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ABSTRACT

Why do models often attend to salient words, and how does this evolve throughout
training? We approximate model training as a two stage process: early on in training
when the attention weights are uniform, the model learns to translate individual
input word i to o if they co-occur frequently. Later, the model learns to attend to i
while the correct output is o because it knows i translates to o. To formalize, we
define a model property, Knowledge to Translate Individual Words (KTIW) (e.g.
knowing that i translates to o), and claim that it drives the learning of the attention.
This claim is supported by the fact that before the attention mechanism is learned,
KTIW can be learned from word co-occurrence statistics, but not the other way
around. Particularly, we can construct a training distribution that makes KTIW
hard to learn, the learning of the attention fails, and the model cannot even learn the
simple task of copying the input words to the output. Our approximation explains
why models sometimes attend to salient words, and inspires a toy example where a
multi-head attention model can overcome the above hard training distribution by
improving learning dynamics rather than expressiveness. We end by discussing the
limitation of our approximation framework and suggest future directions.

1 INTRODUCTION

The attention mechanism underlies many recent advances in natural language processing, such as
machine translation Bahdanau et al. (2015) and pretraining Devlin et al. (2019). While many works
focus on analyzing attention in already-trained models Jain & Wallace (2019); Vashishth et al. (2019);
Brunner et al. (2019); Elhage et al. (2021); Olsson et al. (2022), little is understood about how the
attention mechanism is learned via gradient descent at training time.

These learning dynamics are important, as standard, gradient-trained models can have very unique
inductive biases, distinguishing them from more esoteric but equally accurate models. For example,
in text classification, while standard models typically attend to salient (high gradient influence) words
Serrano & Smith (2019), recent work constructs accurate models that attend to irrelevant words
instead Wiegreffe & Pinter (2019); Pruthi et al. (2020). In machine translation, while the standard
gradient descent cannot train a high-accuracy transformer with relatively few attention heads, we
can construct one by first training with more heads and then pruning the redundant heads Voita et al.
(2019); Michel et al. (2019). To explain these differences, we need to understand how attention is
learned at training time.

Our work opens the black box of attention training, focusing on attention in LSTM Seq2Seq models
Luong et al. (2015) (Section 2.1). Intuitively, if the model knows that the input individual word i
translates to the correct output word o, it should attend to i to minimize the loss. This motivates us
to investigate the model’s knowledge to translate individual words (abbreviated as KTIW), and we
define a lexical probe β to measure this property.

We claim that KTIW drives the attention mechanism to be learned. This is supported by the fact
that KTIW can be learned when the attention mechanism has not been learned (Section 3.2), but not
the other way around (Section 3.3). Specifically, even when the attention weights are frozen to be
uniform, probe β still strongly agrees with the attention weights of a standardly trained model. On the
other hand, when KTIW cannot be learned, the attention mechanism cannot be learned. Particularly,
we can construct a distribution where KTIW is hard to learn; as a result, the model fails to learn a
simple task of copying the input to the output.
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Now the problem of understanding how attention mechanism is learned reduces to understanding
how KTIW is learned. Section 2.3 builds a simpler proxy model that approximates how KTIW is
learned, and Section 3.2 verifies empirically that the approximation is reasonable. This proxy model
is simple enough to analyze and we interpret its training dynamics with the classical IBM Translation
Model 1 (Section 4.2), which translates individual word i to o if they co-occur more frequently.

To collapse this chain of reasoning, we approximate model training in two stages. Early on in
training when the attention mechanism has not been learned, the model learns KTIW through word
co-occurrence statistics; KTIW later drives the learning of the attention.

Using these insights, we explain why attention weights sometimes correlate with word saliency in
binary text classification (Section 5.1): the model first learns to “translate” salient words into labels,
and then attend to them. We also present a toy experiment (Section 5.2) where multi-head attention
improves learning dynamics by combining differently initialized attention heads, even though a single
head model can express the target function.

Nevertheless, “all models are wrong”. Even though our framework successfully explains and predicts
the above empirical phenomena, it cannot fully explain the behavior of attention-based models, since
approximations are after all less accurate. Section 6 identifies and discusses two key assumptions: (1)
information of a word tends to stay in the local hidden state (Section 6.1) and (2) attention weights
are free variables (Section 6.2). We discuss future directions in Section 7.

2 MODEL

Section 2.1 defines the LSTM with attention Seq2Seq architecture. Section 2.2 defines the lexical
probe β, which measures the model’s knowledge to translate individual words (KTIW). Section 2.3
approximates how KTIW is learned early on in training by building a “bag of words” proxy model.
Section 2.4 shows that our framework generalizes to binary classification.

(1) We count all co-
occurrences of the input 
and output words.

Dieser 0 0.25 0.25 0.25 0.25

Film 0 0.25 0.25 0.25 0.25

großartig 0 0.25 0.25 0.25 0.25
ist 0 0.25 0.25 0.25 0.25

schlecht 0 0 0 0 0

bad great is movie This

(2) Create counts for all 
input-output sentence 
pairs and add them.

Dieser 0.25 0 0.25 0.25 0.25
Film 0.25 0 0.25 0.25 0.25

großartig 0 0 0 0 0

ist 0.25 0 0.25 0.25 0.25
schlecht 0.25 0 0.25 0.25 0.25

bad great is movie This

+

[Many other tables omitted …] 

=Dieser 22 26 97 13 200

Film 4 2 15 20 12
großartig 1 43 2 3 35

ist 18 22 100 8 54
schlecht 44 1 19 3 35

bad great is movie This

(3) Trans(lation)
( “movie” | input) 
estimated by each row. 
“Film” is more likely to 
translate to “movie”. 

Trans(movie |Film) = 20
4 + 2 + 15 + 20 + 21 = .32

Trans(movie |Dieser) = .04

Trans(movie | ist) = .04
Trans(movie |grobartig) = .04

Trans(movie |schlecht) = .03

β2,1 = .04 β2,2 = .32 β2,3 = .04 β2,4 = .03

(5) Alignment α: how 
much each input word 
contributes towards the 
2nd output word “movie”. 
It is attracted to “Film”. 

α2,1 = Alignment(t = 2, l = 2) = β2,1
∑4

l= 1 β2,l

Dieser   Film   ist   schlecht

This   movie   is   bad

Dieser             Film            ist            großartig

This             movie             is              great

l=1 l=2 l=3 l=4

t=1  t=2 t=3 t=4

= .32
.04 + .32 + .04 + .03 = .74

Matrix C
h4h3h2h1

l = 1 l = 2 l = 3 l = 4
Dieser Film ist großartig

Dieser Film ist großartig This movie is great
Translate

a 0.11 0.04 0.02 0.03
bad 0.04 0.04 0.02 0.04
great 0.02 0.02 0.01 0.71

is 0.04 0.03 0.90 0.01
movie 0.01 0.60 0.02 0.03
This 0.80 0.05 0.01 0.03

[other] . .. . .. . .. . ..

βt=2

(2) “Film” is more likely to 
translate to “movie”.

(1) The model first learns 
word translation under 
uniform attention when 
training starts. 

(3) Attention α is then 
attracted to the word “Film”.

Dieser Film ist großartig

movie 0.01 0.60 0.02 0.03

Dieser   Film   ist   großartig

This   movie   is   great

h4h3h2h1

(4) “Film” is more 
likely to translate to 
“movie”.

