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MFCL: A MULTI-MODAL FUNCTION CALLING EVAL-
UATION FOR LARGE LANGUAGE MODELS

ABSTRACT

Large language models are evolving into multi-modal agents that call tools di-
rectly from raw speech or images. Yet we still lack a principled metric for how
well they convert perception into accurate function calls. We introduce MFCL,
the first large-scale benchmark for Multi-modal Function Calling, comprising
8.2K expert-verified tasks across three suites—True Audio, Text Audio, and
Vision. Each example pairs a multi-modal user query with a ground-truth tool-
call trace. To examine different capabilities of the LLM’s perception-to-action
pipeline, we introduce controlled perturbations: for audio, accents, contractions,
simplified forms, casual pronouns, slang, disfluencies (fillers, hesitations, repeti-
tions), and background noise; for images, crops and resizes, occlusions, grayscale
and other color shifts, and related transformations. Image crops and resizes, oc-
clusions, black-and-white and other color filters, etc for images. Our automatic
grader computes exact-match scores for both function names and their arguments,
removing dependence on brittle LLM judges and isolating errors in perception,
reasoning, and formatting. We evaluate leading models and present a taxonomy of
failure models: named-entity ASR errors, conversational drift, and tool avoidance.
By releasing MFCL’s dataset, taxonomy, and diagnostics, we hope to accelerate
research on multi-modal agents that can effectively invoke tools.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly transitioned from pure text interfaces to tool-
augmented agents capable of calling external functions such as database look–ups, API endpoints,
or robotic controllers. Recent releases from leading labs and open-source communities—such as
GPT 4o, Gemini 2.5 Pro, and Llama 4—have extended this capability beyond text: a single model
can now listen, watch, and speak, invoking the same JSON-style function calls from raw audio or
images. Despite the commercial excitement, we lack a systematic evaluation of how well existing
multi-modal models actually perform end-to-end function calling.

Current benchmarks focus on either (i) text-only tool use—e.g., BFCL(Patil et al., 2025), T-
Eval(Chen et al., 2024), and τ -BENCH(Yao et al., 2024)—or (ii) general multi-modal understanding
such as MMMU(Yue et al., 2024). None measure the specific failure modes that arise when acous-
tic noise corrupts an automatic speech recognition (ASR) stage, when visual occlusion hides a key
argument, or when the model produces fluent, conversational text instead of using tools. Without
such diagnostics, it is impossible to decide whether an error stems from perception, reasoning, or
formatting—and therefore impossible to improve the system in a targeted manner.

We introduce MFCL (Multi-modal Function Calling Evaluation), the first benchmark to fill this gap.
MFCL is a single framework containing 8.2K diverse tasks, spanning over three eval suites: MFCL
True Audio, MFCL Text Audio, and MFCL Vision. Each task specifies (1) a user request presented
in transcribed text, speech, or an image, (2) a ground-truth JSON function call, and (3) a rich set
of distractors such as background noise, accent variety, or image crops that stress different parts of
the tool-calling pipeline. Our annotation protocol yields exact-match references at the granularity
of both function name and argument values, enabling automatic grading without relying on fragile
LLM judges.

Our analysis of the audio suites uncovers three recurring failure modes: (i) Incorrect Named-Entity
Recognition, where mis-hearing a single proper noun invalidates the call; (ii) Clarification Fail-
ures, where models ask unsupported follow-up questions; and (iii) Conversational Drift, where
RLHF-tuned models output polite chat instead of JSON tool calls—echoing findings from JSON-
former (Liu et al., 2023) and hallucination audits (Gudibande et al., 2023; Sun et al., 2023).
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Figure 1: Example entry from the MFCL Vision suite. The model must interpret both textual and
visual cues (e.g., the event banner, race number, and horse sash) to ground a web-search tool
call that retrieves the external information necessary to answer the question. MFCL Vision tasks are
intentionally designed to go beyond simple visual reasoning, stressing perception–tool-use capabil-
ities under real-world noise, occlusion, and distractors. Unlike prior multi-modal datasets, MFCL
Vision evaluates whether models can robustly translate visual understanding into precise tool calls
that lead to accurate responses.

The vision suite shows a different pattern: (i) Avoiding Tool Use, in which models abstain or ask
questions instead of issuing a search; (ii) Poor Keyword Selection, where generated queries are
vague or irrelevant; and (iii) Visual Reasoning Errors, ranging from misreading text to overly
generic attribute descriptions. To (a) disentangle perception from reasoning, and (b) study the effec-
tiveness of different image-training paradigms, we run controlled ablations on the image, including
grayscale conversions, canny-edge filters, color jittering, and partial occlusion—and track. Through
our study, we formulate and present the first error taxonomy to guide future research in this field of
multi-modal tool-calling.

This paper makes the following primary contributions:

1. We propose MFCL, the first benchmark to systematically evaluate multi-modal function
calling (aka. tool use) in LLMs under real-world acoustic and visual perturbations.

2. We curate and release 8.2K tasks spanning text, audio, and vision with ground-truth refer-
ences and automated grading.

