
Resolving UnderEdit & OverEdit with
Iterative & Neighbor-Assisted Model Editing

Anonymous EMNLP submission

Abstract

Large Language Models (LLMs) are widely001
deployed in downstream tasks, but keeping002
their knowledge up-to-date via retraining or003
fine-tuning is often computationally expensive.004
Model editing provides a more efficient al-005
ternative by updating a targeted subset of pa-006
rameters, which often follows the locate-and-007
edit paradigm. Despite this efficiency, exist-008
ing methods are limited: edits may fail to009
inject knowledge (UnderEdit) or unintention-010
ally disrupt unrelated neighboring knowledge011
(OverEdit). To address these challenges, we012
propose two complementary methods: itera-013
tive model editing, which applies successive014
edits to mitigate UnderEdit, and neighbor-015
assisted model editing, which incorporates016
neighboring knowledge during editing to re-017
duce OverEdit. Our extensive experiments018
show that these techniques improve editing per-019
formance across multiple LLMs, algorithms,020
and benchmarks, reducing UnderEdit by up to021
38 percentage points and OverEdit by up to022
6, while remaining broadly applicable to any023
locate-and-edit method.024

1 Introduction025

LLMs have been widely used as repositories of026

factual and specialized knowledge (Petroni et al.,027

2020; Jiang et al., 2021; Roberts et al., 2020;028

Youssef et al., 2023). However, the world is con-029

stantly changing, with knowledge and information030

evolving rapidly, such as significant government031

policy changes and their wide impacts across vari-032

ous domains. Thus, it is essential for many NLP ap-033

plications, such as text generation, question answer-034

ing, and knowledge retrieval, to have models that035

can adapt to knowledge changes both effectively036

and efficiently. Re-training an LLM is resource-037

intensive (Patterson et al., 2021). Standard su-038

pervised fine-tuning is data hungry and less effec-039

tive (Meng et al., 2023b). Model-editing, which040

directly modifies important model parameters for041

UNDEREDIT iPad, produced by Apple

iPhone, developed by Honda

iPhone 11, produced by Honda
OVEREDIT

EDIT

TEST

TEST

a) Challenges in current model editing algorithms

b) Our proposed solution

OutputInput

Input Output Expected

Honda

Apple

Apple

Expected

iPad, produced by

LLM edited
with our
proposed
solution

Honda

iPhone, developed by

iPhone 11, produced by

EDIT

EDIT

TEST

Honda

Apple

Apple

Iterative
Resolve

UNDEREDIT

LLM edited
with current

model editing
algorithms

Neighbor-
Assisted
Resolve

OVEREDIT

Apple

Apple

Figure 1: The example from COUNTERFACT updates iPad
producer from Apple to Honda. UnderEdit fails to make
the desired update in the EDIT sentence, while OverEdit
introduces the undesired change in the TEST sentences
as shown in (a). The proposed iterative model editing
mitigated UnderEdit and neighbor-assisted model edit-
ing reduced OverEdit by incorporating related knowl-
edge in EDIT stage as shown in (b).

making the prediction, has emerged as a more ef- 042

ficient alternative for updating outdated informa- 043

tion (Meng et al., 2023a,b; Li et al., 2024; Fang 044

et al., 2025). These methods adopt a “locate-and- 045

edit” approach, where they first identify the param- 046

eter locations associated with outdated knowledge 047

and then update the parameters to enable the model 048

to incorporate and predict the new knowledge. 049

The effectiveness of the methods is evaluated 050

from two perspectives. The first is whether the 051

method successfully updates the knowledge, failure 052

on this leaves certain facts unedited, causing Un- 053

derEdit. Secondly, whether the update introduces 054

unintended modifications to neighboring knowl- 055

edge — a phenomenon we call OverEdit. Existing 056

methods suffer from both UnderEdit and OverEdit 057

as shown in Figure 1. 058

To address this, we propose methods to miti- 059

1

gate both UnderEdit and OverEdit. For UnderEdit,060

we hypothesize that the parameter update is insuffi-061

cient to achieve the desired knowledge change. The062

editing process performed a rank-one update on the063

layer parameters to achieve the desired update. We064

empirically showed that the approximation intro-065

duces errors, leading to UnderEdit. To this end,066

we proposed iterative model editing, wherein edit-067

ing is performed multiple times. For OverEdit, we068

hypothesize that model editing can benefit from in-069

cluding neighboring knowledge during the editing070

stage. We thus introduce neighbor-assisted model071

editing, a procedure that integrates neighboring072

knowledge during the editing process to keep the073

test neighboring knowledge unchanged.074

In summary, we propose solutions to two fun-075

damental challenges in model editing: UnderEdit,076

where edits fail, and OverEdit, where neighboring077

knowledge is erroneously modified. We evaluate078

our approach using four “locate and edit” model079

editing algorithms, ROME (Meng et al., 2023a),080

MEMIT (Meng et al., 2023b), PMET (Li et al.,081

2024) and AlphaEdit (Fang et al., 2025), and ap-082

plied to four LLMs: GPT-2 XL (1.5B) (Radford083

et al., 2019), GPT-J (6B) (Wang and Komatsuzaki,084

2021), Llama-2 (7B) (Touvron et al., 2023), and085

Llama-3.1 (8B) (Meta, 2024). Our experiments086

are conducted on two widely used factual knowl-087

edge editing benchmarks: COUNTERFACT (Meng088

et al., 2023a) and ZsRE (Levy et al., 2017). Our089

results show that iterative model editing improves090

edit success while also reducing the approximation091

error introduced by the rank-one update. Further-092

more, we demonstrate that incorporating even a sin-093

gle neighboring knowledge during model editing094

reduces unintended modifications to neighboring095

knowledge at test time, resulting in stronger edit096

performance. Overall, our proposed methods are097

broadly applicable and consistently effective across098

current locate-and-edit approaches that adopt the099

two-stage editing framework, and are readily appli-100

cable to future methods built on this foundation.101

2 The Locate-and-Edit Framework102

In this section, we provide background on the103

locate-and-edit model editing framework along104

with the notation used throughout the paper.105

An autoregressive LLM is a function fθ : X T →106

∆(X), that takes as input a sequence of tokens107

x = (x1, x2, · · · , xT) of length T with xi in the108

dictionary X , and uses model parameters θ to re-109

turn a probability distribution ∆(X) to model the 110

next token x′, i.e,. fθ(x)[x′] ≈ Pr(X ′ = x′|X = 111

x), where X and X ′ are random variables repre- 112

senting the sequence of input tokens and the next 113

token, respectively. The internal computations of 114

an LLM relies on a grid of hidden states hlt, where 115

l corresponds to the layer and t corresponds to 116

the token position in the sequence (using tokens 117

x1, x2, · · · , xt). Each layer is a standard trans- 118

former block with the self-attention module, MLP 119

module, etc (Vaswani et al., 2017). 120

Prior work focuses on editing the factual knowl- 121

edge within the LLM. Factual knowledge is repre- 122

sented as a triplet (s, r, o), where subject s ∈ X Ts , 123

relation r ∈ X Tr , and object o ∈ X are sequences 124

of tokens, e.g., The iPad [s] is produced by [r] Ap- 125

ple [o]. We consider only single token objects in 126

this representation, following previous work (Meng 127

et al., 2023a,b; Li et al., 2024). The model editing 128

task is to make the model place a higher likelihood 129

on a new object o∗ than an old object o when pre- 130

sented with x = (s, r), i.e., find new parameters θ′, 131

such that fθ′(x)[o∗] > fθ′(x)[o]. Model editing is 132

not limited to a single edit, but can encompass a 133

batch of m desired edits D = {(si, ri, oi, o∗i)}mi=1. 134

Locate and edit model editing algorithms hy- 135

pothesize that factual knowledge locates within 136

specific layers of the LLM, and updating param- 137

eters in these layers is sufficient to induce the de- 138

sired change in object (Pearl, 2013; Vig et al., 2020; 139

Meng et al., 2023a) . These methods employ causal 140

tracing to identify these layers responsible for the 141

factual knowledge, referred to as causal layers 142

{l1, . . . , lc}, where c denotes the number of lay- 143

ers in this range. The last MLP in these layers has 144

been found to have a major impact on the object 145

token distribution when presented with the subject 146

tokens (Meng et al., 2023a,b; Geva et al., 2021). 147

Due to this major impact, locate and edit methods 148

focus on only updating these MLP weights. 149

The weight update is performed in two stages: 150

OPTIMIZATION stage finds ideal values for the net- 151

work’s hidden state in certain transformer layer 152

to make o∗ likely and SPREAD stage updates the 153

weights of the last MLP in casual layer(s) to approx- 154

imate this ideal hidden state. We detail these stages 155

below for MEMIT and discuss its differences to 156

PMET , AlphaEdit and ROME . 157

OPTIMIZATION Stage: Learning the Ideal State. 158

The goal of the OPTIMIZATION stage is to find 159

what outputs in the causal layers would lead to a 160

2

Algorithm OPTIMIZATION Stage SPREAD Stage

MEMIT (Meng et al., 2023b) hlc (hidden state) W l1 · · ·W lc (least-squares update)
PMET (Li et al., 2024) Attnlc & zlc (ideal attention + MLP) W l1 · · ·W lc (attention-free update)
AlphaEdit (Fang et al., 2025) hlc (projected to null space) W l1 · · ·W lc (null space-constrained update)
ROME (Meng et al., 2023a) zl∗ (ideal value) W l∗ (rank-one equality-constrained update)
R-ROME (Gupta et al., 2024a) zl∗ , k∗ (averaged over context) W l∗ (stabilized rank-one update)
EMMET (Gupta et al., 2024c) hlc (batched hidden states) W l1 · · ·W lc (equality-constrained batch update)
ENCORE (Gupta et al., 2025) hlc (with MPES early stopping) W l1 · · ·W lc (norm-constrained update)
EVOKE (LTI) (Zhang et al., 2025) hlc (constrained via multi-stage loss) Follows base method (e.g., ROME or MEMIT)

Table 1: We present a unifying overview of existing locate-and-edit algorithms within the two-stage framework
of OPTIMIZATION and SPREAD. This abstraction allows our proposed methods—iterative and neighbor-assisted
editing—to be applied broadly across all listed algorithms, as well as to future methods built upon this framework.
For detailed descriptions of each algorithm, see Appendix A.

high likelihood on o∗. The methods we investi-161

gate search for ideal outputs in different locations.162

MEMIT searches for an ideal output, h̄lct , for the163

last casual layer at t, the last token index of the164

subject s. The search is performed by finding a165

vector δ to add to current hidden state value hlct .166

We represent the output probability distribution of167

the model using hlct and δ as fθ(x, hlct + δ).168

To make the hidden state δ change robust to169

diverse contexts, these methods add a random pre-170

fix to the prompt, i.e., the network takes as input171

xi = (ξi, s, r), where ξi is one of n random pre-172

fixes. The loss function for δ is to minimize the173

average negative log likelihood of o∗, i.e.,174

g(δ)=̇ − 1

n

n∑
i=1

ln fθ

(
xi, h

lc
t + δ

)
[o∗]175

+DKL

(
fθ

(
s, hlct + δ

)
||fθ (s)

)
176

where DKL is the Kullback–Leibler divergence,177

which is added to constrain the model’s output to178

be close to the original.179

The ideal hidden state for the prompt x = (s, r)180

is h̄lct = hlct + δ∗, where δ∗ is found by performing181

gradient descent on g. This ideal hidden state is182

then used in computing weight update in the next183

stage. AlphaEdit is the same as MEMIT, whereas184

PMET differs from MEMIT by searching for ideal185

outputs for the attention module and MLP modules186

in layer lc. ROME searches for an ideal output187

for the MLP module of a single layer in the set of188

causal layers.189

SPREAD Stage: Propagating the Change. The190

goal of the SPREAD stage is to find new weights191

θ′ such that the hidden state after the update ĥlct is192

close to the ideal hidden state h̄lct for all desired193

OPTMIZATION Update while SPREAD Unused

. . .

Figure 2: The diagram shows a simplified transformer
layer to complement Table 1, composed of attention
and MLP modules. Only the last MLP is shown, as all
methods modify its parameters.

edits in D. Not all weights in the network are 194

updated, only the weights W l corresponding to 195

the weights of the last MLP layer in causal lay- 196

ers are updated. The weight update methods are 197

derived from a rank-one approximation to make 198

ĥlct ≈ h̄lct , which can lead to failure. The different 199

algorithms update different set of weights: MEMIT, 200

PMET, and AlphaEdit update W l for all causal lay- 201

ers, whereas ROME only updates one W l. Among 202

these, AlphaEdit differs by computing θ′ using the 203

null space projection method (Wang et al., 2021). 204

The method differences are shown in Table 1, with 205

Figure 2 complementing it. 206

Several other locate-and-edit methods exist, such 207

as R-ROME (Gupta et al., 2024a), EMMET (Gupta 208

et al., 2024c), EVOKE (LTI) (Zhang et al., 2025), 209

and ENCORE (Gupta et al., 2025), all of which 210

follow the same two-stage procedure (detailed in 211

Appendix A). Below, we discuss the fundamental 212

limitations of this framework and propose a general 213

approach that applies broadly to all methods in this 214

category—not just the four highlighted here, as 215

summarized in Table 1. 216

3 Method 217

The memory-editing algorithms mentioned above 218

face challenges, such as failing to edit certain 219

3

knowledge i.e., UnderEdit or changing neighbor220

knowledge that should remain unchanged i.e.,221

OverEdit. In this section, we present our proposed222

method to address these issues. Specifically, we in-223

troduce iterative model editing (3.1) to mitigate Un-224

derEdit and neighbor-assisted model editing (3.2)225

to reduce OverEdit.226

3.1 Iterative Model Editing227

There are two possible reasons for UnderEdit to228

occur. The first is that h̄lct does not reflect a hid-229

den state for a successful edit. The second is that230

the weight update results in ĥlct ̸≈ h̄lct . We hy-231

pothesize that both of these potential problems can232

be addressed by running the memory edit process233

multiple times because: 1) it allows for potentially234

finding better h̄lct after updating the model param-235

eters so that ∥ĥlct − h̄lct ∥ ≤ ∥h
lc
t − h̄lct ∥, and 2) on236

the next iteration, the approximation used in the237

SPREAD stage for the weight update will be better238

since ĥtlc is closer to h̄lct than hlct . We detail this239

iterative process below for MEMIT, but it can also240

be adapted to ROME, PMET and AlphaEdit by241

replacing h̄lct with the targets of the optimization242

procedure for those algorithms.243

Iterative model editing works as follows. At iter-244

ation k, OPTIMIZATION computes the ideal hidden245

state h̄lct,k based on the hidden state produced with246

the model parameters θk, i.e., h̄lct,k = hlct,k + δ∗k,247

where δ∗k is obtained by optimizing g(δ) using θk248

as the model parameters. SPREAD stage updates249

the model parameters to θk+1 based on the com-250

puted h̄lct,k, producing a new hidden state ĥlct,k. Note251

that ĥlt,k = hlt,k+1.252

The iterations end when model perplexity using253

ĥlct,k is within ϵ of the perplexity using h̄lct,k, i.e.,254

|p(θk+1, ĥ
lc
t,k)− p(θk, h̄

lc
t,k)| ≤ ϵ,255

where p is the perplexity of the target token over256

the m edits in D257

p(θ, h)=̇
1

m

n∑
i=1

e− ln fθ(xi,h)[o
∗
i].258

For brevity, we use ∆pk to denote the above differ-259

ence in perplexity in iteration k. Empirically, we260

found ϵ = 1 to be a sufficient threshold for the data261

sets used in this paper.262

Figure 3 illustrates how iterative model editing263

progressively brings ĥlct,k closer in perplexity to264

h̄lct,k. The figure also highlights that most of the im-265

provement stems from applying SPREAD multiple266

0.25

0.50

0.75

1.25

1.50

Unedited Iteration 1 Iteration 2 Iteration 3

Ta
rg

et
 P

er
pl

ex
ity

OPTIMIZATION

SPREAD

o o o o*

Pe
rp

le
xi

ty
 D

iff
er

en
ce

0

1.00

1.75

Unedited
Model

Stop

Figure 3: An editing example of using MEMIT to edit
GPT-J. Iterative model editing resolving UnderEdit. As
the iteration proceeds the perplexity differences eventu-
ally reduces to ≤ ϵ, leading to the model predicting new
object. The perplexity values are Box-Cox transformed
to better visualize extreme high and low values.