Attention-based Model Learning Dynamics

Classical Alignment Learning Procedure

Figure 1: Attention mechanism in recurrent models (left, Section 2.1) and word alignments in
the classical model (right, Section 4.2) are learned similarly. Both first learn how to translate
individual words (KTIW) under uniform attention weights/alignment at the start of training (upper,
blue background), which then drives the attention mechanism/alignment to be learned (lower, red
background).
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2.1 MACHINE TRANSLATION MODEL

We use the dot-attention variant from Luong et al. (2015). The model maps from an input sequence
{xl} with length L to an output sequence {yt} with length T . We first use LSTM encoders to embed
{xl} ⊂ I and {yt} ⊂ O respectively, where I and O are input and output vocab space, and obtain
encoder and decoder hidden states {hl} and {st}. Then we calculate the attention logits at,l by
applying a learnable mapping from hl and st, and use softmax to obtain the attention weights αt,l:

at,l = sTt Whl; αt,l =
eat,l∑L

l′=1 e
at,l′

. (1)

Next we sum the encoder hidden states {ht} weighted by the attention to obtain the “context vector”
ct, concatenate it with the decoder st, and obtain the output vocab probabilities pt by applying a
learnable neural network N with one hidden layer and softmax activation at the output, and train the
model by minimizing the sum of negative log-likelihood of all the output words yt.

ct =

L∑
l=1

αt,lhl; pt = N([ct, st]); L = −
T∑

t=1

log pt,yt
. (2)

2.2 LEXICAL PROBE β

We define the lexical probe βt,l as:
βt,l := N([hl, st])yt

, (3)
which means “the probability assigned to the correct word yt, if the network attends only to the input
encoder state hl”. If we assume that hl only contains information about xl, β closely reflects KTIW,
since β can be interpreted as “the probability that xl is translated to the output yt”.

Heuristically, to minimize the loss, the attention weights α should be attracted to positions with larger
βt,l. Hence, we expect the learning of the attention to be driven by KTIW (Figure 1 left). We then
discuss how KTIW is learned.

2.3 EARLY DYNAMICS OF LEXICAL KNOWLEDGE

To approximate how KTIW is learned early on in training, we build a proxy model by making a
few simplifying assumptions. First, since attention weights are uniform early on in training, we
replace the attention distribution with a uniform one. Second, since we are defining individual word
translation, we assume that information about each word is localized to its corresponding hidden
state. Therefore, similar to Sun & Lu (2020), we replace hl with an input word embedding exl

∈ Rd,
where e represents the word embedding matrix and d is the embedding dimension. Third, to simplify
analysis, we assume N only contains one linear layer W ∈ R|O|×d before softmax activation and
ignore the decoder state st. Putting these assumptions together, we now define a new proxy model
that produces output vocab probability pt := σ( 1

L

∑L
l=1 Wexl

).

On a high level, this proxy averages the embeddings of the input “bag of words”, and produces a
distribution over output vocabs to predict the output “bag of words”. This implies that the sets of
input and output words for each sentence pair are sufficient statistics for this proxy. The probe βpx

can be similarly defined as βpx
t,l := σ(Wexl

)yt .

We provide more intuitions on how this proxy learns in Section 4.

2.4 BINARY CLASSIFICATION MODEL

Binary classification can be reduced to “machine translation”, where T = 1 and |O| = 2. We drop
the subscript t = 1 when discussing classification.

We use the standard architecture from Wiegreffe & Pinter (2019). After obtaining the encoder hidden
states {ht}, we calculate the attention logits al by applying a feed-forward neural network with one
hidden layer and take the softmax of a to obtain the attention weights α:

al = vT (ReLU(Qhl)); αl =
eal∑L

l′=1 e
al′

, (4)
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where Q and v are learnable.

We sum the hidden states {hl} weighted by the attention, feed it to a final linear layer and apply the
sigmoid activation function (σ) to obtain the probability for the positive class

ppos = σ(WT
L∑

l=1

alhl) = σ(

L∑
l=1

αlW
Thl). (5)

Similar to the machine translation model (Section 2.1), we define the “lexical probe”:

βl := σ((2y − 1)WThl), (6)

where y ∈ {0, 1} is the label and 2y − 1 ∈ {−1, 1} controls the sign.

On a high level, Sun & Lu (2020) focuses on binary classification and provides almost the exact same
arguments as ours. Specifically, their polarity score “sl” equals βl

1−βl
in our context, and they provide

a more subtle analysis of how the attention mechanism is learned in binary classification.

3 EMPIRICAL EVIDENCE

We provide evidence that KTIW drives the learning of the attention early on in training: KTIW can
be learned when the attention mechanism has not been learned (Section 3.2), but not the other way
around (Section 3.3).

3.1 MEASURING AGREEMENT

We start by describing how to evaluate the agreement between quantities of interest, such as α and
β. For any input-output sentence pair (xm, ym), for each output index t, αm

t , βm
t , βpx,m

t ∈ RLm

all associate each input position l with a real number. Since attention weights and word alignment
tend to be sparse, we focus on the agreement of the highest-valued position. Suppose u, v ∈ RL, we
formally define the agreement of v with u as:

A(u, v) := 1[|{j|vj > vargmaxui}| < 5%L], (7)

which means “whether the highest-valued position (dimension) in u is in the top 5% highest-valued
positions in v”. We average the A values across all output words on the validation set to measure the
agreement between two model properties. We also report Kendall’s τ rank correlation coefficient in
Appendix 2 for completeness.

We denote its random baseline as Â. Â is close to but not exactly 5% because of integer rounding.

Contextualized Agreement Metric. However, since different datasets have different sentence
length distributions and variance of attention weights caused by random seeds, it might be hard
to directly interpret this agreement metric. Therefore, we contextualize this metric with model
performance. We use the standard method to train a model till convergence using T steps and
denote its attention weights as α; next we train the same model from scratch again using another
random seed. We denote its attention weights at training step τ as α̂(τ) and its performance as p̂(τ).
Roughly speaking, when τ < T , both A(α, α̂(τ)) and p̂(τ) increase as τ increases. We define the
contextualized agreement ξ as:

ξ(u, v) := p̂(inf{τ |A(α, α̂(τ)) > A(u, v)}). (8)

In other words, we find the training step τ0 where its attention weights α̂(τ0) and the standard
attention weights α agrees more than u and v agrees, and report the performance at this iteration. We
refer to the model performance when training finishes (τ = T ) as ξ∗.

Datasets. We evaluate the agreement metrics A and ξ on multiple machine translation and text
classification datasets. For machine translation, we use Multi-30k (En-De), IWSLT’14 (De-En), and
News Commentary v14 (En-Nl, En-Pt, and It-Pt). For text classification, we use IMDB Sentiment
Analysis, AG News Corpus, 20 Newsgroups (20 NG), Stanford Sentiment Treebank, Amazon review,
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Task A(α, βuf) A(βuf , βpx) A(∆, βuf) A(α, β) Â ξ(α, βuf) ξ(α, β) ξ∗

IMDB 53 82 62 60 5 87 87 90
AG News 39 55 43 48 6 94 95 96

20 NG 65 41 65 63 5 91 85 94
SST 20 34 22 25 8 78 82 84

Multi30k 31 34 27 49 7 43 49 66
IWSLT14 36 39 28 55 7 36 44 67
News It-Pt 29 39 25 52 6 22 25 55

Table 1: The tasks above the horizontal line are classification and below are translation. The
(contextualized) agreement metric A(ξ) is described in Section 3.1. Across all tasks, A(α, β),
A(α, βuf), and A(βuf , βpx) significantly outperform the random baseline Â and the corresponding
contextualized interpretations ξ are also non-trivial. This implies that 1) the proxy model from
Section 2.3 approximates well how KTIW is learned, 2) attention weights α and the probe β of
KTIW strongly agrees, and 3) KTIW can still be learned when the attention weights are uniform.

and Yelp Open Data Set. All of them are in English. The details and citations of these datasets can be
seen in the Appendix A.5. We use token accuracy1 to evaluate the performance of translation models
and accuracy to evaluate the classification models.