3. We conduct a large-scale study of models and identify and analyze dominant failure modes,
providing actionable insights to accelerate progress toward reliable LLM agents.

With our comprehensive harness, we hope MFCL will become a standard framework for multi-
modal tool-call evaluation.

2 RELATED WORK

In this section, we examine related work on tool-calling evaluation of LLMs.

Tool-Calling Benchmarks: Given the growing recognition of tool-calling (also called function-
call), various works have proposed evaluation techniques and benchmarks. Early benchmarks such
as TOOLBENCH(Qin et al., 2023), API -Bank(Li et al., 2023a), and GORILLA API BENCH(Patil
et al., 2023) focus on text-only scenario, where the model must map a prompt with text-only tokens
to a corresponding function-calls in various languages. More recent efforts like BFCL(Patil et al.,
2025) and τ -Bench(Yao et al., 2024; Barres et al., 2025) broaden the scope to include multi-turn
and multi-step tool-use with intermediate user interactions. These datasets not-only are text-only
but also assume that the user query is well-formatted text (e.g., no repeating or filler words) and
therefore fail to expose the perception-induced reasoning errors that arise in multimodal agents.
MFCL builds-upon and extends by (i) adding audio both as trascribed, and native-audio, (ii) includes
vision modalities along with variations, and (iii) introduces perturbations that highlight failures at
the boudries of perception, grounding, and formatting.
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Multimodal Benchmarks: Large multimodal models are commonly evaluated on image or
video understanding suites such as MMBENCH(Liu et al., 2024), SEED -Bench(Li et al., 2023b),
MME(Fu et al., 2023), and MMMU(Yue et al., 2024), and agentic benchmarks such as OS-
World Xie et al. (2024). While comprehensive in task diversity, these datasets emphasize factuality,
and instruction-following. Consequently, they cannot measure whether a model preserves argument
types, handles out-of-vocabulary entities, or follows a prescribed schema. MFCL is the first solu-
tion to address this gap by enforcing the evaluation of the exact match at both the function and the
argument level.

In summary, existing benchmarks either (a) evaluate tool use in text-only settings or (b) test multi-
modal understanding without enforcing structured outputs. MFCL is the first to unify these threads
and provides a single framework to study multimodal function calling under controlled pertur-
bations, enabling fine-grained diagnosis and principled progress towards reliable, tool-augmented
agents.

3 DATA CURATION

This section details the construction of three complementary datasets: MFCL True Audio, MFCL
Text Audio, and MFCL Vision. Together they enable a holistic evaluation of multimodal assistant
agents across speech, text, and vision.

3.1 MFCL TRUE AUDIO

MFCL True Audio converts the original textual queries into realistic spoken utterances through a
four–stage process: (1) natural paraphrasing, (2) controllable speech-noise injection, (3) synthetic
speech generation, and (4) real-world acoustic augmentation. We describe each below.

Natural Paraphrasing: To include a robust and diverse set of prompts, we start with text-only
function calling queries (Patil et al. (2025)), including single-turn and multi-turn curated by experts
and community-contributed. To adapt it to natural language and similar to colloquial conversations,
we filter out all queries that contain special characters or symbols. We then rewrite each user query
into a more natural conversational-style tone. This is critical, and we discuss this below, for example:

Original: “I need to send a letter to Liam Neeson. Find his contact information.”

MFCL processed text: “Um, can you get Liam Neeson—that’s L-I-A-M N-E-E-S-O-N—Liam Nee-
son’s contact info so I can send him a letter?”

Generating Speech Transcripts: Spontaneous speech is rife with disfluencies—filled pauses
(“um,” “uh”), word repetitions (“the the station”), hesitations, elongations, and mid-sentence restarts
(“I want— I mean, we should. . . ”). We broaden this set to include self-corrections (“. . . no, sorry,
I meant . . . ”), false starts (“Hey, could you—uh, can you. . . ”), casual contractions (“gonna,”
“wanna”), conversational markers (“you know,” “I mean”), and explicit spelling or symbol pronun-
ciations (e.g., “Contact the admin at j–o-h-n at gmail dot com.”). Structural edits such as preposition
dropping and sentence restructuring further mimic everyday speech.

Balancing realism and intelligibility is non-trivial: too many disfluencies can swamp short queries,
while too few leave them unnaturally pristine. We therefore partition the transformations into mu-
tually exclusive classes and allow the controller to pick at most one from each class. The controller
also receives the full function signature of any downstream tool call, enabling it to veto changes that
would corrupt critical arguments. Appendix K provides an overview of the pipeline.

