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ABSTRACT

Continual fine-tuning of large pre-trained models is now ubiquitous in industry
for adapting a model to freshly collected user data. Existing privacy protection
practices assume earlier training data is less sensitive and thus focus on the latest ar-
riving samples. We challenge this assumption by tracking per-sample membership-
inference risk across sequential fine-tuning rounds of popular transformer-based
models, ViT for image data, and BERT for text data. Our experiments reveal the
Privacy Déjà Vu Effect: new data can remind the model of semantically similar
legacy samples, possibly elevating their privacy risk significantly. We further
demonstrate that this resurgence is closely correlated with the latent-feature-space
similarity between old and new examples. These findings underscore the need
for a more comprehensive privacy protection mechanism in continual fine-tuning.
We have published our code at https://anonymous.4open.science/r/
Privacy-Deja-vu-Effect-F006/README.md.

1 INTRODUCTION

As machine learning models continue to grow in size, training them from scratch becomes pro-
hibitively expensive. Many companies, such as Reddit (Reddit, Inc.) and IBM (Stapleton), instead opt
to fine-tune pre-trained base models using newly arriving data samples incrementally. Such continual
fine-tuning (Wang et al., 2024) is a common strategy employed in sectors such as customer support,
recommendation systems, and autonomous vehicles, where new user data is constantly integrated to
enhance the model performance and freshness.

However, privacy concerns arise in this practice. A widely held assumption is that the most recent
training data predominantly influence the model’s behavior, and the old data likely suffers from
catastrophic forgetting, resulting in a largely reduced ability to capture the utility of old samples
(Wang et al., 2024). Thus, the common belief is to prioritize privacy safeguards for new samples while
progressively neglecting older ones to reduce the protection expenses (Chathoth et al., 2022a; Desai
et al., 2021; Chathoth et al., 2022b). Correspondingly, industry parties start to adopt this strategy.
IBM Watsonx, for instance, implements robust privacy measures on the latest fine-tuning samples
(IBM Cloud, 2023). Regulatory documents, e.g., EDPB Opinion 28/2024 (European Data Protection
Board, 2024) also stress that newer data in continual fine-tuning should be protected primarily.

Yet, our research reveals a counterintuitive phenomenon which we call “Privacy Déjà Vu Effect”:
While the standard continual fine-tuning is applied to make models more likely to forget the old
distribution (Bafghi et al., 2024), some old samples, initially exhibiting low privacy sensitivity,
become more vulnerable during model fine-tuning. It seems new samples remind the model of its old
memory.

Scope of Our Research. In this paper, we show that such Privacy Déjà Vu Effect exists in the
fine-tuning processes on two typical transformer-based models, ViT and BERT, covering image- and
text-based applications, respectively. To detect the change of samples’ privacy risks, we consider a
canonical family of privacy attacks called membership inference attacks (Shokri et al., 2017), which
predict whether or not a given example is contained in the model’s training set. Privacy risk measures
derived from membership inference attacks, such as the per-sample TPR

FPR ratio, an empirical measure
conceptually similar to the privacy budget eϵ in (ϵ, δ)-differential privacy, have been widely accepted
as indicators of practical privacy risks (Aerni et al., 2024; Jagielski et al., 2020; Nasr et al., 2023;
Steinke et al., 2024). By using this privacy risk measurement in consecutive fine-tuning ViT models
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on Tiny-ImageNet-200 and BERT models on IMDb, we observed that the largest increase in privacy
risk for sensitive samples exhibits an astonishing jump.

We perform several experiments to understand the root causes of the Privacy Déjà Vu Effect. This
effect can be partially explained by the level of distribution shifting between neighboring fine-tuning
rounds - if the new samples focus on a few classes (not randomly sparsely distributed), the privacy
risk of the old samples in similar classes gets boosted more than other samples. An in-depth analysis
of the similarity between consecutive steps of fine-tuning confirms that old samples similar to the
newcomers are more prone to a privacy risk surge. Thus, the name Privacy Déjà Vu precisely captures
how the new samples revive the model’s memory about similar old ones.

This Privacy Déjà Vu Effect challenges the currently adopted practice for economical privacy protec-
tion: protecting mainly the newest samples in fine-tuning is not sufficient. Our work shows that such
biased protection may introduce significant privacy leakage to the related old samples.

Contributions. (1), We reveal the Privacy Déjà Vu Effect: new data in continual fine-tuning
can increase the privacy risk of previously safe samples. (2), Experiments on two representative
foundation models and two benchmark datasets show that the effect might commonly exist. (3), We
have also experimentally studied the reasons behind this effect and identified the significant factors.

