Resolving UnderEdit & OverEdit with
Iterative & Neighbor-Assisted Model Editing

Anonymous EMNLP submission

Abstract

Large Language Models (LLMs) are widely
deployed in downstream tasks, but keeping
their knowledge up-to-date via retraining or
fine-tuning is often computationally expensive.
Model editing provides a more efficient al-
ternative by updating a targeted subset of pa-
rameters, which often follows the locate-and-
edit paradigm. Despite this efficiency, exist-
ing methods are limited: edits may fail to
inject knowledge (UnderEdit) or unintention-
ally disrupt unrelated neighboring knowledge
(OverEdit). To address these challenges, we
propose two complementary methods: itera-
tive model editing, which applies successive
edits to mitigate UnderEdit, and neighbor-
assisted model editing, which incorporates
neighboring knowledge during editing to re-
duce OverEdit. Our extensive experiments
show that these techniques improve editing per-
formance across multiple LLMs, algorithms,
and benchmarks, reducing UnderEdit by up to
38 percentage points and OverEdit by up to
6, while remaining broadly applicable to any
locate-and-edit method.

1 Introduction

LLMs have been widely used as repositories of
factual and specialized knowledge (Petroni et al.,
2020; Jiang et al., 2021; Roberts et al., 2020;
Youssef et al., 2023). However, the world is con-
stantly changing, with knowledge and information
evolving rapidly, such as significant government
policy changes and their wide impacts across vari-
ous domains. Thus, it is essential for many NLP ap-
plications, such as text generation, question answer-
ing, and knowledge retrieval, to have models that
can adapt to knowledge changes both effectively
and efficiently. Re-training an LLM is resource-
intensive (Patterson et al., 2021). Standard su-
pervised fine-tuning is data hungry and less effec-
tive (Meng et al., 2023b). Model-editing, which
directly modifies important model parameters for

a) Challenges in current model editing algorithms

Input Output Expected

UNDEREDIT iPad, produced by Apple Honda

iPhone, developed by
OVEREDIT Tes
iPhone 11, produced by

b) Our proposed solution

oy
LLM edited Honda Apple
with current
model editing
algorithms

Honda Apple

Input Output Expected
Iterative Epit

Resolve iPad, produced by
‘ , oy

UNDEREDIT
Epir | LLM edited
Neighbor- | iPhone, developed by
Assisted

Honda Honda

with our Apple Apple
Resolve | iPhone 11, produced by

proposed
solution Apple Apple
OVEREDIT

Figure 1: The example from CounTterFacT updates iPad
producer from Apple to Honda. UnderEdit fails to make
the desired update in the EDIT sentence, while OverEdit
introduces the undesired change in the TEST sentences
as shown in (a). The proposed iterative model editing
mitigated UnderEdit and neighbor-assisted model edit-
ing reduced OverEdit by incorporating related knowl-
edge in EDIT stage as shown in (b).

making the prediction, has emerged as a more ef-
ficient alternative for updating outdated informa-
tion (Meng et al., 2023a,b; Li et al., 2024; Fang
et al., 2025). These methods adopt a “locate-and-
edit” approach, where they first identify the param-
eter locations associated with outdated knowledge
and then update the parameters to enable the model
to incorporate and predict the new knowledge.

The effectiveness of the methods is evaluated
from two perspectives. The first is whether the
method successfully updates the knowledge, failure
on this leaves certain facts unedited, causing Un-
derEdit. Secondly, whether the update introduces
unintended modifications to neighboring knowl-
edge — a phenomenon we call OverEdit. Existing
methods suffer from both UnderEdit and OverEdit
as shown in Figure 1.

To address this, we propose methods to miti-

gate both UnderEdit and OverEdit. For UnderEdit,
we hypothesize that the parameter update is insuffi-
cient to achieve the desired knowledge change. The
editing process performed a rank-one update on the
layer parameters to achieve the desired update. We
empirically showed that the approximation intro-
duces errors, leading to UnderEdit. To this end,
we proposed iterative model editing, wherein edit-
ing is performed multiple times. For OverEdit, we
hypothesize that model editing can benefit from in-
cluding neighboring knowledge during the editing
stage. We thus introduce neighbor-assisted model
editing, a procedure that integrates neighboring
knowledge during the editing process to keep the
test neighboring knowledge unchanged.

In summary, we propose solutions to two fun-
damental challenges in model editing: UnderEdit,
where edits fail, and OverEdit, where neighboring
knowledge is erroneously modified. We evaluate
our approach using four “locate and edit” model
editing algorithms, ROME (Meng et al., 2023a),
MEMIT (Meng et al., 2023b), PMET (Li et al.,
2024) and AlphaEdit (Fang et al., 2025), and ap-
plied to four LLMs: GPT-2 XL (1.5B) (Radford
etal., 2019), GPT-J (6B) (Wang and Komatsuzaki,
2021), Llama-2 (7B) (Touvron et al., 2023), and
Llama-3.1 (8B) (Meta, 2024). Our experiments
are conducted on two widely used factual knowl-
edge editing benchmarks: COUNTERFACT (Meng
et al., 2023a) and ZsRE (Levy et al., 2017). Our
results show that iterative model editing improves
edit success while also reducing the approximation
error introduced by the rank-one update. Further-
more, we demonstrate that incorporating even a sin-
gle neighboring knowledge during model editing
reduces unintended modifications to neighboring
knowledge at test time, resulting in stronger edit
performance. Overall, our proposed methods are
broadly applicable and consistently effective across
current locate-and-edit approaches that adopt the
two-stage editing framework, and are readily appli-
cable to future methods built on this foundation.

2 The Locate-and-Edit Framework

In this section, we provide background on the
locate-and-edit model editing framework along
with the notation used throughout the paper.

An autoregressive LLM is a function fp: X7 —
A(X), that takes as input a sequence of tokens
x = (x1,x9, -+ ,xp) of length T with z; in the
dictionary X, and uses model parameters 6 to re-

turn a probability distribution A(X') to model the
next token 2/, i.e,. fy(x)[2'] = Pr(X' = 2/|X =
x), where X and X' are random variables repre-
senting the sequence of input tokens and the next
token, respectively. The internal computations of
an LLM relies on a grid of hidden states h., where
[corresponds to the layer and ¢ corresponds to
the token position in the sequence (using tokens
x1,Z2, -+ ,x¢t). Bach layer is a standard trans-
former block with the self-attention module, MLP
module, etc (Vaswani et al., 2017).

Prior work focuses on editing the factual knowl-
edge within the LLM. Factual knowledge is repre-
sented as a triplet (s, r, 0), where subject s € X5,
relation 7 € X7, and object 0 € X are sequences
of tokens, e.g., The iPad [s] is produced by [r] Ap-
ple [o]. We consider only single token objects in
this representation, following previous work (Meng
et al., 2023a,b; Li et al., 2024). The model editing
task is to make the model place a higher likelihood
on a new object o* than an old object o when pre-
sented with = = (s, r), i.e., find new parameters €',
such that fy (z)[0*] > fo(z)[0]. Model editing is
not limited to a single edit, but can encompass a
batch of m desired edits D = {(s;, 73, 04,07)} ;.

Locate and edit model editing algorithms hy-
pothesize that factual knowledge locates within
specific layers of the LLM, and updating param-
eters in these layers is sufficient to induce the de-
sired change in object (Pearl, 2013; Vig et al., 2020;
Meng et al., 2023a) . These methods employ causal
tracing to identify these layers responsible for the
factual knowledge, referred to as causal layers
{li,...,l.}, where ¢ denotes the number of lay-
ers in this range. The last MLP in these layers has
been found to have a major impact on the object
token distribution when presented with the subject
tokens (Meng et al., 2023a,b; Geva et al., 2021).
Due to this major impact, locate and edit methods
focus on only updating these MLP weights.

The weight update is performed in two stages:
OPTIMIZATION stage finds ideal values for the net-
work’s hidden state in certain transformer layer
to make o* likely and SPREAD stage updates the
weights of the last MLP in casual layer(s) to approx-
imate this ideal hidden state. We detail these stages
below for MEMIT and discuss its differences to
PMET , AlphaEdit and ROME .

OPTIMIZATION Stage: Learning the Ideal State.
The goal of the OPTIMIZATION stage is to find
what outputs in the causal layers would lead to a

Algorithm

OPTIMIZATION Stage

SPREAD Stage

MEMIT (Meng et al., 2023b)
PMET (Li et al., 2024)

AlphaEdit (Fang et al., 2025)
ROME (Meng et al., 2023a)
R-ROME (Gupta et al., 2024a)
EMMET (Gupta et al., 2024c)
ENCORE (Gupta et al., 2025)
EVOKE (LTI) (Zhang et al., 2025)

hle (hidden state)

2 (ideal value)

Attnte & 7' (ideal attention + MLP)
hle (projected to null space)

2t k, (averaged over context)

hle (batched hidden states)

hle (with MPES early stopping)

hle (constrained via multi-stage loss)

wh...wle (least-squares update)

Wi ... W (attention-free update)

Wh ... W (null space-constrained update)
W (rank-one equality-constrained update)
W (stabilized rank-one update)

Wi ... W' (equality-constrained batch update)
Wh ... W' (norm-constrained update)
Follows base method (e.g., ROME or MEMIT)

Table 1: We present a unifying overview of existing locate-and-edit algorithms within the two-stage framework
of OPTIMIZATION and SPREAD. This abstraction allows our proposed methods—iterative and neighbor-assisted
editing—to be applied broadly across all listed algorithms, as well as to future methods built upon this framework.
For detailed descriptions of each algorithm, see Appendix A.

high likelihood on o*. The methods we investi-
gate search for ideal outputs in different locations.
MEMIT searches for an ideal output, ﬁic, for the
last casual layer at ¢, the last token index of the
subject s. The search is performed by finding a
vector § to add to current hidden state value hle.
We represent the output probability distribution of
the model using h'c and § as fy(z, hle + 6).

To make the hidden state § change robust to
diverse contexts, these methods add a random pre-
fix to the prompt, i.e., the network takes as input
z; = (&, s,1), where & is one of n random pre-
fixes. The loss function for § is to minimize the
average negative log likelihood of o*, i.e.,

9(6)= — % St g (s, bl +6) o]
=1

+ Diw (fo (3.5 +0) 4o (5))

where Dy is the Kullback—Leibler divergence,
which is added to constrain the model’s output to
be close to the original.

The ideal hidden state for the prompt x = (s, 7)
is ﬁic = h;® + 6%, where 6™ is found by performing
gradient descent on g. This ideal hidden state is
then used in computing weight update in the next
stage. AlphaEdit is the same as MEMIT, whereas
PMET differs from MEMIT by searching for ideal
outputs for the attention module and MLP modules
in layer .. ROME searches for an ideal output
for the MLP module of a single layer in the set of
causal layers.

SPREAD Stage: Propagating the Change. The
goal of the SPREAD stage is to find new weights
6’ such that the hidden state after the update Bie is
close to the ideal hidden state hle for all desired

Y

E] Update while SPREAD I:] Unused

G OPTMIZATION

Figure 2: The diagram shows a simplified transformer
layer to complement Table 1, composed of attention
and MLP modules. Only the last MLP is shown, as all
methods modify its parameters.

edits in D. Not all weights in the network are
updated, only the weights W' corresponding to
the weights of the last MLP layer in causal lay-
ers are updated. The weight update methods are
derived from a rank-one approximation to make
ﬁff R~ Bie, which can lead to failure. The different
algorithms update different set of weights: MEMIT,
PMET, and AlphaEdit update W' for all causal lay-
ers, whereas ROME only updates one 1W!. Among
these, AlphaEdit differs by computing ¢’ using the
null space projection method (Wang et al., 2021).
The method differences are shown in Table 1, with
Figure 2 complementing it.

Several other locate-and-edit methods exist, such
as R-ROME (Gupta et al., 2024a), EMMET (Gupta
et al., 2024c), EVOKE (LTI) (Zhang et al., 2025),
and ENCORE (Gupta et al., 2025), all of which
follow the same two-stage procedure (detailed in
Appendix A). Below, we discuss the fundamental
limitations of this framework and propose a general
approach that applies broadly to all methods in this
category—not just the four highlighted here, as
summarized in Table 1.

3 Method

The memory-editing algorithms mentioned above
face challenges, such as failing to edit certain

knowledge i.e., UnderEdit or changing neighbor
knowledge that should remain unchanged i.e.,
OverEdit. In this section, we present our proposed
method to address these issues. Specifically, we in-
troduce iterative model editing (3.1) to mitigate Un-
derEdit and neighbor-assisted model editing (3.2)
to reduce OverEdit.

3.1 Iterative Model Editing

There are two possible reasons for UnderEdit to
occur. The first is that Bie does not reflect a hid-
den state for a successful edit. The second is that
the weight update results in lAsz o Bff. We hy-
pothesize that both of these potential problems can
be addressed by running the memory edit process
multiple times because: 1) it allows for potentially
finding better Biﬂ after updating the model param-
eters so that || hle — hle|| < ||nke — hl||, and 2) on
the next iteration, the approximation used in the
SPREAD stage for the weight update will be better
since ﬁfc is closer to Eff than hff. We detail this
iterative process below for MEMIT, but it can also
be adapted to ROME, PMET and AlphaEdit by
replacing Bic with the targets of the optimization
procedure for those algorithms.