Synthetic Speech Generation: The disfluency-augmented text is rendered into waveform audio us-
ing a heterogeneous pool of neural TTS services. For each utterance we draw a random combination
of speaker identity, accent, speaking rate, and prosody so that no single timbre or vendor dominates.
Real-World Acoustic Augmentation: Although TTS output is diverse, it is still unrealistically
clean. We therefore apply four augmentation modules that emulate the degradations common in
real deployments (Figure 2). Additive Environmental Noise Background: audio from the MU-
SAN corpus(Snyder et al., 2015) and CHiME-5 archive(Barker et al., 2018) is mixed at random
signal-to-noise ratios (SNRs). Competing Speech (Double-Talk): The target utterance is overlaid
with interfering speakers sampled from conversational corpora at varied SNRs, assessing robustness
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in acoustically dense environments like open-plan offices or public transport. Network Impair-
ments: Packet loss, jitter, and truncation are synthesized to stress models operating over VoIP or
cellular links. We randomly drop 10–40 ms frames, micro-loop short segments, or truncate the tail
of the utterance to emulate latency and test the model’s ability to act on incomplete information or
seek clarification. Device and Room Effects: Room impulse responses add reverberation; non-
linear transfer curves simulate clipping; random gain shifts emulate speaker-to-microphone distance
changes; and short bursts of rubbing or cable noise model mechanical interference.

The parameters of each module are tuned so that queries remain intelligible to robust systems while
exposing brittleness in fragile pipelines.

Figure 2: Dual-pipeline audio augmentation: clean TTS speech is mixed with transformed back-
ground noise to create realistic noisy audio for MFCL True Audio; transcripts feed MFCL Text
Audio.

3.2 MFCL TEXT AUDIO

MFCL Text Audio builds on top of MFCL True Audio by transcribing each synthetic utterance with
three distinct ASR engines, exposing systematic ASR variability. For example:

· Generator 1: “Um, can you get Liam Neeson—that’s L-I-A-M N-E-E-S-O-N—Liam Neeson’s
contact info so I can send him a letter?”

· Generator 2: “Um, can you get Liam Neeson, that’s L-I-A-M N-E-E-S-O-N, Liam Neeson’s
contact info so I can send him a letter?”

· Generator 3: “Can you get Liam Neeeson? That’s L-I-A-M N-E-E-S-O-N, Liam Neeeson’s con-
tact info so I can send him a letter?”

MFCL exploits these divergences to overcome the brittleness of single ASR, and thereby provides a
comprehensive and robust end-to-end view.

3.3 MFCL VISION

The MFCL Vision dataset comprises 250 image-query-trace triplets spanning five image domains
(Places, Events, Media, Sports, Shopping) and five query types (Locate, Temporal, Select, Identify,
Quantify) (Figure 16). Each entry is deliberately constructed such that solving it requires both visual
grounding and external web search. See Appendix D

We create the dataset based on the following principles. Salient visual hints: Each image con-
tains at least one clear visual clue the model can leverage through web search. By making the hints
accessible, our benchmark prioritizes each model’s unobstructed visual reasoning capabilities. Re-
quire tool use: Each query is written to demand information outside the model’s prior knowledge
or baseline visual reasoning; correctly answering requires some web search. Solvability: Each
image-query pair is constructed such that a non-expert human with access to web search tools could
accurately answer the question. Dependent on external evidence: Queries are designed such that
the answer cannot be derived without consulting up-to-date external sources. They also should not
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collapse into pure visual reasoning tasks (e.g., OCR, object recognition, or simple counting). De-
pendent on the image context: The image provides essential disambiguation. Without it, the query
is unanswerable (e.g., asking “Who owns this team?” without showing a logo). This ensures that
both visual understanding and query specifications must interact to produce the final answer.

Figure 3: Data construction pipeline for MFCL Vision: curate public-source images (Google, Red-
dit, Pexels, etc), filter for salient cues, author queries requiring external knowledge, and multi-step
visual reasoning with optional context/hints. All queries are solvable by a human.

4 EVALUATION RESULT AND ERROR ANALYSIS

Please refer to Appendix F for the experiment setup and evaluation metrics.

Model Overall Expert Curated Community Sourced Multi-Turn Hallucination Measure

Simple Multiple Parallel Parallel Multiple Simple Multiple Parallel Parallel Multiple Base Miss Func Miss Param Relevance Irrelevance