times, as the perplexity of h̄lct,k changes relatively 267

little across iterations. However, the stability in 268

perplexity does not imply that h̄lct,k remains iden- 269

tical at each iteration. We verified this through 270

an additional experiment using iterative SPREAD, 271

where OPTIMIZATION was performed only in the 272

first iteration. We found that keeping h̄lct,k fixed 273

across iterations leads to overfitting and perfor- 274

mance degradation, underscoring the necessity of 275

running OPTIMIZATION at every step. This con- 276

firms that, despite similar perplexities, the hidden 277

states evolve across iterations and must be recom- 278

puted to ensure stable and effective edits. A de- 279

tailed explanation of why the hidden states evolve 280

across iterations is provided in Appendix D. 281

3.2 Neighbor-Assisted Model Editing 282

Model editing must not only change the model’s 283

output from o to o∗ given (s, r), but also preserve 284

outputs for neighboring knowledge, i.e (s̃, r, o), 285

where s̃ is a new subject sharing the same relation 286

r. A preservation example is shown in Figure 1a: 287

iPhone 11 [s̃] is still produced by [r] Apple [o] 288

despite iPad is edited to produced by Honda1. 289

Existing model editing algorithms struggle to 290

preserve neighboring knowledge because OPTI- 291

MIZATION is designed solely to maximize the like- 292

lihood of the new knowledge, (s, r, o∗). More- 293

1In the COUNTERFACT dataset

4

over, iterative model editing can exacerbate this294

OverEdit issue, as each iteration continues to re-295

inforce the new knowledge without explicitly pre-296

serving neighboring knowledge.297

Gangadhar and Stratos (2024) argue that incorpo-298

rating neighboring knowledge while learning new299

facts through fine-tuning is more effective at pre-300

serving such neighbors compared to conventional301

model editing. Inspired by this observation, we302

hypothesize that incorporating neighboring knowl-303

edge into the OPTIMIZATION stage can help to304

mitigate OverEdit.305

We propose neighbor-assisted model editing,306

which optimizes h̄lct to maximize the likelihood of307

the new knowledge (s, r, o∗) and the neighboring308

knowledge (s̃, r, o). To accomplish this we define309

the loss function for δ as:310

g̃(δ)=̇ − 1

n

n∑
i=1

ln fθ

(
xi, h

lc
t + δ

)
[o∗]311

+DKL

(
fθ

(
s, hlct + δ

)
||fθ (s)

)
312

− ln fθ

(
x̃, hlct + δ

)
[o],313

where x̃ = (s̃, r) without any prefix. In our ex-314

periments we only included a single neighboring315

knowledge fact (s̃, r, o), but it should be extensible316

to multiple neighboring knowledge facts. We omit317

the iteration notation k here for simplicity. The pro-318

posed loss function change could be easily applied319

in different iterations.320

4 Experimental Details321

In this section, we detail the experiments to demon-322

strate the effectiveness of iterative and neighbor-323

assisted model editing with MEMIT, PMET, Al-324

phaEdit and ROME. We evaluate these algorithms325

with our modifications across four LLMs: GPT-2326

XL (1.5B), GPT-J (6B), Llama-2 (7B) and Llama-327

3.1 (8B). We use EasyEdit2(Wang et al., 2024b)328

with default hyperparameters; implementation de-329

tails are in AppendixB.330

4.1 Datasets331

To evaluate model editing across different datasets,332

we use the COUNTERFACT (Meng et al., 2023a) and333

ZsRE (Levy et al., 2017) datasets. Both datasets334

consist of approximately 20k factual knowledge335

instances. Due to hardware limitations, for each336

model-editing experiment, we ran it on a subset of337

2https://github.com/zjunlp/EasyEdit

m = 1,000 edits for each dataset. We repeat the 338

editing task three times each using a different set 339

of m edits sampled from the whole dataset. We 340

ensured that the edits in these trials were mutually 341

exclusive and report the averages across them. 342

It is not uncommon for a model to “collapse" 343

(fail on a downstream task) after editing. To evalu- 344

ate model collapse we use the ME-PPL-50 dataset 345

(Yang et al., 2024). ME-PPL-50 comprises 50 ut- 346

terances, each averaging 22 tokens, sampled from 347

LLMs’ pre-training corpora. Yang et al. (2024) 348

demonstrated that high perplexity on this dataset 349

correlates with failures in various downstream 350

tasks, making it an efficient proxy for evaluating 351

model collapse. They also observed that this be- 352

havior remains consistent regardless of dataset size. 353

Thus, we use this smaller set. We analyze the im- 354

pact of our proposed methods on model collapse in 355

Section 5. 356

4.2 Evaluation Metrics 357

We are primarily concerned with evaluating how 358

well iterative and neighbor-assisted model editing 359

reduce the frequency of UnderEdit and OverEdit. 360

We measure how successful the editing algorithms 361

were by examining efficacy and generalization 362

scores. Efficacy measures the success of introduc- 363

ing new knowledge edits in the dataset. Generaliza- 364

tion tests whether the edit is robust and not overfit 365

by evaluating the model on paraphrases of the ex- 366

amples in the dataset. To understand how well the 367

algorithms were at avoiding OverEdits, we mea- 368

sure the specificity of the model, i.e., how much of 369

the neighbor knowledge remained unchanged. To 370

summarize the overall performance in a score, we 371

use a harmonic mean of efficacy, generalization, 372

and specificity. 373

For each of these metrics, we report two evalua- 374

tion scores: success and accuracy. Success is the 375

percentage of edits where fθ̄(xi)[o
∗
i] > fθ̄(xi)[oi] 376

(or fθ̄(x̃i)[oi] > fθ̄(x̃i)[o
∗
i] for specificity) with θ̄ 377

being the final weights after editing. Accuracy is 378

the percentage of edits where o∗ (or o in the case 379

of specificity) is the most likely next token. 380

5 Results and Discussions 381

We show the experimental results for both iterative 382

model editing and neighbor-assisted model editing 383

in this section. The hardware used on running these 384

experiments are detailed in Appendix C. 385

5

https://github.com/zjunlp/EasyEdit

Model Algo k Efficacy (↑) Generalization (↑) Specificity (↑) Score (↑) Perplexity (↓) |∆pk|(↓)

Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50

GPT-2 XL
(1.5B)

Unedited 0 0.00% 21.67% 0.00% 31.33% 56.67% 31.33% 54.66

ROME 1 1.00% 56.00% 1.00% 55.00% 0.00% 92.00% 1.00% 64.00% 7.07E+03 7.15E+05

MEMIT 1 79.00% 92.67% 22.00% 65.67% 75.00% 99.00% 42.67% 83.00% 58.66 11359.60
4 99.67% 99.67% 35.67% 76.00% 68.67% 99.00% 56.67% 90.00% 62.44 0.47

PMET 1 21.67% 57.00% 3.00% 42.00% 91.67% 100.00% 8.33% 58.33% 55.60 103785.71
10 99.33% 99.67% 24.67% 70.33% 75.33% 99.00% 47.00% 87.33% 63.92 0.42

AlphaEdit 1 98.00% 99.00% 33.00% 76.00% 63.00% 99.00% 53.00% 90.00% 59.41 5.20E+06
2 99.00% 100.00% 36.00% 76.00% 59.00% 99.00% 55.00% 90.00% 60.84 0.11

GPT-J
(6B)

Unedited 0 9.33% 38.00% 9.00% 38.33% 82.00% 37.33% 39.80

ROME 1 1.00% 57.00% 1.00% 55.00% 0.00% 76.00% 1.00% 61.00% 2.15E+05 1.21E+14

MEMIT 1 99.00% 100.00% 75.00% 95.67% 69.33% 89.33% 77.67% 94.33% 42.20 1.22
2 99.33% 100.00% 80.67% 98.00% 66.33% 88.33% 79.00% 95.00% 43.92 0.03

PMET 1 98.00% 99.67% 76.00% 95.00% 68.33% 88.67% 77.67% 93.67% 41.27 1.15
3 99.00% 99.67% 76.67% 95.67% 68.33% 88.67% 78.33% 94.00% 41.15 0.05

Llama-2
(7B)

Unedited 0 15.00% 13.67% 15.00% 15.00% 84.33% 19.67% 30.63

ROME 1 0.00% 48.00% 0.00% 49.00% 0.00% 76.00% 0.00% 55.00% 1.45E+04 8.10E+05

MEMIT 1 91.67% 98.00% 70.33% 93.33% 29.33% 67.33% 50.67% 83.67% 42.10 198.79
2 14.33% 79.00% 9.67% 73.67% 6.67% 70.67% 9.00% 74.67% 9.37E+03 4664.24

PMET 1 94.33% 97.00% 68.33% 86.67% 76.33% 89.00% 77.33% 90.33% 30.73 3.32
2 95.33% 98.33% 70.00% 88.67% 75.33% 88.67% 78.00% 91.67% 30.76 0.09

AlphaEdit 1 94.33% 97.00% 47.67% 67.33% 59.00% 80.00% 61.67% 79.67% 30.79 18.84
2 100.00% 100.00% 67.67% 89.33% 51.67% 77.33% 68.00% 87.67% 31.47 0.15

Llama-3.1
(8B)

Unedited 0 1.00% 7.00% 1.00% 9.33% 89.67% 11.33% 71.73

ROME 1 1.00% 78.00% 0.00% 68.00% 0.00% 66.00% 1.00% 70.00% 1.03E+05 1.44E+08

MEMIT 1 96.33% 98.00% 52.67% 80.33% 81.00% 98.00% 72.33% 91.33% 72.09 4,550.10
3 100.00% 100.00% 68.67% 93.67% 74.67% 97.00% 79.00% 96.67% 72.14 0.01

PMET 1 2.00% 96.00% 7.00% 78.00% 69.00% 98.00% 4.00% 90.00% 77.06 2,600.30
3 1.00% 98.00% 10.00% 88.00% 64.00% 97.00% 3.00% 94.00% 79.95 0.06

AlphaEdit 1 94.67% 97.00% 50.33% 78.33% 76.00% 97.00% 69.00% 90.00% 71.81 4,470.02
3 100.00% 100.00% 68.00% 93.67% 67.33% 95.67% 76.00% 96.67% 72.30 0.01

Table 2: Iterative model editing results on COUNTERFACT for at most 10 iterations (denoted by k). We compare the
evaluation metrics of iteration that met stopping criterion |∆pk| ≤ 1 to that of their corresponding first iteration
and bold the higher value. PMET on GPT-2 XL require more than 5 iterations to achieve our stopping criteria.
Results for all iterations are provided in Table 9 (Appendix G). While ROME is known to collapse (results reported
in Table 9), we observed a unique case of collapse with Llama-2 (7B) specifically when using MEMIT. We discuss
this in Section 5. Note: Results for PMET on LLaMA-3.1 are based on a single subset, as results for the remaining
subsets are still being generated. Results for AlphaEdit on GPT-J are currently unavailable due to an implementation
error in EasyEdit, which we are actively working to resolve.

5.1 Iterative Model Editing Results386

We conducted iterative model editing experiments387

across all datasets, LLMs, and editing algorithms,388

running each configuration for at most 10 iterations.389

The evaluation results are presented in Table 2 for390

COUNTERFACT and Table 10 for ZsRE (provided in391

Appendix 10 due to space constraints). From these392

experiments results, we drew several conclusions.393

First, iterative model editing consistently im-394

proves performance, with the overall success scores395

increasing across iterations for most models and al-396

gorithms. The overall success improvement stems397

from enhanced efficacy and generalization capa-398

bilities, which means fewer cases of UnderEdit.399

Specifically, we observed an increase in success ac-400

curacy of up to 38 percentage points, with a greater 401

improvement in efficacy accuracy of up to 77 per- 402

centage points (PMET on GPT-2 XL). We con- 403

ducted more analysis in Appendix F.1 to showcase 404

the efficacy improvement is mostly coming from 405

UnderEdit examples. Secondly, as iteration goes, 406

the perplexity difference constantly goes down in 407

most cases. Finally, the proposed stopping criterion 408

(|∆pk| ≤ ϵ) consistently halts the process, validat- 409

ing its reliability. Using this criterion also yields 410

better overall scores compared to executing the al- 411

gorithm only once. Additionally, in Section 5.3, 412

we compare our stopping criterion against two al- 413

ternatives and find it to be the most effective. 414

While efficacy and generalization improve sig- 415

nificantly with iterative model editing, specificity 416

6

Model Algo k Efficacy (↑) Generalization (↑) Specificity (↑) Score (↑) Perplexity (↓) |∆pk|(↓)

Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50

GPT-2 XL
(1.5B)
#739

Unedited 0 1.00% 9.00% 1.00% 22.00% 100.00% 18.00% 54.66

MEMIT 4 99.00% 99.00% 38.00% 74.00% 52.00% 77.00% 54.00% 82.00% 62.27 0.05
NA_MEMIT 4 99.00% 99.00% 36.00% 70.00% 86.00% 95.00% 60.00% 86.00% 64.89 0.19

PMET 8 99.00% 99.00% 31.00% 68.00% 67.00% 86.00% 52.00% 82.00% 63.47 0.31
NA_PMET 9 98.00% 98.00% 29.00% 64.00% 85.00% 97.00% 53.00% 83.00% 66.29 0.29

GPT-J
(6B)
#960

Unedited 0 0.00% 8.00% 1.00% 10.00% 100.00% 12.00% 39.80

MEMIT 2 99.00% 100.00% 79.00% 97.00% 63.00% 83.00% 78.00% 93.00% 44.84 0.64
NA_MEMIT 2 99.00% 99.00% 75.00% 92.00% 81.00% 95.00% 84.00% 95.00% 45.24 0.33