Iterative model editing works as follows. At iter-
ation k, OPTIMIZATION computes the ideal hidden
state Bick based on the hidden state produced with
the model parameters 6, i.e., Eick = hick + 605%,
where 6 is obtained by optimizirfg 9(9) lising O
as the model parameters. SPREAD stage updates
the model parameters to 6.1 based on the com-
puted hle ik producing a new hidden state ﬂick Note

that h ht 1
The 1terat10ns end when model perplex1ty using
hle ik is within ¢ of the perplexity using ht ko ie.,

‘p(0k+17 i:%lg?k) - p(eka Bll;k;” S 67

where p is the perplexity of the target token over
the m edits in D

n

Z —1In fo(z4,h)[0}]

For brevity, we use Apy to denote the above differ-
ence in perplexity in iteration k. Empirically, we
found e = 1 to be a sufficient threshold for the data
sets used in this paper.

Figure 3 illustrates how iterative model editing
progressively brings }Azick closer in perplexity to
Bick The figure also highlights that most of the im-
provement stems from applying SPREAD multiple

A
1.75—71—
. * OPTIMIZATION
1.50 /4
O SPREAD
2 1.25— .
H Unedited
»
%_ Q . Model
5 1.00—— g .
o 5
2 0.75— 2
< =
&= &)
0.50—— z Stop
8 :
o '
025 5 O v
N T " S - 2
[[[7
Unedited Iteration 1 Iteration 2 Iteration 3
fo(@)L] 0 0 0 o*
z = (s,7)

Figure 3: An editing example of using MEMIT to edit
GPT-J. Iterative model editing resolving UnderEdit. As
the iteration proceeds the perplexity differences eventu-
ally reduces to < ¢, leading to the model predicting new
object. The perplexity values are Box-Cox transformed
to better visualize extreme high and low values.

times, as the perplexity of ﬁick changes relatively
little across iterations. However, the stability in
perplexity does not imply that Bffk remains iden-
tical at each iteration. We verified this through
an additional experiment using iterative SPREAD,
where OPTIMIZATION was performed only in the
first iteration. We found that keeping Effk fixed
across iterations leads to overfitting and perfor-
mance degradation, underscoring the necessity of
running OPTIMIZATION at every step. This con-
firms that, despite similar perplexities, the hidden
states evolve across iterations and must be recom-
puted to ensure stable and effective edits. A de-
tailed explanation of why the hidden states evolve
across iterations is provided in Appendix D.

3.2 Neighbor-Assisted Model Editing

Model editing must not only change the model’s
output from o to o* given (s,), but also preserve
outputs for neighboring knowledge, i.e (3,7,0),
where § is a new subject sharing the same relation
r. A preservation example is shown in Figure 1a:
iPhone 11 [3s] is still produced by [r] Apple [o]
despite iPad is edited to produced by Honda'.
Existing model editing algorithms struggle to
preserve neighboring knowledge because OPTI-
MIZATION is designed solely to maximize the like-
lihood of the new knowledge, (s,r,0*). More-

'In the COUNTERFACT dataset

over, iterative model editing can exacerbate this
OverEdit issue, as each iteration continues to re-
inforce the new knowledge without explicitly pre-
serving neighboring knowledge.

Gangadhar and Stratos (2024) argue that incorpo-
rating neighboring knowledge while learning new
facts through fine-tuning is more effective at pre-
serving such neighbors compared to conventional
model editing. Inspired by this observation, we
hypothesize that incorporating neighboring knowl-
edge into the OPTIMIZATION stage can help to
mitigate OverEdit.

We propose neighbor-assisted model editing,
which optimizes Bff to maximize the likelihood of
the new knowledge (s, r, 0*) and the neighboring
knowledge (3,7, 0). To accomplish this we define
the loss function for 4 as:

9= — S fy (w0, bl +6) [0
=1

+ Die (fa (5,1 +6) 4o ()
I fy (x hle + 5) lo],

where £ = (§,r) without any prefix. In our ex-
periments we only included a single neighboring
knowledge fact (8, r, 0), but it should be extensible
to multiple neighboring knowledge facts. We omit
the iteration notation & here for simplicity. The pro-
posed loss function change could be easily applied
in different iterations.

4 Experimental Details

In this section, we detail the experiments to demon-
strate the effectiveness of iterative and neighbor-
assisted model editing with MEMIT, PMET, Al-
phaEdit and ROME. We evaluate these algorithms
with our modifications across four LLMs: GPT-2
XL (1.5B), GPT-J (6B), Llama-2 (7B) and Llama-
3.1 (8B). We use EasyEdit>(Wang et al., 2024b)
with default hyperparameters; implementation de-
tails are in AppendixB.

4.1 Datasets

To evaluate model editing across different datasets,
we use the COUNTERFACT (Meng et al., 2023a) and
ZsRE (Levy et al., 2017) datasets. Both datasets
consist of approximately 20k factual knowledge
instances. Due to hardware limitations, for each
model-editing experiment, we ran it on a subset of

Zhttps://github.com/zjunlp/EasyEdit

m = 1,000 edits for each dataset. We repeat the
editing task three times each using a different set
of m edits sampled from the whole dataset. We
ensured that the edits in these trials were mutually
exclusive and report the averages across them.

It is not uncommon for a model to “collapse"
(fail on a downstream task) after editing. To evalu-
ate model collapse we use the ME-PPL-50 dataset
(Yang et al., 2024). ME-PPL-50 comprises 50 ut-
terances, each averaging 22 tokens, sampled from
LLMs’ pre-training corpora. Yang et al. (2024)
demonstrated that high perplexity on this dataset
correlates with failures in various downstream
tasks, making it an efficient proxy for evaluating
model collapse. They also observed that this be-
havior remains consistent regardless of dataset size.
Thus, we use this smaller set. We analyze the im-
pact of our proposed methods on model collapse in
Section 5.

4.2 Evaluation Metrics

We are primarily concerned with evaluating how
well iterative and neighbor-assisted model editing
reduce the frequency of UnderEdit and OverEdit.
We measure how successful the editing algorithms
were by examining efficacy and generalization
scores. Efficacy measures the success of introduc-
ing new knowledge edits in the dataset. Generaliza-
tion tests whether the edit is robust and not overfit
by evaluating the model on paraphrases of the ex-
amples in the dataset. To understand how well the
algorithms were at avoiding OverEdits, we mea-
sure the specificity of the model, i.e., how much of
the neighbor knowledge remained unchanged. To
summarize the overall performance in a score, we
use a harmonic mean of efficacy, generalization,
and specificity.

For each of these metrics, we report two evalua-
tion scores: success and accuracy. Success is the
percentage of edits where fg(x;)[0}] > fz(zi)[o:]
(or f5(%;)[0i] > f5(3;)[0}] for specificity) with 0
being the final weights after editing. Accuracy is
the percentage of edits where o* (or o in the case
of specificity) is the most likely next token.

5 Results and Discussions

We show the experimental results for both iterative
model editing and neighbor-assisted model editing
in this section. The hardware used on running these
experiments are detailed in Appendix C.

https://github.com/zjunlp/EasyEdit

Model Algo o [Efficacy (D) Generalization (1) Specificity (1) Score (1) Perplexity (1) |Apr|(1)
Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50
Unedited 0| 000% 21.67% | 0.00% 31.33% | 56.67% | 31.33% | 54.66
ROME 1| 100% 56.00% | 100% 5500% | 000% 9200% | 100% 6400% | 7.07E+03 7.15E+05
GPT2XL ypvpr 1| 7900% 92.67% | 22.00% 65.67% | 75.00% 99.00% | 4267% 83.00% 58.66 11359.60
(1.5B) 4| 9967% 99.67% | 35.67% 76.00% | 68.67% 99.00% | 56.67% 90.00% 62.44 047
PMET 1| 2067% 57.00% 3.00% 42.00% | 91.67% 100.00% 833% 58.33% 55.60 103785.71
10| 9933% 99.67% | 24.67% 7033% | 7533% 99.00% | 47.00% 87.33% 63.92 0.42
AlphaEdit || 9800% 99.00% | 33.00% 76.00% | 63.00% 99.00% | 53.00% 90.00% 59.41 5.20E+06
P 2| 99.00% 100.00% | 36.00% 76.00% | 59.00% 99.00% | 55.00% 90.00% 60.84 0.11
Unedited 0| 933% 38.00% | 9.00% 38.33% | 82.00% | 37.33% | 39.80
GPL] ROME 1| 1.00% 57.00%| 1.00% 5500% | 0.00% 76.00% | 1.00% 61.00% | 2.15E+05 121E+14
(6B) MEMIT 1| 9900% 100.00% | 75.00% 95.67% | 69.33% 89.33% | 77.61% 9433% 4220 1.22
2| 9933% 100.00% | 80.67% 98.00% | 6633% 88.33% | 79.00% 95.00% 43.92 0.03
PMET 1| 9800% 99.67% | 76.00% 95.00% | 68.33% 88.67% | 77.67% 93.67% 4127 L15
3| 99.00% 99.67% | 76.67% 95.67% | 68.33% 88.67% | 78.33% 94.00% 41.15 0.05
Unedited 0| 1500% 13.67% | 15.00% 15.00% | 84.33% | 19.67% | 30.63
ROME 1| 000% 4800% | 000% 49.00% | 000% 76.00% | 000% 5500% | 145E+04 8.10E+05
Llama2 ypypr)| 9167% 98.00% | 70.33% 93.33% | 29.33% 6733% | 5067% 83.67% 42.10 198.79
(7B) 2| 1433% 79.00% 9.67% 73.61% 6.67% 70.67% 9.00% 74.67% 9.37E+03 4664.24
PMET 1| 9433% 97.00% | 6833% 86.67% | 7633% 89.00% | 7733% 90.33% 30.73 332
2| 9533% 9833% | 70.00% 88.67% | 7533% 88.67% | 78.00% 91.67% 30.76 0.09
AlphaEdit || 9433% 97.00% | 4767% 67.33% | 59.00% 80.00% | 6167% 79.67% 30.79 18.84
PRAECL 2] 100.00% 100.00% | 67.67% 89.33% | 51.67% 7733% | 68.00% 87.67% 31.47 0.15
Unedited 0| 1.00% 7.00% | 1.00% 9.33% | 89.67% | 11.33% | 71.73
ROME 1| 100% 7800% | 000% 6800% | 000% 66.00% | 100% 7000% | 1.03E+05 144E+08
Llama-3.1 ypvpr)| 9633% 98.00% | 52.67% 80.33% | 8L00% 98.00% | 7233% 9133% 7209 4,550.10
(8B) 3| 100.00% 100.00% | 68.67% 93.67% | 74.67% 97.00% | 79.00% 96.67% 72.14 0.01
PMET 1 2.00% 96.00% 7.00% 78.00% | 69.00% 98.00% | 4.00% 90.00% 77.06 2,600.30
3 1.00% 98.00% | 10.00% 88.00% | 64.00% 97.00% 3.00% 94.00% 79.95 0.06
AlphaEdit || 9%67% 97.00% | 5033% 78.33% | 76.00% 97.00% | 69.00% 90.00% 7181 4470.02
P 3| 100.00% 100.00% | 68.00% 93.67% | 67.33% 95.67% | 76.00% 96.67% 72.30 0.01

Table 2: Iterative model editing results on CounTERFACT for at most 10 iterations (denoted by k). We compare the
evaluation metrics of iteration that met stopping criterion |Apy| < 1 to that of their corresponding first iteration
and bold the higher value. PMET on GPT-2 XL require more than 5 iterations to achieve our stopping criteria.
Results for all iterations are provided in Table 9 (Appendix G). While ROME is known to collapse (results reported
in Table 9), we observed a unique case of collapse with Llama-2 (7B) specifically when using MEMIT. We discuss
this in Section 5. Note: Results for PMET on LLaMA-3.1 are based on a single subset, as results for the remaining
subsets are still being generated. Results for AlphaEdit on GPT-J are currently unavailable due to an implementation
error in EasyEdit, which we are actively working to resolve.

5.1 [Iterative Model Editing Results

We conducted iterative model editing experiments
across all datasets, LLMs, and editing algorithms,
running each configuration for at most 10 iterations.
The evaluation results are presented in Table 2 for
COUNTERFACT and Table 10 for ZsRE (provided in
Appendix 10 due to space constraints). From these
experiments results, we drew several conclusions.

First, iterative model editing consistently im-
proves performance, with the overall success scores
increasing across iterations for most models and al-
gorithms. The overall success improvement stems
from enhanced efficacy and generalization capa-
bilities, which means fewer cases of UnderEdit.
Specifically, we observed an increase in success ac-

curacy of up to 38 percentage points, with a greater
improvement in efficacy accuracy of up to 77 per-
centage points (PMET on GPT-2 XL). We con-
ducted more analysis in Appendix F.1 to showcase
the efficacy improvement is mostly coming from
UnderEdit examples. Secondly, as iteration goes,
the perplexity difference constantly goes down in
most cases. Finally, the proposed stopping criterion
(|Apg| < €) consistently halts the process, validat-
ing its reliability. Using this criterion also yields
better overall scores compared to executing the al-
gorithm only once. Additionally, in Section 5.3,
we compare our stopping criterion against two al-
ternatives and find it to be the most effective.