2 RELATED WORK

Continual Fine-tuning and Catastrophic Forgetting. Unlike conventional machine-learning
pipelines that assume a static data distribution, continual learning adapts to non-stationary streams
of data (Wang et al., 2024). Its central challenge is catastrophic forgetting: updating on new
data degrades performance on previously learned tasks (McClelland et al., 1995; McCloskey &
Cohen, 1989). Gido et al. show that the same problem arises during continual fine-tuning of neural
networks (Van de Ven & Tolias, 2019). To curb forgetting, Hadsell et al. propose preserving weights
that are critical for early-stage data (Hadsell et al., 2020). Industry systems adopt additional heuristics
such as hard attention to historical samples (Serra et al., 2018). The REMIND approach rehearses
compressed representations of past data (Hayes et al., 2020). Focusing on transformer models,
Bafghi et al. report that full-parameter continual fine-tuning suffers the most severe forgetting (Bafghi
et al., 2024).

Privacy Risks in Continual Fine-tuning. Because catastrophic forgetting appears to reduce the
model’s memory of earlier data, some studies argue that it can reduce the privacy risk of old data, and
therefore we should concentrate protection on newly ingested samples (Wang et al., 2025; Chathoth
et al., 2022a; Desai et al., 2021; Chathoth et al., 2022b). For instance, Hassanpour et al. assign
smaller differential-privacy budgets to successive training rounds (Hassanpour et al., 2022). However,
other work demonstrates that legacy data can remain susceptible to extraction attacks even after
multiple fine-tuning rounds on both vision and language models (Jagielski et al., 2023; Chen et al.,
2024; Borkar et al., 2025). These findings challenge the assumption that older data can be neglected
in privacy analyses for continual fine-tuning systems.

3 PRELIMINARIES

In this section, we introduce a typical continual fine-tuning method on foundation models. We also
describe the process of measuring privacy risks using a membership inference attack, specifically the
Offline Likelihood Ratio Attack (LiRA).

Continual Fine-tuning on Foundation Models. Let Dk denote a data distribution and Sk =
{(xi,k, yi,k)|(xi,k, yi,k) ∈ Dk, i = 1 . . . Nk} denote a training dataset of k-th round fine-tuning,
and fk ← T (Sk) denote the model we obtain by fine-tuning the previous model fk−1. Continual
fine-tuning can be categorized into various types according to the difference among Dk (Wang et al.,
2024). In this paper, we consider domain-incremental fine-tuning, where each Dk has the same label
space but possibly different distributions, as considered by previous works (Jagielski et al., 2023;
Carlini et al., 2022b). This setting also facilitates the in-depth study of causes of the Privacy Déjà Vu
Effect, which will be introduced in Section 4.
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As shown in Figure 7 in Appendix 1, the k-th round model fk is given by fine-tuning f0 sequentially
with {S1, ..., Sk}, where S0 is the dataset to train a foundation model f0, e.g., a ViT model pre-trained
on the ImageNet (Dosovitskiy et al., 2021). Furthermore, we adopted the setting that fine-tunes all
parameters (Bafghi et al., 2024). This strategy is most likely to catastrophically forget old distribution
and thus considered to benefit the privacy protection of old data (Wang et al., 2025).

Per-sample Privacy Risk Metric. There are several metrics to estimate the per-sample privacy risk,
e.g., per-sample attack success rate of Membership Inference Attacks (MIAs) (Carlini et al., 2022c)
and the Fisher information of samples (Farokhi & Sandberg, 2017). We adopt the per-sample TPR

FPR of
an MIA as the privacy risk metric because it intrinsically relates to differential privacy (Aerni et al.,
2024; Tramer et al., 2022) as follows.

Recall the definition of (ϵ, δ)–differential privacy (DP) (Dwork, 2006) for a randomized mechanism
M acting on adjacent datasets D,D′. Assuming ∀O ⊆ Range(M):

Pr[M(D) ∈ O] ≤ eϵ Pr[M(D′) ∈ O] + δ.