PMET 1 99.00% 100.00% 72.00% 93.00% 65.00% 84.00% 76.00% 92.00% 40.79 0.25
NA_PMET 6 98.00% 99.00% 69.00% 89.00% 80.00% 94.00% 81.00% 94.00% 43.54 0.44

Llama-2
(7B)
#1340

Unedited 0 38.33% 57.00% 37.00% 56.00% 59.67% 55.67% 33.69

PMET 3 96.00% 98.00% 72.00% 89.00% 70.00% 92.00% 78.00% 93.00% 31 0.44
NA_PMET 10 62.00% 79.00% 47.00% 75.00% 26.00% 76.00% 40.00% 76.00% 1414.01

Table 3: Neighbor-Assisted model editing results on COUNTERFACT. We present iteration where our proposed
stopping criteria is achieved for both neighbor-assisted (NA_) and without neighbor runs of the model editing
algorithms. We compare their evaluation metrics and bold the higher value. Results among models and from Table 2
are not comparable due to difference in neighboring samples as explained in Appendix. B.2. Hence, we report the
no. of examples (#) used to run experiment for each model. NA_PMET on Llama-2 (7B) stands as an exception
that didn’t achieved the stopping criteria within 10 iteration and showed a performance decrease. Results for all
iterations are provided in Table 11.

decreased in some experiments, indicating an in-417

crease in OverEdit. We argue that this occurs be-418

cause maximizing the likelihood of new knowledge419

through updates to causal layer weight parameters420

inadvertently affects neighboring knowledge due to421

shared weights. However, the overall performance422

increase outweighs the drop in specificity.423

Although iterative editing is effective in most424

cases, we also observed model collapse as edit-425

ing progresses, indicated by high model perplexity426

on ME-PPL-50 (5 out of 15 experiment settings).427

This collapse behavior aligns with the continuous428

editing failures observed in previous work (Gupta429

et al., 2024b; Meng et al., 2023a). This suggests430

that when the combination of the model and edit-431

ing algorithm succeeds in continuous editing, an432

essential experimental setting, iterative editing can433

further improve model performance. Specifically,434

ROME collapses under iterative 3 editing, which435

aligns with prior findings on its inability to sup-436

port continuous editing (Gupta et al., 2024b). We437

also found that Llama-2 (7B) collapses only when438

edited with MEMIT, a result consistent with find-439

ings in Yang et al. (2024). Thus, we conclude that440

iterative model editing does not inherently lead to441

collapse. However, unstable models that fail with442

sequential editing may not benefit from this ap-443

proach. Although investigating collapse is not the444

3ROME does not support batch editing, as it can only
modify one fact at a time (Meng et al., 2023b). We discuss
this further in Appendix A.

primary focus of this work, our findings (detailed 445

in Appendix E) offer a useful foundation for future 446

research in this area. 447

We also consistently observed a trade-off be- 448

tween generalization and specificity in Table 2. To 449

further investigate this phenomenon, we focused 450

on AlphaEdit, which aims to address this trade- 451

off using null space projection to constrain model 452

updates so that they minimally interfere with ex- 453

isting knowledge. Our results show that although 454

AlphaEdit is designed to mitigate OverEdit, its per- 455

formance still degrades in specificity under iterative 456

model editing—indicating that this method does 457

not fully resolve the problem. This persistent trade- 458

off affects all locate-and-edit algorithms, and the 459

proposed iterative editing is effective and widely 460

applicable across this family of methods. 461

5.2 Neighbor-Assisted Model Editing Results 462

To evaluate neighbor-assisted model editing 463

method, we only conducted experiments on 464

COUNTERFACT due to data limitations of ZsRE ex- 465

plained in Appendix B. We perform iterative model 466

editing with the modified neighbor loss, excluding 467

collapsed settings (evaluation results in Table 3). 468

We observed consistently higher specificity 469

across all iterations when using neighbor-assisted 470

editing (denoted by NA_) compared to setups with- 471

out it. This increase in specificity was accompanied 472

by an overall improvement in score. Specifically, 473

we observed gains of up to 6 percentage points in 474

7

Dataset COUNTERFACT ZsRE

Score (↑) |∆pk|(↓) ∆p2 (↓) Score (↑) |∆pk|(↓) ∆p2(↓)
Model Algo k Acc k Acc

4 56.67% 0.47 8.65 3 46.67% 0.03 39.36MEMIT
4 45.00% 0.01 0.02

10 47.00% 0.42 1.29 6 54.00% 0.19 1.29

GPT-2
XL
(1.5B) PMET

7 53.33% 0.08 0.11

2 79.00% 0.03 1.20 2 74.67% 0.01 1.65MEMIT
3 75.00% 0.00 0.02

1 77.67% 1.15 2 74.00% 0.09 4.06
3 78.33% 0.05 4.18 3 74.33% 0.02 0.07

GPTJ
(6B) PMET

4 78.33% 0.02 0.03

2 78.00% 0.09 3.18 2 78.00% 0.07 6.28Llama-2
(7B) PMET

3 78.33% 0.16 0.07 3 78.67% 0.02 0.05

Table 4: Comparing stopping criteria. We compare
our proposed stopping criteria (green) to the two alter-
nate stopping criteria, monotonic decrease (orange), and
small change (purple). We bold the higher scores among
them. We report results for all iterations in Table 13.

success accuracy and up to 34 percentage points in475

specificity accuracy (NA_MEMIT on GPT-2 XL).476

Although there was a slight decrease in generaliza-477

tion, the gain in specificity was more substantial,478

increasing the score. Additionally, because no pre-479

fix was added to the neighboring knowledge, we480

investigate its role in Appendix F.2. We found that481

adding prefixes led to a slightly higher overall score482

but reduced the specificity score.483

Moreover, the proposed stopping criteria484

|∆pk| ≤ ϵ, originally defined for iterative model485

editing, remain effective for neighbor-assisted486

model editing. We observed one exception in the487

case of LLaMA-2 (7B), where neighbor-assisted488

editing with PMET resulted in performance degra-489

dation. We attribute this to an increased tendency490

toward model collapse, as indicated by elevated491

perplexity (ME-PPL-50). Notably, LLaMA-2 (7B)492

was again the only model to exhibit such col-493

lapse behavior, reinforcing our earlier hypothesis494

that model-specific factors contribute to instability.495

However, identifying the precise training-related496

causes of this behavior requires deeper investiga-497

tion, which we leave for future work.498

5.3 Analysis: How effective is the stopping499

criterion?500

We tested two alternate stopping criteria to the501

proposed stopping criteria |∆pk| ≤ 1. The first502

is that |∆pk| should monotonically decrease i.e.,503

|∆pk+1| < |∆pk|, otherwise stop and use θk. The504

second is to stop when the difference in perplexity505

between consecutive iterations, i.e after SPREAD506

stage, is small, i.e., ∆p2 = |p(θk+1, h
lc
t,k+1) −507

p(θk, h
lc
t,k)| ≤ 1. We found our proposed criteria508

to be most the most effective in these experiments509

as shown in Table 4. Moreover, the second criteria 510

suffered with two major drawbacks—a) it always 511

needed at least two iterations to terminate and b) 512

it always took one extra iteration longer than the 513

proposed stopping criteria. 514

6 Related Work 515

In this work, we extensively discussed locate-and- 516

edit model editing algorithms. KN (Dai et al., 517

2022) is a related method based on gradient-based 518

neuron selection. In addition, there is a body 519

of research that employs meta-learners to guide 520

the parameter updates required for specific ed- 521

its. For example, KE (Cao et al., 2021) uses a 522

hyper-network to update model parameters, while 523

MEND (Mitchell et al., 2022a) trains gradient- 524

based, lightweight model editor networks. MAL- 525

MEN (Tan et al., 2024) builds upon MEND to 526

address scalability challenges. Another line of 527

research adds new knowledge without altering 528

the model’s parameters. SERAC (Mitchell et al., 529

2022b), GRACE (Hartvigsen et al., 2023), and 530

WISE (Wang et al., 2024a) achieve this by em- 531

ploying additional memory to store new knowl- 532

edge. A router network is then trained to decide 533

whether to retrieve knowledge from the original 534

model or the additional memory, ensuring the in- 535

tended knowledge is accessed without modifying 536

the model’s core parameters. We specifically focus 537

on locate-and-edit model editing methods due to 538

their effectiveness and efficiency in updating only 539

the important parameters. Our proposed method 540

introduces simple changes to existing techniques 541

while still demonstrating effectiveness. 542

7 Conclusion 543

In this work, we addressed key challenges in model 544

editing—UnderEdit and OverEdit —by propos- 545

ing iterative and neighbor-assisted model editing 546

techniques. Our iterative approach effectively re- 547

solves UnderEdit by reducing the approximation 548

error to ensure sufficient weight updates, while 549

neighbor-assisted editing mitigates OverEdit by 550

preserving neighboring knowledge. Extensive ex- 551

periments across diverse editing algorithms, LLMs, 552

and datasets validate the efficacy of our methods. 553

These contributions pave the way for more reliable 554

model editing, with broad applicability to dynamic 555

knowledge updates in LLMs. 556

8

8 Limitations557

The results shows that our proposed iterative and558

neighbor-assisted model editing approaches are559

highly effective resolving UnderEdit and OverEdit,560

respectively. However, we did notice some trade-561

offs where the former negatively impacted speci-562

ficity and later generalization. We believe, these563

trade-offs stem from the fundamental challenge564

faced by direct model editing methods where LLM565

parameters are shared across different types of566

stored knowledge and currently no method exits567

to isolate parameters related to a knowledge. Our568

experiments and results highlight these challenges569

and encourages the research community to explore570

further resolving these challenges. So, we would571

recommend the adopters of our methods to priori-572

tize between specificity or generalization depend-573

ing on the application-specific requirements.574

Limited computational resources restricted us575

from experimenting with larger batch sizes and576

additional LLMs, such as GPT-NeoX (20B) and577

larger Llama-2 and Llama-3.1 models. We hypoth-578

esize that the experimental result trend will remain579

the same, and we leave the verification of this hy-580

pothesis for future work.581

References582

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-583
ing factual knowledge in language models. Preprint,584
arXiv:2104.08164.585

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao586
Chang, and Furu Wei. 2022. Knowledge neurons in587
pretrained transformers. In Proceedings of the 60th588
Annual Meeting of the Association for Computational589
Linguistics (Volume 1: Long Papers), pages 8493–590
8502, Dublin, Ireland. Association for Computational591
Linguistics.592

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan593
Ma, Jie Shi, Xiang Wang, Xiangnan He, and Tat-594
Seng Chua. 2025. Alphaedit: Null-space constrained595
model editing for language models. In The Thirteenth596
International Conference on Learning Representa-597
tions.598

Govind Krishnan Gangadhar and Karl Stratos. 2024.599
Model editing by standard fine-tuning. In Findings of600
the Association for Computational Linguistics: ACL601
2024, pages 5907–5913, Bangkok, Thailand. Associ-602
ation for Computational Linguistics.603

Mor Geva, Roei Schuster, Jonathan Berant, and Omer604
Levy. 2021. Transformer feed-forward layers are key-605
value memories. In Proceedings of the 2021 Confer-606
ence on Empirical Methods in Natural Language Pro-607
cessing, pages 5484–5495, Online and Punta Cana,608

Dominican Republic. Association for Computational 609
Linguistics. 610

Akshat Gupta, Sidharth Baskaran, and Gopala Anu- 611
manchipalli. 2024a. Rebuilding ROME : Resolv- 612
ing model collapse during sequential model editing. 613
In Proceedings of the 2024 Conference on Empiri- 614
cal Methods in Natural Language Processing, pages 615
21738–21744, Miami, Florida, USA. Association for 616
Computational Linguistics. 617

Akshat Gupta, Phudish Prateepamornkul, Maochuan 618
Lu, Ahmed Alaa, Thomas Hartvigsen, and Gopala 619
Anumanchipalli. 2025. Lifelong sequential knowl- 620
edge editing without model degradation. Preprint, 621
arXiv:2502.01636. 622

Akshat Gupta, Anurag Rao, and Gopala Anu- 623
manchipalli. 2024b. Model editing at scale leads 624
to gradual and catastrophic forgetting. In Findings of 625
the Association for Computational Linguistics: ACL 626
2024, pages 15202–15232, Bangkok, Thailand. As- 627
sociation for Computational Linguistics. 628

Akshat Gupta, Dev Sajnani, and Gopala Anu- 629
manchipalli. 2024c. A unified framework for model 630
editing. In Findings of the Association for Compu- 631
tational Linguistics: EMNLP 2024, pages 15403– 632
15418, Miami, Florida, USA. Association for Com- 633
putational Linguistics. 634

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid 635
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2023. 636
Aging with grace: Lifelong model editing with dis- 637
crete key-value adaptors. In Advances in Neural 638
Information Processing Systems. 639

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham 640
Neubig. 2021. How can we know when language 641
models know? on the calibration of language models 642
for question answering. Transactions of the Associa- 643
tion for Computational Linguistics, 9:962–977. 644

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle- 645
moyer. 2017. Zero-shot relation extraction via read- 646
ing comprehension. CoRR, abs/1706.04115. 647

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun 648
Ma, and Jie Yu. 2024. Pmet: Precise model editing in 649
a transformer. Proceedings of the AAAI Conference 650
on Artificial Intelligence, 38(17):18564–18572. 651

Kevin Meng, David Bau, Alex Andonian, and Yonatan 652
Belinkov. 2023a. Locating and editing factual associ- 653
ations in gpt. Preprint, arXiv:2202.05262. 654

Kevin Meng, Arnab Sen Sharma, Alex Andonian, 655
Yonatan Belinkov, and David Bau. 2023b. Mass- 656
editing memory in a transformer. Preprint, 657
arXiv:2210.07229. 658

Meta. 2024. Llama 3.1 8b. https://huggingface. 659
co/meta-llama/Meta-Llama-3-8B. 660

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 661
Finn, and Christopher D. Manning. 2022a. Fast 662
model editing at scale. Preprint, arXiv:2110.11309. 663

9

https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://openreview.net/forum?id=HvSytvg3Jh
https://openreview.net/forum?id=HvSytvg3Jh
https://openreview.net/forum?id=HvSytvg3Jh
https://doi.org/10.18653/v1/2024.findings-acl.352
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2024.emnlp-main.1210
https://doi.org/10.18653/v1/2024.emnlp-main.1210
https://doi.org/10.18653/v1/2024.emnlp-main.1210
https://arxiv.org/abs/2502.01636
https://arxiv.org/abs/2502.01636
https://arxiv.org/abs/2502.01636
https://doi.org/10.18653/v1/2024.findings-acl.902
https://doi.org/10.18653/v1/2024.findings-acl.902
https://doi.org/10.18653/v1/2024.findings-acl.902
https://doi.org/10.18653/v1/2024.findings-emnlp.903
https://doi.org/10.18653/v1/2024.findings-emnlp.903
https://doi.org/10.18653/v1/2024.findings-emnlp.903
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://arxiv.org/abs/1706.04115
https://arxiv.org/abs/1706.04115
https://arxiv.org/abs/1706.04115
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1609/aaai.v38i17.29818
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/2210.07229
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2110.11309