While efficacy and generalization improve sig-
nificantly with iterative model editing, specificity

Model Algo X Efficacy (1) Generalization (1) Specificity (1) Score (1) Perplexity (|) |Apk|({)
Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50

Unedited 0| 1.00% 9.00% | 1.00% 22.00% | 100.00% | 18.00% | 54.66

(i";;z XL MEMIT 4] 99.00% 99.00% | 38.00% 74.00% | 52.00% 77.00% | 54.00% 82.00% 6227 0.05

;7'39) NA_MEMIT 4| 99.00% 99.00% | 36.00% 70.00% | 86.00% 95.00% | 60.00% 86.00% 64.89 0.19
PMET 8| 99.00% 99.00% | 31.00% 68.00% | 67.00% 86.00% | 52.00% 82.00% 63.47 0.31
NA_PMET 9| 98.00% 98.00% | 29.00% 64.00% | 85.00% 97.00% | 53.00% 83.00% 66.29 0.29
Unedited 0| 000% 800% | 1.00% 10.00% | 100.00% | 12.00% | 39.80

GPT-J MEMIT 2| 99.00% 100.00% | 79.00% 97.00% | 63.00% 83.00% | 78.00% 93.00% 44.84 0.64

;69};)) NA_MEMIT 2| 99.00% 99.00% | 75.00% 92.00% | 81.00% 95.00% | 84.00% 95.00% 4524 0.33
PMET 1] 99.00% 100.00% | 72.00% 93.00% | 65.00% 84.00% | 76.00% 92.00% 40.79 0.25
NA_PMET 6| 98.00% 99.00% | 69.00% 89.00% | 80.00% 94.00% | 81.00% 94.00% 43.54 0.44

Llama-2 Unedited 0| 3833% 57.00% | 37.00% 56.00% | 59.67% | 55.67% | 33.69

;71210 PMET 3| 9600% 98.00% | 72.00% 89.00% | 70.00% 92.00% | 78.00% 93.00% 31 0.44
NA_PMET 10| 62.00% 79.00% | 47.00% 75.00% | 26.00% 76.00% | 40.00% 76.00% 1414.01

Table 3: Neighbor-Assisted model editing results on CounTERFACT. We present iteration where our proposed
stopping criteria is achieved for both neighbor-assisted (NA_) and without neighbor runs of the model editing
algorithms. We compare their evaluation metrics and bold the higher value. Results among models and from Table 2
are not comparable due to difference in neighboring samples as explained in Appendix. B.2. Hence, we report the
no. of examples (#) used to run experiment for each model. NA_PMET on Llama-2 (7B) stands as an exception
that didn’t achieved the stopping criteria within 10 iteration and showed a performance decrease. Results for all

iterations are provided in Table 11.

decreased in some experiments, indicating an in-
crease in OverEdit. We argue that this occurs be-
cause maximizing the likelihood of new knowledge
through updates to causal layer weight parameters
inadvertently affects neighboring knowledge due to
shared weights. However, the overall performance
increase outweighs the drop in specificity.
Although iterative editing is effective in most
cases, we also observed model collapse as edit-
ing progresses, indicated by high model perplexity
on ME-PPL-50 (5 out of 15 experiment settings).
This collapse behavior aligns with the continuous
editing failures observed in previous work (Gupta
et al., 2024b; Meng et al., 2023a). This suggests
that when the combination of the model and edit-
ing algorithm succeeds in continuous editing, an
essential experimental setting, iterative editing can
further improve model performance. Specifically,
ROME collapses under iterative > editing, which
aligns with prior findings on its inability to sup-
port continuous editing (Gupta et al., 2024b). We
also found that Llama-2 (7B) collapses only when
edited with MEMIT, a result consistent with find-
ings in Yang et al. (2024). Thus, we conclude that
iterative model editing does not inherently lead to
collapse. However, unstable models that fail with
sequential editing may not benefit from this ap-
proach. Although investigating collapse is not the

SROME does not support batch editing, as it can only
modify one fact at a time (Meng et al., 2023b). We discuss
this further in Appendix A.

primary focus of this work, our findings (detailed
in Appendix E) offer a useful foundation for future
research in this area.

We also consistently observed a trade-off be-
tween generalization and specificity in Table 2. To
further investigate this phenomenon, we focused
on AlphaEdit, which aims to address this trade-
off using null space projection to constrain model
updates so that they minimally interfere with ex-
isting knowledge. Our results show that although
AlphaEdit is designed to mitigate OverEdit, its per-
formance still degrades in specificity under iterative
model editing—indicating that this method does
not fully resolve the problem. This persistent trade-
off affects all locate-and-edit algorithms, and the
proposed iterative editing is effective and widely
applicable across this family of methods.

5.2 Neighbor-Assisted Model Editing Results

To evaluate neighbor-assisted model editing
method, we only conducted experiments on
COUNTERFACT due to data limitations of ZsRE ex-
plained in Appendix B. We perform iterative model
editing with the modified neighbor loss, excluding
collapsed settings (evaluation results in Table 3).
We observed consistently higher specificity
across all iterations when using neighbor-assisted
editing (denoted by NA _) compared to setups with-
out it. This increase in specificity was accompanied
by an overall improvement in score. Specifically,
we observed gains of up to 6 percentage points in

COUNTERFACT ZsRE
Score (1) [Api|() Apa () Score (1) [App|(1) Apa(d)

Dataset

Model Algo ‘k Ace ‘k Ace
4 5667% 047 865 |3 46.67% 003 3936
GPT-2 MEMIT‘ ‘4 4500% 0.01 0.02
XL
10 47.00% 042 129 |6 5400% 0.19 129
(5B) PMET ‘ ‘7 5333% 0.08 0.11
2 7900% 003 120 |2 74671% 001 1.65
MEMIT‘ ‘3 75.00% 0.00 0.02
:;';)TJ | 7761% 115 2 7400% 0.09 4.06
PMET |3 7833% 0.5 418 |3 7433% 002 0.07
4 7833% 0.02 003
Llama2 oo [2 7800% 009 318 |2 7800% 0.07 628
(7B) 3 7833% 0.16 007 |3 7861% 002 0.05

Table 4: Comparing stopping criteria. We compare
our proposed stopping criteria (green) to the two alter-
nate stopping criteria, monotonic decrease (orange), and
small change (purple). We bold the higher scores among
them. We report results for all iterations in Table 13.

success accuracy and up to 34 percentage points in
specificity accuracy (NA_MEMIT on GPT-2 XL).
Although there was a slight decrease in generaliza-
tion, the gain in specificity was more substantial,
increasing the score. Additionally, because no pre-
fix was added to the neighboring knowledge, we
investigate its role in Appendix F.2. We found that
adding prefixes led to a slightly higher overall score
but reduced the specificity score.

Moreover, the proposed stopping criteria
|Api| < e, originally defined for iterative model
editing, remain effective for neighbor-assisted
model editing. We observed one exception in the
case of LLaMA-2 (7B), where neighbor-assisted
editing with PMET resulted in performance degra-
dation. We attribute this to an increased tendency
toward model collapse, as indicated by elevated
perplexity (ME-PPL-50). Notably, LLaMA-2 (7B)
was again the only model to exhibit such col-
lapse behavior, reinforcing our earlier hypothesis
that model-specific factors contribute to instability.
However, identifying the precise training-related
causes of this behavior requires deeper investiga-
tion, which we leave for future work.

5.3 Analysis: How effective is the stopping
criterion?

We tested two alternate stopping criteria to the
proposed stopping criteria |Apg| < 1. The first
is that |Apg| should monotonically decrease i.e.,
|Apry1| < |Apg|, otherwise stop and use). The
second is to stop when the difference in perplexity
between consecutive iterations, i.e after SPREAD
stage, is small, i.e., Ay = |p(9k+1,hifk+1) —

(O, hffk)| < 1. We found our proposed criteria
to be most the most effective in these experiments

as shown in Table 4. Moreover, the second criteria
suffered with two major drawbacks—a) it always
needed at least two iterations to terminate and b)
it always took one extra iteration longer than the
proposed stopping criteria.

6 Related Work

In this work, we extensively discussed locate-and-
edit model editing algorithms. KN (Dai et al.,
2022) is a related method based on gradient-based
neuron selection. In addition, there is a body
of research that employs meta-learners to guide
the parameter updates required for specific ed-
its. For example, KE (Cao et al., 2021) uses a
hyper-network to update model parameters, while
MEND (Mitchell et al., 2022a) trains gradient-
based, lightweight model editor networks. MAL-
MEN (Tan et al., 2024) builds upon MEND to
address scalability challenges. Another line of
research adds new knowledge without altering
the model’s parameters. SERAC (Mitchell et al.,
2022b), GRACE (Hartvigsen et al., 2023), and
WISE (Wang et al., 2024a) achieve this by em-
ploying additional memory to store new knowl-
edge. A router network is then trained to decide
whether to retrieve knowledge from the original
model or the additional memory, ensuring the in-
tended knowledge is accessed without modifying
the model’s core parameters. We specifically focus
on locate-and-edit model editing methods due to
their effectiveness and efficiency in updating only
the important parameters. Our proposed method
introduces simple changes to existing techniques
while still demonstrating effectiveness.

7 Conclusion

In this work, we addressed key challenges in model
editing—UnderEdit and OverEdit —by propos-
ing iterative and neighbor-assisted model editing
techniques. Our iterative approach effectively re-
solves UnderEdit by reducing the approximation
error to ensure sufficient weight updates, while
neighbor-assisted editing mitigates OverEdit by
preserving neighboring knowledge. Extensive ex-
periments across diverse editing algorithms, LLMs,
and datasets validate the efficacy of our methods.
These contributions pave the way for more reliable
model editing, with broad applicability to dynamic
knowledge updates in LL.Ms.

8 Limitations

The results shows that our proposed iterative and
neighbor-assisted model editing approaches are
highly effective resolving UnderEdit and OverEdit,
respectively. However, we did notice some trade-
offs where the former negatively impacted speci-
ficity and later generalization. We believe, these
trade-offs stem from the fundamental challenge
faced by direct model editing methods where LLM
parameters are shared across different types of
stored knowledge and currently no method exits
to isolate parameters related to a knowledge. Our
experiments and results highlight these challenges
and encourages the research community to explore
further resolving these challenges. So, we would
recommend the adopters of our methods to priori-
tize between specificity or generalization depend-
ing on the application-specific requirements.

Limited computational resources restricted us
from experimenting with larger batch sizes and
additional LLMs, such as GPT-NeoX (20B) and
larger Llama-2 and Llama-3.1 models. We hypoth-
esize that the experimental result trend will remain
the same, and we leave the verification of this hy-
pothesis for future work.

References

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. Preprint,
arXiv:2104.08164.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493—
8502, Dublin, Ireland. Association for Computational
Linguistics.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan
Ma, Jie Shi, Xiang Wang, Xiangnan He, and Tat-
Seng Chua. 2025. Alphaedit: Null-space constrained
model editing for language models. In The Thirteenth
International Conference on Learning Representa-
tions.

Govind Krishnan Gangadhar and Karl Stratos. 2024.
Model editing by standard fine-tuning. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 5907-5913, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484-5495, Online and Punta Cana,

Dominican Republic. Association for Computational
Linguistics.

Akshat Gupta, Sidharth Baskaran, and Gopala Anu-
manchipalli. 2024a. Rebuilding ROME : Resolv-
ing model collapse during sequential model editing.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
21738-21744, Miami, Florida, USA. Association for
Computational Linguistics.

Akshat Gupta, Phudish Prateepamornkul, Maochuan
Lu, Ahmed Alaa, Thomas Hartvigsen, and Gopala
Anumanchipalli. 2025. Lifelong sequential knowl-
edge editing without model degradation. Preprint,
arXiv:2502.01636.

Akshat Gupta, Anurag Rao, and Gopala Anu-
manchipalli. 2024b. Model editing at scale leads
to gradual and catastrophic forgetting. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 15202—-15232, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Akshat Gupta, Dev Sajnani, and Gopala Anu-
manchipalli. 2024c. A unified framework for model
editing. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pages 15403—
15418, Miami, Florida, USA. Association for Com-
putational Linguistics.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2023.
Aging with grace: Lifelong model editing with dis-
crete key-value adaptors. In Advances in Neural
Information Processing Systems.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How can we know when language
models know? on the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962-977.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. CoRR, abs/1706.04115.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2024. Pmet: Precise model editing in
a transformer. Proceedings of the AAAI Conference
on Artificial Intelligence, 38(17):18564—18572.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2023a. Locating and editing factual associ-
ations in gpt. Preprint, arXiv:2202.05262.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2023b. Mass-
editing memory in a transformer. Preprint,
arXiv:2210.07229.

Meta. 2024. Llama 3.1 8b. https://huggingface.
co/meta-1lama/Meta-Llama-3-8B.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2022a. Fast
model editing at scale. Preprint, arXiv:2110.11309.

https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://openreview.net/forum?id=HvSytvg3Jh
https://openreview.net/forum?id=HvSytvg3Jh
https://openreview.net/forum?id=HvSytvg3Jh
https://doi.org/10.18653/v1/2024.findings-acl.352
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2024.emnlp-main.1210
https://doi.org/10.18653/v1/2024.emnlp-main.1210
https://doi.org/10.18653/v1/2024.emnlp-main.1210
https://arxiv.org/abs/2502.01636
https://arxiv.org/abs/2502.01636
https://arxiv.org/abs/2502.01636
https://doi.org/10.18653/v1/2024.findings-acl.902
https://doi.org/10.18653/v1/2024.findings-acl.902
https://doi.org/10.18653/v1/2024.findings-acl.902
https://doi.org/10.18653/v1/2024.findings-emnlp.903
https://doi.org/10.18653/v1/2024.findings-emnlp.903
https://doi.org/10.18653/v1/2024.findings-emnlp.903
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://arxiv.org/abs/1706.04115
https://arxiv.org/abs/1706.04115
https://arxiv.org/abs/1706.04115
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1609/aaai.v38i17.29818
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/2210.07229
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2110.11309

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D. Manning, and Chelsea Finn. 2022b.
Memory-based model editing at scale. Preprint,
arXiv:2206.06520.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021. Car-
bon emissions and large neural network training.
Preprint, arXiv:2104.10350.

Judea Pearl. 2013. Direct and indirect effects. Preprint,
arXiv:1301.2300.