When δ ≈ 0 (δ is always very small in practice), the DP guarantee in the hypothesis-testing form
ensures no sample’s MIA result TPR

FPR exceeds the privacy budget (Kairouz et al., 2015; Dong et al.,
2022):

TPR

FPR
≤ eϵ

where TPR and FPR denote, respectively, the true and false positive rates of any distinguishing attack
that decides whether the outputM(·) came from D or D′. Due to the statistical nature of machine
learning, even without a DP randomization mechanism, an MIA on a non-DP model still gives a
measure TPR

FPR for each sample, which we consider the sample’s “inherent privacy risk”. While an
ideal attack can precisely estimate this risk measure, in practice, we can only use the best MIA so far
to get the maximum TPR

FPR estimate. We choose to use one of the most powerful MIAs, LiRA (Carlini
et al., 2022a), in the experiments. Samples with larger TPR

FPR values are considered more risky.

The Likelihood Ratio Attack (LiRA). LiRA is considered one of the most powerful MIAs. Thus, we
use LiRA as the backbone attack of our privacy risk estimator. There are online and offline versions
of LiRA, which are based on two-sided and one-sided hypothesis testing, respectively. Offline LiRA
is more efficient because it only needs to estimate the ”out” distribution by sacrificing some marginal
effectiveness. For simplicity, we use the term ”LiRA” to represent the offline version of LiRA in this
paper. The details of LiRA are as follows.

1. Estimate distribution of ”out” logits. Given a machine learning model g and the training strategy
G(·), LiRA first train multiple “shadow models” {gj ← G(Xj)} on random subsets {Xj |Xj ⊂
D, j = 1..m} drawn from the known training data distribution D. For any non-member sample
(x, y), e.g., for gj , LiRA computes the logits of the confidence of the target class y, p = gj(x)y:
log p

1−p . This computation will be applied to a sufficient number of randomly selected non-members
for {gj} , respectively. The distribution of the logits values is approximately a univariate Gaussian
distribution, the parameters of which can be estimated with these samples. We train 256 shadow
models to estimate the distribution parameters, as suggested by (Carlini et al., 2022a).

2. Attack target sample (xi, yi). To predict whether a target sample (xi, yi) is a member of Xj , LiRA
computes the logit transformation of the prediction of gj , and computes the likelihood of the sample
drawn from the ”out” Gaussian distribution, denoted as q. In practice, there is a threshold τ for the
adversary to classify the sample as an “in” or “out” sample. If q < τ , then the prediction is ”member”,
and ”non-member” otherwise. Choice of τ will be introduced in the next subsection.

Estimation of Per-sample TPR
FPR . To estimate privacy risk TPRi

FPRi
of each sample (xi, yi) ∈ X , we

conduct a random sampling of the training data X to generate m sample sets, where each sample
set Xj is generated by selecting each sample xi in X with probability of 0.5. Each of the sample
set is used to train a model gj . Thus, xi is used by about m/2 models in training, which forms
the ground-truth of the xi’s membership in the m models. We then use LiRA to compute qi,j , the
probability of sample xi is drawn from ”out” Gaussian distribution. In our estimation, each threshold
τ will give a pair of TPR and FPR by comparing the attacking results and the ground truths, and we
choose the τi that gives the greatest TPRi

FPRi
for sample xi.

3
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4 METHODS

Privacy Déjà Vu Effect means a new fine-tuning round will expose the privacy of some training
samples in the previous fine-tuning rounds. For simplicity, we will look at the change in privacy risk
of a sample in Sk after the model is fine-tuned on Sk+1. Next, we will discuss the methods we use to
explore this effect.

4.1 MODEL AND DATASETS

We start with our choice of datasets and models.

Datasets. We adopt two standard benchmarks: Tiny-ImageNet-200 (Le & Yang, 2015) and the IMDb
Large Movie Review corpus (Maas et al., 2011). To meet the domain-incremental setting in Section 3,
on each stage, fine-tuning sets shares the same label set but differs in input distribution. We therefore
merge original fine-grained labels into superclasses. Formally, let C be the original class set and
C′ = {s1, . . . , sJ} a partition of C. Tiny-ImageNet provides |C| = 200 classes grouped into |C′| = 22
semantic clusters (e.g., ”Vehicle” superclass spans original classes ”limo”, ”sportscar”, ”wagon”, etc.
(Deng et al., 2009)). IMDb’s ten rating buckets collapse into Neg={1–4} and Pos={7–10} (Maas
et al., 2011). For Tiny-ImageNet-200, we sample two fine-grained classes per superclass to form
Sk⊂D; for IMDb, we sample one rating per superclass.