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-664
pher D. Manning, and Chelsea Finn. 2022b.665
Memory-based model editing at scale. Preprint,666
arXiv:2206.06520.667

David Patterson, Joseph Gonzalez, Quoc Le, Chen668
Liang, Lluis-Miquel Munguia, Daniel Rothchild,669
David So, Maud Texier, and Jeff Dean. 2021. Car-670
bon emissions and large neural network training.671
Preprint, arXiv:2104.10350.672

Judea Pearl. 2013. Direct and indirect effects. Preprint,673
arXiv:1301.2300.674

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim675
Rocktäschel, Yuxiang Wu, Alexander H. Miller,676
and Sebastian Riedel. 2020. How context affects677
language models’ factual predictions. Preprint,678
arXiv:2005.04611.679

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,680
Dario Amodei, Ilya Sutskever, et al. 2019. Language681
models are unsupervised multitask learners. OpenAI682
blog, 1(8):9.683

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.684
How much knowledge can you pack into the param-685
eters of a language model? In Proceedings of the686
2020 Conference on Empirical Methods in Natural687
Language Processing (EMNLP), pages 5418–5426,688
Online. Association for Computational Linguistics.689

Chenmien Tan, Ge Zhang, and Jie Fu. 2024. Massive690
editing for large language models via meta learning.691
In The Twelfth International Conference on Learning692
Representations.693

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-694
bert, Amjad Almahairi, Yasmine Babaei, Nikolay695
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti696
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton697
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,698
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,699
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-700
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan701
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,702
Isabel Kloumann, Artem Korenev, Punit Singh Koura,703
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-704
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-705
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-706
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-707
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,708
Ruan Silva, Eric Michael Smith, Ranjan Subrama-709
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-710
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,711
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,712
Melanie Kambadur, Sharan Narang, Aurelien Ro-713
driguez, Robert Stojnic, Sergey Edunov, and Thomas714
Scialom. 2023. Llama 2: Open foundation and fine-715
tuned chat models. Preprint, arXiv:2307.09288.716

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob717
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz718
Kaiser, and Illia Polosukhin. 2017. Attention is all719
you need. Preprint, arXiv:1706.03762.720

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, 721
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu- 722
art Shieber. 2020. Investigating gender bias in lan- 723
guage models using causal mediation analysis. In 724
Advances in Neural Information Processing Systems, 725
volume 33, pages 12388–12401. Curran Associates, 726
Inc. 727

Ben Wang and Aran Komatsuzaki. 2021. GPT-J- 728
6B: A 6 Billion Parameter Autoregressive Lan- 729
guage Model. https://github.com/kingoflolz/ 730
mesh-transformer-jax. 731

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi 732
Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Hua- 733
jun Chen. 2024a. WISE: Rethinking the knowledge 734
memory for lifelong model editing of large language 735
models. In The Thirty-eighth Annual Conference on 736
Neural Information Processing Systems. 737

Peng Wang, Ningyu Zhang, Bozhong Tian, Zekun Xi, 738
Yunzhi Yao, Ziwen Xu, Mengru Wang, Shengyu Mao, 739
Xiaohan Wang, Siyuan Cheng, Kangwei Liu, Yuan- 740
sheng Ni, Guozhou Zheng, and Huajun Chen. 2024b. 741
EasyEdit: An easy-to-use knowledge editing frame- 742
work for large language models. In Proceedings of 743
the 62nd Annual Meeting of the Association for Com- 744
putational Linguistics (Volume 3: System Demonstra- 745
tions), pages 82–93, Bangkok, Thailand. Association 746
for Computational Linguistics. 747

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben 748
Xu. 2021. Training networks in null space of feature 749
covariance for continual learning. In Proceedings of 750
the IEEE/CVF Conference on Computer Vision and 751
Pattern Recognition (CVPR), pages 184–193. 752

Wanli Yang, Fei Sun, Xinyu Ma, Xun Liu, Dawei Yin, 753
and Xueqi Cheng. 2024. The butterfly effect of 754
model editing: Few edits can trigger large language 755
models collapse. In Findings of the Association for 756
Computational Linguistics: ACL 2024, pages 5419– 757
5437, Bangkok, Thailand. Association for Computa- 758
tional Linguistics. 759

Paul Youssef, Osman Koraş, Meijie Li, Jörg Schlötterer, 760
and Christin Seifert. 2023. Give me the facts! a 761
survey on factual knowledge probing in pre-trained 762
language models. In Findings of the Association 763
for Computational Linguistics: EMNLP 2023, pages 764
15588–15605, Singapore. Association for Computa- 765
tional Linguistics. 766

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Shu Wu, 767
Pengjie Ren, and Zhumin Chen. 2025. Uncover- 768
ing overfitting in large language model editing. In 769
The Thirteenth International Conference on Learning 770
Representations. 771

A Locate-and-Edit Algorithms 772

All locate-and-edit algorithms can be formulated 773

under a unified two-stage framework consisting of 774

an OPTIMIZATION stage, where the target repre- 775

sentation is computed, and a SPREAD stage, where 776

10

https://arxiv.org/abs/2206.06520
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/1301.2300
https://arxiv.org/abs/2005.04611
https://arxiv.org/abs/2005.04611
https://arxiv.org/abs/2005.04611
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://openreview.net/forum?id=L6L1CJQ2PE
https://openreview.net/forum?id=L6L1CJQ2PE
https://openreview.net/forum?id=L6L1CJQ2PE
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=VJMYOfJVC2
https://openreview.net/forum?id=VJMYOfJVC2
https://openreview.net/forum?id=VJMYOfJVC2
https://openreview.net/forum?id=VJMYOfJVC2
https://openreview.net/forum?id=VJMYOfJVC2
https://doi.org/10.18653/v1/2024.acl-demos.9
https://doi.org/10.18653/v1/2024.acl-demos.9
https://doi.org/10.18653/v1/2024.acl-demos.9
https://doi.org/10.18653/v1/2024.findings-acl.322
https://doi.org/10.18653/v1/2024.findings-acl.322
https://doi.org/10.18653/v1/2024.findings-acl.322
https://doi.org/10.18653/v1/2024.findings-acl.322
https://doi.org/10.18653/v1/2024.findings-acl.322
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://openreview.net/forum?id=t8qcGXaepr
https://openreview.net/forum?id=t8qcGXaepr
https://openreview.net/forum?id=t8qcGXaepr

the model weights are updated accordingly. As777

summarized in Table 1, this abstraction captures778

a wide range of existing model editing methods,779

and provides a foundation on which our proposed780

strategies—iterative and neighbor-assisted model781

editing—can be broadly applied. While some prior782

methods, such as AlphaEdit and EVOKE (LTI),783

specifically target the OverEdit problem, they do784

so using fundamentally different mechanisms from785

ours and do not generalize across algorithms. No-786

tably, no existing work has directly addressed the787

UnderEdit challenge. To our knowledge, we are788

the first to propose a unified strategy that simul-789

taneously mitigates both UnderEdit and OverEdit.790

Detailed descriptions of each algorithm are pro-791

vided below.792

As discussed in Section 2, model editing algo-793

rithms operate on the hypothesis that updating the794

final MLP parameters is sufficient to increase the795

likelihood of a new object o∗ over the original ob-796

ject o when presented with a (subject, relation) pair797

x = (s, r) as input to the LLM. Specifically, the798

final MLP weight matrix W functions as a linear as-799

sociative memory that stores a key-value mapping800

[k, v]4(Meng et al., 2023a). Here, the key encodes801

the last subject token, while the value represents802

the relation-object pair (r, o) as a property of the803

subject s. Within the transformer architecture, the804

key corresponds to the output of the first fully con-805

nected MLP layer, whereas the value corresponds806

to the output of the second fully connected MLP807

layer z, as shown in Figure2. This key-value map-808

ping [k, v] is derived by computing the inner prod-809

uct between the key k and the final MLP weight810

matrix W as Wk ≈ v.811

Model editing involves modifying a812

batch of M desired edits, represented as813

D= {(sm, rm, om, o∗m)}Mm=1, which translates to814

inserting M new key-value pairs [KM , VM] by815

updating the final MLP weights W at the causal816

layers {l1, . . . , lc}.817

MEMIT (Meng et al., 2023b) operates under the818

assumption that factual edits can be made by mod-819

ifying the final MLP weight matrix W l at each820

causal layer l with a small update ∆l, yielding new821

weights W l∗ = W l + ∆l. The goal is to insert822

M ≫ 1 new key-value mappings [KM , VM] while823

preserving E existing mappings [KE , VE], where824

KE = [ke]
E
e=1 and VE = [ve]

E
e=1 denote the pre-825

existing keys and values.826

4Distinct from key-value pairs in attention mechanisms

MEMIT formulates this as an optimization prob- 827

lem to find a transformation Ŵ that minimizes 828

the sum of squared distances between transformed 829

keys and their target values: 830

Ŵ ≜ argmin
Ŵ

E+M∑
i=1

∥∥∥Ŵki − vi

∥∥∥2 . 831

This objective consists of two parts: 832

•
∑E

i=1

∥∥∥Ŵki − vi

∥∥∥2: encourages the preser- 833

vation of existing knowledge. 834

•
∑E+M

i=E+1

∥∥∥Ŵki − vi

∥∥∥2: enforces the integra- 835

tion of new knowledge. 836

To compute the optimal update ∆l, MEMIT uses 837

a closed-form solution derived from the residual 838

matrix Rl = V −WK, where K and V stack the 839

relevant key and value vectors across edits. Specifi- 840

cally, 841

∆l ← RlK l⊤(C l +K lK l⊤)−1, 842

where C l is a regularization term proportional to 843

the uncentered covariance of the pre-existing keys. 844

This provides an analytical solution for ∆l, avoid- 845

ing iterative optimization such as gradient descent. 846

The resulting update is then applied as: 847

W l∗ ←W l +∆l. 848

In practice, the residual Rl is computed using 849

the hidden state h̄lct obtained in the OPTIMIZATION 850

stage. For full derivation and further implementa- 851

tion details, see Meng et al. (2023b). 852

PMET (Li et al., 2024) shares the same optimiza- 853

tion objective as MEMIT in the SPREAD stage but 854

introduces a key difference in the OPTIMIZATION 855

stage. As shown in Figure 2, PMET searches for an 856

ideal self-attention output ¯attnlct and an ideal MLP 857

output z̄lct . The core insight behind PMET is that 858

the self-attention module captures generalizable 859

patterns, while the MLP is more tightly coupled to 860

fact-specific content. Therefore, PMET assumes 861

that the contribution of self-attention to the hid- 862

den state hlct is not necessary for editing factual 863

knowledge. 864

Based on this assumption, PMET reconstructs 865

a modified hidden state using only the ideal MLP 866

output z̄lct , effectively omitting the influence of 867

attention. This ideal hidden state is then used to 868

11

compute the residual matrix Rl, and the update ∆l869

is computed using the same closed-form solution870

as MEMIT:871

∆l ← RlK l⊤(C l +K lK l⊤)−1,872

followed by873

W l∗ ←W l +∆l.874

By decoupling attention from factual edits,875

PMET enables more precise updates that reduce876

unintended interference with unrelated knowledge.877

Empirically, this leads to improved edit success878

and generalization compared to MEMIT.879

880

AlphaEdit (Fang et al., 2025) extends the locate-881

and-edit paradigm by explicitly constraining model882

updates to reduce interference with existing knowl-883

edge. While it follows a similar two-stage structure884

(OPTIMIZATION and SPREAD), AlphaEdit intro-885

duces a novel use of null space projection (Wang886

et al., 2021) to isolate updates from directions as-887

sociated with pre-existing knowledge.888

During the OPTIMIZATION stage, AlphaEdit889

computes the target hidden representation h̄lct in890

a manner similar to MEMIT. However, before com-891

puting the update ∆l, it projects the residual matrix892

Rl = V − WK into the null space of the pre-893

existing keys KE . This projection ensures that the894

update is orthogonal to directions associated with895

existing key-value mappings, thereby reducing the896

risk of OverEdit.897

Formally, let N l be a projection matrix that898

spans the null space of KE . AlphaEdit applies this899

projection to both the residual and key matrices:900

∆l ← (N lRl)(N lK l)⊤
(
C l + (N lK l)(N lK l)⊤

)−1
.901

902

The resulting update is applied in the usual man-903

ner:904

W l∗ ←W l +∆l.905

906

By constraining updates to directions that are907

orthogonal to known information, AlphaEdit aims908

to improve specificity and mitigate OverEdit. How-909

ever, as we show in Section 5, this constraint can910

limit editing flexibility, and iterative model editing911

can further improve AlphaEdit’s performance.912

913

ROME (Meng et al., 2023a) is the predecessor of 914

MEMIT and adopts a more constrained approach 915

to model editing. Unlike MEMIT, which apply 916

updates across multiple causal layers, ROME as- 917

sumes that new knowledge can be fully integrated 918

into a single transformer layer l∗. It follows the 919

same two-stage structure but focuses exclusively 920

on editing one final MLP weight matrix W l∗ . 921

In the OPTIMIZATION stage, ROME identifies 922

an ideal MLP output z̄l∗t for a given input (s, r). 923

This output represents the desired value vector 924

that should be produced by the edited layer for 925

the edited subject. The SPREAD stage then com- 926

putes an updated MLP weight matrix Ŵ l∗ that (1) 927

preserves all existing knowledge and (2) exactly 928

maps a new key k∗ to the target value v∗. Formally, 929

the update is obtained by solving the following 930

constrained optimization problem: 931

minimize
∥∥∥Ŵ l∗KE − VE

∥∥∥2 932

subject to Ŵ l∗k∗ = v∗, 933

where KE and VE are matrices containing the keys 934

and values for existing knowledge. 935

The resulting solution allows for a rank- 936

preserving edit that satisfies the new constraint 937

while minimizing distortion to previously stored 938

mappings. For a complete derivation, see Meng 939

et al. (2023a). 940

While ROME produces highly precise ed- 941

its—especially for single-fact updates—it does not 942

support true batch editing.5 This makes it prone 943

to instability when applying many edits, as se- 944

quential updates can interfere destructively. Prior 945

work (Gupta et al., 2024b; Yang et al., 2024) shows 946

that ROME suffers from model collapse when used 947

iteratively, due to sharp increases in perplexity aris- 948

ing from the accumulation of such updates. 949

950

R-ROME (Gupta et al., 2024a) builds on ROME 951

with the explicit goal of resolving its tendency to 952

collapse under sequential edits. While ROME ap- 953

plies a constrained rank-one update to a single MLP 954

weight matrix W l∗ , it suffers from instability when 955

edits are applied repeatedly. R-ROME attributes 956

this collapse to how ROME computes the key vec- 957

tor k used in the update rule. 958

In ROME, the key k is directly computed from 959

the current subject s, without considering broader 960

5Batch edits in ROME are executed sequentially, one fact
at a time.