GPT-4o-audio-2025-06-03 (Clean Audio) 60.4 58.6 86.9 80.5 76.0 61.3 67.4 64.3 45.5 37.5 47.5 37.5 72.2 85.4
GPT-4o-audio-2025-06-03 (Text) 58.6 51.1 87.4 77.5 74.5 58.4 66.4 50.0 50.0 38.0 44.0 34.5 77.8 84.1
GLM-4.5 (Text) 55.2 47.6 87.9 77.5 66.5 60.9 66.4 71.4 59.1 27.5 22.5 25.5 61.1 86.7
Claude-Opus-4.1-20250805 (Text) 53.5 54.5 90.0 73.0 60.5 63.0 69.3 78.6 50.0 25.0 17.5 17.0 61.1 81.8
Gemini-2.5-Flash (Clean Audio) 53.0 56.8 83.4 77.0 64.5 61.3 63.8 71.4 50.0 16.0 12.5 13.0 66.7 91.5
Gemini-2.5-Pro (Text) 51.5 53.6 80.9 71.0 70.5 63.0 54.3 57.1 63.6 13.5 19.5 13.5 55.6 91.1
xLAM-2-70b-fc-r (Text) 51.2 54.1 87.4 75.5 59.5 48.6 52.8 42.9 40.9 28.0 28.0 23.5 77.8 80.1
Gemini-2.5-Pro (Clean Audio) 51.1 57.9 82.9 74.5 72.0 60.1 49.5 42.9 54.6 15.5 19.0 13.5 50.0 89.6
GPT-4o-audio-2025-06-03 (Noisy Audio) 50.9 43.1 72.9 62.5 62.5 46.5 47.7 35.7 31.8 28.5 39.5 35.0 50.0 85.7
Grok-4-0709 (Text) 50.2 53.8 83.4 76.0 67.5 58.9 66.5 71.4 59.1 8.0 3.5 9.0 72.2 84.1
Qwen3-235B-A22B-Instruct-2507 (Text) 50.1 46.6 86.4 74.0 68.0 53.9 60.9 64.3 59.1 12.0 8.5 7.5 72.2 88.4
GPT-4o-mini-audio-2024-12-17 (Clean Audio) 47.2 51.6 80.4 74.0 67.0 58.4 63.4 71.4 36.4 1.5 1.0 2.0 77.8 82.4
Gemini-2.5-Flash (Noisy Audio) 45.6 45.4 72.4 57.0 53.5 49.8 46.4 57.1 50.0 15.5 11.5 9.5 33.3 91.0
Gemini-2.5-Pro (Noisy Audio) 45.4 41.0 70.9 57.5 62.5 50.2 39.8 35.7 50.0 13.5 23.0 17.0 50.0 86.4
GPT-5-2025-08-07 (Text) 41.0 32.1 53.3 55.0 48.5 36.2 39.5 50.0 45.5 11.0 6.5 5.5 44.4 95.0
GPT-4o-mini-audio-2024-12-17 (Noisy Audio) 40.3 36.5 66.3 53.5 52.0 42.0 42.3 50.0 22.7 10.5 3.0 4.0 66.7 84.1

Table 1: Model performance on MFCL Text Audio and MFCL True Audio. Evaluation settings:
Text = transcribed input, Clean Audio = speech without background noise, Noisy Audio = speech
with background noise. End-to-end models on clean audio typically surpass pipelined text-only
systems by leveraging contextual and prosodic cues, but their advantage is brittle: noise induces
sharp degradation, often below the steadier pipelined baselines—highlighting a trade-off between
peak accuracy and robustness.

4.1 MFCL AUDIO FAILURE MODES

Background noise sharply degrades every end-to-end (E2E) model we tested (Table 1). Even the
strongest system—GPT-4o-audio—loses 9.5 %. Under noise, the dominant error source shifts from
detecting a request to transcribing its details, producing subtle yet harmful semantic errors: the
assistant executes an action, but the wrong one.

We observe six recurrent failure modes (FMs):

FM 1: Intent Blending Background speech merges with the user’s command (e.g., a coworker says
“cancel the meeting,” which contaminates a flight-booking request).

FM 2: Premature Execution A sudden loud sound (door slam, siren) is misheard as end-of-
utterance, prompting action on an incomplete command.
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FM 3: Parameter Distortion Microphone artifacts (clipping, rubbing) mutate key tokens; “fifty”
becomes “fifteen,” yielding a valid but incorrect function call.

FM 4: Clarification Misfires The model requests irrelevant clarifications that’s not on named enti-
ties, especially in pipelined models with noisy ASR (Fig. 5). ASR transcriptions add noise, creating
more uncertainty leading to irrelevant clarifications. E2E performs better due to lesser uncertainty
with integrated audio-language understanding.

FM 5: Conversational Drift Instead of emitting the required function call, the model slips into
a conversational response. RLHF-tuned E2E models default to helpful dialog when uncertainty
spikes, trading schema compliance for user-friendly chatter. (Fig. 5)

FM 6: Named-Entity Errors Mis-transcribed names, places, or addresses derail argument gener-
ation, and the model never asks for confirmation, instead generating a faulty call (Fig. 5). Noisy
audio worsens this across all architectures, but is most acute for noisy E2E runs. Specifically for
pipelined models, the ASR stage distorts the specific keywords of the transcript despite producing
grammatically plausible flow, leading to propagating errors, as the following example shows.

· Original Query: “Can you book a flight to Austin for tomorrow morning?”

· Audio Condition: True audio with medium-density cafe background noise.

· ASR Transcript (Clean Audio): “Can you book a flight to Austin for tomorrow morning?”

· ASR Transcript (Noisy Audio): “Can you book a flight to Boston for tomorrow morning?”

· Resulting Action: LLM correctly identified the intent to book_flight but received the incorrect
entity (city=Boston), resulting in a task failure.

Figure 4: Error Analysis Examples

Figure 5: Error distributions for MFCL Vision (left) and MFCL True Audio (right).