Due to space limit we round to integers and include a subset of datasets in Table 1 for the main paper.
Appendix Table 4 includes the full results.

3.2 KTIW LEARNS UNDER UNIFORM ATTENTION

Even when the attention mechanism has not been learned, KTIW can still be learned. We train the
same model architecture with the attention weights frozen to be uniform, and denote its lexical probe
as βuf . Across all tasks, A(α, βuf) and A(βuf , βpx) 2 significantly outperform the random baseline
Â, and the contextualized agreement ξ(α, βuf) is also non-trivial. This indicates that 1) the proxy we
built in Section 2.3 approximates KTIW and 2) even when the attention weights are uniform, KTIW
is still learned.

3.3 ATTENTION FAILS WHEN KTIW FAILS

We consider a simple task of copying from the input to the output, and each input is a permutation of
the same set of 40 vocab types. Under this training distribution, the proxy model provably cannot
learn: every input-output pair contains the exact same set of input-output words.3 As a result, our
framework predicts that KTIW is unlikely to be learned, and hence the learning of attention is likely
to fail.

The training curves of learning to copy the permutations are in Figure 2 left, colored in red: the
model sometimes fails to learn. For the control experiment, if we randomly sample and permute 40
vocabs from 60 vocab types as training samples, the model successfully learns (blue curve) from this
distribution every time. Therefore, even if the model is able to express this task, it might fail to learn
it when KTIW is not learned. The same qualitative conclusion holds for the training distribution that
mixes permutations of two disjoint sets of words (Figure 2 middle), and Appendix A.3 illustrates the
intuition.

For binary classification, it follows from the model definition that attention mechanism cannot be
learned if KTIW cannot be learned, since

pcorrect = σ(

L∑
l=1

αlσ
−1(βl)); σ(x) =

1

1 + e−x
, (9)

1Appendix Tables 5, 3, and 7 include results for BLEU.
2Empirically, βpx converges to the unigram weight of a bag-of-words logistic regression model, and hence

βpx does capture an interpretable notion of “keywords”. (Appendix A.10.)
3We provide more intuitions on this in Section 4
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and the model needs to attend to positions with higher β, in order to predict correctly and minimize
the loss. For completeness, we include results where we freeze β and find that the learning of the
attention fails in Appendix A.6.

Figure 2: Each curve represents accuracy on the test distribution vs. number of training steps for
different random seeds (20 each). Left and Middle are accuracy curves for single head attention
models. When trained on a distribution of permutation of 40 vocabs (red) (Left) or a mixture of
permutations (Middle), the model sometimes fails to learn and converges slower. The right figure is
for multi-head attention experiments. If all head initializations (head-init) are bad (red), the model is
likely to fail; if one of the head-init is good (blue), it is likely to learn; with high chance, at least one
out of eight random head-init is good (green).

4 CONNECTION TO IBM MODEL 1

Section 2.3 built a simple proxy model to approximate how KTIW is learned when the attention
weights are uniform early on in training, and Section 3.2 verified that such an approximation is
empirically sound. However, it is still hard to intuitively reason about how this proxy model learns.
This section provides more intuitions by connecting its initial gradient (Section 4.1) to the classical
IBM Model 1 alignment algorithm Brown et al. (1993) (Section 4.2).

4.1 DERIVATIVE AT INITIALIZATION

We continue from the end of Section 2.3. For each input word i and output word o, we are interested
in understanding the probability that i assigns to o, defined as:

θpxi,o := σ(Wei)o. (10)

This quantity is directly tied to βpx, since βpx
t,l = θpxxl,yt

. Using super-script m to index sentence pairs
in the dataset, the total loss L is:

L = −
∑
m

Tm∑
t=1

log(σ(
1

Lm

Lm∑
l=1

Wexm
l
)ym

t
). (11)

Suppose each ei or Wo is independently initialized from a normal distribution N (0, Id/d) and we
minimize L over W and e using gradient flow, then the value of e and W are uniquely defined for
each continuous time step τ . By some straightforward but tedious calculations (details in Appendix
A.2), the derivative of θi,o when the training starts is:

lim
d→∞

∂θpxi,o
∂τ

(τ = 0)
p→ 2(Cpx

i,o −
1

|O|
∑
o′∈O

Cpx
i,o′). (12)

where
p→ means convergence in probability and Cpx

i,o is defined as

Cpx
i,o :=

∑
m

Lm∑
l=1

Tm∑
t=1

1

Lm
1[xm

l = i]1[ymt = o]. (13)

Equation 12 tells us that βpx
t,l = θpxxl,yt

is likely to be larger if Cxl,yt is large. The definition of C
seems hard to interpret from Equation 13, but in the next subsection we will find that this quantity
naturally corresponds to the “count table” used in the classical IBM 1 alignment learning algorithm.
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4.2 IBM MODEL 1 ALIGNMENT LEARNING

The classical alignment algorithm aims to learn which input word is responsible for each output word
(e.g. knowing that y2 “movie” aligns to x2 “Film” in Figure 1 upper left), from a set of input-output
sentence pairs. IBM Model 1 Brown et al. (1993) starts with a 2-dimensional count table CIBM

indexed by i ∈ I and o ∈ O, denoting input and output vocabs. Whenever vocab i and o co-occurs
in an input-output pair, we add 1

L to the CIBM
i,o entry (step 1 and 2 in Figure 1 right). After updating

CIBM for the entire dataset, CIBM is exactly the same as Cpx defined in Equation 13. We drop the
super-script of C to keep the notation uncluttered.

Given C, the classical model estimates a probability distribution of “what output word o does the
input word i translate to” (Figure 1 right step 3) as

Trans(o|i) = Ci,o∑
o′ Ci,o′

. (14)

In a pair of sequences ({xl}, {yt}), the probability βIBM that xl is translated to the output yt is:

βIBM
t,l := Trans(yt|xl), (15)

and the alignment probability αIBM that “xl is responsible for outputting yt versus other xl′” is

αIBM(t, l) =
βIBM
t,l∑L

l′=1 β
IBM
t,l′

, (16)

which monotonically increases with respect to βIBM
t,l . See Figure 1 right step 5.

4.3 VISUALIZING AFOREMENTIONED TASKS

Figure 1 (right) visualizes the count table C for the machine translation task, and illustrates how
KTIW is learned and drives the learning of attention. We provide similar visualization for why
KTIW is hard to learn under a distribution of vocab permutations (Section 3.3) in Figure 3, and how
word polarity is learned in binary classification (Section 2.4) in Figure 4.