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktischel, Yuxiang Wu, Alexander H. Miller,
and Sebastian Riedel. 2020. How context affects
language models’ factual predictions. Preprint,
arXiv:2005.04611.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418-5426,
Online. Association for Computational Linguistics.

Chenmien Tan, Ge Zhang, and Jie Fu. 2024. Massive
editing for large language models via meta learning.
In The Twelfth International Conference on Learning
Representations.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Preprint, arXiv:1706.03762.

10

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, pages 12388-12401. Curran Associates,
Inc.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi
Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Hua-
jun Chen. 2024a. WISE: Rethinking the knowledge
memory for lifelong model editing of large language
models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Peng Wang, Ningyu Zhang, Bozhong Tian, Zekun Xi,
Yunzhi Yao, Ziwen Xu, Mengru Wang, Shengyu Mao,
Xiaohan Wang, Siyuan Cheng, Kangwei Liu, Yuan-
sheng Ni, Guozhou Zheng, and Huajun Chen. 2024b.
EasyEdit: An easy-to-use knowledge editing frame-
work for large language models. In Proceedings of
the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 3: System Demonstra-
tions), pages 82-93, Bangkok, Thailand. Association
for Computational Linguistics.

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben
Xu. 2021. Training networks in null space of feature
covariance for continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 184—193.

Wanli Yang, Fei Sun, Xinyu Ma, Xun Liu, Dawei Yin,
and Xueqi Cheng. 2024. The butterfly effect of
model editing: Few edits can trigger large language
models collapse. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 5419—
5437, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Paul Youssef, Osman Korag, Meijie Li, Jorg Schlotterer,
and Christin Seifert. 2023. Give me the facts! a
survey on factual knowledge probing in pre-trained
language models. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
15588-15605, Singapore. Association for Computa-
tional Linguistics.

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Shu Wu,
Pengjie Ren, and Zhumin Chen. 2025. Uncover-
ing overfitting in large language model editing. In
The Thirteenth International Conference on Learning
Representations.

A Locate-and-Edit Algorithms

All locate-and-edit algorithms can be formulated
under a unified two-stage framework consisting of
an OPTIMIZATION stage, where the target repre-
sentation is computed, and a SPREAD stage, where

https://arxiv.org/abs/2206.06520
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/1301.2300
https://arxiv.org/abs/2005.04611
https://arxiv.org/abs/2005.04611
https://arxiv.org/abs/2005.04611
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://openreview.net/forum?id=L6L1CJQ2PE
https://openreview.net/forum?id=L6L1CJQ2PE
https://openreview.net/forum?id=L6L1CJQ2PE
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=VJMYOfJVC2
https://openreview.net/forum?id=VJMYOfJVC2
https://openreview.net/forum?id=VJMYOfJVC2
https://openreview.net/forum?id=VJMYOfJVC2
https://openreview.net/forum?id=VJMYOfJVC2
https://doi.org/10.18653/v1/2024.acl-demos.9
https://doi.org/10.18653/v1/2024.acl-demos.9
https://doi.org/10.18653/v1/2024.acl-demos.9
https://doi.org/10.18653/v1/2024.findings-acl.322
https://doi.org/10.18653/v1/2024.findings-acl.322
https://doi.org/10.18653/v1/2024.findings-acl.322
https://doi.org/10.18653/v1/2024.findings-acl.322
https://doi.org/10.18653/v1/2024.findings-acl.322
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://openreview.net/forum?id=t8qcGXaepr
https://openreview.net/forum?id=t8qcGXaepr
https://openreview.net/forum?id=t8qcGXaepr

the model weights are updated accordingly. As
summarized in Table 1, this abstraction captures
a wide range of existing model editing methods,
and provides a foundation on which our proposed
strategies—iterative and neighbor-assisted model
editing—can be broadly applied. While some prior
methods, such as AlphaEdit and EVOKE (LTI),
specifically target the OverEdit problem, they do
so using fundamentally different mechanisms from
ours and do not generalize across algorithms. No-
tably, no existing work has directly addressed the
UnderEdit challenge. To our knowledge, we are
the first to propose a unified strategy that simul-
taneously mitigates both UnderEdit and OverEdit.
Detailed descriptions of each algorithm are pro-
vided below.

As discussed in Section 2, model editing algo-
rithms operate on the hypothesis that updating the
final MLP parameters is sufficient to increase the
likelihood of a new object o* over the original ob-
ject o when presented with a (subject, relation) pair
x = (s,r) as input to the LLM. Specifically, the
final MLP weight matrix W functions as a linear as-
sociative memory that stores a key-value mapping
[k, v]*(Meng et al., 2023a). Here, the key encodes
the last subject token, while the value represents
the relation-object pair (7, 0) as a property of the
subject s. Within the transformer architecture, the
key corresponds to the output of the first fully con-
nected MLP layer, whereas the value corresponds
to the output of the second fully connected MLP
layer z, as shown in Figure2. This key-value map-
ping [k, v] is derived by computing the inner prod-
uct between the key k£ and the final MLP weight
matrix W as Wk ~ v.

Model editing involves modifying a
batch of M desired edits, represented as
D= {(Sm, "'m, Om, 0},) %:1, which translates to
inserting M new key-value pairs [K s, V] by
updating the final MLP weights W at the causal
layers {l1,...,l.}.

MEMIT (Meng et al., 2023b) operates under the
assumption that factual edits can be made by mod-
ifying the final MLP weight matrix W' at each
causal layer [with a small update Al, yielding new
weights W' = W' + Al. The goal is to insert
M > 1 new key-value mappings [K s, Vi while
preserving E existing mappings [K g, V|, where
Kg = k¥, and Vg = [v]E_, denote the pre-
existing keys and values.

“Distinct from key-value pairs in attention mechanisms

11

MEMIT formulates this as an optimization prob-
lem to find a transformation T/ that minimizes
the sum of squared distances between transformed
keys and their target values:

E+M 5
W& arg min Z HW/{:z — V;
W4
=1

This objective consists of two parts:

DY ’Wk’z — Ui
vation of existing knowledge.

E+M T
* D ilEt HW’fz — v

tion of new knowledge.

2
’ . encourages the preser-

2
: enforces the integra-

To compute the optimal update A!, MEMIT uses
a closed-form solution derived from the residual
matrix R' =V — WK, where K and V stack the
relevant key and value vectors across edits. Specifi-
cally,

Al . RlKlT(Cl _i_‘Kle(lT)fl7

where C! is a regularization term proportional to
the uncentered covariance of the pre-existing keys.
This provides an analytical solution for A, avoid-
ing iterative optimization such as gradient descent.
The resulting update is then applied as:

W — wh+ AL

In practice, the residual R’ is computed using
the hidden state Bff obtained in the OPTIMIZATION
stage. For full derivation and further implementa-
tion details, see Meng et al. (2023b).

PMET (Lietal., 2024) shares the same optimiza-
tion objective as MEMIT in the SPREAD stage but
introduces a key difference in the OPTIMIZATION
stage. As shown in Figure 2, PMET searches for an
ideal self-attention output at_tnff and an ideal MLP
output Zﬁc. The core insight behind PMET is that
the self-attention module captures generalizable
patterns, while the MLP is more tightly coupled to
fact-specific content. Therefore, PMET assumes
that the contribution of self-attention to the hid-
den state hff is not necessary for editing factual
knowledge.

Based on this assumption, PMET reconstructs
a modified hidden state using only the ideal MLP
output Zic, effectively omitting the influence of
attention. This ideal hidden state is then used to

compute the residual matrix R, and the update A
is computed using the same closed-form solution
as MEMIT:

Al « RKT(C! + KK,
followed by
W« w!+ Al

By decoupling attention from factual edits,
PMET enables more precise updates that reduce
unintended interference with unrelated knowledge.
Empirically, this leads to improved edit success
and generalization compared to MEMIT.

AlphaEdit (Fang et al., 2025) extends the locate-
and-edit paradigm by explicitly constraining model
updates to reduce interference with existing knowl-
edge. While it follows a similar two-stage structure
(OPTIMIZATION and SPREAD), AlphaEdit intro-
duces a novel use of null space projection (Wang
et al., 2021) to isolate updates from directions as-
sociated with pre-existing knowledge.

During the OPTIMIZATION stage, AlphaEdit
computes the target hidden representation Bff in
a manner similar to MEMIT. However, before com-
puting the update A', it projects the residual matrix
R' = V — WK into the null space of the pre-
existing keys Kr. This projection ensures that the
update is orthogonal to directions associated with
existing key-value mappings, thereby reducing the
risk of OverEdit.

Formally, let N! be a projection matrix that
spans the null space of K. AlphaEdit applies this
projection to both the residual and key matrices:

ROME (Meng et al., 2023a) is the predecessor of
MEMIT and adopts a more constrained approach
to model editing. Unlike MEMIT, which apply
updates across multiple causal layers, ROME as-
sumes that new knowledge can be fully integrated
into a single transformer layer /.. It follows the
same two-stage structure but focuses exclusively
on editing one final MLP weight matrix ¥/«

In the OPTIMIZATION stage, ROME identifies
an ideal MLP output z* for a given input (s, 7).
This output represents the desired value vector
that should be produced by the edited layer for
the edited subject. The SPREAD stage then com-
putes an updated MLP weight matrix W' that (1)
preserves all existing knowledge and (2) exactly
maps a new key k, to the target value v,. Formally,
the update is obtained by solving the following
constrained optimization problem:

R 2
minimize HWI* Kgp — VEH
subject to Whk, = Vs,

where K and Vg are matrices containing the keys
and values for existing knowledge.

The resulting solution allows for a rank-
preserving edit that satisfies the new constraint
while minimizing distortion to previously stored
mappings. For a complete derivation, see Meng
et al. (2023a).

While ROME produces highly precise ed-
its—especially for single-fact updates—it does not
support true batch editing.’ This makes it prone
to instability when applying many edits, as se-
quential updates can interfere destructively. Prior
work (Gupta et al., 2024b; Yang et al., 2024) shows
that ROME suffers from model collapse when used
iteratively, due to sharp increases in perplexity aris-

-1
Al — (N'RY(N'EH T (CZ + (NlKl)(NlKl)T> ing from the accumulation of such updates.

The resulting update is applied in the usual man-
ner:

W — wh 4+ Al

By constraining updates to directions that are
orthogonal to known information, AlphaEdit aims
to improve specificity and mitigate OverEdit. How-
ever, as we show in Section 5, this constraint can
limit editing flexibility, and iterative model editing
can further improve AlphaEdit’s performance.

12

R-ROME (Gupta et al., 2024a) builds on ROME
with the explicit goal of resolving its tendency to
collapse under sequential edits. While ROME ap-
plies a constrained rank-one update to a single MLP
weight matrix W', it suffers from instability when
edits are applied repeatedly. R-ROME attributes
this collapse to how ROME computes the key vec-
tor k used in the update rule.

In ROME, the key k is directly computed from
the current subject s, without considering broader

SBatch edits in ROME are executed sequentially, one fact
at a time.

contextual signals. R-ROME proposes a revised
formulation in which the key k. is computed as an
average over multiple neighboring prompts z; + s,
resulting in a more stable and robust key represen-
tation. This modification aligns the computation of
the key k, and the value v,, which are jointly used
to derive the update.

The updated weight matrix is then computed via:

W=W+AC %),

where A, scales the residual v, — Wk, based on
the adjusted key k.. By unifying the key used in
both the value computation and the update direc-
tion, R-ROME mitigates the destructive interfer-
ence observed in ROME and reduces the likelihood
of collapse from so-called “disabling edits”.

Empirically, R-ROME improves stability in se-
quential editing scenarios while retaining the pre-
cision benefits of ROME. However, like ROME, it
remains limited to editing one fact at a time and
does not natively support batch updates.

EMMET (Gupta et al., 2024c) unifies the ROME
and MEMIT families of model editing by show-
ing that both optimize a common preservation-
memorization objective. While ROME performs
single edits using strict equality constraints and
MEMIT enables batched edits via a least-squares
formulation, EMMET generalizes both by introduc-
ing equality-constrained batch editing. This allows
EMMET to combine the precision of ROME with
the scalability of MEMIT.

Like other methods in the locate-and-edit family,
EMMET follows the two-stage editing framework.
In the OPTIMIZATION stage, it identifies the target
value vectors Vg corresponding to the new facts to
be inserted. In the SPREAD stage, it solves a con-
strained optimization problem to update the MLP
weight matrix W to a new matrix W that satisfies
two goals: (1) preserving the projections of a set
of pre-existing keys Ky, and (2) exactly mapping
a batch of new keys K to their corresponding
values Vg. Formally:

R 2
W = arg min HWKO — WOKOH S.t.
1474

W) — ol

[[

Vi € [1, E],

where the first term enforces knowledge preserva-
tion and the constraints enforce exact memorization
of the new facts.

13

This preservation-memorization objective is
solved using Lagrange multipliers, yielding the
closed-form update:

W = Wot+(Ve—WoKg)(KLCy 'Kg) ' KLCy Y,

where Cy = K, OKOT is the uncentered covariance
matrix of the preserved keys.

By design, EMMET enables high-precision ed-
its with support for batch sizes up to 10,000,
effectively bridging the capabilities of ROME
and MEMIT within a unified formulation. Em-
pirically, it achieves performance comparable to
MEMIT while retaining the theoretical rigor of
equality-constrained updates. As such, EMMET
offers a principled and scalable approach to batch
model editing that fits cleanly into the OPTIMIZA-
TION/SPREAD framework.