4.2 MFCL VISION

We run the following ablation studies on MFCL Vision: (i) color manipulations, where we convert
images to black-and-white (B&W) or remove the blue channel (Red&Green only); (ii) edge-based
transformations, where we apply standard edge detection; and (iii) aspect-ratio changes, where we
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either crop or resize images to 4:3 or 16:9. For cropping, we ensure that important information
remains visible, while resizing preserves all details but can distort shapes. For Model Performance
results, refer to Appendix J.

Our discussion centers on six recurring failure modes, which, taken together, underscore the core
obstacles that vision–function calling must overcome to achieve reliable performance.

FM 1A: Visual Reasoning Errors Failures largely stemmed from the known weaknesses of
VLMs that were deliberately targeted during image curation and tuning. Models struggle to bal-
ance textual with visual information. In particular, they show a tendency to concentrate excessively
on textual elements, ignoring other salient visual cues in the image. (Appendix E)

FM 1B: Ignored Image Text Models ignore on-image text, defaulting to generic descriptions and
underperforming on tasks that require text extraction (e.g., seeding search). (Appendix C Figure 15)

FM 1C: Subset Confusion Faced with many look-alike objects models often misidentify subsets.
In overloaded scenes they tend to omit items or hallucinate extras, skewing keywords and basic
counting. ( Figure 6)

Figure 6: Subset confusion examples. Green boxes mark target subsets, but models often hallucinate
extra items or miss targets, especially in the Shopping category.

FM 1D: Myopia In deep-focus images, models over-attend to salient foreground objects at the
expense of more relevant background cues—even when named in the query (Figure 7). This fore-
ground bias skews search, with distractors driving keyword selection.

Figure 7: Example entries exhibiting depth-induced bias. The green box indicates the key clue and
the red box highlights the foreground distractor. Cases A and B had associated queries that explicitly
informed the model to reason on something further back in the image (e.g. referring to the “cafe with
orange signage” or “chessboard in the back”). In all cases, the foreground distractor significantly
confounded reasoning across most models.

FM 2: Avoiding Tool Use Sometimes models avoid searching when uncertain. Instead, they either
ask clarifying questions (Figure 8) or provide best-guess answers based solely on internal reasoning
despite having access to search tools (Figure 9).

FM 3: Poor Keyword Selection The model generates vague or irrelevant queries. Rather than
extracting specific visual details (e.g., text, symbols, spatial cues) into targeted keywords, it defaults
to generic phrases (Figure 10), yielding irrelevant search results.

7
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Figure 8: This example displays the player’s team logo and jersey number, which are major clues the
models should recognize before making any tool calls. Despite this, the model stalled and requested
more input. We sent back a user reply: ‘I don’t know’, but the model still refuses.

Figure 9: Rather than reasoning about the image or leveraging search, the model simply makes a
blind guess, offering meta-reasoning about what might be a “plausible” answer given the query text.

Figure 10: This example implicates analog clock reading and spatial orientation relative to the sun
to determine the exact time. The model failed to combine any of this nuance to produce specific
keywords for search.

FM 4: First-hop Bias Models latch onto an initial assumption and resist updating, even when
faced with contradictory evidence (sometimes rationalized away as “misremembering”, Figure 11).
In other cases, it reasons correctly during the trace, but the final output reverts to the initial incorrect
guess, discarding its own reasoning.

Figure 11: Example of first-hop bias. Even with clear visual evidence of teams, players, and year,
the model fixates on a Qatar Airways ad during its first reasoning step. This anchors it to an incorrect
path and leads it to dismiss the correct temporal evidence.

8
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FM 5: Over-reliance on Query Text Models prioritize keywords from the initial query over
visual evidence, issuing generic tool calls (Figure 12) and missing the unique clues in the image.

Figure 12: This is an example of query over-reliance. Despite the clear About This Mac window, the
model ignored the text and issued a vague search based only on the user’s query.

FM 6: Abandoning promising leads Models note alternative hypotheses but settle on the first
plausible answer, often reinforced by search hits, leaving correct options unexamined (Figure 13).

Figure 13: This example entry requires strong object recognition as it demands multiple specific
item look-ups. While able to surface potential possible answers, the model latches onto the first
plausible hypothesis and ignores the stronger alternative it had already identified.

4.2.1 ABLATION ANALYSIS

Examining ablation accuracies (Table 2), the Edge Detection variant produces the largest perfor-
mance drop; all other treatments yield only minor degradation.

Edge detection removes key cues: As a subtractive transform, it suppresses contrast and erases
fine-grained anchors (e.g., small text, thin logos), depriving models of the visual evidence needed to
compose targeted search queries. Performance collapses as a result (Appendix L).

Color ablations alter accuracy and strategy: Both Black-and-White (BW) and RedGreen (RG)
reduce accuracy, confirming color’s discriminative value. BW can also shift strategy: in Appendix
14 (top), original and RG yield the same incorrect no-search guess, whereas BW triggers a search
that finds the correct answer; in Appendix 14 (bottom), original and RG stop at refusal. These
patterns suggest that reduced color fidelity acts as an uncertainty cue, nudging models from guess-
only behavior toward tool-assisted reasoning.