A B C D
A’ B’ C’ D’

D C B A
D’ C’ B’ A’

D 0.25 0.25 0.25 0.25
C 0.25 0.25 0.25 0.25
B 0.25 0.25 0.25 0.25
A 0.25 0.25 0.25 0.25

A’ B’ C’ D’

+
D M/4 M/4 M/4 M/4
C M/4 M/4 M/4 M/4
B M/4 M/4 M/4 M/4
A M/4 M/4 M/4 M/4

A’ B’ C’ D’

[In total M sequences] 

Trans(C′�|C) = .25
Trans(C′�|B) = .25
Trans(C′�|A) = .25

Trans(C′�|D) = .25

D 0.25 0.25 0.25 0.25
C 0.25 0.25 0.25 0.25
B 0.25 0.25 0.25 0.25
A 0.25 0.25 0.25 0.25

A’ B’ C’ D’

=
Alignment α has no preference over any of 
these words, since the probabilities are uniform.

Figure 3: Co-occurrence table C is non-informative under a distribution of permutations. Therefore,
this distribution is hard for the attention-based model to learn.

5 APPLICATION

5.1 INTERPRETABILITY IN CLASSIFICATION

We use gradient based method Ebrahimi et al. (2018) to approximate the influence ∆l for each input
word xl. The column A(∆, βuf) reports the agreement between ∆ and βuf , and it significantly
outperforms the random baseline. Since KTIW initially drives the attention mechanism to be learned,
this explains why attention weights are correlated with word saliency on many classification tasks,
even though the training objective does not explicitly reward this.
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bad 0 0
great 0.5 0
movie 0.5 0

Positive Negative

Input: great movie
Label: Positive

bad 0 0.5
great 0 0
movie 0 0.5

Positive Negative

+ bad 0 0.5
great 0.5 0

movie 0.5 0.5
Positive Negative

= Trans(positive |great) = 1.
Trans(positive |bad) = 0.

Trans(positive |movie) = 0.5

Alignment α is attracted to the 
word “great”, since 1 is the largest.

Input: bad movie
Label: Negative

Figure 4: The classical model first learns word polarity, which later attracts attention.

5.2 MULTI-HEAD IMPROVES TRAINING DYNAMICS

We saw in Section 3.3 that learning to copy sequences under a distribution of permutations is hard
and the model can fail to learn; however, sometimes it is still able to learn. Can we improve learning
and overcome this hard distribution by ensembling several attention parameters together?

We introduce a multi-head attention architecture by summing the context vector ct obtained by each
head. Suppose there are K heads each indexed by k, similar to Section 2.1:

a
(k)
t,l = sTt W

(k)hl; α
(k)
t,l =

ea
(k)
t,l∑L

l′=1 e
α

(k)

t,l′
, (17)

and the context vector and final probability pt defined as:

c
(k)
t =

L∑
l=1

α
(k)
t,l hl; pt = N([

K∑
k=1

c
(k)
t , dt]), (18)

where W (k) are different learn-able parameters.

We call W (k)
init a good initialization if training with this single head converges, and bad otherwise.

We use rejection sampling to find good/bad head initializations and combine them to form 8-head
(K = 8) attention models. We experiment with 3 scenarios: (1) all head initializations are bad, (2)
only one initialization is good, and (3) initializations are sampled independently at random.

Figure 2 right presents the training curves. If all head initializations are bad, the model fails
to converge (red). However, as long as one of the eight initializations is good, the model can
converge (blue). As the number of heads increases, the probability that all initializations are bad is
exponentially small if all initializations are sampled independently; hence the model converges with
very high probability (green). In this experiment, multi-head attention improves not by increasing
expressiveness, since one head is sufficient to accomplish the task, but by improving the learning
dynamics.

6 ASSUMPTIONS

We revisit the approximation assumptions used in our framework. Section 6.1 discusses whether
the lexical probe βt,l necessarily reflects local information about input word xl, and Section 6.2
discusses whether attention weights can be freely optimized to attend to large β. These assumptions
are accurate enough to predict phenomenon in Section 3 and 5, but they are not always true and hence
warrant more future researches. We provide simple examples where these assumptions might fail.

6.1 β REMAINS LOCAL

We use a toy classification task to show that early on in training, expectantly, βuf is larger near
positions that contain the keyword. However, unintuitively, βuf

L (β at the last position in the sequence)
will become the largest if we train the model for too long under uniform attention weights.

In this toy task, each input is a length-40 sequence of words sampled from {1, . . . , 40} uniformly at
random; a sequence is positive if and only if the keyword “1” appears in the sequence. We restrict “1”
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to appear only once in each positive sequence, and use rejection sampling to balance positive and
negative examples. Let l∗ be the position where xl∗ = 1.

For the positive sequences, we examine the log-odd ratio γl before the sigmoid activation in Equation
5, since β will be all close to 1 and comparing γ would be more informative: γl := log

βuf
l

1−βuf
l

.

We measure four quantities: 1) γl∗ , the log-odd ratio if the model only attends to the key word
position, 2) γl∗+1, one position after the key word position, 3) γ̄ :=

∑L
l=1 γl

L , if attention weights are
uniform, and 4) γL if the model attends to the last hidden state. If the γl only contains information
about word xl, we should expect:

Hypothesis 1 : γl∗ ≫ γ̄ ≫ γL ≈ γl∗+1. (19)

However, if we accept the conventional wisdom that hidden states contain information about nearby
words Khandelwal et al. (2018), we should expect:

Hypothesis 2 : γl∗ ≫ γl∗+1 ≫ γ̄ ≈ γL. (20)

To verify these hypotheses, we plot how γl∗ , γl∗+1, γ̄, and γL evolve as training proceeds in Figure
5. Hypothesis 2 is indeed true when training starts; however, we find the following to be true
asymptotically:

Observation 3 : γL ≫ γl∗+1 ≫ γ̄ ≈ γl∗ . (21)

which is wildly different from Hypothesis 2. If we train under uniform attention weights for too long,
the information about keywords can freely flow to other non-local hidden states.

6.2 ATTENTION WEIGHTS ARE FREE VARIABLES

Figure 5: When training begins, Hypothesis 2
(Equation 19) is true; however, asymptotically,
Oberservation 3 (Equation 21) is true.

In Section 2.1 we assumed that attention weights
α behave like free variables that can assign arbi-
trarily high probabilities to positions with larger
β. However, α is produced by a model, and
sometimes learning the correct α can be chal-
lenging.

Let π be a random permutation of integers from
1 to 40, and we want to learn the function f that
permutes the input with π:

f([x1, x2, . . . x40]) := [xπ(1), xπ(2) . . . xπ(40)].
(22)

Input x are randomly sampled from a vocab
of size 60 as in Section 3.3. Even though βuf

behaves exactly the same for these two tasks,
sequence copying is much easier to learn than
permutation function: while the model always
reaches perfect accuracy in the former setting
within 300 iterations, it always fails in the latter.
LSTM has a built-in inductive bias to learn monotonic attention.

7 CONCLUSIONS

Our work tries to understand the black box of attention training. Early on in training, the LSTM
attention models first learn how to translation individual words from bag of words co-occurrence
statistics, which then drives the learning of the attention. Our framework explains why attention
weights obtained by standard training often correlate with saliency, and how multi-head attention
can increase performance by improving the training dynamics rather than expressiveness. These
phenomena cannot be explained if we treated the training process as a black box.