Models. Experiments cover two foundation architectures: ViT-B/16 pretrained on ImageNet-21k
(Dosovitskiy et al., 2021) and BERT-base (uncased) (Devlin et al., 2019). We use the strategy
introduced in (Jagielski et al., 2023) to mimic domain-incremental fine-tuning: each model undergoes
two fine-tuning rounds: round 1 yields fk, round 2 yields fk+1, i.e., f1 and f2. Both rounds use
the superclasses as labels, i.e., ViTs fit 22-classification tasks and BERTs fit binary-classification
tasks. The validation sets are drawn from the entire validation set according to the superclasses and
classes in the training sets. For instance, if superclass ”Vehicle” in Sk contains ”Limo”, then the
corresponding validation set also contains ”Limo”. We adopt very small learning rates (3×10−6 for
ViT, 1×10−7 for BERT) and early stopping after three epochs without validation-loss improvement,
storing the best checkpoint—as in (Jagielski et al., 2023). This protocol attains 93.4% validation
accuracy on Tiny-ImageNet-200 and 94.2% on IMDb. In this paper, we fine-tune 500 fk (m = 500)
to generate statistically significant estimation, which is suggested by (Gu et al., 2024). It takes 16.3
hours on 15 RTX-2080 Ti GPUs to finish all fine-tuning stages on ViT models, and 6.8 hours on
BERT models. All experiments in the paper takes around 900 hours.

4.2 ESTIMATING PRIVACY RISK CHANGE

To estimate the per-sample privacy risk change of samples in Sk, we need to compute the per-sample
privacy risk of samples in Sk on model fk and fk+1. As shown in Figure 7 in Appendix 1, this
estimation has three steps:

1. Estimation over fk: Following the LiRA-based per-sample TPR
FPR estimation described in Section 3,

and also as shown in Figure 7 in Appendix 1, we fine-tune fk−1 to get m models {fj,k ← T (Sj,k)|j =
1, ...,m}. Each sample in Sj,k is randomly sampled with a probability of 0.5 from Sk. Thus, around
m
2 datasets contain sample xi,k ∈ Sk. And for each sample-model pair, we have the ground

truth membership. We then use LiRA to attack the xi on each of the models to get m predicted
memberships, with which we can compute the sample-level privacy risk Ri,k =

TPRi,k

FPRi,k
of xi on fk.

2. Estimation over fk+1: To estimate the privacy risk of each sample in Sk after the (k + 1)-th round
of fine-tuning, we simply fine-tune each fj,k on the fine-tuning set Sk+1 and use the m fine-tuned
models fj,k+1 to estimate the privacy risk Ri,k+1 =

TPRi,k+1

FPRi,k+1
of each sample xi ∈ Sk as step 1.

3. Estimating privacy risk change: For sample xi ∈ Sk, we compute the privacy risk change as
∆i = Ri,k+1 −Ri,k. A greater positive ∆i indicates the xi’s privacy risk is enhanced more in fk+1.
A negative ∆i means the sample becomes safer.

4
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4.3 STUDY THE PRIVACY DÉJÀ VU EFFECT

Fine-tuning Strategies. To assess the widespread nature of the Privacy Déjà Vu Effect, we implement
two contrasting data update strategies: SGD-New and SGD-Full, as introduced (Jagielski et al., 2023).
In SGD-New, the dataset Sk+1 comprises only new samples, randomly drawn fromD\Sk, with a size
set to half of |Sk| to avoid the impact of dataset size difference between Sj,k and Sk+1—specifically,
|Sk| = 30,000 for Tiny-ImageNet-200 and |Sk| = 15,000 for IMDb. In SGD-Full, Sk+1 includes
both the new samples and all data from Sk, effectively duplicating the previous dataset.

Figure 1 illustrates that, for both BERT and ViT models, and under both strategies, certain samples
in Sk exhibit increased privacy risk after fine-tuning. Notably, the SGD-New strategy results in a
more pronounced Privacy Déjà Vu Effect compared to SGD-Full. We hypothesize that this difference
arises because duplicating old data in SGD-Full reduces the sensitivity of some samples, thereby
mitigating privacy risks. This observation aligns with findings by (Carlini et al., 2022c). We further
validate this hypothesis in Section 5.2.

These findings confirm that the Privacy Déjà Vu Effect is prevalent in practice and appears to be
influenced by the relationship between old and new data. Because the SGD-New setting avoid the
impact of overlap between Sk and Sk+1, to analyze the details of the effect, subsequent sections will
focus on the SGD-New setting.
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(a) ViT on Tiny-ImageNet-200
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(b) BERT on IMDb

Figure 1: Descendingly ordered ∆ with different continual fine-tuning strategies. Note that each set
of results is sorted independently. Both models show that SGD-New causes more intense privacy risk
increases for old samples. We omit samples with ∆(TPR

FPR ) <= 0, which cover roughly 68% of the
ViT cases and 62.5% of the BERT cases.