12

contextual signals. R-ROME proposes a revised961

formulation in which the key k∗ is computed as an962

average over multiple neighboring prompts xj + s,963

resulting in a more stable and robust key represen-964

tation. This modification aligns the computation of965

the key k∗ and the value v∗, which are jointly used966

to derive the update.967

The updated weight matrix is then computed via:968

Ŵ = W + Λ∗(C
−1k∗)

⊤,969

where Λ∗ scales the residual v∗ −Wk∗ based on970

the adjusted key k∗. By unifying the key used in971

both the value computation and the update direc-972

tion, R-ROME mitigates the destructive interfer-973

ence observed in ROME and reduces the likelihood974

of collapse from so-called “disabling edits”.975

Empirically, R-ROME improves stability in se-976

quential editing scenarios while retaining the pre-977

cision benefits of ROME. However, like ROME, it978

remains limited to editing one fact at a time and979

does not natively support batch updates.980

981

EMMET (Gupta et al., 2024c) unifies the ROME982

and MEMIT families of model editing by show-983

ing that both optimize a common preservation-984

memorization objective. While ROME performs985

single edits using strict equality constraints and986

MEMIT enables batched edits via a least-squares987

formulation, EMMET generalizes both by introduc-988

ing equality-constrained batch editing. This allows989

EMMET to combine the precision of ROME with990

the scalability of MEMIT.991

Like other methods in the locate-and-edit family,992

EMMET follows the two-stage editing framework.993

In the OPTIMIZATION stage, it identifies the target994

value vectors VE corresponding to the new facts to995

be inserted. In the SPREAD stage, it solves a con-996

strained optimization problem to update the MLP997

weight matrix W0 to a new matrix Ŵ that satisfies998

two goals: (1) preserving the projections of a set999

of pre-existing keys K0, and (2) exactly mapping1000

a batch of new keys KE to their corresponding1001

values VE . Formally:1002

Ŵ = argmin
Ŵ

∥∥∥ŴK0 −W0K0

∥∥∥2 s.t.1003

Ŵk
(e)
i = v

(e)
i ∀i ∈ [1, E],1004

where the first term enforces knowledge preserva-1005

tion and the constraints enforce exact memorization1006

of the new facts.1007

This preservation-memorization objective is 1008

solved using Lagrange multipliers, yielding the 1009

closed-form update: 1010

Ŵ = W0+(VE−W0KE)(K
⊤
EC−1

0 KE)
−1K⊤

EC−1
0 , 1011

where C0 = K0K
⊤
0 is the uncentered covariance 1012

matrix of the preserved keys. 1013

By design, EMMET enables high-precision ed- 1014

its with support for batch sizes up to 10,000, 1015

effectively bridging the capabilities of ROME 1016

and MEMIT within a unified formulation. Em- 1017

pirically, it achieves performance comparable to 1018

MEMIT while retaining the theoretical rigor of 1019

equality-constrained updates. As such, EMMET 1020

offers a principled and scalable approach to batch 1021

model editing that fits cleanly into the OPTIMIZA- 1022

TION/SPREAD framework. 1023

1024

ENCORE (Gupta et al., 2025) addresses the 1025

long-term instability of locate-and-edit methods 1026

under large-scale sequential editing. Prior work 1027

has shown that repeated edits with methods like 1028

MEMIT and ROME lead to overfitting on edited 1029

facts and model collapse due to uncontrolled 1030

growth in the norm of updated weights. ENCORE 1031

introduces two key enhancements—Most-Probable 1032

Early Stopping (MPES) and a norm constraint—to 1033

enable robust, long-horizon editing. 1034

In the OPTIMIZATION stage, ENCORE adopts 1035

MPES, an early stopping strategy that halts opti- 1036

mization once the target object becomes the most 1037

probable prediction across all optimization queries. 1038

This prevents overfitting by stopping the editing 1039

process before excessive memorization occurs, sim- 1040

ilar to how early stopping in training halts based 1041

on validation loss. 1042

In the SPREAD stage, ENCORE augments the 1043

standard preservation-memorization objective with 1044

a Frobenius norm penalty that discourages large 1045

deviations from the original weights: 1046

L(Ŵ) = λp∥ŴK0 −W0K0∥2 1047

+ ∥ŴK1 − V1∥2 1048

+ λn∥Ŵ −W0∥2F , 1049

where the first two terms represent knowledge 1050

preservation and memorization (as in MEMIT), and 1051

the third term explicitly controls norm growth. This 1052

13

yields a closed-form solution:1053

Ŵ = W0 + (V1 −W0K1)K
⊤
1

(
λpK0K

⊤
01054

+K1K
⊤
1 + λnI

)−1
.1055

1056

Like other methods in this space, ENCORE1057

cleanly fits into the two-stage locate-and-edit1058

framework, using MPES for target identification1059

in OPTIMIZATION and a norm-constrained update1060

formulation in SPREAD.1061

1062

EVOKE (LTI) (Zhang et al., 2025) introduces a1063

plug-and-play optimization strategy called Learn1064

the Inference (LTI) to mitigate OverEdit in com-1065

plex reasoning tasks such as multi-hop inference.1066

While prior locate-and-edit methods like ROME1067

and MEMIT often overfit to edit targets, assign-1068

ing disproportionately high probabilities to them,1069

EVOKE attributes this Editing Overfit to the strong1070

coupling between the edit prompt and the target ob-1071

ject. To address this, LTI regularizes the optimiza-1072

tion process by incorporating auxiliary constraints1073

inspired by how unedited LLMs recall knowledge1074

via in-context learning.1075

EVOKE operates within the standard two-stage1076

editing framework. In the OPTIMIZATION stage,1077

it modifies the optimization objective used to com-1078

pute the target value vector v∗, introducing three1079

additional constraints:1080

1081

• Subject Representation Constraint (SRC):1082

aligns the intermediate representation of the1083

subject token between the edited and unedited1084

models to avoid overfitting on narrow context.1085

• Output Distribution Constraint (ODC):1086

matches the output distributions of the edited1087

and unedited models to preserve global behav-1088

ior.1089

• New Knowledge Constraint (NKC): ensures1090

the edited model correctly predicts the new tar-1091

get object across randomly prefixed contexts.1092

These constraints are jointly optimized via a1093

weighted objective:1094

L = λLSRC + β LODC + αLNKC,1095

where λ, β, α are tunable weights. Once the opti-1096

mal residual vector h is learned, the final update1097

in the SPREAD stage follows the standard weight 1098

update (e.g., as used in ROME). 1099

While EVOKE aims to mitigate OverEdit 1100

through more informed optimization, its approach 1101

differs from our neighbor-assisted editing strategy 1102

in key ways. EVOKE constrains the model’s in- 1103

ternal representations by comparing to unedited 1104

inference with prepended context, whereas we use 1105

neighboring samples that share the same relation to 1106

guide editing. Additionally, EVOKE perturbs the 1107

value vector v∗ while holding the subject fixed and 1108

varying the relation; in contrast, we vary the subject 1109

and fix the relation to ensure the original object re- 1110

mains unchanged. EVOKE also uses significantly 1111

more prompts per edit sample, which may affect 1112

scalability. 1113

Despite these differences, EVOKE still adheres 1114

to the two-stage locate-and-edit framework. As 1115

such, our proposed iterative and neighbor-assisted 1116

methods are compatible with it and could further 1117

enhance its performance by addressing UnderEdit 1118

and reinforcing relation-consistent specificity. 1119

B Implementation details 1120

B.1 Iterative model editing 1121

Currently, our implementation requires running an 1122

additional iteration to compute p(θk+1, ĥ
lc
t,k) for 1123

iteration k. As a result, p(θk+1, ĥ
lc
t,k) for the 5th 1124

iteration is not reported in Tables 9, 10, 11, and 12. 1125

We are updating our code to compute p(θk+1, ĥ
lc
t,k) 1126

at the end of the kth iteration without requiring 1127

the next iteration. This update involves running 1128

only the OPTIMIZATION stage with a single gra- 1129

dient step, using the initialization vector, before 1130

proceeding to the next iteration. 1131

B.2 Neighbor-assisted model editing 1132

We observed that different models often produce 1133

varying objects for the same neighboring knowl- 1134

edge. To calculate specificity, we used the model’s 1135

actual output as the object (o), which should re- 1136

main unchanged during editing. However, this in- 1137

troduced a challenge when employing neighbor- 1138

assisted model editing to guide the finding of the 1139

ideal hidden state h̄lct during OPTIMIZATION, as 1140

models produced inconsistent outputs for neigh- 1141

boring knowledge used for evaluation. This in- 1142

consistency caused conflicts among neighboring 1143

knowledge when selecting a single instance for 1144

neighbor-assisted editing. 1145

14

Model Average evaluation neighboring samples (ceil)

GPT-2 XL 2
GPT-J 4

Llama-2-7B 5

Table 5: Average neighboring sample used to evaluate
each edit in neighbor-assisted editing

To address this, we filtered out neighboring1146

knowledge samples that did not yield the same1147

model output as the original ground truth reported1148

in the dataset. This strategy ensured that any re-1149

maining neighboring knowledge sample could be1150

randomly selected for neighbor-assisted editing,1151

resolving the conflict.1152

This approach also introduced an additional con-1153

straint on the edit data points: each data point1154

must have at least two neighboring knowledge1155

samples—one for editing and the others for eval-1156

uation. Unfortunately, the ZsRE dataset contains1157

only one neighboring knowledge sample per data1158

point, restricting us to the COUNTERFACT dataset.1159

Even within COUNTERFACT, only a limited num-1160

ber of samples met the required constraints. The1161

number of qualifying samples varied depending1162

on the model, as shown in Table 3. In neighbor-1163

assisted model editing, exactly one neighboring1164

example was used for each edit. Additionally, an1165

average of 2, 4, and 4 neighboring examples (as1166

reported in the Table 5) were used for evaluating1167

each edit. Generating multiple neighbor knowledge1168

using ChatGPT (Meng et al., 2023a) is straightfor-1169

ward and convenient. However, scaling this to all1170

possible neighbors for a single piece of knowledge1171

is a highly challenging research problem that falls1172

beyond the scope of our paper.1173

C Hardware Details1174

Table 6 outlines the GPU resources utilized to con-1175

duct edits of batch size 1000 across various models,1176

algorithms, and datasets. It highlights the specific1177

hardware configurations, such as GPU type (e.g.,1178

NVIDIA L40S with 48GB memory or NVIDIA1179

A100 with 80GB memory), used for each experi-1180

ment.1181

1182

D Iterative SPREAD1183

In Figure 3, we observe little to no change in the1184

perplexity of h̄lct,k across iterations. However, we1185

argue that despite similar perplexity values, the ac-1186

Model Algo Dataset GPU

GPT-2 XL
(1.5B)

ROME COUNTERFACT L40S (48GB)
ZsRE L40S (48GB)

MEMIT COUNTERFACT L40S (48GB)
ZsRE L40S (48GB)

PMET COUNTERFACT L40S (48GB)
ZsRE L40S (48GB)

GPT-J
(6B)

ROME COUNTERFACT A100 (80GB)
ZsRE A100 (80GB)

MEMIT COUNTERFACT L40S (48GB)
ZsRE A100 (80GB)

PMET COUNTERFACT A100 (80GB)
ZsRE A100 (80GB)

Llama-2
(7B)

ROME COUNTERFACT A100 (80GB)
ZsRE A100 (80GB)

MEMIT COUNTERFACT L40S (48GB)
ZsRE A100 (80GB)

PMET COUNTERFACT L40S (48GB)
ZsRE A100 (80GB)

Table 6: GPU requirements to conduct 1000 edits

tual representations of h̄lct,k differ at each step. This 1187

is because θk+1 is computed based on h̄lct,k, which 1188

itself is derived from θk, as described in Section 3.1. 1189

Due to this recursive dependency, every update to 1190

θk induces a corresponding change in h̄lct,k. Since 1191

the overall editing goal remains consistent across 1192

iterations, the magnitude of change required in θk 1193

naturally diminishes over time, resulting in a se- 1194

quence of distinct yet converging hidden states. 1195

To further explore this, consider a scenario 1196

where h̄lct,k remains constant across iterations. In 1197

such a case, one might skip repeated calls to OP- 1198

TIMIZATION and only perform SPREAD, poten- 1199

tially saving computation without sacrificing per- 1200

formance. However, we hypothesize that this 1201

would lead to overfitting due to repeated use of 1202

the same update. To test this, we conducted an 1203

additional experiment using iterative SPREAD with 1204

MEMIT on GPT-2 XL (COUNTERFACT dataset), 1205

where OPTIMIZATION was run only in the first iter- 1206

ation. The results, shown in Table 7, reveal perfor- 1207

mance degradation and an increase in ME-PPL-50. 1208

Although we observe a temporary performance im- 1209

provement in iteration 2, likely due to overfitting, 1210

it is followed by continued degradation, and the 1211

editing process fails to meet its stopping criterion. 1212

This underscores the importance of running OPTI- 1213

MIZATION in every iteration and indicates that it 1214

15

k Efficacy (↑) Generalization (↑) Specificity (↑) Score (↑) Perplexity (↓)

Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50 p(θk, h̄
lc
t,k) p(θk+1, ĥ

lc
t,k)

1 79.00% 93.00% 22.00% 65.00% 75.00% 99.00% 42.00% 83.00% 57.98 1.02 10816.41
2 89.00% 98.00% 35.00% 76.00% 61.00% 98.00% 53.00% 89.00% 84.28 1.02 3700.56
3 68.00% 95.00% 28.00% 72.00% 54.00% 97.00% 44.00% 86.00% 174.62 1.02 64858.83
4 41.00% 85.00% 19.00% 68.00% 47.00% 97.00% 31.00% 81.00% 348.5 1.02 2254146.29
5 20.00% 76.00% 11.00% 64.00% 37.00% 97.00% 17.00% 76.00% 602.14 1.02 5827805.82

Table 7: Iterative SPREAD model editing results on COUNTERFACT with MEMIT on GPT-2 XL for 5 iterations.
Unlike SPREAD, OPTIMIZATION was run only in first iteration.

generates distinct target hidden states at each step.1215

1216

E Factors Contributing Model Collapse1217

Existing literature attributes model collapse during1218

editing to two main factors: (1) the sequential na-1219

ture of edits (Gupta et al., 2024b; Yang et al., 2024),1220

and (2) characteristics of the specific examples be-1221

ing edited (Yang et al., 2024). Since iterative model1222

editing falls under the first category, one might1223

expect it to be susceptible. However, prior work1224

shows that collapse typically occurs after thousands1225

of edits, e.g., up to 3k in AlphaEdit (Fang et al.,1226

2025) and 10k in ENCORE (Gupta et al., 2025),1227

whereas our iterative approach involves only a few1228

single-digit iterations. This makes collapse due to1229

iteration count alone unlikely.1230

Given that all models in our study were evaluated1231

on the same dataset, we can reasonably rule out the1232

second factor. Furthermore, since no GPT models,1233

and not even LLaMA-3.1 (8B), exhibited similar1234

collapse behavior, we hypothesize a third contribut-1235

ing factor: model-specific characteristics that may1236

stem from differences in training strategies. Finally,1237

the editing algorithm itself may serve as a fourth1238

contributing factor. For example, MEMIT’s less1239

targeted weight updates (compared to PMET) may1240

introduce excessive parameter shifts, as discussed1241

in Appendix A.1242

In summary, while iterative model editing is un-1243

likely to cause collapse on its own, interactions1244

with model-specific or algorithm-specific factors1245

may trigger instability. Although investigating col-1246

lapse is not the primary focus of this work, our find-1247

ings offer a useful foundation for future research in1248

this area.1249

F Additional Analysis1250

This section dives deeper into the proposed meth-1251

ods. Specifically, we aim to understand how itera-1252

tive model editing addresses UnderEdit, the impact1253

0

50

100

Ef
fic

ac
y

A
cc

ur
ac

y
(%

)