5 CONCLUSION

MFCL provides the first multi-modal benchmark for tool-augmented language models, exposes con-
sistent cross-modal failure modes, and offers lightweight, reproducible metrics that enable rapid it-
eration. Our analysis reveals that current state-of-the-art models still treat tool use as an optional
afterthought, especially under noise or visual perturbations, and that simple augmentations such as
edge detection can erase decades of accuracy gains. We release MFCL, all code, and evaluation and
analysis tools to spur research on robust, tool-aware reasoning.
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ETHICS STATEMENT

Our work introduces MFCL, a multi-modal function-calling evaluation that combines publicly avail-
able text, image, and audio data. All source datasets are either (i) released under permissive licenses
(e.g., CC-BY, CC-BY-SA) or (ii) in the public domain; we redistribute only metadata and refer-
ences, never raw copyright-protected content. No human-subject experiments were conducted, and
no personally identifiable information is included, so institutional review-board (IRB) approval was
not required. We audited MFCL for sensitive attributes (gender, race, religion) and found none
representation of sensitive categories; nevertheless, downstream users should be aware that biased
function schemas could amplify demographic stereotypes. To mitigate misuse, we provide detailed
documentation describing collection, filtering, and annotation rules; a usage license that forbids
deploying MFCL to train or evaluate models intended for surveillance, disinformation, or other ma-
licious purposes; and release a standardized bias-and-toxicity evaluation script to help practitioners
quantify harmful behaviors. The authors declare no conflicts of interest or third-party sponsorship
that could unduly influence the results.

REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate reproducibility: All preprocessing code, function schemas,
and evaluation scripts are avaiable publicly online in an anonymous repository. Section 3 details
dataset construction; Appendix A lists every upstream source, license, and filtering criterion. Section
4 and Appendix B describe the metrics and provide pseudocode for each.
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A MFCL VISION: FC MODELS VS PROMPTING MODELS

Our benchmark evaluates three kinds of information that models can use when forming a search
query: the text of the user’s question, text found in the image, and visual features of the image.
The way models utilize these sources differs significantly, creating a noticeable gap between
prompt-only and FC model approaches. Prompt-only models often ignore image text and visual
cues. Instead, they repeat or mimic the user’s question in the search call, with no references to
visual elements. For example, the model searched “identify building in image square footage” when
asked about a building’s size, and maverick searched “season in image” when asked to identify
what season is going on in the image. Other typical cases include queries like “blue line pointing
to structure in image,” “bottle in image,” or “store in image espresso price.” These examples show
that prompt-only models mistakenly assume the tool can inherently “see” the image, which leads to
poor search results.

Within prompt-only models, we also observe differences in how effectively they compensate
for this limitation. Some models tend to recognize visual features but uses them incorrectly, leading
to confident but wrong queries. Other models show better use of image text by weaving it into
search queries, however still share the same structural weakness of assuming the tool can “see”. In
contrast, FC models are explicitly forced to separate and fill arguments for query text, image text,
and visual features. This design prevents the “tool sees the image” assumption and leads to more
grounded and reliable searches overall.

B MFCL VISION: COLOR ABLATION EXAMPLE

Figure 14: Example entries with color ablations applied. Across both sample entries, original and
R&G similarly ignore tools and fail while the B&W counterpart successfully uses search to recover
the right answer

12
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C MFCL VISION: IS MODEL SIZE THE BOTTLENECK?

One might think that the bottleneck of a model’s performance is its training size, due to its ability to
recognize certain visual features from images. However, we argue that the bigger limitation is the
inability to make an appropriate tool call once a useful clue has been spotted. Images in our dataset
are designed not to test raw factual recall but to require the model to notice a clue and then use it
effectively in subsequent tool calls.

Figure 15: This example shows a woman performing with a large venue logo clearly visible in the
background (the “H” inside a circle). Instead of trying to discern the venue from the logo hint, the
model performs a poor keyword search using a literal description of the image. This query only led
to stock photos and irrelevant results, illustrating how smaller models bypass the reasoning step and
never exploit the available clue.

We also observe a sharp difference in search quality between larger and smaller models. Larger
models often manage to identify the clue (e.g., a logo or a sign) and use it properly in their
queries. Smaller models, on the other hand, frequently skip the clue entirely and instead fall back
to surface-level descriptions of the image (Figure 15). This prevents them from ever reaching the
relevant information.

D MFCL VISION: CATEGORY DISTRIBUTIONS

Figure 16: MFCL Vision category distributions. Left: image categories—Places and Events are
most prevalent. Right: query categories—Identify dominates, followed by Temporal and Locate.

E MFCL VISION: ENTRY TUNING AND VALIDATION

Each triplet undergoes iterative tuning (Figure 17) to calibrate difficulty: adding irrelevant conver-
sational context, enforcing multi-hop chains, injecting lightweight hints, or selectively cropping the

13
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image. We retain only those entries that remain solvable by humans but consistently defeat state-of-
the-art VLMs.