9
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8 ETHICAL CONSIDERATIONS

We present a new framework for understanding and predicting behaviors of an existing technology:
the attention mechanism in recurrent neural networks. We do not propose any new technologies or
any new datasets that could directly raise ethical questions. However, it is useful to keep in mind that
our framework is far from solving the question of neural network interpretability, and should not be
interpreted as ground truth in high stake domains like medicine or recidivism. We are aware and very
explicit about the limitations of our framework, which we made clear in Section 6.

9 REPRODUCABILITY STATEMENT

To promote reproducibility, we provide extensive results in the appendix and describe all experiments
in detail. We also attach source code for reproducing all experiments to the supplemental of this
submission.
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A APPENDICES

A.1 HEURISTIC THAT α ATTENDS TO LARGER β

It is a heuristic rather than a rigorous theorem that attention α is attracted to larger β. There are two
reasons. First, there is a non-linear layer after the averaging the hidden states, which can interact in
an arbitrarily complex way to break this heuristic. Second, even if there are no non-linear operations
after hidden state aggregation, the optimal attention that minimizes the loss does not necessarily
assign any probability to the position with the largest β value when there are more than two output
vocabs.

Specifically, we consider the following model:

pt = σ(Wc

∑
l=1

αt,lhl +Wsst) = σ(
∑
l=1

αt,lγl + γs), (23)

where Wc and Ws are learnable weights, and γ defined as:

γl := Wchl; γs := Wsst ⇒ βt,l = σ(γl + γs)yt . (24)

Consider the following scenario that outputs a probability distribution p over 3 output vocabs and γs
is set to 0:

p = σ(α1γ1 + α2γ2 + α3γ3), (25)

where γl=1,2,3 ∈ R|O|=3 are the logits, α is a valid attention probability distribution, σ is the softmax,
and p is the probability distribution produced by this model. Suppose

γ1 = [0, 0, 0], γ2 = [0,−10, 5], γ3 = [0, 5,−10] (26)

and the correct output is the first output vocab (i.e. the first dimension). Therefore, we take the
softmax of γl and consider the first dimension:

βl=1 =
1

3
> βl=2 = βl=3 ≈ e−5. (27)

We calculate “optimal α” αopt: the optimal attention weights that can maximize the correct output
word probability p0 and minimize the loss. We find that αopt

2 = αopt
3 = 0.5, while αopt

1 = 0. In this
example, the optimal attention assigns 0 weight to the position l with the highest βl.

Fortunately, such pathological examples rarely occur in real datasets, and the optimal α are usually
attracted to positions with higher β. We empirically verify this for the below variant of machine
translation model on Multi30K.

As before, we obtain the context vector ct. Instead of concatenating ct and dt and pass it into a
non-linear neural network N , we add them and apply a linear layer with softmax after it to obtain the
output word probability distribution

pt = σ(W (ct + dt)). (28)

This model is desirable because we can now provably find the optimal α using gradient descent (we
delay the proof to the end of this subsection). Additionally, this model has comparable performance
with the variant from our main paper (Section 2.1), achieving 38.2 BLEU score, vs. 37.9 for the
model in our main paper. We use αopt to denote the attention that can minimize the loss, and we find
that A(αopt, β) = 0.53. β do strongly agree with αopt.

Now we are left to show that we can use gradient descent to find the optimal attention weights to
minimize the loss. We can rewrite pt as

pt = σ(

L∑
l=1

αlWhl +Wdt). (29)

We define
γl := Whl; γs := Wdt. (30)

13
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Without loss of generality, suppose the first dimension of γ1...L, γs are all 0, and the correct token we
want to maximize probability for is the first dimension, then the loss for the output word is

L = log(1 + g(α)), (31)

where
g(α) :=

∑
o∈O,o ̸=0

eα
T γ′

o+γs,o , (32)

where
γ′
o = [γ1,o . . . γl,o . . . γL,o] ∈ RL. (33)

Since α is defined within the convex probability simplex and g(α) is convex with respect to α, the
global optima αopt can be found by gradient descent.

A.2 CALCULATING
∂θi,o
∂τ

We drop the px super-script of θ to keep the notation uncluttered. We copy the loss function here to
remind the readers:

L = −
∑
m

Tm∑
t=1

log(σ(
1

Lm

Lm∑
l=1

Wexm
l
)ym

t
). (34)

and since we optimize W and e with gradient flow,

∂W

∂τ
:= − L

∂W
;

∂e

∂τ
:= − L

∂e
. (35)

We first define the un-normalized logits γ̂ and then take the softmax.

θ̂ = We, (36)

then
∂θ̂

∂τ
=

∂(We)

∂τ
= −W

∂e

∂τ
− ∂W

∂τ
e. (37)

We first analyze ϵ := −W ∂e
∂τ . Since ϵ ∈ R|I|×|O|, we analyze each entry ϵi,o. Since differentiation

operation and left multiplication by matrix W is linear, we analyze each individual loss term in
Equation 34 and then sum them up.

We define

pm := σ(
1

Lm

Lm∑
l=1

Wexm
l
) (38)

and
Lm
t := − log(pmym

t
); ϵmt,i,o := Wo

∂Lm
t

∂ei
. (39)

Hence,

L =
∑
m

Tm∑
t=1

Lm
t ; ϵi,o =

∑
m

Tm∑
t=1

ϵmt,i,o. (40)

Therefore,

−∂Lm
t

∂ei
=

1

Lm

Lm∑
l=1

1[xm
l = i](Wym

t
−

|O|∑
o=1

pmo Wo). (41)

Hence,

ϵmt,i,ym
t

= −WT
ym
t

∂Lm
t

∂ei
=

1

Lm

Lm∑
l=1

1[xm
l = i] (42)

(||Wym
t
||22 −

|O|∑
o=1

pmo WT
ym
t
Wo),

14
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while for o′ ̸= ymt ,

ϵmt,i,o′ = −WT
o′
∂Lm

t

∂ei
=

1

Lm

Lm∑
l=1

1[xm
l = i] (43)

(WT
o′Wym

t
−

|O|∑
o=1

pmo WT
o′Wo).

If Wo and ei are each sampled i.i.d. from N (0, Id/d), then by central limit theorem:

∀o ̸= o′,
√
dWT

o Wo′
p→ N (0, 1), (44)

∀o, i,
√
dWT

o ei
p→ N (0, 1), (45)

and
∀o,

√
d(||Wo||22 − 1)

p→ N (0, 2). (46)
Therefore, when τ = 0,

lim
d→∞

ϵmt,i,o
p→ 1

Lm

Lm∑
l=1

1[xm
l = i](1[ytl = o]− 1

|O|
). (47)

Summing over all the ϵmt,i,o terms, we have that

ϵi,o = Ci,o −
1

|O|
∑
o′

Ci,o′ , (48)

where C is defined as

Ci,o :=
∑
m

Lm∑
l=1

Tm∑
t=1

1

Lm
1[xm

l = i]1[ymt = o]. (49)

We find that −∂W
∂τ e converges exactly to the same value. Hence

∂θ̂i,o
∂τ

=
∂We

∂τ
= 2(Ci,o −

1

|O|
∑
o′

Ci,o′). (50)

Since limd→∞ θ(τ = 0)
p→ 1

|O|1
|I|×|O|, by chain rule,

lim
d→∞

∂γi,o
∂τ

(τ = 0)
p→ 2(Ci,o −

1

|O|
∑
o′∈O

Ci,o′). (51)

A.3 MIXTURE OF PERMUTATIONS

For this experiment, each input is either a random permutation of the set {1 . . . 40}, or a random
permutation of the set {41 . . . 80}. The proxy model can easily learn whether the input words are
less than 40 and decide whether the output words are all less than 40. However, βpx is still the same
for every position; as a result, the attention and hence the model fail to learn. The count table C can
be see in Figure 6.

