (PFODE)

(a) Optimised FID

10 510 410 310 2

1
70

80

90

100

FD
-D

in
oV

2

CFG (Stoch.)
FBG (Stoch.)
CFG (PFODE)
FBG (PFODE)

(b) Optimised FDDinoV2

Figure 9: Illustration of the weak π dependence of FBG when parametrised using t0 and t1. The
sweep over π is performed at the optimal values for t0 and t1 given to in Table 3.

Guidance scheme CFG LinCFG LIG FBGpure (ours) FBGCFG (ours)
λ λ λ σmax σmin π t0 t1 λ t0 t1

Stoch. (FID) 2.25 3.25 4.0 2.4 0.08 0.9 0.55 0.4 1.0 0.55 0.4
Stoch. (FDDinoV2) 2.5 3.0 4.0 3.94 0 0.9 0.65 0.45 2.0 0.5 0.375

Table 4: Optimal hyperparameters when optimizing for FID and FDDinoV2 on MS-COCO using Stable
DIffusion 2. For FBGCFG, the hyperparameter π is left unaltered from FBGpure. We also note that in
the context of FID optimisation, FBGCFG reduces to FBGpure, that is that additional classifier guidance
on top of FBGpure is harmful, which is not the case when optimizing using the FDDinoV2.
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Figure 10: Comparing the guidance scale predicted by FBG and that of LIG in the FDDinoV2 optimized
setting. Despite possessing similarities the two seem to operate in different regimes.

We would also here like to emphasize that we believe the MS-COCO benchmark to be suboptimal
when comparing different guidance schemes. This is because the prompts of MS-COCO Lin et al.
[2014] are quite uniform and fairly standard, which precisely corresponds to settings when guidance
is not needed as much. This explains why the optimized guidance scales are much smaller than the
ones typically used for sampling complex prompts, such as the ones used in our handcrafted dataset
as shown in Fig. 4. This benchmark however remains the standard used in the literature, which is
why we choose to report it here.

F.3 Combined guidance schemes

The proposed Feedback Guidance scheme can be easily combined with other preexisting guidance
schemes such as Classifier-Free Guidance Ho and Salimans [2021] or Limited Interval Guidance
Kynkäänniemi et al. [2024].
In the context of Text-To-Image we observe that adding a base level of CFG can help to retrieve the
low frequency features of an image, such as sharp colors, without drastically harming the diversity.
In the context of Imagenet generation using EDM2-XS, we find that using FBGLIG which combines
FBGpure with LIG, is optimal. Preliminary results indicate that joint methods easily outperform their
parts. That such results are obtained in this context should not surprise the reader, both method despite
having some similarities, behave very differently as illustrated in Fig. 10. To simplify hyperparameter
tuning of FBGLIG, we suggest to use the optimal time interval parameters of LIG with slightly less
guidance and to slightly reduce t1 − t0 for FBGpure. In essence, both of these subtle changes are
responsible for less guidance of the respective schemes, which makes sense as the two are later on
combined.
The optimal values for the sweep over λLIG and t1 are given in Table 3. The other parameters are
chosen the same as the separately optimized methods. We do not exclude the possibility that a full
grid-search over the entire joint hyperparameter space might yield better trade-offs between the two
guidance schemes.

An advantage of the error assumption model proposed is that it allows for a very flexible view of
guidance. For instance, for the FBGCFG approach in fact simply coresponds to assuming that the true
conditional distribution can be rewritten as:

pt(xt|c) =
1

π

(
pt,θ(xt|c)− (1− π)pθ(xt)

)pt,θ(xt|c)λ−1

pt,θ(xt)λ−1
(28)

This implies that the learned distribution satisfies the following algebraic equation:

pt,θ(xt|c)λ − (1− π)pt,θ(xt|c)λ−1pt(xt) = πpt(xt|c)pt(xt)
λ−1 (29)

Similarly, FBGLIG assumes the same form of error with as only distinction that λ becomes a time
dependent function that is equal to one outside the guidance interval specified by σmin and σmax.
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F.4 Illustrative samples (EDM2-XS)