ENCORE (Gupta et al., 2025) addresses the
long-term instability of locate-and-edit methods
under large-scale sequential editing. Prior work
has shown that repeated edits with methods like
MEMIT and ROME lead to overfitting on edited
facts and model collapse due to uncontrolled
growth in the norm of updated weights. ENCORE
introduces two key enhancements—~Most-Probable
Early Stopping (MPES) and a norm constraint—to
enable robust, long-horizon editing.

In the OPTIMIZATION stage, ENCORE adopts
MPES, an early stopping strategy that halts opti-
mization once the target object becomes the most
probable prediction across all optimization queries.
This prevents overfitting by stopping the editing
process before excessive memorization occurs, sim-
ilar to how early stopping in training halts based
on validation loss.

In the SPREAD stage, ENCORE augments the
standard preservation-memorization objective with
a Frobenius norm penalty that discourages large
deviations from the original weights:

LW) = N||W Ko — WoKo|®
+ WKy = Vi
+ AW — Woll,

where the first two terms represent knowledge
preservation and memorization (as in MEMIT), and
the third term explicitly controls norm growth. This

yields a closed-form solution:
W:wwum-mmmﬂ@wwﬁ

T —1
+mm+%0.

Like other methods in this space, ENCORE
cleanly fits into the two-stage locate-and-edit
framework, using MPES for target identification
in OPTIMIZATION and a norm-constrained update
formulation in SPREAD.

EVOKE (LTI) (Zhang et al., 2025) introduces a
plug-and-play optimization strategy called Learn
the Inference (LTI) to mitigate OverEdit in com-
plex reasoning tasks such as multi-hop inference.
While prior locate-and-edit methods like ROME
and MEMIT often overfit to edit targets, assign-
ing disproportionately high probabilities to them,
EVOKE attributes this Editing Overfit to the strong
coupling between the edit prompt and the target ob-
ject. To address this, LTI regularizes the optimiza-
tion process by incorporating auxiliary constraints
inspired by how unedited LLMs recall knowledge
via in-context learning.

EVOKE operates within the standard two-stage
editing framework. In the OPTIMIZATION stage,
it modifies the optimization objective used to com-
pute the target value vector v*, introducing three
additional constraints:

* Subject Representation Constraint (SRC):
aligns the intermediate representation of the
subject token between the edited and unedited
models to avoid overfitting on narrow context.

Output Distribution Constraint (ODC):
matches the output distributions of the edited
and unedited models to preserve global behav-
ior.

New Knowledge Constraint (NKC): ensures
the edited model correctly predicts the new tar-
get object across randomly prefixed contexts.

These constraints are jointly optimized via a
weighted objective:

L = XLsrc + B Lopc + a LnKe,

where)\, 3, « are tunable weights. Once the opti-
mal residual vector h is learned, the final update

14

in the SPREAD stage follows the standard weight
update (e.g., as used in ROME).

While EVOKE aims to mitigate OverEdit
through more informed optimization, its approach
differs from our neighbor-assisted editing strategy
in key ways. EVOKE constrains the model’s in-
ternal representations by comparing to unedited
inference with prepended context, whereas we use
neighboring samples that share the same relation to
guide editing. Additionally, EVOKE perturbs the
value vector v* while holding the subject fixed and
varying the relation; in contrast, we vary the subject
and fix the relation to ensure the original object re-
mains unchanged. EVOKE also uses significantly
more prompts per edit sample, which may affect
scalability.

Despite these differences, EVOKE still adheres
to the two-stage locate-and-edit framework. As
such, our proposed iterative and neighbor-assisted
methods are compatible with it and could further
enhance its performance by addressing UnderEdit
and reinforcing relation-consistent specificity.

B Implementation details

B.1 Iterative model editing

Currently, our implementation requires running an
additional iteration to compute p(fy1, hick) for

iteration k. As a result, p(0x41, ﬁick) for the 5th
iteration is not reported in Tables 9, 10, 11, and 12.
We are updating our code to compute p(6x1, ﬁick)
at the end of the kth iteration without requiring
the next iteration. This update involves running
only the OPTIMIZATION stage with a single gra-
dient step, using the initialization vector, before

proceeding to the next iteration.

B.2 Neighbor-assisted model editing

We observed that different models often produce
varying objects for the same neighboring knowl-
edge. To calculate specificity, we used the model’s
actual output as the object (0), which should re-
main unchanged during editing. However, this in-
troduced a challenge when employing neighbor-
assisted model editing to guide the finding of the
ideal hidden state i_Lff during OPTIMIZATION, as
models produced inconsistent outputs for neigh-
boring knowledge used for evaluation. This in-
consistency caused conflicts among neighboring
knowledge when selecting a single instance for
neighbor-assisted editing.

Model Average evaluation neighboring samples (ceil)

GPT-2 XL 2
GPT-] 4
Llama-2-7B 5

Table 5: Average neighboring sample used to evaluate
each edit in neighbor-assisted editing

To address this, we filtered out neighboring
knowledge samples that did not yield the same
model output as the original ground truth reported
in the dataset. This strategy ensured that any re-
maining neighboring knowledge sample could be
randomly selected for neighbor-assisted editing,
resolving the conflict.

This approach also introduced an additional con-
straint on the edit data points: each data point
must have at least two neighboring knowledge
samples—one for editing and the others for eval-
vation. Unfortunately, the ZsRE dataset contains
only one neighboring knowledge sample per data
point, restricting us to the COUNTERFACT dataset.
Even within COUNTERFACT, only a limited num-
ber of samples met the required constraints. The
number of qualifying samples varied depending
on the model, as shown in Table 3. In neighbor-
assisted model editing, exactly one neighboring
example was used for each edit. Additionally, an
average of 2, 4, and 4 neighboring examples (as
reported in the Table 5) were used for evaluating
each edit. Generating multiple neighbor knowledge
using ChatGPT (Meng et al., 2023a) is straightfor-
ward and convenient. However, scaling this to all
possible neighbors for a single piece of knowledge
is a highly challenging research problem that falls
beyond the scope of our paper.

C Hardware Details

Table 6 outlines the GPU resources utilized to con-
duct edits of batch size 1000 across various models,
algorithms, and datasets. It highlights the specific
hardware configurations, such as GPU type (e.g.,
NVIDIA L40S with 48GB memory or NVIDIA
A100 with 80GB memory), used for each experi-
ment.

D Iterative SPREAD

In Figure 3, we observe little to no change in the
perplexity of hffk across iterations. However, we
argue that despite similar perplexity values, the ac-

15

Model Algo Dataset GPU
COUNTERFACT L40S (48GB)
ROME ; RE L40S (48GB)
GPT-2 XL MEMIT COUNTERFACT L40S (48GB)
(1.5B) ZsRE L40S (48GB)
COUNTERFACT L40S (48GB)
PMET RE L40S (48GB)
COUNTERFACT A100 (80GB)
ROME RE A100 (80GB)
Gll; T-J MEMIT COUNTERFACT L40S (48GB)
(6B) ZsRE A100 (80GB)
COUNTERFACT A100 (SOGB)
PMET - RE A100 (80GB)
COUNTERFACT A100 (SOGB)
ROME RE A100 (80GB)
L;;ma'z vEMyr COUNTERFACT - LA0S (43GB)
(7B) ZsRE A100 (80GB)
COUNTERFACT L40S (48GB)
PMET RE A100 (80GB)

Table 6: GPU requirements to conduct 1000 edits

tual representations of ﬁfﬁk differ at each step. This

is because . is computed based on Eick, which
itself is derived from 6, as described in Section 3.1.
Due to this recursive dependency, every update to
0 induces a corresponding change in ?Lffk. Since
the overall editing goal remains consistent across
iterations, the magnitude of change required in 6
naturally diminishes over time, resulting in a se-
quence of distinct yet converging hidden states.

To further explore this, consider a scenario
where EiCk remains constant across iterations. In
such a cése, one might skip repeated calls to OP-
TIMIZATION and only perform SPREAD, poten-
tially saving computation without sacrificing per-
formance. However, we hypothesize that this
would lead to overfitting due to repeated use of
the same update. To test this, we conducted an
additional experiment using iterative SPREAD with
MEMIT on GPT-2 XL (COUNTERFACT dataset),
where OPTIMIZATION was run only in the first iter-
ation. The results, shown in Table 7, reveal perfor-
mance degradation and an increase in ME-PPL-50.
Although we observe a temporary performance im-
provement in iteration 2, likely due to overfitting,
it is followed by continued degradation, and the
editing process fails to meet its stopping criterion.
This underscores the importance of running OPTI-
MIZATION in every iteration and indicates that it

X Efficacy (1) Generalization (1) Specificity (1) Score (1) Perplexity ()

Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50 p(6y, Eifk) p(O0k+1, fzij‘k)
1 79.00% 93.00% 22.00% 65.00% 75.00% 99.00% 42.00% 83.00% | 57.98 1.02 10816.41
2 89.00% 98.00% 35.00% 76.00% 61.00% 98.00% 53.00% 89.00% | 84.28 1.02 3700.56
3 68.00% 95.00% 28.00% 72.00% 54.00% 97.00% 44.00% 86.00% | 174.62 1.02 64858.83
4 41.00% 85.00% 19.00% 68.00% 47.00% 97.00% 31.00% 81.00% | 348.5 1.02 2254146.29
5 20.00% 76.00% 11.00% 64.00% 37.00% 97.00% 17.00% 76.00% | 602.14 1.02 5827805.82

Table 7: Iterative SPREAD model editing results on CountERFacT with MEMIT on GPT-2 XL for 5 iterations.
Unlike SPREAD, OPTIMIZATION was run only in first iteration.

generates distinct target hidden states at each step.

E Factors Contributing Model Collapse

Existing literature attributes model collapse during
editing to two main factors: (1) the sequential na-
ture of edits (Gupta et al., 2024b; Yang et al., 2024),
and (2) characteristics of the specific examples be-
ing edited (Yang et al., 2024). Since iterative model
editing falls under the first category, one might
expect it to be susceptible. However, prior work
shows that collapse typically occurs after thousands
of edits, e.g., up to 3k in AlphaEdit (Fang et al.,
2025) and 10k in ENCORE (Gupta et al., 2025),
whereas our iterative approach involves only a few
single-digit iterations. This makes collapse due to
iteration count alone unlikely.

Given that all models in our study were evaluated
on the same dataset, we can reasonably rule out the
second factor. Furthermore, since no GPT models,
and not even LLaMA-3.1 (8B), exhibited similar
collapse behavior, we hypothesize a third contribut-
ing factor: model-specific characteristics that may
stem from differences in training strategies. Finally,
the editing algorithm itself may serve as a fourth
contributing factor. For example, MEMIT’s less
targeted weight updates (compared to PMET) may
introduce excessive parameter shifts, as discussed
in Appendix A.

In summary, while iterative model editing is un-
likely to cause collapse on its own, interactions
with model-specific or algorithm-specific factors
may trigger instability. Although investigating col-
lapse is not the primary focus of this work, our find-
ings offer a useful foundation for future research in
this area.

F Additional Analysis

This section dives deeper into the proposed meth-
ods. Specifically, we aim to understand how itera-
tive model editing addresses UnderEdit, the impact

16

Efficacy Accuracy Across Iterations

g 100 - ® ®

— /

S

3

3 50

§ —o— Efficacy Accuracy - All

é Efficacy Accuracy - UnderEdit
D 04

X10

—=&— Perplexity Difference - All
Perplexity Difference - UnderEdit

Perplexity Difference
N

Iterations

Figure 4: Improvement in efficacy accuracy and re-
duction in |Apy| for UnderEdit examples over iterative
model editing. The results show that iterative editing
mitigates UnderEdit cases in GPT-2 XL edited with
MEMIT on CounterFAcT, contributing to overall per-
formance gains.

of prefixing in neighbor-assisted model editing for
resolving OverEdit, and the effectiveness of the
stopping criteria.

F.1 How does iterative model editing address
UnderEdit?

We hypothesize that the iterative model editing ap-
proach can reduce the number of UnderEdit cases.
To test this hypothesis, we identified UnderEdit
examples in GPT-2 XL edited with MEMIT on
COUNTERFACT after the first iteration, i.e, edits
(si,7i, 0, 0F) where fo, (zi)[0f] < fo,(zi)[0i]. We
then tracked |Apyg| and efficacy accuracy across
subsequent iterations. Figure 4 illustrates the re-
sults of the analysis. We observe that the rate of
| Apy| decrease and accuracy improving over itera-
tions is much more pronounced for the UnderEdit
examples. This observation tells us that multiple

Efficacy (1)
Accuracy
1.00%

99.00%
99.00%
99.00%

99.00%
98.00%
98.00%

Generalization (1) Specificity (1)

Accuracy

Score (1)

Accuracy

Algo k

Accuracy

Unedited

MEMIT
NA_MEMIT

0 1.00%
4
4
NAP_MEMIT 4
8
9
8

38.00%
36.00%
37.00%

31.00%
29.00%
30.00%

52.00%
86.00%
84.00%

67.00%
85.00%
84.00%

54.00%
60.00%
61.00%

52.00%
53.00%
54.00%

PMET
NA_PMET
NAP_PMET

Table 8: Results of prefix-free (NA_) and with prefix
(NAP_) neighbor-assisted model editing on GPT-2 XL
on 739 samples of CounterFacT. We compare their
evaluation metrics and bold the higher value. Full re-
sults with success and perplexity performance for all
iterations are reported in Table 12.

iterations of SPREAD is the larger contributors to
getting higher performance.

F.2 How prefixes influence neighbor-assisted

model editing behavior?