Simulating Distribution Shifting. The results in Figure 1 suggest that Privacy Déjà Vu Effect
intensifies with the correlation between the old data Sk and the new data Sk+1, which is related to
subpopulation distribution shifting. As shown by (Jagielski et al., 2023), simulating the subpopulation
distribution shifting in continual fine-tuning is a proper way to study the correlation among data. We
use the BREEDS framework (Santurkar et al., 2021) to simulate the subpopulation shifting, which
works with a hierarchy of classes and samples similar classes in the superclass.

For ViTs, we first build Sk by sampling two classes per superclass from Tiny-ImageNet-200 and
train the fk. For BERTs, we randomly choose one class per superclass from IMDb. To simulate
a focused subpopulation shifting within a target superclass s⋆ ∈ C′, define the remaining pool of
classes Crem = {C \ {classes in Sk}} and let n =

∣∣{Crem ∩ s⋆
}
|. Then we form Sk+1 by sampling

examples from α × n classes chosen at random from {Crem ∩ s⋆}, where α ∈ (0, 1] controls
shifting strength. We choose α from {0.2, 0.4, 0.6, 0.8} for Tiny-ImageNet-200 and {0.4, 0.7, 1}
for IMDb. Fine-tuning fk on Sk+1 thus implements a BREEDS-style subpopulation shifting in the
target superclass s⋆, isolating its impact on the Privacy Déjà Vu effect. In our experiments, we repeat
experiments by trying each superclass as the target superclass and conclude our results.

4.4 ANALYZING THE DEJAVU EFFECT WITH DIFFERENT DATA SIMILARITY MEASURES

As the Privacy Déjà Vu Effect is similar to how people recall similar memories, we use two sample-
to-sample similarity measures between the samples Sk and Sk+1 to study the factors that cause
the effect: Structural Similarity (SSIM) (Wang et al., 2004) – a perceptual, pixel-space measure
that reflects how humans compare images. Gradient Dot-Product (NTK-similarity) (Jacot et al.,

5
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2018) – a parameter-space measure that reflects how the model perceives the similarity between two
samples.

SSIM. SSIM applies only to images, so we use it on ViTs. For every image x ∈ Sk, we compute its
mean SSIM against Sk+1. We sort the images by their SSIM score and split them into 10 equal-sized
quantiles. The quantiles with greater ID indicate that the old data is more similar to the Sk+1.

NTK-similarity. The neural tangent kernel compares inputs by the angle of their parameter-gradient
“fingerprints.” High similarity implies that training on one example produces a large first-order effect
on another. We show the detailed computation of the NTK-simlarity in Appendix. Analogous to
SSIM, we sort samples in Sk by the NTK-similarity and divide into 10 equal-sized quantiles.

5 RESULTS

In this section, we study the two questions through our experimental results: (1) How does the Privacy
Déjà Vu Effect perform in subpopulation distribution shifting scenarios? (Section 5.1) (2) What are
the causes of the Privacy Déjà Vu Effect? (Section 5.2)

5.1 PRIVACY DÉJÀ VU EFFECT IN SUBPOPULATION DISTRIBUTION SHIFTING
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(a) ViT on Tiny-ImageNet-200
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(b) BERT on IMDb

Figure 2: Violin graph of privacy risk change ∆ of multiple strength of distribution shifting. The
vertical line indicates the range of privacy risk change ∆ across samples, and the bulge indicates the
density. Results of the target superclass show samples with larger privacy risk increases than samples
in other superclasses. Greater α causes more significant Privacy Déjà Vu Effect.

Trend with Distribution Shifting Srength. We show how the subpopulation shifting strength
α impacts the Privacy Déjà Vu Effect in Figure 2a. We use the violin graph to more intuitively
understand the impacts of fine-tuning on privacy risk changes. The vertical span shows the full range
of the ∆. Each violin shape represents the probability density over the y-axis. The narrow shape
means most points are around zero (no dramatic privacy risk change). As the parameter α increases,
the overall range of privacy change ∆—as indicated by the vertical span of the violins in Figure 2—is
larger for both the target superclass and other superclasses, in both BERT and ViT models. The
pronounced bulges near ∆ ≈ 0 reflect that many samples experience little change in privacy risk.
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(a) ViT on Tiny-ImageNet-200
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(b) BERT on IMDb

Figure 3: The privacy risk changes for the samples in the target superclass are more affected by the
distribution shifting strength α. With stronger shifting (larger α), less samples in target superclasses
show positive privacy risk change δ, while which in other superclasses do not show obvious trends.
We also show the results with different α in Appendix 3.
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Fraction of Positively Changed Samples. To better understand this pattern, we inspect the population
of samples with positive or negative ∆. We quantify this by:

r+ =
|{x ∈ Sk : ∆(x) > 0 }|

|Sk|
, r− = 1− r+.

where r+ indicates the population of the samples that become more risky and r− indicates the
population of safer samples in Sk.