Efficacy Accuracy Across Iterations

Efficacy Accuracy - All
Efficacy Accuracy - UnderEdit

1 2 3 4 5
Iterations

0

2

4

Pe
rp

le
xi

ty
 D

iff
er

en
ce

×104

Perplexity Difference - All
Perplexity Difference - UnderEdit

Figure 4: Improvement in efficacy accuracy and re-
duction in |∆pk| for UnderEdit examples over iterative
model editing. The results show that iterative editing
mitigates UnderEdit cases in GPT-2 XL edited with
MEMIT on COUNTERFACT, contributing to overall per-
formance gains.

of prefixing in neighbor-assisted model editing for 1254

resolving OverEdit, and the effectiveness of the 1255

stopping criteria. 1256

F.1 How does iterative model editing address 1257

UnderEdit? 1258

We hypothesize that the iterative model editing ap- 1259

proach can reduce the number of UnderEdit cases. 1260

To test this hypothesis, we identified UnderEdit 1261

examples in GPT-2 XL edited with MEMIT on 1262

COUNTERFACT after the first iteration, i.e, edits 1263

(si, ri, oi, o
∗
i) where fθ2(xi)[o

∗
i] < fθ2(xi)[oi]. We 1264

then tracked |∆pk| and efficacy accuracy across 1265

subsequent iterations. Figure 4 illustrates the re- 1266

sults of the analysis. We observe that the rate of 1267

|∆pk| decrease and accuracy improving over itera- 1268

tions is much more pronounced for the UnderEdit 1269

examples. This observation tells us that multiple 1270

16

Algo k Efficacy (↑) Generalization (↑) Specificity (↑) Score (↑)

Accuracy Accuracy Accuracy Accuracy

Unedited 0 1.00% 1.00%

MEMIT 4 99.00% 38.00% 52.00% 54.00%
NA_MEMIT 4 99.00% 36.00% 86.00% 60.00%
NAP_MEMIT 4 99.00% 37.00% 84.00% 61.00%

PMET 8 99.00% 31.00% 67.00% 52.00%
NA_PMET 9 98.00% 29.00% 85.00% 53.00%
NAP_PMET 8 98.00% 30.00% 84.00% 54.00%

Table 8: Results of prefix-free (NA_) and with prefix
(NAP_) neighbor-assisted model editing on GPT-2 XL
on 739 samples of COUNTERFACT. We compare their
evaluation metrics and bold the higher value. Full re-
sults with success and perplexity performance for all
iterations are reported in Table 12.

iterations of SPREAD is the larger contributors to1271

getting higher performance.1272

F.2 How prefixes influence neighbor-assisted1273

model editing behavior?1274

Using random prefixes aid generalization across1275

contexts in the memory editing process when only1276

the target knowledge edit is known. So we pose the1277

question, does adding random prefixes to the neigh-1278

bor knowledge prompts help prevent OverEdit?1279

To answer this question we run an experiment by1280

adding random prefixes to the neighboring knowl-1281

edge used during edit. Table 8 shows an increase in1282

specificity accuracy6. However, this increase is less1283

compared to the improvement of using neighbor-1284

assisted editing versus no neighbor-assist. Regard-1285

less, the prefixed neighbor-assisted edits (NAP_)1286

achieved better overall performance, denoted by1287

Accuracy in Score, due to a boost in generalization.1288

G Iterative model editing results1289

We present the complete results of all iterations1290

of iterative model editing in Table 9 for the1291

COUNTERFACT dataset and Table 10 for the ZsRE1292

dataset. For experiments that did not meet our1293

proposed stopping criteria within 5 iterations, we1294

extended the runs by an additional 5 iterations and1295

included those results as well.1296

H Neighbor-assisted model editing results1297

We present the complete results of all iterations of1298

neighbor-assisted model editing in Table 11. As the1299

ZsRE dataset was unsuitable for this experiment1300

(see Appendix B.2 for details), results are reported1301

only for the COUNTERFACT dataset. Furthermore,1302

6The full results with success on each measurement and
perplexity performance are in Table 12

since only a subset of samples from COUNTERFACT 1303

qualified for this experiment, we also include the 1304

performance of iterative model editing on these 1305

samples for comparison with neighbor-assisted 1306

model editing. 1307

Our current implementation of neighbor-assisted 1308

model editing does not use prefixes. To analyze 1309

its behavior with prefixes, we conducted an addi- 1310

tional set of experiments. The results, presented in 1311

Table 12, compare prefix-based neighbor-assisted 1312

model editing with its prefix-free counterpart and 1313

iterative model editing. A detailed analysis is pro- 1314

vided in Section F.2. 1315

17

Efficacy (↑) Generalization (↑) Specificity (↑) Score (↑) Perplexity (↓) |∆pk| (↓)
Model Algo k Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50 p(θk, h̄

lc
t,k) p(θk+1, ĥ

lc
t,k)

Unedited 0 0.00% 21.67% 0.00% 31.33% 56.67% 31.33% 54.66 3.26E+05

1 1.00% 56.00% 1.00% 55.00% 0.00% 92.00% 1.00% 64.00% 7.07E+03 5.29E+03 7.20E+05 7.15E+05
2 0.00% 55.00% 0.00% 51.00% 0.00% 93.00% 0.00% 62.00% 1.36E+04 9.10E+04 1.78E+06 1.69E+06
3 0.00% 55.00% 0.00% 52.00% 0.00% 95.00% 0.00% 63.00% 1.26E+04 7.91E+05 3.68E+06 2.89E+06
4 0.00% 55.00% 0.00% 50.00% 0.00% 88.00% 0.00% 60.00% 3.13E+04 2.10E+06 1.93E+05 -1.91E+06

ROME

5 3.00% 64.00% 1.00% 58.00% 0.00% 91.00% 1.00% 68.00% 1.14E+04 7.86E+04

1 79.00% 92.67% 22.00% 65.67% 75.00% 99.00% 42.67% 83.00% 58.66 1.04 11360.64 11359.60
2 98.67% 99.67% 33.67% 75.67% 70.33% 99.00% 55.67% 89.67% 60.47 1.03 78.15 77.12
3 99.33% 99.67% 35.33% 76.00% 69.33% 99.00% 56.67% 90.00% 61.58 1.02 10.14 9.11
4 99.67% 99.67% 35.67% 76.00% 68.67% 99.00% 56.67% 90.00% 62.44 1.02 1.49 0.47

MEMIT

5 99.67% 99.67% 35.67% 76.00% 68.67% 99.00% 56.67% 90.00% 63.28 1.02

1 21.67% 57.00% 3.00% 42.00% 91.67% 100.00% 8.33% 58.33% 55.60 12598.80 116384.51 103785.71
2 65.67% 85.33% 14.67% 58.67% 84.00% 99.33% 31.67% 77.33% 57.01 1333.32 26852.75 25519.43
3 86.00% 93.67% 20.00% 65.33% 80.67% 99.00% 40.67% 83.33% 58.00 97.51 5123.07 5025.56
4 93.00% 97.00% 21.67% 68.00% 78.67% 99.00% 43.33% 85.33% 58.82 15.96 2045.77 2029.80

GPT2XL
(1.5B)

PMET

5 96.00% 98.33% 22.67% 69.00% 77.67% 99.00% 44.00% 86.67% 59.47 3.90 228.44 224.53
6 97.33% 99.67% 22.67% 69.67% 77.00% 99.00% 44.67% 86.67% 60.46 1.81 50.77 48.96
7 98.67% 99.67% 23.67% 70.00% 77.00% 99.00% 45.67% 87.00% 61.52 1.42 22.44 21.02
8 98.67% 99.67% 24.00% 70.00% 76.00% 99.00% 46.00% 87.00% 62.58 1.35 12.10 10.75
9 99.33% 99.67% 24.00% 70.33% 76.00% 99.00% 46.00% 87.00% 63.20 1.32 3.03 1.71

10 99.33% 99.67% 24.67% 70.33% 75.33% 99.00% 47.00% 87.33% 63.92 1.31 1.73 0.42

Unedited 0 9.33% 38.00% 9.00% 38.33% 82.00% 37.33% 39.80 5.98E+05

1 1.00% 57.00% 1.00% 55.00% 0.00% 76.00% 1.00% 61.00% 2.15E+05 1.19E+08 1.21E+14 1.21E+14
2 1.00% 67.00% 2.00% 62.00% 0.00% 71.00% 1.00% 66.00% 8.51E+05 1.75E+12 4.17E+06 -1.75E+12
3 1.00% 71.00% 1.00% 63.00% 0.00% 71.00% 1.00% 68.00% 9.00E+05 8.09E+05 2.44E+06 1.64E+06
4 1.00% 72.00% 1.00% 64.00% 0.00% 73.00% 1.00% 69.00% 8.29E+05 7.36E+05 8.36E+05 9.97E+04

ROME

5 1.00% 72.00% 1.00% 65.00% 0.00% 71.00% 1.00% 69.00% 7.10E+05 3.36E+05

1 99.00% 100.00% 75.00% 95.67% 69.33% 89.33% 77.67% 94.33% 42.20 1.03 2.25 1.22
2 99.33% 100.00% 80.67% 98.00% 66.33% 88.33% 79.00% 95.00% 43.92 1.02 1.05 0.03
3 99.67% 100.00% 82.00% 98.33% 65.33% 88.33% 79.00% 95.00% 46.33 1.02 2.88 1.86
4 99.67% 100.00% 83.67% 98.33% 64.67% 88.00% 79.33% 95.00% 46.95 1.01 1.04 0.03

MEMIT

5 99.67% 100.00% 83.67% 98.33% 64.33% 88.00% 79.33% 95.00% 47.20 1.01

1 98.00% 99.67% 76.00% 95.00% 68.33% 88.67% 77.67% 93.67% 41.27 1.08 2.24 1.15
2 98.67% 99.67% 75.67% 95.00% 68.33% 89.00% 78.00% 94.33% 41.16 1.06 5.29 4.23
3 99.00% 99.67% 76.67% 95.67% 68.33% 88.67% 78.33% 94.00% 41.15 1.06 1.11 0.05
4 99.33% 99.67% 77.00% 95.67% 68.33% 88.67% 78.33% 94.00% 41.19 1.06 1.08 0.02

GPTJ
(6B)

PMET

5 99.33% 99.67% 77.00% 95.67% 68.00% 89.00% 78.33% 94.33% 41.28 1.06

Unedited 0 15.00% 13.67% 15.00% 15.00% 84.33% 19.67% 30.63 2789.16

1 0.00% 48.00% 0.00% 49.00% 0.00% 76.00% 0.00% 55.00% 1.45E+04 3.80E+03 8.14E+05 8.10E+05
2 0.00% 56.00% 0.00% 54.00% 0.00% 64.00% 0.00% 58.00% 7.27E+04 6.81E+05 2.34E+08 2.33E+08
3 0.00% 55.00% 0.00% 53.00% 0.00% 57.00% 0.00% 55.00% 3.86E+05 1.55E+08 7.55E+09 7.39E+09
4 0.00% 57.00% 0.00% 55.00% 0.00% 54.00% 0.00% 55.00% 1.26E+06 6.04E+09 5.81E+10 5.20E+10

ROME

5 0.00% 56.00% 0.00% 52.00% 0.00% 57.00% 0.00% 55.00% 1.38E+06 4.36E+10

1 91.67% 98.00% 70.33% 93.33% 29.33% 67.33% 50.67% 83.67% 42.10 1.01 199.80 198.79
2 14.33% 79.00% 9.67% 73.67% 6.67% 70.67% 9.00% 74.67% 9.37E+03 16.77 4681.01 4664.24
3 26.67% 89.67% 12.33% 82.67% 5.67% 66.67% 9.67% 78.33% 4.35E+04 8.40 884.21 875.80
4 22.00% 94.67% 5.67% 82.00% 5.67% 68.67% 7.00% 80.33% 8.63E+04 1.89 1381.59 1379.71

MEMIT

5 38.33% 95.67% 10.67% 77.67% 4.67% 66.67% 8.67% 78.33% 7.60E+04 2.37

1 94.33% 97.00% 68.33% 86.67% 76.33% 89.00% 77.33% 90.33% 30.73 1.09 4.41 3.32
2 95.33% 98.33% 70.00% 88.67% 75.33% 88.67% 78.00% 91.67% 30.76 1.14 1.23 0.09
3 95.33% 98.33% 69.67% 88.67% 75.33% 88.67% 78.33% 91.67% 30.78 1.14 1.30 0.16
4 95.33% 98.33% 70.00% 89.00% 75.33% 88.67% 78.33% 91.67% 30.79 1.14 1.14 0.00

Llama2
(7B)

PMET

5 95.33% 98.33% 70.00% 89.00% 75.33% 88.67% 78.33% 91.67% 30.79 1.14

Table 9: Iterative model editing results on COUNTERFACT for at most 10 iterations (denoted by k). We compare the
evaluation metrics of iteration that met stopping criterion |∆pk| ≤ 1 (green rows) to that of their corresponding first
iteration and bold the higher value. PMET on GPT-2 XL require more than 5 iterations to achieve our stopping
criteria. While ROME is known to collapse (red rows), we observed a unique case of collapse with Llama-2 (7B)
specifically when using MEMIT. We discuss this in Section 5.