Using random prefixes aid generalization across
contexts in the memory editing process when only
the target knowledge edit is known. So we pose the
question, does adding random prefixes to the neigh-
bor knowledge prompts help prevent OverEdit?
To answer this question we run an experiment by
adding random prefixes to the neighboring knowl-
edge used during edit. Table 8 shows an increase in
specificity accuracy®. However, this increase is less
compared to the improvement of using neighbor-
assisted editing versus no neighbor-assist. Regard-
less, the prefixed neighbor-assisted edits (NAP_)
achieved better overall performance, denoted by
Accuracy in Score, due to a boost in generalization.

G Iterative model editing results

We present the complete results of all iterations
of iterative model editing in Table 9 for the
COUNTERFACT dataset and Table 10 for the ZsRE
dataset. For experiments that did not meet our
proposed stopping criteria within 5 iterations, we
extended the runs by an additional 5 iterations and
included those results as well.

H Neighbor-assisted model editing results

We present the complete results of all iterations of
neighbor-assisted model editing in Table 11. As the
ZsRE dataset was unsuitable for this experiment
(see Appendix B.2 for details), results are reported
only for the COUNTERFACT dataset. Furthermore,

®The full results with success on each measurement and
perplexity performance are in Table 12

17

since only a subset of samples from COUNTERFACT
qualified for this experiment, we also include the
performance of iterative model editing on these
samples for comparison with neighbor-assisted
model editing.

Our current implementation of neighbor-assisted
model editing does not use prefixes. To analyze
its behavior with prefixes, we conducted an addi-
tional set of experiments. The results, presented in
Table 12, compare prefix-based neighbor-assisted
model editing with its prefix-free counterpart and
iterative model editing. A detailed analysis is pro-
vided in Section F.2.

Efficacy (1) Generalization (1) Specificity (1) Score (1) Perplexity () |Apr| (1)

Model Algo Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50 p(&k.fzijk) p(H)H,l‘,}ALitk)

Unedited 0 0.00% 21.67% 0.00% 31.33% 56.67% 31.33% 54.66 3.26E+05
1 1.00% 56.00% 1.00% 55.00% 0.00% 92.00% 1.00% 64.00% 7.07E+03 5.29E+03 7.20E+05 7.15E+05
24 0.00% 55.00% 0.00% 51.00% 0.00% 93.00% 0.00% 62.00% 1.36E+04 9.10E+04 1.78E+06 1.69E+06
ROME 3 0.00% 55.00% 0.00% 52.00% 0.00% 95.00% 0.00% 63.00% 1.26E+04 7.91E+05 3.68E+06 2.89E+06
4 0.00% 55.00% 0.00% 50.00% 0.00% 88.00% 0.00% 60.00% 3.13E+04 2.10E+06 1.93E+05 -1.91E+06
5 3.00% 64.00% 1.00% 58.00% 0.00% 91.00% 1.00% 68.00% 1.14E+04 7.86E+04
1 79.00% 92.67% 22.00% 65.67% 75.00% 99.00% 42.67% 83.00% 58.66 1.04 11360.64 11359.60
GPT2XL 2 98.67% 99.67% 33.67% 15.67% 70.33% 99.00% 55.67% 89.67% 60.47 1.03 78.15 77.12
(1.5B) MEMIT 3 99.33% 99.67% 35.33% 76.00% 69.33% 99.00% 56.67% 90.00% 61.58 1.02 10.14 9.11
4 99.67% 99.67% 35.67% 76.00% 68.67% 99.00% 56.67% 90.00% 62.44 1.02 1.49 0.47
5 99.67% 99.67% 35.67% 76.00% 68.67% 99.00% 56.67% 90.00% 63.28 1.02
1 21.67% 57.00% 3.00% 42.00% 91.67% 100.00% 8.33% 58.33% 55.60 12598.80 116384.51 103785.71
2 65.67% 85.33% 14.67% 58.67% 84.00% 99.33% 31.67% 77.33% 57.01 1333.32 2685275 25519.43
PMET 3 86.00% 93.67% 20.00% 65.33% 80.67% 99.00% 40.67% 83.33% 58.00 97.51 5123.07 5025.56
4 93.00% 97.00% 21.67% 68.00% 78.67% 99.00% 43.33% 85.33% 58.82 15.96 2045.77 2029.80
5 96.00% 98.33% 22.67% 69.00% 77.67% 99.00% 44.00% 86.67% 59.47 3.90 22844 224.53
6 97.33% 99.67% 22.67% 69.67% 77.00% 99.00% 44.67% 86.67% 60.46 1.81 50.77 48.96
7 98.67% 99.67% 23.67% 70.00% 77.00% 99.00% 45.67% 87.00% 61.52 1.42 22.44 21.02
8 98.67% 99.67% 24.00% 70.00% 76.00% 99.00% 46.00% 87.00% 62.58 1.35 12.10 10.75
9 99.33% 99.67% 24.00% 70.33% 76.00% 99.00% 46.00% 87.00% 63.20 1.32 3.03 1.71
10 99.33% 99.67% 24.67% 70.33% 75.33% 99.00% 47.00% 87.33% 63.92 1.31 1.73 0.42
Unedited 0 9.33% 38.00% 9.00% 38.33% 82.00% 37.33% 39.80 5.98E+05
1 1.00% 57.00% 1.00% 55.00% 0.00% 76.00% 1.00% 61.00% 2.15E+05 1.19E+08 1.21E+14 1.21E+14
2 1.00% 67.00% 2.00% 62.00% 0.00% 71.00% 1.00% 66.00% 8.51E+05 1.75E+12 4.17E+06 -1.75E+12
ROME 3 1.00% 71.00% 1.00% 63.00% 0.00% 71.00% 1.00% 68.00% 9.00E+05 8.09E+05 2.44E+06 1.64E+06
4 1.00% 72.00% 1.00% 64.00% 0.00% 73.00% 1.00% 69.00% 8.29E+05 7.36E+05 8.36E+05 9.97E+04
5 1.00% 72.00% 1.00% 65.00% 0.00% 71.00% 1.00% 69.00% 7.10E+05 3.36E+05
1 99.00% 100.00% 75.00% 95.67% 69.33% 89.33% 77.67% 94.33% 42.20 1.03 225 1.22
GPTJ 2 99.33% 100.00% 80.67% 98.00% 66.33% 88.33% 79.00% 95.00% 43.92 1.02 1.05 0.03
(6B) MEMIT 3 99.67% 100.00% 82.00% 98.33% 65.33% 88.33% 79.00% 95.00% 46.33 1.02 2.88 1.86
4 99.67% 100.00% 83.67% 98.33% 64.67% 88.00% 79.33% 95.00% 46.95 1.01 1.04 0.03
5 99.67% 100.00% 83.67% 98.33% 64.33% 88.00% 79.33% 95.00% 47.20 1.01
1 98.00% 99.67% 76.00% 95.00% 68.33% 88.67% 77.67% 93.67% 41.27 1.08 2.24 115
2 98.67% 99.67% 75.67% 95.00% 68.33% 89.00% 78.00% 94.33% 41.16 1.06 5.29 4.23
PMET 3 99.00% 99.67% 76.67% 95.67% 68.33% 88.67% 78.33% 94.00% 41.15 1.06 111 0.05
4 99.33% 99.67% 77.00% 95.67% 68.33% 88.67% 78.33% 94.00% 41.19 1.06 1.08 0.02
5 99.33% 99.67% 77.00% 95.67% 68.00% 89.00% 78.33% 94.33% 41.28 1.06
Unedited 0 15.00% 13.67% 15.00% 15.00% 84.33% 19.67% 30.63 2789.16
1 0.00% 48.00% 0.00% 49.00% 0.00% 76.00% 0.00% 55.00% 1.45E+04 3.80E+03 8.14E+05 8.10E+05
2 0.00% 56.00% 0.00% 54.00% 0.00% 64.00% 0.00% 58.00% 7.27E+04 6.81E+05 2.34E+08 2.33E+08
ROME 3 0.00% 55.00% 0.00% 53.00% 0.00% 57.00% 0.00% 55.00% 3.86E+05 1.55E+08 7.55E+09 7.39E+09
4 0.00% 57.00% 0.00% 55.00% 0.00% 54.00% 0.00% 55.00% 1.26E+06 6.04E+09 5.81E+10 5.20E+10
5 0.00% 56.00% 0.00% 52.00% 0.00% 57.00% 0.00% 55.00% 1.38E+06 4.36E+10
1 91.67% 98.00% 70.33% 93.33% 2933% 67.33% 50.67% 83.67% 42.10 1.01 199.80 198.79
Llama2 2 14.33% 79.00% 9.67% 73.61% 6.67% 70.67% 9.00% 74.67% 9.37E+03 16.77 4681.01 4664.24
(7B) MEMIT 3 26.67% 89.67% 12.33% 82.67% 567% 66.67% 9.67% 78.33% 4.35E+04 8.40 884.21 875.80
4 22.00% 94.67% 5.67% 82.00% 567% 68.67% 7.00% 80.33% 8.63E+04 1.89 1381.59 1379.71
S 3833% 95.61% 10.67% 71.67% 4.67% 66.67% 8.67% 78.33% 7.60E+04 2.37
1 94.33% 97.00% 68.33% 86.67% 76.33% 89.00% 77.33% 90.33% 30.73 1.09 4.41 3.32
2 95.33% 98.33% 70.00% 88.67% 7533% 88.67% 78.00% 91.67% 30.76 1.14 1.23 0.09
PMET 3 9533% 98.33% 69.67% 88.67% 75.33% 88.67% 78.33% 91.67% 30.78 1.14 1.30 0.16
4 95.33% 98.33% 70.00% 89.00% 75.33% 88.67% 78.33% 91.67% 30.79 1.14 1.14 0.00
5 95.33% 98.33% 70.00% 89.00% 75.33% 88.67% 78.33% 91.67% 30.79 1.14

Table 9: Iterative model editing results on CounTERFACT for at most 10 iterations (denoted by k). We compare the
evaluation metrics of iteration that met stopping criterion |Apy| < 1 (green rows) to that of their corresponding first
iteration and bold the higher value. PMET on GPT-2 XL require more than 5 iterations to achieve our stopping
criteria. While ROME is known to collapse (red rows), we observed a unique case of collapse with Llama-2 (7B)
specifically when using MEMIT. We discuss this in Section 5.

18

Efficacy (1) Generalization (1) Specificity (1) Score (1) Perplexity (]) [Apk| (1)