A.4 ADDITIONAL TABLES FOR COMPLETENESS

We report several variants of Table 1. We chose to use token accuracy to contextualize the agreement
metric in the main paper, because the errors would accumulate much more if we use a not-fully
trained model to auto-regressively generate output words.

• Table 2 contains the same results as Table 1, except that its agreement score A(u, v) is now
Kendall Tau rank correlation coefficient, which is a more popular metric.
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H 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0
D 0.250.250.25 0.25 0 0 0 0
C 0.250.250.25 0.25 0 0 0 0
B 0.250.250.25 0.25 0 0 0 0
A 0.250.250.25 0.25 0 0 0 0

A’ B’ C’ D’ E’ F’ G’ H’

A B C D
A’ B’ C’ D’

D C B A
D’ C’ B’ A’

H 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0
D 0.250.250.25 0.25 0 0 0 0
C 0.250.250.25 0.25 0 0 0 0
B 0.250.250.25 0.25 0 0 0 0
A 0.250.250.25 0.25 0 0 0 0

A’ B’ C’ D’ E’ F’ G’ H’

F G E H
F’ G’ E’ H’

H 0 0 0 0 0.25 0.25 0.25 0.25
G 0 0 0 0 0.25 0.25 0.25 0.25
F 0 0 0 0 0.25 0.25 0.25 0.25
E 0 0 0 0 0.25 0.25 0.25 0.25
D 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0

A’ B’ C’ D’ E’ F’ G’ H’

H G F E
H’ G’ F’ E’

H 0 0 0 0 0.25 0.25 0.25 0.25
G 0 0 0 0 0.25 0.25 0.25 0.25
F 0 0 0 0 0.25 0.25 0.25 0.25
E 0 0 0 0 0.25 0.25 0.25 0.25
D 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0

A’ B’ C’ D’ E’ F’ G’ H’

+

=[In total M sequences] [In total K sequences] 

H 0 0 0 0 K/4 K/4 K/4 K/4
G 0 0 0 0 K/4 K/4 K/4 K/4
F 0 0 0 0 K/4 K/4 K/4 K/4
E 0 0 0 0 K/4 K/4 K/4 K/4
D M/4 M/4 M/4 M/4 0 0 0 0
C M/4 M/4 M/4 M/4 0 0 0 0
B M/4 M/4 M/4 M/4 0 0 0 0
A M/4 M/4 M/4 M/4 0 0 0 0

A’ B’ C’ D’ E’ F’ G’ H’

Trans(C′�|C) = .25
Trans(C′�|B) = .25
Trans(C′�|A) = .25

Trans(C′�|D) = .25

Alignment α has no preference over any of 
these words, since the probabilities are uniform 
over the input words “A”,  “B”, “C”, “D”.

Figure 6: The training distributions mixes random permutation of disjoint set of words (left and
right, respectively). From the count table, βpx could learn that the set of input words {A,B,C,D}
corresponds to the set of output words {A′, B′, C ′, D′}, but its β value for each input position is still
uniformly 0.25.
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Task A(α, βuf) A(βuf , βpx) A(∆, βuf) Â
IMDB 12.77 33.31 12.56 0.00
Yelp 20.38 36.75 20.98 0.00

AG News 26.31 36.65 20.55 0.00
20 NG 16.06 22.03 6.50 0.00
SST 11.68 31.43 15.01 0.00

Amzn 15.21 35.84 9.33 0.00
Muti30k 7.89 27.54 3.93 0.00

IWSLT14 8.64 22.56 2.72 0.00
News It-Pt 4.82 17.16 1.63 0.00

News En-Nl 4.53 20.35 2.08 0.00
News En-Pt 4.65 18.20 2.17 0.00

Task ξ(α, βuf) ξ(βuf , βpx) ξ(∆, βuf) ξ∗

IMDB 70.60 80.50 70.60 89.55
Yelp 87.44 93.20 87.44 96.20

AG News 89.31 93.54 85.85 96.05
20 NG 60.75 60.75 60.75 94.22
SST 76.69 83.53∗ 76.69 83.53

Amzn 69.91 88.07 57.36 90.38
Muti30k 22.94 36.61 22.94 66.29

IWSLT14 29.07 32.98 29.07 67.36
News It-Pt 14.01 18.25 8.10 55.41

News En-Nl 9.60 18.59 9.60 62.90
News En-Pt 14.10 14.10 7.71 67.75

Table 2: Table 1 except with agreement defined by Kendall Tau. Section A.4

Task A(α, βuf) A(βuf , βpx) A(∆, βuf) Â
Muti30k 8.68 27.54 4.24 0.00

IWSLT14 8.64 22.56 2.72 0.00
News It-Pt 4.82 17.16 1.63 0.00

News En-Nl 4.53 20.35 2.08 0.00
News En-Pt 4.41 18.20 2.05 0.00

Task ξ(α, βuf) ξ(βuf , βpx) ξ(∆, βuf) ξ∗

Muti30k 1.99 6.91 1.99 37.89
IWSLT14 5.38 5.31 5.38 32.95
News It-Pt 0.09 0.55 0.04 24.71

News En-Nl 0.01 0.94 0.01 29.42
News En-Pt 0.01 0.22 0.01 37.04

Table 3: translation results from Table 2 except with performance measured by bleu rather than token
accuracy. Section A.4

• Table 4 contains the same results as Table 1, except that results are now rounded to two
decimal places.

• Table 6 consists of the same results as Table 1, except that the statistics is calculated over
the training set rather than the validation set.

• Table 3, Table 5, and Table 7 contain the translation results from the above 3 mentioned
tables respectively, except that p̂ is defined as BLEU score rather than token accuracy, and
hence the contextualized metric interpretation ξ changes correspondingly.

A.5 DATASET DESCRIPTION

We summarize the datasets that we use for classification and machine translation. See Table 8 for
details on train/test splits and median sequence lengths for each dataset.
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Task A(α, βuf) A(βuf , βpx) A(∆, βuf) A(α, β) Â
IMDB 52.55 81.60 61.55 60.35 5.30
Yelp 17.55 75.38 58.90 35.00 5.80

AG News 39.24 55.13 43.08 48.13 6.20
20 NG 65.08 41.33 64.82 63.07 5.11
SST 19.85 33.57 22.45 25.33 8.39

Amzn 52.02 76.78 49.68 62.13 5.80
Muti30k 31.02 34.43 27.06 48.78 7.11

IWSLT14 35.75 39.09 27.69 55.25 6.52
News It-Pt 29.13 38.62 25.45 52.48 6.17

News En-Nl 35.53 41.72 29.15 60.15 6.36
News En-Pt 35.90 37.37 30.23 65.49 6.34

Task ξ(α, βuf) ξ(βuf , βpx) ξ(∆, βuf) ξ(α, β) ξ∗

IMDB 86.81 88.88 86.81 86.81 89.55
Yelp 90.39 95.22 95.31 93.59 96.20

AG News 93.54 96.05∗ 94.32 94.50 96.05
20 NG 91.16 60.75 84.57 84.57 94.22
SST 78.16 83.53∗ 78.16 82.38 83.53