Figure 17: Anatomy of an image-query entry that received several tuning treatments. The query is
decomposed into distinct components: orange indicates auxiliary context, blue highlights the actual
information request, green provides query hints to constrain the search space, and pink specifies the
return format used to facilitate string matching for evaluation.

We commit queries that maintain human solvability but consistently fail on the majority of state-
of-the-art models. These include cases of repeated incorrect answers, excessively long reasoning
traces, verbose non-answers or expressions of uncertainty, and outright refusals to attempt a solution.
Achieving this balance often requires an extensive trial-and-error process of incremental, delicate
adjustments, as annotators must tune entries just enough to surface reliable failure patterns without
rendering them trivial or unsolvable.

F EVALUATION SETUP

F.1 MFCL TEXT AUDIO

MFCL Text Audio evaluates two aspects: (i) whether the model issues the correct function calls,
and (ii) its robustness to realistic audio artefacts such as background noise, accented speech, and
interrupted utterances.

Turn semantics. In BFCL Text, a turn lasts until the model outputs a non-tool message. In spoken
interaction this is undesirable: homophones and ASR errors often require the assistant to confirm
spellings or key values. Penalising these clarifications would encourage reckless calls. We therefore
allow spelling or value confirmations, defined by a valid clarifications dictionary, without ending the
turn. We prepended a short system prompt to every conversation to inform the model that it’s in an
audio setting (Appendix H).

Clarification mechanism. An LLM judge and a simulated user enable concise clarifications. If
the assistant requests a spelling-related clarification, the judge checks its legitimacy. When ap-
proved, the simulator replies with a brief, whitelisted clarification (e.g., a name or ID). Chitchat and
unapproved clarifications are ignored (Appendix G).

Scoring. Apart from the modified turn semantics, scoring follows BFCL Text: AST matching for
single-turn tasks and state-/response-based checks for multi-turn tasks. Clarification turns do not
contribute to the final score; they only enable subsequent correct actions.

F.2 MFCL TRUE AUDIO

MFCL True Audio reuses the MFCL Text Audio metrics but replaces the simulated user reply with
a TTS-generated audio response.

F.3 MFCL VISION

During evaluation the model receives a system prompt specifying the required output format (Ap-
pendix I). We compute exact match on the answer field only, preventing spurious positives where

14
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the ground-truth phrase appears inside a longer sentence. Answers are lower-cased and stripped of
punctuation before comparison.

G PROMPT TO THE LLM MODEL FOR JUDGING CLARIFICATION

The LLM model sees the intended request, the ASR text, the assistant’s message, and the allowed
clarification keys. It approves only if the assistant is explicitly confirming spellings/values that
appear in the whitelist. Otherwise, it rejects.

You are a judge for an audio-chat scenario where a user speaks and
an ASR system transcribes their speech for the assistant. The
assistant only sees text (the ASR transcript), which is likely
to contain transcription errors.

You are given:
- intended_request: the user's original, ground-truth intent.
- asr_text: the ASR-transcribed text the assistant saw.
- allowed_clarifications: a set of fields with canonical spellings/

values the user can confirm (e.g., names, IDs, emails, dates,
numbers).

- assistant_message: the assistant's latest message.

Your job: decide whether assistant_message is a clarifying question
specifically about spelling/verification of intent or exact
strings/values that could plausibly be misheard (e.g., names,
organizations, emails, serials/IDs, numbers, dates, addresses,
SKUs). Do not allow general follow-ups (preference, steps to
proceed, etc.).

Decision rules:
1. Classify the message as a spelling confirmation only if it

explicitly asks to verify the exact spelling/format/value of one
or more items (e.g., “Is it Mikaela or Michaela?”, “Can you

spell the email?”, “Is the order number A1B-52?”).
2. The request must be reasonable given the ASR risk (i.e., the item

is a proper noun, key value, or easily misheard token relevant
to the task).

3. To approve (allowed=true), all the topics the assistant asks to
confirm must be present in allowed_clarifications. If any
requested item is absent or ambiguous, set allowed=false.

4. Output only a JSON object with two fields:
- allowed: boolean
- message: string (a concise simulated user reply only when allowed=

true; otherwise empty "").
1. When allowed=true, compose message by supplying only the

requested values with correct spelling/format from
allowed_clarifications. Keep it brief (one short sentence or a
compact list). Do not include extra commentary, JSON, or fields
the assistant didn't request.

2. If the assistant's message is not a confirmation request, touches
topics outside spelling/format/intent verification, or requests
values not available in allowed_clarifications, return allowed=

false with message="".

Edge cases:
- If the assistant mixes spelling confirmation with unrelated

questions, treat it as not allowed unless the spelling part
stands alone and you can fully answer it from
allowed_clarifications.

15
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- Treat homophones and near-matches as spelling checks (e.g., “Brian
/Bryan”, “Steven/Stephen”, letters vs. digits).

- Normalize case/diacritics but preserve canonical spelling in the
final answer.