18

Efficacy (↑) Generalization (↑) Specificity (↑) Score (↑) Perplexity (↓) |∆pk| (↓)
Model Algo k Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50 p(θk, h̄

lc
t,k) p(θk+1, ĥ

lc
t,k)

Unedited 0 22.00% 87.33% 21.00% 86.33% 56.33% 73.67% 54.66 195351.10

1 3.00% 40.00% 3.00% 37.00% 1.00% 77.00% 2.00% 46.00% 8.59E+03 1.21E+04 2.64E+05 2.52E+05
2 0.00% 97.00% 0.00% 97.00% 29.00% 71.00% 0.00% 86.00% 5.20E+03 5.75E+04 2.67E+05 2.10E+05
3 0.00% 21.00% 0.00% 18.00% 0.00% 76.00% 0.00% 25.00% 1.21E+04 9.44E+04 3.27E+05 2.32E+05
4 0.00% 100.00% 0.00% 100.00% 0.00% 68.00% 0.00% 86.00% 6.01E+03 8.27E+04 1.02E+06 9.36E+05

ROME

5 0.00% 0.00% 0.00% 0.00% 0.00% 67.00% 0.00% 67.00% 1.85E+04 4.38E+05

1 69.00% 100.00% 58.67% 99.67% 32.33% 85.00% 48.33% 94.00% 61.74 1.02 2035.34 2034.31
2 98.33% 100.00% 87.00% 100.00% 24.33% 84.33% 47.67% 94.00% 67.68 1.02 40.41 39.39
3 100.00% 100.00% 88.00% 100.00% 23.33% 84.00% 46.67% 94.00% 69.40 1.02 1.05 0.03
4 100.00% 100.00% 89.00% 100.00% 22.00% 84.00% 45.00% 94.00% 70.02 1.02 1.03 0.01

MEMIT

5 100.00% 100.00% 89.67% 100.00% 21.67% 84.00% 44.33% 94.00% 70.16 1.02

1 34.67% 97.67% 30.33% 95.67% 45.00% 85.67% 35.33% 93.00% 56.77 5375.18 116427.63 111052.45
2 67.00% 100.00% 52.00% 99.33% 38.33% 85.33% 49.67% 94.33% 60.44 15.17 3109.90 3094.74
3 89.67% 100.00% 66.33% 99.67% 35.00% 85.00% 55.00% 94.33% 62.37 2.16 491.43 489.28
4 94.33% 100.00% 69.67% 100.00% 33.33% 84.67% 54.67% 94.00% 64.42 1.34 50.04 48.69
5 98.00% 100.00% 73.00% 100.00% 32.00% 84.67% 54.00% 94.00% 65.22 1.25 2.70 1.45
6 99.33% 100.00% 73.67% 100.00% 31.00% 84.00% 54.00% 94.00% 65.93 1.23 1.41 0.19
7 99.00% 100.00% 75.00% 100.00% 30.33% 84.00% 53.33% 94.00% 66.41 1.22 1.30 0.08
8 99.67% 100.00% 74.67% 100.00% 30.00% 84.00% 53.00% 94.00% 66.71 1.21 1.25 0.04
9 99.67% 100.00% 75.00% 100.00% 29.33% 84.00% 52.33% 94.00% 66.77 1.22 1.22 0.01

GPT-2 XL
(1.5B)

PMET

10 100.00% 100.00% 75.33% 100.00% 29.33% 84.00% 52.33% 94.00% 66.89 1.20 1.21 0.01

Unedited 0 27.33% 91.00% 26.33% 90.00% 60.00% 77.33% 39.80 5.02E+04 5.02E+04

1 5.00% 90.00% 5.00% 89.00% 0.00% 65.00% 5.00% 80.00% 3.93E+05 1.63E+04 1.33E+05 1.17E+05
2 13.00% 95.00% 10.00% 94.00% 0.00% 67.00% 11.00% 83.00% 6.19E+05 8.72E+03 1.58E+04 7.04E+03
3 17.00% 99.00% 12.00% 97.00% 0.00% 66.00% 14.00% 84.00% 6.88E+05 3.75E+03 9.70E+03 5.94E+03
4 14.00% 100.00% 11.00% 99.00% 0.00% 64.00% 12.00% 84.00% 1.39E+06 4.61E+03 1.28E+04 8.24E+03

ROME

5 10.00% 99.00% 8.00% 99.00% 0.00% 63.00% 9.00% 83.00% 3.32E+06 7.89E+03

1 98.67% 100.00% 89.33% 100.00% 52.67% 80.00% 74.67% 92.00% 41.56 1.01 2.68 1.67
2 99.33% 100.00% 92.67% 100.00% 51.67% 80.33% 74.67% 92.33% 41.71 1.02 1.03 0.01
3 100.00% 100.00% 94.00% 100.00% 51.33% 80.00% 75.00% 92.33% 41.88 1.02 1.02 0.00
4 100.00% 100.00% 93.67% 100.00% 51.33% 80.00% 75.00% 92.33% 41.88 1.01 1.01 0.00

MEMIT

5 100.00% 100.00% 93.67% 100.00% 51.33% 80.00% 75.00% 92.33% 41.87 1.01

1 95.67% 100.00% 87.33% 100.00% 52.00% 80.00% 72.67% 92.00% 41.94 1.10 5.20 4.10
2 98.67% 100.00% 88.00% 99.67% 52.00% 80.00% 74.00% 92.00% 41.61 1.06 1.14 0.09
3 99.67% 100.00% 89.67% 100.00% 52.00% 80.00% 74.33% 92.00% 41.62 1.06 1.08 0.02
4 100.00% 100.00% 89.67% 100.00% 52.00% 80.00% 74.33% 92.00% 41.59 1.06 1.06 0.00

GPT-J
(6B)

PMET

5 100.00% 100.00% 89.67% 100.00% 52.00% 80.00% 74.33% 92.00% 41.58 1.06

Unedited 0 38.33% 57.00% 37.00% 56.00% 59.67% 55.67% 33.69 2.01E+04 2.01E+04

1 9.00% 93.00% 8.00% 92.00% 0.00% 72.00% 9.00% 84.00% 2.49E+04 7.73E+01 7.05E+04 7.04E+04
2 13.00% 99.00% 11.00% 99.00% 1.00% 73.00% 3.00% 88.00% 4.49E+04 4.85E+02 9.17E+03 8.69E+03
3 22.00% 100.00% 16.00% 99.00% 0.00% 72.00% 18.00% 88.00% 3.73E+04 1.07E+03 6.18E+03 5.11E+03
4 24.00% 100.00% 17.00% 99.00% 0.00% 74.00% 20.00% 89.00% 3.53E+04 1.78E+03 1.04E+04 8.61E+03

ROME

5 24.00% 100.00% 17.00% 98.00% 0.00% 74.00% 20.00% 89.00% 3.50E+04 2.47E+03

1 79.50% 99.50% 76.50% 99.00% 31.00% 74.50% 51.50% 89.00% 41.04 1.05 23.10 22.06
2 6.50% 88.00% 6.00% 86.00% 5.50% 80.00% 6.00% 84.50% 4435.72 1.07 2.38E+04 2.38E+04
3 13.50% 96.00% 11.00% 95.00% 3.50% 70.00% 6.50% 85.00% 120046.73 1.68 9.45E+03 9.45E+03
4 6.00% 94.00% 4.50% 91.50% 4.50% 72.00% 5.00% 84.50% 34779.75 1.65 1.74E+04 1.74E+04

MEMIT

5 6.50% 86.00% 6.00% 83.00% 1.00% 68.00% 2.00% 78.00% 40680.54 1.70

1 90.00% 98.67% 83.00% 96.33% 66.00% 74.67% 77.33% 88.33% 34.63 1.07 7.40 6.33
2 92.00% 99.00% 83.33% 96.67% 66.00% 74.67% 78.00% 88.33% 34.47 1.05 1.12 0.07
3 92.33% 99.00% 84.33% 96.67% 66.00% 74.67% 78.67% 88.33% 34.44 1.05 1.07 0.02
4 93.00% 99.00% 84.67% 96.67% 65.67% 74.67% 78.67% 88.33% 34.42 1.05 1.06 0.00

Llama2
(7B)

PMET

5 93.00% 99.00% 84.67% 97.00% 66.00% 74.67% 79.00% 88.33% 34.44 1.05

Table 10: Iterative model editing results on ZsRE for at most 10 iterations (denoted by k). We compare the evaluation
metrics of iteration that met stopping criterion |∆pk| ≤ 1 (green rows) to that of their corresponding first iteration
and bold the higher value. PMET on GPT-2 XL require more than 5 iterations to achieve our stopping criteria.
While ROME is known to collapse (red rows), we observed a unique case of collapse with Llama-2 (7B) specifically
when using MEMIT. We discuss this in Section 5.

19

Efficacy (↑) Generalization (↑) Specificity (↑) Score (↑) Perplexity (↓) |∆pk| (↓)
Model Algo k Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50 p(θk, h̄

lc
t,k) p(θk+1, ĥ

lc
t,k)

Unedited 0 1.00% 9.00% 1.00% 22.00% 100.00% 18.00% 54.66

1 87.00% 94.00% 30.00% 67.00% 56.00% 81.00% 48.00% 79.00% 58.79 1.04 12808.17 12807.13
2 98.00% 99.00% 37.00% 73.00% 51.00% 77.00% 53.00% 82.00% 59.75 1.03 59.15 58.12
3 99.00% 99.00% 38.00% 74.00% 50.00% 77.00% 53.00% 82.00% 60.74 1.02 4.17 3.15
4 99.00% 99.00% 38.00% 74.00% 52.00% 77.00% 54.00% 82.00% 62.27 1.02 1.07 0.05

MEMIT

5 99.00% 99.00% 38.00% 74.00% 53.00% 78.00% 55.00% 83.00% 63.88 1.02

1 78.00% 83.00% 22.00% 53.00% 87.00% 97.00% 43.00% 73.00% 57.56 1.07 1248.69 1247.62
2 99.00% 99.00% 36.00% 71.00% 82.00% 93.00% 60.00% 86.00% 59.94 1.04 52.51 51.47
3 99.00% 99.00% 36.00% 70.00% 84.00% 95.00% 60.00% 86.00% 61.95 1.03 3.67 2.64
4 99.00% 99.00% 36.00% 70.00% 86.00% 95.00% 60.00% 86.00% 64.89 1.03 1.22 0.19

NA_MEMIT

5 99.00% 99.00% 35.00% 68.00% 87.00% 96.00% 60.00% 85.00% 66.73 1.03

1 0.29 0.49 0.06 0.36 0.92 0.98 0.15 0.52 55.61 3166.97 14020.32 10853.35
2 0.72 0.85 0.2 0.57 0.78 0.93 0.39 0.75 56.73 146.75 11323.25 11176.5
3 0.88 0.93 0.25 0.63 0.73 0.91 0.46 0.8 57.73 14.57 4457.16 4442.59
4 0.95 0.97 0.27 0.66 0.71 0.89 0.48 0.82 58.68 2.69 2399.39 2396.7
5 0.97 0.98 0.28 0.67 0.71 0.88 0.5 0.82 59.77 1.4 1073.72 1072.32
6 0.98 0.99 0.29 0.67 0.67 0.87 0.5 0.82 60.99 1.33 171.9 170.57
7 0.99 0.99 0.3 0.68 0.67 0.86 0.51 0.82 62.4 1.32 12.43 11.11
8 0.99 0.99 0.31 0.68 0.67 0.86 0.52 0.82 63.47 1.31 1.62 0.31
9 0.99 0.99 0.3 0.68 0.66 0.86 0.52 0.82 64.34 1.29 1.4 0.11

PMET

10 0.99 0.99 0.31 0.68 0.66 0.86 0.52 0.82 65.16 1.28 1.33 0.05

1 0.29 0.48 0.06 0.35 0.93 0.99 0.15 0.5 55.59 740.72 2872.44 2131.72
2 0.7 0.83 0.19 0.54 0.84 0.97 0.39 0.73 56.54 46.86 2336.83 2289.97
3 0.88 0.92 0.25 0.61 0.84 0.96 0.48 0.8 57.36 7.04 1193.64 1186.6
4 0.94 0.96 0.26 0.63 0.87 0.96 0.5 0.82 58.54 2.18 1651.91 1649.73
5 0.96 0.97 0.28 0.64 0.86 0.96 0.52 0.82 60.37 1.36 851.28 849.92
6 0.97 0.98 0.29 0.64 0.87 0.96 0.53 0.83 62.03 1.31 193.5 192.19
7 0.97 0.98 0.29 0.64 0.85 0.97 0.53 0.83 63.48 1.3 24.63 23.33
8 0.98 0.98 0.29 0.64 0.85 0.97 0.53 0.83 64.92 1.27 3.37 2.1
9 0.98 0.98 0.29 0.64 0.85 0.97 0.53 0.83 66.29 1.26 1.55 0.29

GPT-2 XL
(1.5B)
#739

NA_PMET

10 0.98 0.98 0.3 0.65 0.83 0.96 0.54 0.84 67.86 1.24 1.51 0.27

Unedited 0 0.00% 8.00% 1.00% 10.00% 100.00% 12.00% 39.80

1 99.00% 100.00% 71.00% 93.00% 67.00% 86.00% 77.00% 93.00% 42.79 1.03 4.24 3.21
2 99.00% 100.00% 79.00% 97.00% 63.00% 83.00% 78.00% 93.00% 44.84 1.02 1.66 0.64
3 99.00% 100.00% 79.00% 98.00% 62.00% 83.00% 77.00% 93.00% 48.58 1.01 17.10 16.09
4 100.00% 100.00% 79.00% 98.00% 59.00% 82.00% 76.00% 93.00% 49.43 1.01 1.74 0.73

MEMIT

5 100.00% 100.00% 81.00% 98.00% 58.00% 81.00% 76.00% 92.00% 50.50 1.01

1 98.00% 99.00% 63.00% 82.00% 84.00% 95.00% 79.00% 91.00% 42.71 1.04 2.56 1.52
2 99.00% 99.00% 75.00% 92.00% 81.00% 95.00% 84.00% 95.00% 45.24 1.02 1.35 0.33
3 99.00% 100.00% 74.00% 91.00% 83.00% 95.00% 84.00% 95.00% 47.19 1.02 3.29 2.27
4 99.00% 100.00% 74.00% 90.00% 80.00% 95.00% 83.00% 95.00% 49.77 1.02 1.43 0.41

NA_MEMIT

5 100.00% 100.00% 73.00% 91.00% 79.00% 95.00% 82.00% 95.00% 50.94 1.02

1 99.00% 100.00% 72.00% 93.00% 65.00% 84.00% 76.00% 92.00% 40.79 1.06 1.31 0.25
2 99.00% 100.00% 73.00% 93.00% 65.00% 84.00% 77.00% 92.00% 40.90 1.06 219.70 218.64
3 99.00% 100.00% 73.00% 93.00% 65.00% 84.00% 77.00% 92.00% 40.92 1.06 2.25 1.19
4 99.00% 100.00% 73.00% 94.00% 65.00% 84.00% 77.00% 92.00% 41.08 1.05 1.06 0.01

PMET

5 99.00% 100.00% 74.00% 94.00% 65.00% 84.00% 77.00% 92.00% 41.28 1.05

1 99.00% 100.00% 72.00% 91.00% 75.00% 90.00% 80.00% 93.00% 41.01 1.06 2.38 1.32
2 98.00% 99.00% 71.00% 90.00% 82.00% 94.00% 82.00% 94.00% 41.23 1.12 4.91 3.79
3 99.00% 99.00% 70.00% 89.00% 83.00% 95.00% 82.00% 94.00% 41.66 1.13 24.94 23.81
4 97.00% 98.00% 68.00% 88.00% 84.00% 95.00% 82.00% 93.00% 41.99 1.13 4.13 3.00
5 98.00% 98.00% 69.00% 89.00% 81.00% 94.00% 81.00% 94.00% 42.71 1.12 273.05 271.93
6 98.00% 99.00% 69.00% 89.00% 80.00% 94.00% 81.00% 94.00% 43.54 1.12 1.56 0.44
7 99.00% 99.00% 68.00% 89.00% 76.00% 93.00% 79.00% 94.00% 44.62 1.13 1.57 0.44
8 98.00% 99.00% 67.00% 88.00% 75.00% 92.00% 78.00% 93.00% 45.70 1.13 1.64 0.51
9 98.00% 99.00% 67.00% 88.00% 72.00% 92.00% 77.00% 93.00% 47.48 1.14 2.11 0.97