Amzn 82.48 90.38∗ 82.48 88.07 90.38
Muti30k 43.45 43.45 43.45 48.58 66.29

IWSLT14 35.82 35.82 32.98 44.09 67.36
News It-Pt 21.82 25.06 21.82 25.06 55.41

News En-Nl 18.59 23.21 18.59 26.79 62.90
News En-Pt 19.12 19.12 19.12 27.85 67.75

Table 4: Table 1 with 2 decimal results. Section A.4

Task A(α, βuf) A(βuf , βpx) A(∆, βuf) A(α, β) Â
Muti30k 30.77 34.43 27.24 48.70 7.19

IWSLT14 35.75 39.09 27.69 55.25 6.52
News It-Pt 29.13 38.62 25.45 52.48 6.17

News En-Nl 35.53 41.72 29.15 60.15 6.35
News En-Pt 35.77 37.37 30.37 64.94 6.34

Task ξ(α, βuf) ξ(βuf , βpx) ξ(∆, βuf) ξ(α, β) ξ∗

Muti30k 11.43 11.43 11.43 16.41 37.89
IWSLT14 6.71 6.71 5.31 9.89 32.95
News It-Pt 1.29 2.16 1.29 2.16 24.71

News En-Nl 0.94 2.39 0.94 4.12 29.42
News En-Pt 0.74 0.74 0.74 4.28 37.04

Table 5: translation results from Table 4 except with performance measured by bleu rather than token
accuracy. Section A.4
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Task A(α, βuf) A(βuf , βpx) A(∆, βuf) A(α, β) Â
IMDB 51.52 80.10 42.85 64.88 5.29
Yelp 11.15 76.12 55.50 37.63 5.85

AG News 36.97 53.95 43.11 46.89 6.17
20 NG 72.36 38.69 71.73 69.47 5.32
SST 21.82 29.35 20.48 28.50 8.48

Amzn 51.95 77.18 40.15 61.78 5.91
Muti30k 32.89 34.67 28.36 56.39 7.21

IWSLT14 36.61 38.95 28.37 57.71 6.52
News It-Pt 31.03 38.70 27.11 64.81 6.15

News En-Nl 37.86 41.91 31.11 67.68 6.39
News En-Pt 37.43 37.23 31.76 71.96 6.35

Task ξ(α, βuf) ξ(βuf , βpx) ξ(∆, βuf) ξ(α, β) ξ∗

IMDB 90.40 99.95∗ 90.40 95.01 99.95
Yelp 75.61 96.54 96.19 94.44 98.22

AG News 93.57 98.42∗ 94.63 95.54 98.42
20 NG 100.00 65.40 100.00 100.0 100.00
SST 97.72 100.00∗ 84.11 100.0∗ 100.00

Amzn 87.96 99.58∗ 80.98 91.09 99.58
Muti30k 43.27 43.27 43.27 51.97 80.76

IWSLT14 35.94 35.94 35.94 44.18 71.18
News It-Pt 22.69 25.96 22.69 39.98 77.10

News En-Nl 18.85 23.56 18.85 40.09 74.49
News En-Pt 19.33 19.33 19.33 42.41 77.97

Table 6: Table 1 except with correlations and performance metrics taken over the training set instead
of the validation set. Section A.4

Task A(α, βuf) A(βuf , βpx) A(∆, βuf) Â
Muti30k 32.89 34.67 28.36 7.16

IWSLT14 36.61 38.95 28.37 6.54
News It-Pt 31.03 38.70 27.11 6.17

News En-Nl 37.86 41.91 31.11 6.38
News En-Pt 37.43 37.23 31.76 6.37

Task ξ(α, βuf) ξ(βuf , βpx) ξ(∆, βuf) ξ∗

Muti30k 11.87 11.87 11.87 52.28
IWSLT14 6.82 6.82 6.82 36.23
News It-Pt 1.30 2.30 1.30 42.40

News En-Nl 1.11 2.29 1.11 39.40
News En-Pt 0.83 0.83 0.83 46.57

Table 7: translation results from Table Table 6 except with performance measured by bleu rather than
token accuracy. Section A.4
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IMDB Sentiment Analysis Maas et al. (2011) A sentiment analysis data set with 50,000 (25,000
train and 25,000 test) IMDB movie reviews and their corresponding positive or negative sentiment.

AG News Corpus Zhang et al. (2015) 120,000 news articles and their corresponding topic (world,
sports, business, or science/tech). We classify between the world and business articles.

20 Newsgroups 4 A news data set containing around 18,000 newsgroups articles split between 20
different labeled categories. We classify between baseball and hocky articles.

Stanford Sentiment Treebank Socher et al. (2013) A data set for classifying the sentiment of movie
reviews, labeled on a scale from 1 (negative) to 5 (positive). We remove all movies labeled as 3, and
classify between 4 or 5 and 1 or 2.

Multi Domain Sentiment Data set 5 Approximately 40,000 Amazon reviews from various product
categories labeled with a corresponding positive or negative label. Since some of the sequences are
particularly long, we only use sequences of length less than 400 words.

Yelp Open Data Set 6 20,000 Yelp reviews and their corresponding star rating from 1 to 5. We
classify between reviews with rating ≤ 2 and ≥ 4.

Multi-30k Elliott et al. (2016) English to German translation. The data is from translation image
captions.

IWSLT’14 Cettolo et al. (2015) German to English translation. The data is from translated TED talk
transcriptions.

News Commentary v14 Cettolo et al. (2015) A collection of translation news commentary datasets in
different languages from WMT19 7. We use the following translation splits: English-Dutch (En-Nl),
English-Portuguese (En-Pt), and Italian-Portuguese (It-Pt). In pre-processing for this dataset, we
removed all purely numerical examples.

A.6 α FAILS WHEN β IS FROZEN

For each classification task we initialize a random model and freeze all parameters except for the
attention layer (frozen β model). We then compute the correlation between this trained attention
(defined as αfr) and the normal attention α. Table 9 reports this correlation at the iteration where αfr

is most correlated with α on the validation set. As shown in Table 9, the left column is consistently
lower than the right column. This indicates that the model can learn output relevance without attention,
but not vice versa.