(a) FID-optimal CFG (b) FDDinoV2-optimal CFG

(c) FID-optimal LIG (d) FDDinoV2-optimal LIG

(e) FID-optimal FBG (ours) (f) FDDinoV2-optimal FBG (ours)

Figure 11: Grids containing samples generated using the different guidance schemes CFG, LIG and
FBG (ours). Results displayed under the same seed and when he hyperparameters are optimised for

both FID and FDDinoV2-optimal performance.
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F.5 Illustrative samples (T2I)

To facilitate comparison of our newly introduced FBGpure and FBGCFG schemes with CFG, we
provide illustrative samples. Prompts are drawn from our curated dataset spanning four difficulty
levels (memorized < basic < intermediate < hard; see Appendix G). For each level, two prompts
are randomly selected, and we display four samples generated with: (i) the conditional model
Rombach et al. [2022], (ii) CFG with guidance scale 3.5 Ho and Salimans [2021], (iii) FBGpure with
(π = 0.9, t0 = 0.75, t1 = 0.5), and (iv) FBGCFG with an additional fixed scale 1.5.

Conditional model CFG ( = 3.5) FBG_pure FBG_CFG ( = 1.5)

(a) Memorized: “The great wave by Hokusai"

Conditional model CFG ( = 3.5) FBG_pure FBG_CFG ( = 1.5)

(b) Memorized: “The Taj Mahal"

Conditional model CFG ( = 3.5) FBG_pure FBG_CFG ( = 1.5)

(c) Easy: “A sushi platter"

Conditional model CFG ( = 3.5) FBG_pure FBG_CFG ( = 1.5)

(d) Easy: “A pinecone resting on a forest floor"

Figure 12: Different samples for randomly selected prompts of memorized and easy prompts. The
used prompts are written underneath the images.

For memorized/easy prompts, visible in Figure 12, CFG images often exhibit oversaturated colors and
overly smooth textures, whereas FBG variants largely avoid these artifacts by deactivating guidance
when the conditional prediction is already accurate.
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Conditional model CFG ( = 3.5) FBG_pure FBG_CFG ( = 1.5)

(a) Intermediate: “A fox wearing reading glasses
sitting under a tree with an open book"

Conditional model CFG ( = 3.5) FBG_pure FBG_CFG ( = 1.5)

(b) Intermediate: “A dense jungle with oversized
insects and ruins covered in moss"

Conditional model CFG ( = 3.5) FBG_pure FBG_CFG ( = 1.5)

(c) Hard: “A croissant slowly unrolling itself into
a spiral staircase, with tiny chefs walking up each
layer, in detailed isometric art style"

Conditional model CFG ( = 3.5) FBG_pure FBG_CFG ( = 1.5)

(d) Hard: “A city built inside a giant canyon where
each layer of rock houses a different civilization, all
lit by bioluminescent flora"

Figure 13: Different samples for randomly selected prompts of intermediate and hard prompts. The
used prompts are written underneath the images.

Harder prompts show the strength of FBG, e.g., capturing bioluminescent lights in Fig. 13d, as its
dynamic scale allocates stronger guidance only when needed. Such challenging prompts are far more
informative for comparing guidance schemes than simpler MS-COCO captions Lin et al. [2014].
It should be however noted that both schemes struggle with following all the details present in the
prompts.

Next, we present qualitative comparisons between images generated with CFG and FBGCFG, along
with the corresponding dynamic guidance scales across different prompt difficulty levels. As discussed
in the main paper, the guidance scale in FBG increases with prompt complexity.
For memorized prompts (e.g., Figures 14 and 15), the dynamic guidance scale remains near one,
preserving sample diversity. In contrast, CFG tends to overemphasize prompt-specific details, leading
to oversaturated features such as excessively bright colors.
For challenging prompts (e.g., Figures 18 and 19), FBG applies a much higher guidance scale,
successfully enforcing the generation of key prompt-specific features, such as the phoenix in Figure
19, that are underrepresented in CFG outputs.
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In both cases, the fixed guidance scale used by CFG is suboptimal: it is too strong for memorized
prompts and too weak for difficult ones. These results reinforce our central claim that guidance
should not rely on a global, fixed scale, but instead adapt dynamically, activating only when needed
to enhance fidelity, while remaining inactive to preserve diversity when the conditional model already
performs well.