Figure 3 shows that for other superclasses, r+ converges to about 0.5 as α increases, whereas for the
target class, r+ decreases. In other words, the Privacy Déjà Vu Effect in the target superclasses only
shows in a smaller number of highly vulnerable examples, not a uniform change across all samples.

Combining Figure 2 and 3, the phenomenon is a striking analogy with human memory: just as a few
new examples can cue recall of related past items, a small fine-tuning set “reminds” the models of
old samples. Imagine a person who glimpses a handful of cars drawn from many makes (small α);
they instinctively recall vehicles across all brands. But if they then see dozens of cars from a single
marque (large α), their recall narrows to that one brand and neglects other brands (the vertical span).
This metaphor inspired us to understand the Privacy Déjà Vu Effect from the perspective of similarity
between old and new data. Intuitively, the new data will remind the model of some similar old data.

5.2 CAUSES OF THE PRIVACY DÉJÀ VU EFFECT

In this section, we study how the Privacy Déjà Vu Effect relates to data similarity.
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Figure 4: Violin graph of ∆ within ascendingly ordered SSIM quantiles when α = 0.8. The rightmost
is the quantile with the greatest similarity. The results do not show obvious relationship between
SSIM similarity and the Privacy Déjà Vu Effect.

Structural Similarity (SSIM) vs. ∆. Following the method in Section 4.4, we begin by asking
whether raw image–level similarity between old and new samples correlates with the privacy risk
change ∆ in ViT models. In Figure 4a and Figure 4b, we draw the violin graph of ∆ within each
SSIM quantile when α = 0.8. If higher visual similarity drove larger privacy risk changes, one would
expect a higher ∆ in the quantiles with greater ID. However, both panels exhibit no clear upward
trend—raw image-based SSIM fails to predict which samples exhibit large ∆. When we try various
α, there is also no obvious correlation between SSIM and ∆. We show the results in Appendix 3.

Does this observation indicate that similarity is not correlated to ∆ variability? Our answer is no.
The key problem is the mismatch between human-perceptual and model-perceptual similarity: SSIM
mimics our visual judgments, whereas ViTs base their decisions on latent feature representations.

NTK-similarity vs. ∆. As introduced in Section 4.4, NTK-similarity captures the similarity from
the perspective of machine learning model. Figure 5 shows the violin graph of ∆ versus ascending
NTK-similarity quantiles for α = 0.8 (ViT) and α = 1 (BERT). Figure 5a exhibits a clear upward
trend: in the ViT models, the higher NTK similarity leads to more dramatic change of risks, including
both larger increases and larger decreases for some sample in the target superclass. In the other
superclasses, Figure 5b and 5d show downward trends, which means that higher NTK-similarity in
other superclasses mitigates the sensitivity of old data. This is because they have a different label,
which is a typical example of catastrophic forgetting in continual fine-tuning (De Lange et al., 2021).
That is, the model fk+1 will re-link new data to a label, which will impact the model’s performance
on some similar data in Sk with different labels. For instance, assume a blue sport car image in Sk

was labeled as ”sport car” and then the label was changed to ”blue” in Sk+1, fk+1 will link the data
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Figure 5: Violin graph of ∆ within ascendingly ordered NTK-similarity quantiles. The rightmost is
the quantile with the greatest similarity. ViT: α = 0.8; BERT: α = 1. The Privacy Déjà Vu Effect
show clear correlation with NTK-similarity in ViTs. However, the trends is abnormal in BERTs. We
visualize the samples in Tiny-ImageNet-200 with the greatest ∆ and corresponding top-10 similar
samples in Sk+1 in Appendix 5.

to class ”blue” and forget the link to the class ”sport car”. Moreover, in Appendix 4, we show that
increasing α amplifies these trends, demonstrating that stronger subpopulation shifting intensifies the
model’s reminder of old samples. Intuitively, exposing the model to more new examples strengthens
their pull on related old representations. This behavior aligns with the patterns in Figure 1.