Model Algo Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50 p(6y, Bffk,) P(Ok+1, izif)
Unedited 0 22.00% 87.33% 21.00% 86.33% 56.33% 73.67% 54.66 195351.10
1 3.00% 40.00% 3.00% 37.00% 1.00% 77.00% 2.00% 46.00% 8.59E+03 1.21E+04 2.64E+05 2.52E+05
2 0.00% 97.00% 0.00% 97.00% 29.00% 71.00% 0.00% 86.00% 5.20E+03 5.75E+04 2.67E+05 2.10E+05
ROME 3 0.00% 21.00% 0.00% 18.00% 0.00% 76.00% 0.00% 25.00% 1.21E+04 9.44E+04 3.27E+05 2.32E+05
4 0.00% 100.00% 0.00% 100.00% 0.00% 68.00% 0.00% 86.00% 6.01E+03 8.27E+04 1.02E+06 9.36E+05
5 0.00% 0.00% 0.00% 0.00% 0.00% 67.00% 0.00% 67.00% 1.85E+04 4.38E+05
1 69.00% 100.00% 58.67% 99.67% 32.33% 85.00% 48.33% 94.00% 61.74 1.02 2035.34 2034.31
2 98.33% 100.00% 87.00% 100.00% 2433% 84.33% 47.67% 94.00% 67.68 1.02 40.41 39.39
MEMIT 3 100.00% 100.00% 88.00% 100.00% 2333% 84.00% 46.67% 94.00% 69.40 1.02 1.05 0.03
4 100.00% 100.00% 89.00% 100.00% 22.00% 84.00% 45.00% 94.00% 70.02 1.02 1.03 0.01
GPT-2 XL 5 100.00% 100.00% 89.67% 100.00% 21.67% 84.00% 4433% 94.00% 70.16 1.02
a.58) 1 34.67% 97.67% 3033% 95.67% 45.00% 85.67% 3533% 93.00% 56.77 5375.18 116427.63 111052.45
2 67.00% 100.00% 52.00% 99.33% 38.33% 85.33% 49.67% 94.33% 60.44 15.17 3109.90 3094.74
3 89.67% 100.00% 66.33% 99.67% 35.00% 85.00% 55.00% 94.33% 62.37 2.16 491.43 489.28
4 94.33% 100.00% 69.67% 100.00% 33.33% 84.67% 54.67% 94.00% 64.42 1.34 50.04 48.69
PMET 5 98.00% 100.00% 73.00% 100.00% 32.00% 84.67% 54.00% 94.00% 65.22 1.25 2.70 1.45
6 99.33% 100.00% 73.67% 100.00% 31.00% 84.00% 54.00% 94.00% 65.93 1.23 1.41 0.19
7 99.00% 100.00% 75.00% 100.00% 30.33% 84.00% 53.33% 94.00% 66.41 1.22 1.30 0.08
8 99.67% 100.00% 74.67% 100.00% 30.00% 84.00% 53.00% 94.00% 66.71 1.21 1.25 0.04
9 99.67% 100.00% 75.00% 100.00% 29.33% 84.00% 52.33% 94.00% 66.77 1.22 1.22 0.01
10 100.00% 100.00% 75.33% 100.00% 29.33% 84.00% 52.33% 94.00% 66.89 1.20 1.21 0.01
Unedited 0 2733% 91.00% 2633% 90.00% 60.00% 77.33% 39.80 5.02E+04 5.02E+04
1 5.00% 90.00% 5.00% 89.00% 0.00% 65.00% 5.00% 80.00% 3.93E+05 1.63E+04 1.33E+05 1.17E+05
2 13.00% 95.00% 10.00% 94.00% 0.00% 67.00% 11.00% 83.00% 6.19E+05 8.72E+03 1.58E+04 7.04E+03
ROME 3 17.00% 99.00% 12.00% 97.00% 0.00% 66.00% 14.00% 84.00% 6.88E+05 3.75E+03 9.70E+03 5.94E+03
4 14.00% 100.00% 11.00% 99.00% 0.00% 64.00% 12.00% 84.00% 1.39E+06 4.61E+03 1.28E+04 8.24E+03
5 10.00% 99.00% 8.00% 99.00% 0.00% 63.00% 9.00% 83.00% 3.32E+06 7.89E+03
1 98.67% 100.00% 89.33% 100.00% 52.67% 80.00% 74.67% 92.00% 41.56 1.01 2.68 1.67
GPT-J 2 99.33% 100.00% 92.67% 100.00% 51.67% 80.33% 74.67% 92.33% 41.71 1.02 1.03 0.01
(6B) MEMIT 3 100.00% 100.00% 94.00% 100.00% 51.33% 80.00% 75.00% 92.33% 41.88 1.02 1.02 0.00
4 100.00% 100.00% 93.67% 100.00% 51.33% 80.00% 75.00% 92.33% 41.88 1.01 1.01 0.00
5 100.00% 100.00% 93.67% 100.00% 51.33% 80.00% 75.00% 92.33% 41.87 1.01
1 95.67% 100.00% 87.33% 100.00% 52.00% 80.00% 72.67% 92.00% 41.94 1.10 5.20 4.10
2 98.67% 100.00% 88.00% 99.67% 52.00% 80.00% 74.00% 92.00% 41.61 1.06 1.14 0.09
PMET 3 99.67% 100.00% 89.67% 100.00% 52.00% 80.00% 7433% 92.00% 41.62 1.06 1.08 0.02
4 100.00% 100.00% 89.67% 100.00% 52.00% 80.00% 74.33% 92.00% 41.59 1.06 1.06 0.00
5 100.00% 100.00% 89.67% 100.00% 52.00% 80.00% 74.33% 92.00% 41.58 1.06
Unedited 0 3833% 57.00% 37.00% 56.00% 59.67% 55.67% 33.69 2.01E+04 2.01E+04
1 9.00% 93.00% 8.00% 92.00% 0.00% 72.00% 9.00% 84.00% 2.49E+04 7.73E+01 7.05E+04 7.04E+04
2 13.00% 99.00% 11.00% 99.00% 1.00% 73.00% 3.00% 88.00% 4.49E+04 4.85E+02 9.17E+03 8.69E+03
ROME 3 22.00% 100.00% 16.00% 99.00% 0.00% 72.00% 18.00% 88.00% 3.73E+04 1.07E+03 6.18E+03 5.11E+03
4 24.00% 100.00% 17.00% 99.00% 0.00% 74.00% 20.00% 89.00% 3.53E+04 1.78E+03 1.04E+04 8.61E+03
5 24.00% 100.00% 17.00% 98.00% 0.00% 74.00% 20.00% 89.00% 3.50E+04 2.47E+03
1 79.50% 99.50% 76.50% 99.00% 31.00% 74.50% 51.50% 89.00% 41.04 1.05 23.10 22.06
Llama2 2 6.50% 88.00% 6.00% 86.00% 5.50% 80.00% 6.00% 84.50% 4435.72 1.07 2.38E+04 2.38E+04
(7B) MEMIT 3 13.50% 96.00% 11.00% 95.00% 3.50% 70.00% 6.50% 85.00% 120046.73 1.68 9.45E+03 9.45E+03
4 6.00% 94.00% 450% 91.50% 450% 72.00% 5.00% 84.50% 34779.75 1.65 1.74E+04 1.74E+04
5 6.50% 86.00% 6.00% 83.00% 1.00% 68.00% 2.00% 78.00% 40680.54 1.70
1 90.00% 98.67% 83.00% 96.33% 66.00% 74.67% 77.33% 88.33% 34.63 1.07 7.40 6.33
2 92.00% 99.00% 8333% 96.67% 66.00% 74.67% 78.00% 88.33% 34.47 1.05 1.12 0.07
PMET 3 92.33% 99.00% 84.33% 96.67% 66.00% 74.67% 78.67% 88.33% 34.44 1.05 1.07 0.02
4 93.00% 99.00% 84.67% 96.67% 65.67% 74.67% 78.67% 88.33% 34.42 1.05 1.06 0.00
5 93.00% 99.00% 84.67% 97.00% 66.00% 74.67% 79.00% 88.33% 34.44 1.05

Table 10: Iterative model editing results on ZsRE for at most 10 iterations (denoted by k). We compare the evaluation
metrics of iteration that met stopping criterion |Apg| < 1 (green rows) to that of their corresponding first iteration
and bold the higher value. PMET on GPT-2 XL require more than 5 iterations to achieve our stopping criteria.
While ROME is known to collapse (red rows), we observed a unique case of collapse with Llama-2 (7B) specifically
when using MEMIT. We discuss this in Section 5.

19

Efficacy (1) Generalization (1) Specificity (1) Score (1) Perplexity () |Apk| ()
Model Algo Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50 p(0y, ﬁif 1) P(Okgr, }rzi‘v)
Unedited 0 1.00% 9.00% 1.00% 22.00% 100.00% 18.00% 54.66
1 87.00% 94.00% 30.00% 67.00% 56.00% 81.00% 48.00% 79.00% 58.79 1.04 12808.17 12807.13
2 98.00% 99.00% 37.00% 73.00% 51.00% 77.00% 53.00% 82.00% 59.75 1.03 59.15 58.12
MEMIT 3 99.00% 99.00% 38.00% 74.00% 50.00% 77.00% 53.00% 82.00% 60.74 1.02 4.17 3.15
4 99.00% 99.00% 38.00% 74.00% 52.00% 77.00% 54.00% 82.00% 62.27 1.02 1.07 0.05
5 99.00% 99.00% 38.00% 74.00% 53.00% 78.00% 55.00% 83.00% 63.88 1.02
1 78.00% 83.00% 22.00% 53.00% 87.00% 97.00% 43.00% 73.00% 57.56 1.07 1248.69 1247.62
2 99.00% 99.00% 36.00% 71.00% 82.00% 93.00% 60.00% 86.00% 59.94 1.04 52.51 51.47
NA_MEMIT 3 99.00% 99.00% 36.00% 70.00% 84.00% 95.00% 60.00% 86.00% 61.95 1.03 3.67 2.64
4 99.00% 99.00% 36.00% 70.00% 86.00% 95.00% 60.00% 86.00% 64.89 1.03 122 0.19
5 99.00% 99.00% 35.00% 68.00% 87.00% 96.00% 60.00% 85.00% 66.73 1.03
1 0.29 0.49 0.06 0.36 0.92 0.98 0.15 0.52 55.61 3166.97 14020.32 10853.35
2 0.72 0.85 0.2 0.57 0.78 0.93 0.39 0.75 56.73 146.75 11323.25 11176.5
3 0.88 0.93 0.25 0.63 0.73 0.91 0.46 0.8 57.73 14.57 4457.16 4442.59
GPT-2 XL 4 0.95 0.97 0.27 0.66 0.71 0.89 0.48 0.82 58.68 2.69 2399.39 2396.7
(1.5B) PMET 5 0.97 0.98 0.28 0.67 0.71 0.88 0.5 0.82 59.77 1.4 1073.72 1072.32
#739 6 0.98 0.99 0.29 0.67 0.67 0.87 0.5 0.82 60.99 1.33 171.9 170.57
7 0.99 0.99 0.3 0.68 0.67 0.86 0.51 0.82 62.4 1.32 12.43 11.11
8 0.99 0.99 0.31 0.68 0.67 0.86 0.52 0.82 63.47 1.31 1.62 0.31
9 0.99 0.99 0.3 0.68 0.66 0.86 0.52 0.82 64.34 1.29 1.4 0.11
10 0.99 0.99 0.31 0.68 0.66 0.86 0.52 0.82 65.16 1.28 1.33 0.05
1 0.29 0.48 0.06 0.35 0.93 0.99 0.15 0.5 55.59 740.72 2872.44 2131.72
2 0.7 0.83 0.19 0.54 0.84 0.97 0.39 0.73 56.54 46.86 2336.83 2289.97
3 0.88 0.92 0.25 0.61 0.84 0.96 0.48 0.8 57.36 7.04 1193.64 1186.6
4 0.94 0.96 0.26 0.63 0.87 0.96 0.5 0.82 58.54 2.18 1651.91 1649.73
NA PMET 5 0.96 0.97 0.28 0.64 0.86 0.96 0.52 0.82 60.37 1.36 851.28 849.92
- 6 0.97 0.98 0.29 0.64 0.87 0.96 0.53 0.83 62.03 1.31 193.5 192.19
7 0.97 0.98 0.29 0.64 0.85 0.97 0.53 0.83 63.48 1.3 24.63 23.33
8 0.98 0.98 0.29 0.64 0.85 0.97 0.53 0.83 64.92 1.27 3.37 2.1
9 0.98 0.98 0.29 0.64 0.85 0.97 0.53 0.83 66.29 1.26 1.55 0.29
10 0.98 0.98 0.3 0.65 0.83 0.96 0.54 0.84 67.86 1.24 1.51 0.27
Unedited 0 0.00% 8.00% 1.00% 10.00% 100.00% 12.00% 39.80
1 99.00% 100.00% 71.00% 93.00% 67.00% 86.00% 77.00% 93.00% 42.79 1.03 4.24 321
2 99.00% 100.00% 79.00% 97.00% 63.00% 83.00% 78.00% 93.00% 44.84 1.02 1.66 0.64
MEMIT 3 99.00% 100.00% 79.00% 98.00% 62.00% 83.00% 71.00% 93.00% 48.58 1.01 17.10 16.09
4 100.00% 100.00% 79.00% 98.00% 59.00% 82.00% 76.00% 93.00% 49.43 1.01 1.74 0.73
5 100.00% 100.00% 81.00% 98.00% 58.00% 81.00% 76.00% 92.00% 50.50 1.01
1 98.00% 99.00% 63.00% 82.00% 84.00% 95.00% 79.00% 91.00% 42.71 1.04 2.56 1.52
2 99.00% 99.00% 75.00% 92.00% 81.00% 95.00% 84.00% 95.00% 45.24 1.02 1.35 0.33
NA_MEMIT 3 99.00% 100.00% 74.00% 91.00% 83.00% 95.00% 84.00% 95.00% 47.19 1.02 3.29 227
4 99.00% 100.00% 74.00% 90.00% 80.00% 95.00% 83.00% 95.00% 49.77 1.02 1.43 0.41
5 100.00% 100.00% 73.00% 91.00% 79.00% 95.00% 82.00% 95.00% 50.94 1.02
1 99.00% 100.00% 72.00% 93.00% 65.00% 84.00% 76.00% 92.00% 40.79 1.06 131 0.25
GPT-J 2 99.00% 100.00% 73.00% 93.00% 65.00% 84.00% 77.00% 92.00% 40.90 1.06 219.70 218.64
(6B) PMET 3 99.00% 100.00% 73.00% 93.00% 65.00% 84.00% 71.00% 92.00% 40.92 1.06 2.25 1.19
#960 4 99.00% 100.00% 73.00% 94.00% 65.00% 84.00% 71.00% 92.00% 41.08 1.05 1.06 0.01
5 99.00% 100.00% 74.00% 94.00% 65.00% 84.00% 77.00% 92.00% 41.28 1.05
1 99.00% 100.00% 72.00% 91.00% 75.00% 90.00% 80.00% 93.00% 41.01 1.06 2.38 1.32
2 98.00% 99.00% 71.00% 90.00% 82.00% 94.00% 82.00% 94.00% 41.23 1.12 491 3.79
3 99.00% 99.00% 70.00% 89.00% 83.00% 95.00% 82.00% 94.00% 41.66 1.13 24.94 23.81
4 97.00% 98.00% 68.00% 88.00% 84.00% 95.00% 82.00% 93.00% 41.99 1.13 4.13 3.00
NA PMET 5 98.00% 98.00% 69.00% 89.00% 81.00% 94.00% 81.00% 94.00% 4271 1.12 273.05 271.93
- 6 98.00% 99.00% 69.00% 89.00% 80.00% 94.00% 81.00% 94.00% 43.54 1.12 1.56 0.44
7 99.00% 99.00% 68.00% 89.00% 76.00% 93.00% 79.00% 94.00% 44.62 1.13 1.57 0.44
8 98.00% 99.00% 67.00% 88.00% 75.00% 92.00% 78.00% 93.00% 45.70 1.13 1.64 0.51
9 98.00% 99.00% 67.00% 88.00% 72.00% 92.00% 77.00% 93.00% 47.48 1.14 2.11 0.97
10 99.00% 99.00% 68.00% 88.00% 70.00% 91.00% 76.00% 93.00% 50.68 1.14 -1.14
Unedited 0 3833% 57.00% 37.00% 56.00% 59.67% 55.67% 33.69
1 94.00% 97.00% 70.00% 87.00% 71.00% 92.00% 77.00% 92.00% 30.95 1.09 2.29 1.2
2 96.00% 98.00% 72.00% 89.00% 71.00% 92.00% 78.00% 93.00% 31.03 1.14 25.72 24.58
PMET 3 96.00% 98.00% 72.00% 89.00% 70.00% 92.00% 78.00% 93.00% 31 1.14 1.58 0.44
4 96.00% 98.00% 72.00% 89.00% 71.00% 92.00% 78.00% 93.00% 31.01 1.14 1.14 0
5 96.00% 98.00% 72.00% 89.00% 71.00% 92.00% 78.00% 93.00% 31 1.14
Llama 2 1 92.00% 95.00% 67.00% 80.00% 76.00% 94.00% 77.00% 89.00% 30.43 1.14 15.27 14.13
(7B) 2 96.00% 97.00% 75.00% 87.00% 73.00% 93.00% 80.00% 92.00% 30.52 1.02 2.86 1.84
#1340 3 96.00% 96.00% 76.00% 87.00% 71.00% 94.00% 80.00% 92.00% 31.19 1.04 2.61 1.57
4 95.00% 95.00% 76.00% 86.00% 66.00% 92.00% 77.00% 91.00% 32.19 1.04 2.27 1.23
NA PMET 5 94.00% 94.00% 75.00% 85.00% 60.00% 91.00% 74.00% 90.00% 35.28 1.05 186 184.95
- 6 90.00% 91.00% 74.00% 84.00% 55.00% 89.00% 70.00% 88.00% 40.1 1.06 13.09 12.03
7 87.00% 88.00% 70.00% 81.00% 47.00% 86.00% 64.00% 85.00% 53.95 1.06 30.27 29.21
8 80.00% 83.00% 66.00% 80.00% 42.00% 83.00% 58.00% 82.00% 104.98 1.06 84.27 83.21
9 73.00% 83.00% 58.00% 78.00% 30.00% 79.00% 47.00% 80.00% 373.87 1.07 358.05 356.98
10 62.00% 79.00% 47.00% 75.00% 26.00% 76.00% 40.00% 76.00% 1414.01 1.07