A.7 TRAINING βuf

We find that A(α, βuf(τ)) first increases and then decreases as training proceeds (i.e. τ increases),
so we chose the maximum agreement to report in Table 1 over the course of training. Since this
trend is consistent across all datasets, our choice minimally inflates the agreement measure, and is
comparable to the practice of reporting dev set results. As discussed in Section 6.1, training under
uniform attention for too long might bring unintuitive results,

A.8 MODEL AND TRAINING DETAILS

Classification Our model uses dimension 300 GloVe-6B pre-trained embeddings to initialize the
token embeddings where they aligned with our vocabulary. The sequences are encoded with a 1 layer
bidirectional LSTM of dimension 256. The rest of the model, including the attention mechanism,
is exactly as described in 2.4. Our model has 1,274,882 parameters excluding embeddings. Since
each classification set has a different vocab size each model has a slightly different parameter count
when considering embeddings: 19,376,282 for IMDB, 10,594,382 for AG News, 5,021,282 for 20

4http://qwone.com/ jason/20Newsgroups/
5https://www.cs.jhu.edu/ mdredze/datasets/sentiment/
6https://www.yelp.com/dataset
7http://www.statmt.org/wmt19/translation-task.html
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Data median train seq len train #
IMDB 181 25000

AG News 40 60000
NewsG 183 1197

SST 16 5130
Amzn 71 32514
Yelp 74 88821

IWSLT14 (23 src, 24 trg) 160240
Multi-30k (14 src, 14 trg) 29000

News-en-nl (30 src, 34 trg) 52070
News-en-pt (31 src, 35 trg) 48538
News-it-pt (36 src, 35 trg) 21572

Data median val seq len val #
IMDB 178 4000

AG News 40 3800
NewsG 207 796

SST 17 1421
Amzn 72 4000
Yelp 74 4000

IWSLT14 (22 src, 23 trg) 7284
Multi-30k (15 src, 14 trg) 1014

News-en-nl (30 src, 34 trg) 5786
News-en-pt (31 src, 35 trg) 5394
News-it-pt (36 src, 36 trg) 2397

Data vocab size
IMDB 60338

AG News 31065
NewsG 31065

SST 11022
Amzn 37110
Yelp 41368

IWSLT14 8000
Multi-30k 8000

News-en-nl 8000
News-en-pt 8000
News-it-pt 8000

Table 8: statistics for each dataset. Median sequence length in the training set and train set size. Note:
src refers to the input ”source” sequence, and trg refers to the output ”target” sequence. Section A.5

Dataset A(α, αfr) A(α, βuf)
IMDB 9 53

AG News 17 39
20 NG 19 65
SST 14 20

Amzn 15 52
Yelp 8 18

Table 9: We report the correlation between αfr and α on classification datasets, and compare it against
A(α, βuf), the same column defined in Table 1. Section A.6

Newsgroups, 4,581,482 for SST, 13,685,282 for Yelp, 12,407,882 for Amazon, and 2,682,182 for
SMS.

Translation We use a a bidirectional two layer bi-LSTM of dimension 256 to encode the source
and the use last hidden state hL as the first hidden state of the decoder. The attention and outputs are
then calculated as described in 2. The learn-able neural network before the outputs that is mentioned
in Section 2, is a 1 hidden layer model with ReLU non-linearity. The hidden layer is dimension
256. Our model contains 6,132,544 parameters excluding embeddings and 8,180,544 including
embeddings on all datasets.

Permutation Copying We use single directional single layer LSTM with hidden dimension 256
for both the encoder and the decoder.

Classification Procedure For all classification datasets we used a batch size of 32. We trained
for 4000 iterations on each dataset. For each dataset we train on the pre-defined training set if the
dataset has one. Additionally, if a dataset had a predefined test set, we randomly sample at most 4000
examples from this test set for validation. Specific dataset split sizes are given in Table 8.
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Classification Evaluation We evaluated each model at steps 0, 10, 50, 100, 150, 200, 250, and
then every 250 iterations after that.

Classification Tokenization We tokenized the data at the word level. We mapped all words
occurring less than 3 times in the training set to <unk>. For 20 Newsgroups and AG News we
mapped all non-single digit integer ”words” to <unk>. For 20 Newsgroups we also split words with
the ” ” character.

Classification Training We trained all classification models on a single GPU. Some datasets took
slightly longer to train than others (largely depending on average sequence length), but each train
took at most 45 minutes.

Translation Hyper Parameters For translation all hidden states in the model are dimension 256.
We use the sequence to sequence architecture described above. The LSTMs used dropout 0.5.

Translation Procedure For all translation tasks we used batch size 16 when training. For IWSLT’14
and Multi-30k we used the provided dataset splits. For the News Commentary v14 datasets we did a
90-10 split of the data for training and validation respectively.

Translation Evaluation We evaluated each model at steps 0, 50, 100, 500, 1000, 1500, and then
every 2000 iterations after that.

Translation Training We trained all translation models on a single GPU. IWSLT’14, and the News
Commentary datasets took approximately 5-6 hours to train, and multi-30k took closer to 1 hour to
train.

Translation Tokenization We tokenized both translation datasets using the Sentence-Piece tok-
enizer trained on the corresponding train set to a vocab size of 8,000. We used a single tokenization
for source and target tokens. And accordingly also used the same matrix of embeddings for target
and source sequences.

A.9 A NOTE ON SMS DATASET

In addition to the classification datasets reported in the tables, we also ran experiments on the SMS
Spam Collection V.1 dataset 8. The attention learned from this dataset was very high variance, and so
two different random seeds would consistently produce attentions that did not correlate much. The
dataset itself was also a bit of an outlier; it had shorter sequence lengths than any of the other datasets
(median sequence length 13 on train and validation set), it also had the smallest training set out of all
our datasets (3500 examples), and it had by far the smallest vocab (4691 unique tokens). We decided
not to include this dataset in the main paper due to these unusual results and leave further exploration
to future works.

A.10 LOGISTIC REGRESSION PROXY MODEL

Our proxy model can be shown to be equivalent to a bag-of-words logistic regression model in the
classification case. Specifically, we define a bag-of-words logistic regression model to be:

∀t, pt = σ(βlogx). (52)

where x ∈ R|I|, βlog ∈ R|O|×|I|, and σ is the softmax function. The entries in x are the number of
times each word occurs in the input sequence, normalized by the sequence length. and βlog is learned.
This is equivalent to:

8http://www.dt.fee.unicamp.br/ tiago/smsspamcollection/
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Task A(βuf , βpx) A(βuf , βlog)
IMDB 0.81 0.84
Yelp 0.74 0.76

AG News 0.57 0.58
20 NG 0.40 0.45
SST 0.39 0.46

Amzn 0.53 0.60

Table 10: we report A(βuf , βlog) to demonstrate its effective equivalence to A(βuf , βpx). These
values are not exactly the same due to differences in regularization strategies.

∀t, pt = σ(
1

L

L∑
l=1

βlog
xl

). (53)

Here βlog
i indicates the ith column of βlog; these are the entries in βlog corresponding to predictions

for the ith word in the vocab. Now it is easy to arrive at the equivalence between logistic regression
and our proxy model. If we restrict the rank of βlog to be at most min(d, |O|, |I|) by factoring it as
βlog = WE where W ∈ R|O|×d and E ∈ Rd×|I|, then the logistic regression looks like:

∀t, pt = σ(
1

L

L∑
l=1

WExl
), (54)

which is equivalent to our proxy model:

∀t, pt = σ(
1

L

L∑
l=1

Wexl
). (55)

Since d = 256 for the proxy model, which is larger than |O| = 2 in the classification case, the proxy
model is not rank limited and is hence fully equivalent to the logistic regression model. Therefore the
βpx can be interpreted as ”keywords” in the same way that the logistic regression weights can.

To empirically verify this equivalence, we trained a logistic regression model with ℓ2 regularization
on each of our classification datasets. To pick the optimal regularization level, we did a sweep of
regularization coefficients across ten orders of magnitude and picked the one with the best validation
accuracy. We report results for A(βuf , βlog) in comparison to A(βuf , βpx) in Table 10 9.

Note that these numbers are similar but not exactly equivalent. The reason is that the proxy model
did not use ℓ2 regularization, while logistic regression did.

9These numbers were obtained from a retrain of all the models in the main table, so for instance, the LSTM
model used to produce βuf might not be exactly the same as the one used for the results in all the other tables
due to random seed difference.
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