However, we also observe two unexpected phenomena: (1) In Figure 5a, even in the highest-similarity
quantile, some old data become safer with negative ∆. (2) In BERT, Figure 5c shows that in the
target superclass, with increased NTK-similarity, the Privacy Déjà Vu Effect is unchanged or even
slightly weakened, which is a reversed pattern compared to the image data on ViT.

To further explore these anomaly patterns, we examine the details of sample similarity levels. Inspired
by (Carlini et al., 2022a), who have already hinted that duplicating an image in the training set lowers
LiRA’s accuracy for each of the duplicated samples. We therefore hypothesize that extremely high
similarity between Sk+1 and a vulnerable point in Sk can act as a privacy shield.

To probe the idea, we run a controlled duplication test. For model fk, we first identify the most
and least vulnerable sample (samples with the greatest and smallest risk Rk). The most sensitive
sample has Rk = 129.36 in ViT and Rk = 91.74 in BERT. Then we pick the top-100 samples in D
(the entire Tiny-ImageNet-200 or IMDb training set) that are similar to the most sensitive sample in
Sk, and sort them into 10 shards, {Shardi,k+1|i = 0, ..., 9}. Shard0,k+1 is the most similar shard
consisting of the 10 most similar samples. Each shard is used for fine-tuning in step k+1 instead, i.e.,
Sk+1 ∈{Shardi,k+1|i = 0, ..., 9}. Similarly, we also pick the top-100 samples in D most similar to
the least vulnerable sample and conduct the fine-tuning.

Figure 6a shows that the most similar shard will ”shield” the old most sensitive sample, and then
the ”shield” becomes weaker when shards consists of less similar samples. It explains why there are
some samples with negative ∆ existing in quantile 10 in Figure 5a. In contrast, Figure 6b shows
that for the lowest privacy-risk sample, its less similar samples in Sk+1 will increase the privacy risk
more. This explains why the positive ∆ is small in Figure 5c.

Why are the bursty privacy-risk changes in Figure 5a for ViT models not observed in Figure 5c
for BERT models? We suspect that the IMDb data has low diversity within the superclass, and the
distributional shifts are not so obvious between fine-tuning steps. As a result, the step k+1 uses a
similar dataset to step k, leading to small changes in privacy risks. Table 1 partially supports our
conjecture. The IMDb batches in target superclasses have much higher NTK-similarity.
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Figure 6: The most similar shard will ”shield” the old most sensitive sample. This partially explains
two abnormal phenomena. X-axis is the shard ID. The leftmost index means Sk+1 consists of the
most similar shard. The most sensitive sample has Rk = 129.36 in ViT and Rk = 91.74 in BERT.
The least sensitive sample has Rk = 0.99 in ViT and Rk = 0.986 in BERT. We visualize the samples
in the Appendix 6.

Dataset (model) Target superclass Other superclass
Tiny-ImageNet-200 (ViT) 0.4484± 0.0175 0.3731± 0.0188
IMDb (BERT) 0.8791± 0.0094 0.1224± 0.0172

Table 1: Normalized NTK-similarity (mean ± std) for target vs. other superclasses. The IMDb
batches in target superclasses have much higher NTK-similarity, which partially implies the IMDb
data has low diversity within superclasses.

In summary, the Privacy Déjà Vu Effect is rather a local phenomenon: a few similar samples in the
new batch trigger the dramatic privacy risk changes of a few old samples. However, as shown in
Figure 1, the model is still forgetting legacy data generally. Whether an old example becomes riskier
or safer depends chiefly on feature-level neighbours it gains in the new round and on the intrinsic
complexity of the dataset. Some may question that this may be due to the model re-learning the old
sample. However, the old sample will not appear in Sk+1. Moreover, in our Appendix, we show
that both fk and fk+1 do not overfit on the sample with the greatest ∆. Thus, the effect cannot be
concluded as re-memorization. Meanwhile, the relationship is not monotonic: If the old sample
is sensitive, initially its risk drops as similarity of newcomer increases—new examples “cover” it
better—until a similarity threshold beyond which additional resemblance no longer helps; if the old
sample is safe, fine-tuning with similar data raises its privacy risk, but this effect also stop increasing
past a certain threshold. Pinpointing those similarity thresholds depends on the model’s capacity and
the complexity of the dataset, and how to identify them remains an open challenge.