Table 11: Neighbor-Assisted model editing results on CounTERFACT. We compare evaluation

metrics for both

neighbor-assisted (NA_) and without neighbor runs of the model editing algorithms where |Apy| < 1 (green
rows) and bold the higher value. Results among models and from Table 9 are not comparable due to difference in
neighboring samples (Appendix. B.2). Hence, we report the no. of examples (#) used to run experiment for each
model. NA_PMET on Llama-2 (7B) stands as an exception that didn’t achieved the stopping criteria within 10
iteration and showed a performance decrease.

20

Efficacy (1) Generalization (1) Specificity (1) Score (1) Perplexity (|) |Apk| (J)

Model Algo Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50 p(6y, izi‘ ©) P(Ori1, }lﬁ‘_)
Unedited 0 1.00% 9.00% 1.00% 22.00% 100.00% 18.00% 54.66
1 87.00% 94.00% 30.00% 67.00% 56.00% 81.00% 48.00% 79.00% 58.79 1.04 12808.17 12807.13
2 98.00% 99.00% 37.00% 73.00% 51.00% 77.00% 53.00% 82.00% 59.75 1.03 59.15 58.12
MEMIT 3 99.00% 99.00% 38.00% 74.00% 50.00% 77.00% 53.00% 82.00% 60.74 1.02 4.17 3.15
4 99.00% 99.00% 38.00% 74.00% 52.00% 77.00% 54.00% 82.00% 62.27 1.02 1.07 0.05
5 99.00% 99.00% 38.00% 74.00% 53.00% 78.00% 55.00% 83.00% 63.88 1.02
1 78.00% 83.00% 22.00% 53.00% 87.00% 97.00% 43.00% 73.00% 57.56 1.07 1248.69 1247.62
2 99.00% 99.00% 36.00% 71.00% 82.00% 93.00% 60.00% 86.00% 59.94 1.04 52.51 51.47
NA_MEMIT 3 99.00% 99.00% 36.00% 70.00% 84.00% 95.00% 60.00% 86.00% 61.95 1.03 3.67 2.64
4 99.00% 99.00% 36.00% 70.00% 86.00% 95.00% 60.00% 86.00% 64.89 1.03 1.22 0.19
5 99.00% 99.00% 35.00% 68.00% 87.00% 96.00% 60.00% 85.00% 66.73 1.03
1 79.00% 84.00% 23.00% 54.00% 84.00% 96.00% 45.00% 74.00% 56.9 1.07 1020.79 1019.72
2 99.00% 99.00% 38.00% 72.00% 77.00% 93.00% 61.00% 86.00% 58.97 1.04 81.73 80.69
NAP_MEMIT 3 99.00% 99.00% 37.00% 70.00% 84.00% 94.00% 62.00% 86.00% 60.59 1.03 3.18 2.15
4 99.00% 99.00% 37.00% 69.00% 84.00% 94.00% 61.00% 85.00% 63.4 1.03 1.24 0.21
5 99.00% 99.00% 37.00% 69.00% 84.00% 94.00% 61.00% 85.00% 65.98 1.03
1 29.00% 49.00% 6.00% 36.00% 92.00% 98.00% 15.00% 52.00% 55.61 3166.97 14020.32 10853.35
2 72.00% 85.00% 20.00% 57.00% 78.00% 93.00% 39.00% 75.00% 56.73 146.75 11323.25 11176.5
3 88.00% 93.00% 25.00% 63.00% 73.00% 91.00% 46.00% 80.00% 57.73 14.57 4457.16 4442.59
4 95.00% 97.00% 27.00% 66.00% 71.00% 89.00% 48.00% 82.00% 58.68 2.69 2399.39 2396.7
PMET 5 97.00% 98.00% 28.00% 67.00% 71.00% 88.00% 50.00% 82.00% 59.77 1.4 1073.72 1072.32
6 98.00% 99.00% 29.00% 67.00% 67.00% 87.00% 50.00% 82.00% 60.99 1.33 171.9 170.57
GPT-2 XL 7 99.00% 99.00% 30.00% 68.00% 67.00% 86.00% 51.00% 82.00% 62.4 1.32 12.43 11.11
(1.5B) 8 99.00% 99.00% 31.00% 68.00% 67.00% 86.00% 52.00% 82.00% 63.47 1.31 1.62 0.31
#739 9 99.00% 99.00% 30.00% 68.00% 66.00% 86.00% 52.00% 82.00% 64.34 1.29 14 0.11
10 99.00% 99.00% 31.00% 68.00% 66.00% 86.00% 52.00% 82.00% 65.16 1.28 1.33 0.05
1 29.00% 48.00% 6.00% 35.00% 93.00% 99.00% 15.00% 50.00% 55.59 740.72 2872.44 2131.72
2 70.00% 83.00% 19.00% 54.00% 84.00% 97.00% 39.00% 73.00% 56.54 46.86 2336.83 2289.97
3 88.00% 92.00% 25.00% 61.00% 84.00% 96.00% 48.00% 80.00% 57.36 7.04 1193.64 1186.6
4 94.00% 96.00% 26.00% 63.00% 87.00% 96.00% 50.00% 82.00% 58.54 2.18 1651.91 1649.73
NA PMET 5 96.00% 97.00% 28.00% 64.00% 86.00% 96.00% 52.00% 82.00% 60.37 1.36 851.28 849.92
- 6 97.00% 98.00% 29.00% 64.00% 87.00% 96.00% 53.00% 83.00% 62.03 1.31 193.5 192.19
7 97.00% 98.00% 29.00% 64.00% 85.00% 97.00% 53.00% 83.00% 63.48 1.3 24.63 23.33
8 98.00% 98.00% 29.00% 64.00% 85.00% 97.00% 53.00% 83.00% 64.92 1.27 3.37 2.1
9 98.00% 98.00% 29.00% 64.00% 85.00% 97.00% 53.00% 83.00% 66.29 1.26 1.55 0.29
10 98.00% 98.00% 30.00% 65.00% 83.00% 96.00% 54.00% 84.00% 67.86 1.24 1.51 0.27
1 1.00% 9.00% 1.00% 22.00% 100.00% 18.00% 54.66 768.86 2983.29 221443
2 28.00% 48.00% 6.00% 35.00% 92.00% 98.00% 15.00% 50.00% 55.54 4743 2914.13 2866.7
3 70.00% 83.00% 19.00% 54.00% 84.00% 97.00% 39.00% 73.00% 56.41 6.87 2892.36 2885.49
4 88.00% 92.00% 25.00% 60.00% 82.00% 96.00% 47.00% 79.00% 57.29 2.09 1652.55 1650.46
NAP PMET 5 94.00% 96.00% 27.00% 62.00% 83.00% 95.00% 50.00% 81.00% 58.34 1.31 925.36 924.05
- 6 96.00% 97.00% 28.00% 64.00% 83.00% 95.00% 52.00% 82.00% 59.69 1.28 222.03 220.75
7 98.00% 98.00% 29.00% 64.00% 84.00% 95.00% 53.00% 83.00% 60.9 1.26 21.49 20.23
8 98.00% 99.00% 30.00% 64.00% 84.00% 94.00% 54.00% 83.00% 62.26 124 2.19 0.95
9 98.00% 99.00% 29.00% 64.00% 84.00% 95.00% 54.00% 83.00% 63.16 1.22 1.44 0.22
10 98.00% 99.00% 30.00% 65.00% 82.00% 94.00% 53.00% 83.00% 64.04 1.21 1.47 0.26

Table 12: Results of prefix-free (NA_) and with prefix(NAP_) neighbor-assisted model editing on CounTERFaCT. We
compare their evaluation metrics when our stopping criteria |Apg| < 1 (green rows) is met and bold the higher
value. Results among models and from Table 9 are not comparable due to difference in neighboring samples as
explained in Appendix B.2. Hence, we report the no. of examples (#) used to run experiment for each model.

21

Dataset COUNTERFACT ZsRE

k Score (1) [Api] (1) Ap2(}) Score (1) [Aprl (1) App (D)
Model Algo Accuracy Success Accuracy Success
Unedited 0 31.33% 73.67%
1 42.67% 83.00% 11359.60 48.33% 94.00% 2034.31
2 55.67% 89.67% 77.12 1.13E+04 47.67% 94.00% 39.39 1994.93
MEMIT 3 56.67% 90.00% 9.11 68.01 46.67% 94.00% 0.03 39.36
4 56.67% 90.00% 0.47 8.65 45.00% 94.00% 0.01 0.02
5 56.67% 90.00% 44.33% 94.00%
1 833% 58.33% 103785.71 3533% 93.00% 111052.45
GPT-2 XL 2 31.67% 77.33% 25519.43 8.95E+04 49.67% 94.33% 3094.74 113317.73
(1.5B) 3 40.67% 83.33% 5025.56 2.17E+04 55.00% 94.33% 489.28 2618.47
4 43.33% 85.33% 2029.80 3077.3 54.67% 94.00% 48.69 441.40
PMET 5 44.00% 86.67% 224.53 1805.25 54.00% 94.00% 1.45 47.33
6 44.67% 86.67% 48.96 175.57 54.00% 94.00% 0.19 1.29
7 45.67% 87.00% 21.02 27.94 53.33% 94.00% 0.08 0.11
8 46.00% 87.00% 10.75 10.27 53.00% 94.00% 0.04 0.05
9 46.00% 87.00% 1.71 9.04 52.33% 94.00% 0.01 0.03
10 47.00% 87.33% 0.42 1.29 52.33% 94.00% 0.01 0.01
Unedited 0 37.33% 77.33% 5.02E+04
1 77.67% 94.33% 1.22 74.67% 92.00% 1.67
2 79.00% 95.00% 0.03 1.20 74.67% 92.33% 0.01 1.65
MEMIT 3 79.00% 95.00% 1.86 1.83 75.00% 92.33% 0.00 0.02
4 79.33% 95.00% 0.03 1.84 75.00% 92.33% 0.00 0.00
GPT-J 5 79.33% 95.00% 75.00% 92.33%
(6B) 1 77.67% 93.67% 1.15 72.67% 92.00% 4.10
2 78.00% 94.33% 4.23 3.05 74.00% 92.00% 0.09 4.06
PMET 3 78.33% 94.00% 0.05 4.18 74.33% 92.00% 0.02 0.07
4 78.33% 94.00% 0.02 0.03 74.33% 92.00% 0.00 0.01
5 78.33% 94.33% 74.33% 92.00%
Unedited 0 19.67% 55.67% 2.01E+04
1 77.33% 90.33% 3.32 77.33% 88.33% 6.33
Llama-2 2 78.00% 91.67 % 0.09 3.18 78.00% 88.33% 0.07 6.28
(7B) PMET 3 78.33% 91.67% 0.16 0.07 78.67% 88.33% 0.02 0.05
4 78.33% 91.67% 0.00 0.16 78.67% 88.33% 0.00 0.01
5 78.33% 91.67% 79.00% 88.33%

Table 13: Comparing stopping criteria. We compare our proposed stopping criteria |Apg| < 1 (green) to the two
alternate stopping criteria, monotonic decrease i.e. |Apgy1| < |Apg/|, otherwise stop and use 6, (orange), and small
change, i.e., Apz = [p(0ry1, hickﬂ) — (B, hle)| < 1 (purple). We bold the higher scores among them.

22

	Introduction
	The Locate-and-Edit Framework
	Method
	Iterative Model Editing
	Neighbor-Assisted Model Editing

	Experimental Details
	Datasets
	Evaluation Metrics

	Results and Discussions
	Iterative Model Editing Results
	Neighbor-Assisted Model Editing Results
	Analysis: How effective is the stopping criterion?

	Related Work
	Conclusion
	Limitations
	Locate-and-Edit Algorithms
	Implementation details
	Iterative model editing
	Neighbor-assisted model editing

	Hardware Details
	Iterative Spread
	Factors Contributing Model Collapse
	Additional Analysis
	How does iterative model editing address UnderEdit?
	How prefixes influence neighbor-assisted model editing behavior?

	Iterative model editing results
	Neighbor-assisted model editing results