GPT-J
(6B)
#960

NA_PMET

10 99.00% 99.00% 68.00% 88.00% 70.00% 91.00% 76.00% 93.00% 50.68 1.14 -1.14

Unedited 0 38.33% 57.00% 37.00% 56.00% 59.67% 55.67% 33.69

1 94.00% 97.00% 70.00% 87.00% 71.00% 92.00% 77.00% 92.00% 30.95 1.09 2.29 1.2
2 96.00% 98.00% 72.00% 89.00% 71.00% 92.00% 78.00% 93.00% 31.03 1.14 25.72 24.58
3 96.00% 98.00% 72.00% 89.00% 70.00% 92.00% 78.00% 93.00% 31 1.14 1.58 0.44
4 96.00% 98.00% 72.00% 89.00% 71.00% 92.00% 78.00% 93.00% 31.01 1.14 1.14 0

PMET

5 96.00% 98.00% 72.00% 89.00% 71.00% 92.00% 78.00% 93.00% 31 1.14

1 92.00% 95.00% 67.00% 80.00% 76.00% 94.00% 77.00% 89.00% 30.43 1.14 15.27 14.13
2 96.00% 97.00% 75.00% 87.00% 73.00% 93.00% 80.00% 92.00% 30.52 1.02 2.86 1.84
3 96.00% 96.00% 76.00% 87.00% 71.00% 94.00% 80.00% 92.00% 31.19 1.04 2.61 1.57
4 95.00% 95.00% 76.00% 86.00% 66.00% 92.00% 77.00% 91.00% 32.19 1.04 2.27 1.23
5 94.00% 94.00% 75.00% 85.00% 60.00% 91.00% 74.00% 90.00% 35.28 1.05 186 184.95
6 90.00% 91.00% 74.00% 84.00% 55.00% 89.00% 70.00% 88.00% 40.1 1.06 13.09 12.03
7 87.00% 88.00% 70.00% 81.00% 47.00% 86.00% 64.00% 85.00% 53.95 1.06 30.27 29.21
8 80.00% 83.00% 66.00% 80.00% 42.00% 83.00% 58.00% 82.00% 104.98 1.06 84.27 83.21
9 73.00% 83.00% 58.00% 78.00% 30.00% 79.00% 47.00% 80.00% 373.87 1.07 358.05 356.98

Llama 2
(7B)
#1340

NA_PMET

10 62.00% 79.00% 47.00% 75.00% 26.00% 76.00% 40.00% 76.00% 1414.01 1.07

Table 11: Neighbor-Assisted model editing results on COUNTERFACT. We compare evaluation metrics for both
neighbor-assisted (NA_) and without neighbor runs of the model editing algorithms where |∆pk| ≤ 1 (green
rows) and bold the higher value. Results among models and from Table 9 are not comparable due to difference in
neighboring samples (Appendix. B.2). Hence, we report the no. of examples (#) used to run experiment for each
model. NA_PMET on Llama-2 (7B) stands as an exception that didn’t achieved the stopping criteria within 10
iteration and showed a performance decrease.

20

Efficacy (↑) Generalization (↑) Specificity (↑) Score (↑) Perplexity (↓) |∆pk| (↓)
Model Algo k Accuracy Success Accuracy Success Accuracy Success Accuracy Success ME-PPL-50 p(θk, h̄

lc
t,k) p(θk+1, ĥ

lc
t,k)

Unedited 0 1.00% 9.00% 1.00% 22.00% 100.00% 18.00% 54.66

1 87.00% 94.00% 30.00% 67.00% 56.00% 81.00% 48.00% 79.00% 58.79 1.04 12808.17 12807.13
2 98.00% 99.00% 37.00% 73.00% 51.00% 77.00% 53.00% 82.00% 59.75 1.03 59.15 58.12
3 99.00% 99.00% 38.00% 74.00% 50.00% 77.00% 53.00% 82.00% 60.74 1.02 4.17 3.15
4 99.00% 99.00% 38.00% 74.00% 52.00% 77.00% 54.00% 82.00% 62.27 1.02 1.07 0.05

MEMIT

5 99.00% 99.00% 38.00% 74.00% 53.00% 78.00% 55.00% 83.00% 63.88 1.02

1 78.00% 83.00% 22.00% 53.00% 87.00% 97.00% 43.00% 73.00% 57.56 1.07 1248.69 1247.62
2 99.00% 99.00% 36.00% 71.00% 82.00% 93.00% 60.00% 86.00% 59.94 1.04 52.51 51.47
3 99.00% 99.00% 36.00% 70.00% 84.00% 95.00% 60.00% 86.00% 61.95 1.03 3.67 2.64
4 99.00% 99.00% 36.00% 70.00% 86.00% 95.00% 60.00% 86.00% 64.89 1.03 1.22 0.19

NA_MEMIT

5 99.00% 99.00% 35.00% 68.00% 87.00% 96.00% 60.00% 85.00% 66.73 1.03

1 79.00% 84.00% 23.00% 54.00% 84.00% 96.00% 45.00% 74.00% 56.9 1.07 1020.79 1019.72
2 99.00% 99.00% 38.00% 72.00% 77.00% 93.00% 61.00% 86.00% 58.97 1.04 81.73 80.69
3 99.00% 99.00% 37.00% 70.00% 84.00% 94.00% 62.00% 86.00% 60.59 1.03 3.18 2.15
4 99.00% 99.00% 37.00% 69.00% 84.00% 94.00% 61.00% 85.00% 63.4 1.03 1.24 0.21

NAP_MEMIT

5 99.00% 99.00% 37.00% 69.00% 84.00% 94.00% 61.00% 85.00% 65.98 1.03

1 29.00% 49.00% 6.00% 36.00% 92.00% 98.00% 15.00% 52.00% 55.61 3166.97 14020.32 10853.35
2 72.00% 85.00% 20.00% 57.00% 78.00% 93.00% 39.00% 75.00% 56.73 146.75 11323.25 11176.5
3 88.00% 93.00% 25.00% 63.00% 73.00% 91.00% 46.00% 80.00% 57.73 14.57 4457.16 4442.59
4 95.00% 97.00% 27.00% 66.00% 71.00% 89.00% 48.00% 82.00% 58.68 2.69 2399.39 2396.7
5 97.00% 98.00% 28.00% 67.00% 71.00% 88.00% 50.00% 82.00% 59.77 1.4 1073.72 1072.32
6 98.00% 99.00% 29.00% 67.00% 67.00% 87.00% 50.00% 82.00% 60.99 1.33 171.9 170.57
7 99.00% 99.00% 30.00% 68.00% 67.00% 86.00% 51.00% 82.00% 62.4 1.32 12.43 11.11
8 99.00% 99.00% 31.00% 68.00% 67.00% 86.00% 52.00% 82.00% 63.47 1.31 1.62 0.31
9 99.00% 99.00% 30.00% 68.00% 66.00% 86.00% 52.00% 82.00% 64.34 1.29 1.4 0.11

PMET

10 99.00% 99.00% 31.00% 68.00% 66.00% 86.00% 52.00% 82.00% 65.16 1.28 1.33 0.05

1 29.00% 48.00% 6.00% 35.00% 93.00% 99.00% 15.00% 50.00% 55.59 740.72 2872.44 2131.72
2 70.00% 83.00% 19.00% 54.00% 84.00% 97.00% 39.00% 73.00% 56.54 46.86 2336.83 2289.97
3 88.00% 92.00% 25.00% 61.00% 84.00% 96.00% 48.00% 80.00% 57.36 7.04 1193.64 1186.6
4 94.00% 96.00% 26.00% 63.00% 87.00% 96.00% 50.00% 82.00% 58.54 2.18 1651.91 1649.73
5 96.00% 97.00% 28.00% 64.00% 86.00% 96.00% 52.00% 82.00% 60.37 1.36 851.28 849.92
6 97.00% 98.00% 29.00% 64.00% 87.00% 96.00% 53.00% 83.00% 62.03 1.31 193.5 192.19
7 97.00% 98.00% 29.00% 64.00% 85.00% 97.00% 53.00% 83.00% 63.48 1.3 24.63 23.33
8 98.00% 98.00% 29.00% 64.00% 85.00% 97.00% 53.00% 83.00% 64.92 1.27 3.37 2.1
9 98.00% 98.00% 29.00% 64.00% 85.00% 97.00% 53.00% 83.00% 66.29 1.26 1.55 0.29

NA_PMET

10 98.00% 98.00% 30.00% 65.00% 83.00% 96.00% 54.00% 84.00% 67.86 1.24 1.51 0.27

1 1.00% 9.00% 1.00% 22.00% 100.00% 18.00% 54.66 768.86 2983.29 2214.43
2 28.00% 48.00% 6.00% 35.00% 92.00% 98.00% 15.00% 50.00% 55.54 47.43 2914.13 2866.7
3 70.00% 83.00% 19.00% 54.00% 84.00% 97.00% 39.00% 73.00% 56.41 6.87 2892.36 2885.49
4 88.00% 92.00% 25.00% 60.00% 82.00% 96.00% 47.00% 79.00% 57.29 2.09 1652.55 1650.46
5 94.00% 96.00% 27.00% 62.00% 83.00% 95.00% 50.00% 81.00% 58.34 1.31 925.36 924.05
6 96.00% 97.00% 28.00% 64.00% 83.00% 95.00% 52.00% 82.00% 59.69 1.28 222.03 220.75
7 98.00% 98.00% 29.00% 64.00% 84.00% 95.00% 53.00% 83.00% 60.9 1.26 21.49 20.23
8 98.00% 99.00% 30.00% 64.00% 84.00% 94.00% 54.00% 83.00% 62.26 1.24 2.19 0.95
9 98.00% 99.00% 29.00% 64.00% 84.00% 95.00% 54.00% 83.00% 63.16 1.22 1.44 0.22

GPT-2 XL
(1.5B)
#739

NAP_PMET

10 98.00% 99.00% 30.00% 65.00% 82.00% 94.00% 53.00% 83.00% 64.04 1.21 1.47 0.26

Table 12: Results of prefix-free (NA_) and with prefix(NAP_) neighbor-assisted model editing on COUNTERFACT. We
compare their evaluation metrics when our stopping criteria |∆pk| ≤ 1 (green rows) is met and bold the higher
value. Results among models and from Table 9 are not comparable due to difference in neighboring samples as
explained in Appendix B.2. Hence, we report the no. of examples (#) used to run experiment for each model.

21

Dataset COUNTERFACT ZsRE

k Score (↑) |∆pk| (↓) ∆p2 (↓) Score (↑) |∆pk| (↓) ∆p2 (↓)
Model Algo Accuracy Success Accuracy Success

Unedited 0 31.33% 73.67%

1 42.67% 83.00% 11359.60 48.33% 94.00% 2034.31
2 55.67% 89.67% 77.12 1.13E+04 47.67% 94.00% 39.39 1994.93
3 56.67% 90.00% 9.11 68.01 46.67% 94.00% 0.03 39.36
4 56.67% 90.00% 0.47 8.65 45.00% 94.00% 0.01 0.02

MEMIT

5 56.67% 90.00% 44.33% 94.00%

1 8.33% 58.33% 103785.71 35.33% 93.00% 111052.45
2 31.67% 77.33% 25519.43 8.95E+04 49.67% 94.33% 3094.74 113317.73
3 40.67% 83.33% 5025.56 2.17E+04 55.00% 94.33% 489.28 2618.47
4 43.33% 85.33% 2029.80 3077.3 54.67% 94.00% 48.69 441.40
5 44.00% 86.67% 224.53 1805.25 54.00% 94.00% 1.45 47.33

6 44.67% 86.67% 48.96 175.57 54.00% 94.00% 0.19 1.29
7 45.67% 87.00% 21.02 27.94 53.33% 94.00% 0.08 0.11
8 46.00% 87.00% 10.75 10.27 53.00% 94.00% 0.04 0.05
9 46.00% 87.00% 1.71 9.04 52.33% 94.00% 0.01 0.03

GPT-2 XL
(1.5B)

PMET

10 47.00% 87.33% 0.42 1.29 52.33% 94.00% 0.01 0.01

Unedited 0 37.33% 77.33% 5.02E+04

1 77.67% 94.33% 1.22 74.67% 92.00% 1.67
2 79.00% 95.00% 0.03 1.20 74.67% 92.33% 0.01 1.65
3 79.00% 95.00% 1.86 1.83 75.00% 92.33% 0.00 0.02
4 79.33% 95.00% 0.03 1.84 75.00% 92.33% 0.00 0.00

MEMIT

5 79.33% 95.00% 75.00% 92.33%

1 77.67% 93.67% 1.15 72.67% 92.00% 4.10
2 78.00% 94.33% 4.23 3.05 74.00% 92.00% 0.09 4.06
3 78.33% 94.00% 0.05 4.18 74.33% 92.00% 0.02 0.07
4 78.33% 94.00% 0.02 0.03 74.33% 92.00% 0.00 0.01

GPT-J
(6B)

PMET

5 78.33% 94.33% 74.33% 92.00%

Unedited 0 19.67% 55.67% 2.01E+04

1 77.33% 90.33% 3.32 77.33% 88.33% 6.33
2 78.00% 91.67% 0.09 3.18 78.00% 88.33% 0.07 6.28
3 78.33% 91.67% 0.16 0.07 78.67% 88.33% 0.02 0.05
4 78.33% 91.67% 0.00 0.16 78.67% 88.33% 0.00 0.01

Llama-2
(7B) PMET

5 78.33% 91.67% 79.00% 88.33%

Table 13: Comparing stopping criteria. We compare our proposed stopping criteria |∆pk| ≤ 1 (green) to the two
alternate stopping criteria, monotonic decrease i.e. |∆pk+1| < |∆pk|, otherwise stop and use θk (orange), and small
change, i.e., ∆p2 = |p(θk+1, h

lc
t,k+1)− p(θk, h

lc
t,k)| ≤ 1 (purple). We bold the higher scores among them.

22

	Introduction
	The Locate-and-Edit Framework
	Method
	Iterative Model Editing
	Neighbor-Assisted Model Editing

	Experimental Details
	Datasets
	Evaluation Metrics

	Results and Discussions
	Iterative Model Editing Results
	Neighbor-Assisted Model Editing Results
	Analysis: How effective is the stopping criterion?

	Related Work
	Conclusion
	Limitations
	Locate-and-Edit Algorithms
	Implementation details
	Iterative model editing
	Neighbor-assisted model editing

	Hardware Details
	Iterative Spread
	Factors Contributing Model Collapse
	Additional Analysis
	How does iterative model editing address UnderEdit?
	How prefixes influence neighbor-assisted model editing behavior?

	Iterative model editing results
	Neighbor-assisted model editing results