(a) CFG (λ = 3.5) (b) FBGCFG (λ = 1.5)
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(c) Guidance scales FBGCFG

Figure 14: Different samples for the memorized prompt: “Girl with pearl by Vermeer"

(a) CFG (λ = 3.5) (b) FBGCFG (λ = 1.5)
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(c) Guidance scales FBGCFG

Figure 15: Different samples for the memorized prompt: “The Eiffel Tower in Paris"

(a) CFG (λ = 3.5) (b) FBGCFG (λ = 1.5)
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(c) Guidance scales FBGCFG

Figure 16: Different samples for the intermediate prompt: “A dolphin jumping through a hoop made
of fire"
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(a) CFG (λ = 3.5) (b) FBGCFG (λ = 1.5)
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(c) Guidance scales FBGCFG

Figure 17: Different samples for the intermediate prompt: “A parrot with steampunk goggles flying
through a thunderstorm above a 19th-century shipwreck, in dramatic oil painting style"

(a) CFG (λ = 3.5) (b) FBGCFG (λ = 1.5)
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(c) Guidance scales FBGCFG

Figure 18: Different samples for the intermeiate prompt: “A volcanic landscape with rivers of lava
flowing under a starry sky"

(a) CFG (λ = 3.5) (b) FBGCFG (λ = 1.5)
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(c) Guidance scales FBGCFG

Figure 19: Different samples for the intermeiate prompt: “A floating island chained to the earth by
golden vines, casting a shadow shaped like a phoenix over the ocean below"
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Difficulty Category Prompt

Memorized Artwork The starry night by Van Gogh
Memorized Brand The Nike brand logo
Memorized Location A photo of the Taj Mahal in India

Basic Animal An orange cat sitting on a couch
Basic Food A pizza slice on a white plate
Basic Nature A bird nest with three blue eggs

Intermediate Animal A dolphin jumping through a hoop made of fire
Intermediate Food A floating sushi platter arranged in the shape of a koi fish,

hovering over a pond
Intermediate Nature A desert landscape with an abandoned train

half-buried in the sand

Very hard Animal A parrot with steampunk goggles flying through
a thunderstorm above a 19th-century shipwreck, in dramatic
oil painting style

Very hard Food A glass teapot filled with herbal tea where
each herb leaf is shaped like a different mythical creature,
photographed on white marble

Very hard Nature A city built inside a giant canyon where
each layer of rock houses a different civilization,
all lit by bioluminescent flora

Table 5: Example prompts from the dataset, sorted by difficulty and category

G Prompt dataset

To analyse the sensitivity of our dynamic guidance scale to the complexity of the given prompts, a
small scale prompt dataset is introduced. It contains 60 prompts of 4 difficulty levels: memorized,
basic, intermediate and hard. Each complexity level is divided into 3 categories/topics containing 5
prompts each.
For the memorized prompts we use: well known artworks, brands and locations.
For the other three we use: animal, food and nature images.
The prompts themselves are generated using ChatGPT and further minimally modified to make the
prompt easier to verify. The main difference between basic and intermediate prompts is that the latter
contain highly unlikely combinations (such as "A giraffe playing basketball on rollerskates") that
the model has most likely not seen (or only rarely) as such in the training data. The main difference
between intermediate and hard prompts is mainly the amount of details contained in the prompt. The
more details such as colours, numbers or different elements are added, the more unlikely it becomes
that the conditional model will be to satisfy all prerequisites on its own.
The dataset is available in the official repository at this link. Examples of each difficulty level and
each category are given in Table 5.