- Never reveal intended_request verbatim; only return the specific
confirmed values.

The user's original intended request is: {the original text mode
bfcl question}

The ASR-transcribed output is: {the transcribed text from the audio,
which is also the input to the model}

assistant_message: {the model's response}

allowed_clarifications (topic -> answer): {the
allowed_clarifications}

H SYSTEM PROMPT FOR MFCL TEXT AUDIO

To inform models that they are in an audio setting, we prepend a short system prompt to each
conversation:

You are a voice assistant that interacts with the user exclusively
through spoken conversation. You receive user utterances as text
transcribed by an upstream ASR system and your replies are

delivered to the user through a TTS system. Follow the rules
below at all times:

1. Language

* Mirror the user's language. Respond in the same language detected
in the transcription.

2. Robustness to ASR Errors (Important)

* Although the upstream ASR system is designed to be robust, it may
still make mistakes.

* Do not trust the transcription text blindly, especially on
important information. You should assume the transcript may
contain recognition mistakes.

* If the text appears garbled, double check with the user instead of
guessing.

3. Clarity for TTS

* When responding to the user, you should **spell out acronyms** as
separate letters with spaces (“A I M L”), and **chunk long
numbers** into 2- or 3-digit groups, separated by short pauses (
“one-two-three, four-five-six”).

* Favor spoken-language style: short sentences, everyday vocabulary,
and natural contractions.

16
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I SYSTEM PROMPT FOR MFCL VISION

During evaluation, the model receives explicit instructions for response formatting (via system
prompt):

For your final answer to the user, you must respond in this format:
{'answer': A short and precise answer to the question, 'context': A

brief explanation of how you arrived
at this answer or why it is correct}.
If you do not know the answer, respond with {'answer': 'I do not

know', 'context': 'I do not know'}.
If you think the question cannot be properly answered, response with

{'answer': 'I cannot answer this
question', 'context': A short reason explaining why this question

cannot be answered}.

J MFCL VISION: MODEL PERFORMANCE

Model Overall Base Crop16:9 Crop4:3 Resize16:9 Resize4:3 B&W Edge Red&Green

GPT-5-2025-08-07 (FC) 29.3 34.7 31.9 31.1 30.7 32.7 27.1 17.1 29.1
Gemini-2.5-Pro (FC) 26.6 29.9 31.1 28.7 25.9 29.5 25.5 14.3 27.9
Gemini-2.5-Flash (FC) 23.1 25.5 26.7 23.1 25.5 24.3 23.1 12.4 23.9
Grok-4-0709 (FC) 22.7 25.1 25.1 25.5 21.1 25.5 22.3 11.6 25.1
o4-mini-2025-04-16 (FC) 20.0 23.1 22.7 23.5 18.7 20.7 19.9 11.2 20.3
Claude-Opus-4.1 (FC) 15.9 16.7 18.3 17.5 15.9 17.5 15.5 11.6 13.9
Claude-Sonnet-4 (FC) 14.9 16.7 17.5 17.9 13.9 18.3 12.4 8.4 14.3
GPT-4o-2024-11-20 (FC) 11.7 12.0 14.3 15.5 10.4 12.8 12.0 4.8 11.6
Llama-4-Maverick (FC) 10.6 12.8 11.2 9.6 10.8 12.4 11.6 6.8 10.0
Amazon-Nova-Pro-v1:0 (FC) 10.1 12.8 10.4 9.6 9.6 10.4 9.6 6.8 11.6
GPT-4o-mini-2024-07-18 (FC) 9.0 10.0 11.2 8.4 10.0 9.2 9.2 6.4 8.0
Mistral-Medium-2508 (FC) 8.7 10.4 10.8 8.4 10.8 11.2 9.2 1.2 8.0
Pixtral-Large-2411 (Prompt) 8.4 9.6 10.0 7.6 8.8 11.2 6.0 6.0 8.0
GLM-4.5V (Prompt) 7.9 10.0 5.2 9.2 7.2 10.4 8.8 3.6 8.8
Command-A-Vision-07-2025 (Prompt) 6.2 6.8 6.0 6.0 7.2 6.0 7.2 4.4 6.0

Table 2: Model performance on MFCL Vision across all 8 variations. FC means native function
calling support, Prompt means prompt-based walkaround. Base means no augmentation was applied
to the image. Edge detection variant brings the biggest drop in performance (almost halved). All
other variations have similar performance.

K SPEECH PIPELINE

L MFCL VISION : EDGE DETECTION
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Figure 18: We analyze each query’s length and complexity to decide how many speech features to
apply, score their relevance, and select the top ones. Each selected feature is an independent function
applied sequentially in the chosen order, transforming the query to be natural and speech-like. This
enables adaptive and context-sensitive feature injection while preserving semantic meaning.

Figure 19: Edge detection ablation example. The accompanying query for this entry reads: “I
was visiting this hotel while attending a conference. Who designed the sculpture to the left?”. We
observe that both color and textual information (e.g., “GRADUA”) are completely lost.
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