6 CONCLUSION

Our study of the Privacy Déjà Vu Effect reveals critical implications for privacy protection in continual
fine-tuning systems. We summarize our observations and then propose possible solutions.

Reassessing “Safe” Legacy Data. Many studies sugguest that catastrophic forgetting can ease the
risk of old samples being breached by privacy attacks (Wang et al., 2025). However, we observe that
fine-tuning on new data with high feature-level similarity can rehabilitate sensitive aspects of old
samples, triggering renewed privacy exposure. This Privacy Déjà Vu Effect means that prioritizing
the protection of only new data can leave old data unexpectedly vulnerable; privacy mechanisms
must therefore guard across all fine-tuning rounds, not just the most recent one.

Open Questions. While our work focuses on domain-incremental fine-tuning, it remains an open
question whether the Privacy Déjà Vu Effect manifests in other fine-tuning paradigms, where the
label space also evolves. Meanwhile, constrained by the heavy computational cost, we can only show
the existence of the effect in two rounds of fine-tuning on representative models. However, our initial
observations indicate that other models and additional rounds of fine-tuning are likely to have this
effect as well, which will be verified in future work.
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A APPENDIX

A.1 ILLUSTRATION OF FINE-TUNING MODELS AND ESTIMATION OF PRIVACY SCORE
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Figure 7: Fine-tune models and estimate per-sample privacy scores difference ∆i. Sk,m ⊂ Sk,
Sk ∩ Sk+1 = ϕ.

A.2 NTK-SIMLARITY

Let gk(x) = ∇θfk(x) be the gradient of the fine-tuned round-k model with respect to input x and
define

K(x, x′) = ⟨gk(x), gk(x′)⟩.

For every x ∈ Sk we compute its mean similarity to the new set:

K̄(x) =
1

|Sk+1|
∑

x′∈Sk+1

K(x, x′).

A.3 SSIM AND ∆: VARIOUS α

We show the correlation between SSIM-similarity and ∆ in various α settings. Figure-8 to 10 show
no significant correlations.

A.4 NTK-SIMILARITY AND ∆: VARIOUS α

We show the correlation between NTK-similarity and ∆ in various α settings. Figure-11 to 13 show
apparent correlations.
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Figure 8: SSIM vs. ∆: α = 0.2
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Figure 9: SSIM vs. ∆: α = 0.4
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Figure 10: SSIM vs. ∆: α = 0.6
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(b) ViT: Other superclasses.
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(d) BERT: Other superclasses.

Figure 11: Violin graph of each quantile. ViT: α = 0.2; BERT: α = 0.4.
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Figure 12: Violin graph of each quantile. ViT: α = 0.4; BERT: α = 0.7.
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Figure 13: Violin graph of each quantile. ViT: α = 0.6.
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A.5 VISUALIZATION OF SAMPLES WITH THE GREATEST ∆

We show the old samples with the greatest ∆ (circled by red rectangle), and their nearest neighbors
with the greatest NTK-similarity in this section. Figure 14 shows the old sample from the target
superclass ”mammal”. We have tested the sample whose privacy risk increases most, e.g., the circled
sample in Figure 14, on all models and found that fk’s accuracy is 89.3% and fk+1’s is 87.5%. In
comparison, the average fine-tuning accuracy of fine-tuning set on the models is 97.3%. Thus, the
most sensitive sample appears not to be overfitted by fk and fk+1. Furthermore, models seem to
perform worse after seeing more new samples.

Figure 14 shows the old sample from one of the other superclasses, ”instrumentality”.

Figure 14: Sample from target superclass with greatest ∆ = 147.3 and the most similar samples in
Sk+1. Target superclass = ”mammal”.

Figure 15: Sample from other superclass with greatest ∆ = 92.2 and the most similar samples in
Sk+1. Target superclass = ”mammal”. Superclass of sample = ”instrumentality”.

A.6 VISUALIZATION OF THE TOP-100 MOST NTK-SIMILAR SAMPLES OF THE TARGET OLD
SAMPLE

We show the old samples with the greatest and smallest Rk (circled by red rectangle) in this section.
Figure 16 shows the sample with the greatest Rk and its top-100 most NTK-similar samples. Figure 17
shows the sample with the smallest Rk and its top-100 most NTK-similar samples.
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Figure 16: Visualized most sensitive old sample (top left). Figures from left to right have smaller
similarity. Some may not be visually similar, but with high NTK-similarity.
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Figure 17: Visualized most vulnerable old sample (top left). Figures from left to right have smaller
similarity. The bottom right figure has the least NTK-similarity.
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