H Used resources and LLM use

For the stochastic sampler all experiments are run using on a NVIDIA Tesla V100-SXM3-32GB
GPU. Generating 50k images in batches of 64 using the EDM2-XS model Karras et al. [2024b,a], as
required for a valid FID benchmark Heusel et al. [2017], Stein et al. [2023], takes 7h30 on such a
node. For the 2nd-order Heun sampler of the PFODE Karras et al. [2022, 2024b] a NVIDIA GeForce
RTX 4090 GPU is used. Generating 50k images in batches of 64 using the EDM2-XS model Karras
et al. [2024b,a], as required for a valid FID benchmark Heusel et al. [2017], Stein et al. [2023], takes
8h on such a node. For the T2I results using Stable diffusion 2Rombach et al. [2022], we rely on an
NVIDIA Tesla V100-SXM3-32GB GPU. The experiments performed only require the generation of
3k images per hyperparameter setting, which takes around 2h on such a node.
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During the writing of this document, publicly available LLMs of different sources were used to
rewrite, or polish, existing text. Typically, a first draft was written by one of the authors and then
polished after comments from the others, thereafter the text was, in some cases, condensed or slightly
modified, on a paragraph level. It is our belief that by solely correcting the document with an LLM
on a paragraph level, our original ideas as well as the intended flow of the paper remains closest to
ours. The propositions of the LLMs were only accepted when in full alignment with the handwritten
text, and were otherwise discarded.

29



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As discussed in the work, our approach is the first theoretically grounded state-
and time-dependent guidance scale. The obtained trajectory-specific guidance scale exhibits
behavior similar to the ad-hoc proposed Limited Interval Guidance. When compared to CFG
and LIG using generated samples and robust metrics, we find that our approach outperforms
CFG and performs on par with the state-of-the-art LIG method. It is our firm belief that
FBG, with its state- and time-dependent guidance scale that accounts for how well the model
denoises the current state, is not only highly novel but also promising.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper contains a limitation section which provides a fair and honest
evaluation of the proposed work.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical introduction of the additive error model and the resulting
Feedback Guidance scheme is central to this work and therefore derived in detail.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A pseudocode of Feedback Guidance is provided in Appendix D. The
introduced hyperparameters are discussed in detail at the end of section 3.4 and fur-
ther explained in Appendix C.2. The code is available at: https://github.com/
FelixKoulischer/Feedback-Guidance-of-Diffusion-Models

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The method is thoroughly described and should be reproducible from the docu-
ment. The code is further provided at: https://github.com/FelixKoulischer/
Feedback-Guidance-of-Diffusion-Models

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As afore mentioned, the introduced hyperparameters are discussed in
detail at the end of section 3.4 and further explained in Appendix C.2. opti-
mised values are clearly given in table 3 and 4. The code and the small scale
prompt dataset are available at: https://github.com/FelixKoulischer/
Feedback-Guidance-of-Diffusion-Models.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the expensiveness of the FID/FDDinoV2 metrics requiring 50k images
per data point, only a single value is reported. As all approaches are evaluated on the same
seeds, this should however ot affect the relative performance of the different methods.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information is disclosed in Appendix H

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The proposed work conforms in every respect with the NeurIPS Code of
Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper presents a theoretical contribution to diffusion guidance techniques,
focusing on foundational aspects without proposing a concrete application or system for
deployment. AS such, the work does not raise immediate concerns related to malicious
use, fairness, privacy, or security. While future practical applications of improved diffusion
methods may have societal implications, our contribution is abstract and methodological,
without a direct path to societal impact at this stage.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work is purely theoretical and does not involve the release of models,
datasets, or other assets that carry a high risk for misuse. As such, no safeguards are
necessary or applicable.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models, datasets and code that are used are properly referenced in the main
document.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
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Justification: The code as well as the small scale prompt dataset
are both available at: https://github.com/FelixKoulischer/
Feedback-Guidance-of-Diffusion-Models.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human evaluations were performed.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human evaluations were performed.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:No LLMs were used as a core methodological component in this work. Any use
of LLMs was limited to standard writing assistance and did not affect the scientific content
of the paper.
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