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ABSTRACT

Graph Transformers (GTs) have emerged as a promising approach for graph rep-
resentation learning. Despite their successes, the quadratic complexity of GTs
limits scalability on large graphs due to their pair-wise computations. To funda-
mentally reduce the computational burden of GTs, we introduce Primphormer,
a primal-dual framework that interprets the self-attention mechanism on graphs
as a dual representation and then models the corresponding primal representation
with linear complexity. Theoretical evaluations demonstrate that Primphormer
serves as a universal approximator for functions on both sequences and graphs,
showcasing its strong expressive power. Extensive experiments on various graph
benchmarks demonstrate that Primphormer achieves competitive empirical results
while maintaining a more user-friendly memory and computational costs.

1 INTRODUCTION

Graph representation learning has been successfully applied in various fields, including social net-
work analysis (Li et al.| 2023), traffic prediction (Dong et al., 2023)), and drug discovery (Liu et al.,
2023)), among others. Much of the research in graph representation learning has focused on Mes-
sage Passing Neural Networks (MPNNs) which rely on local message-passing mechanisms. Al-
though MPNNSs have emerged as a powerful approach to short-range tasks that require information
exchange among nodes in local neighborhoods, MPNNs face inherent limitations such as over-
smoothing (Nguyen et al., 2023)), over-squashing (Giraldo et al.; 2023)), and limited expressivity (Xu
et al.,[2019; |Morris et al.,|2019) in long-range tasks (Dwivedi et al.l 2022b)).

To overcome the limitations, Graph Transformers (GTs) which allow each node to globally attend
to all other nodes is proposed to enable the learning of long-range dependencies within the graph
(Rampasek et al., 2022 |Chen et al. 2022). While GT is a promising approach, it has a notable
drawback in the quadratic complexity, i.e., pair-wise computations in self-attention mechanisms,
preventing their practical use.

The key to reducing the quadratic complexity is to use computationally efficient attention mecha-
nisms. Linear attentions like Performer (Choromanski et al.,2021) and BigBird (Zaheer et al., [2020)
have been integrated into GTs. However, they need to introduce additional computational overhead,
which becomes the dominating source of computation for medium-sized graphs (Rampasek et al.,
2022). An alternative approach is sparse attention. Shirzad et al.[(2023) introduced Exphormer, a
sparse attention mechanism that exchanges information only across edges. The efficiency of Ex-
phormer benefits from the sparsity of graphs. However, its computational complexity increases to
quadratic with the number of nodes as graphs become denser, thereby limiting its scalability.

To fundamentally enhance the scalability of GTs, it is crucial to avoid pair-wise computations,
prompting us to consider the primal-dual relationship in kernel machines. Examples of models
leveraging this relationship include the support vector machine (Cortes & Vapnik, |1995), the least
squares support vector machine (Suykens & Vandewallel [1999), and the kernel principal component
analysis (Mika et al., [1999). The primal-dual relationship represents pair-wise symmetric similarity
in duality as an inner product of feature mappings in the primal space. By solving optimization
problems in the primal space with these feature mappings, quadratic complexity can be avoided.

When constructing the primal representation of the self-attention mechanism, we encounter an es-
sential problem that attention scores are inherently asymmetric, violating the Mercer’s condition
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(Mercer,|1909)), which causes the classical primal-dual discussion to fail. Recent research on primal-
dual relationships has sought to explore methods for accommodating asymmetry in kernel machines
(Suykens| |2016; [He et al., 2023a). In Chen et al.| (2023), the self-attention on sequences was in-
terpreted through kernel singular value decomposition. This approach collects data information
through uniformly sampling the sequence under an inductive bias assumption that sequences are
ordered. However, this assumption does not hold for graphs, as the graph structure is determined by
the edges, and the arrangement or ordering of nodes is not explicitly specified, making it unsuitable
for graph-based learning tasks.

Our contributions. We propose a novel primal representation for graph Transformers, named Prim-
phormer. This method supports asymmetry in self-attention on graphs by introducing an asymmetric
kernel trick. It avoids costly pair-wise computations and storage overhead without introducing addi-
tional heavy computational burden. The primal-dual analysis reveals that Primphormer can leverage
graph information to adjust the basis of outputs, thereby potentially enhancing the model’s capacity.
Since Primphormer is a new architecture for GTs, we are also interested in its expressive power. To
explore this, we prove that Primphormer serves as a universal approximator for arbitrary continu-
ous functions on a compact domain. Through extensive experiments on various graph benchmarks,
we show that Primphormer achieves competitive empirical results while maintaining a more user-
friendly memory and computational costs.

2 METHODS

Notations. A graph is denoted as G = (V, E) where V, E are the node and edge sets. |V| = N,
|E| = M denote the numbers of nodes and edges, respectively. [N] := {1,---,N}. We take
a,a, A to be a scalar, a vector, and a matrix. The inner product of two vectors is written as (-, -).
The infinite norm of functions is written as || - ||oo. The set size is denoted as | - |. R denotes the set
of real numbers. R, denotes the set of real and positive numbers. vec(A) denotes the vectorization
of the matrix A, formed by stacking the columns of A into a single column vector. ® denotes the
Kronecker product. Ny < N denotes a small number. 1 and O denote vectors with all 1 and 0,
respectively. X := [xy,--- , zn] € RV is the embedding matrix for nodes where x; € R? is the
embedding of the i-th node.

2.1 ATTENTION MECHANISM ON GRAPHS

An attention mechanism on a graph G treats nodes V' as tokens and is modeled by a fully connected,
directed graph that encodes the geometry of G in the positional encoding. Its directed edges denote
a directed interaction or similarity between two nodes ¢, j, computed by the inner product in the
attention mechanism. Mathematically, we define the attention mechanism as follows,

K(ai xj) = o ((q(®:), k(x;))), o0 = lev(%)ﬂ(ﬂ%wi)’ i,j €[Nl @20

where k(x;, x;) is the attention score of node ¢ to node j and o; is the attention output of vertex i. &
is an activation function. We denote g(x) := Wz, k(x) := Wi, and v(x) := W, for queries,
keys, and values, respectively, and W, W, W, ¢ R™*? are learnable weights.

It is worth noting that the attention score is computed for every pair of nodes, leading to memory
and computational costs of O(IN?), which becomes prohibitively expensive for large graphs. Many
computationally efficient attention mechanisms are proposed to tackle this issue (Zaheer et al.,2020;
Choromanski et al., 2021; |[Zhuang et al., [2023). Exphormer (Shirzad et al., [2023)), a sparse graph
transformer, is specifically designed for functions on graphs, which facilitates information exchange
across real and expander edges, reducing the memory and computational cost to O(N + M ). How-
ever, Exphormer fails its efficiency when dealing with denser graphs, where its computational com-
plexity increases to O(N?) as graphs become denser, limiting its scalability.

Such quadratic complexity also exists in kernel machines, where the kernel matrix preserves pair-
wise similarities in the dual space. For large-scale problems, it is more practical to contemplate
feature representation in the primal space to circumvent quadratic complexity (Fan et al., [2008).
One can refer to the representer theorem (Kimeldorf & Wahbal, [1971), which delineates the optimal
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solution between the primal and dual spaces,

N N

g(x;) = ijl k(@ ;) = Zj:l a;(¢(x;), p(x;))

N 2.2)

= (p(@i), > b)) = ($(),w),
where ; € R and w € RP are variables in the dual and primal spaces. ¢ : R? — RP is the
associated feature mapping of the kernel «. For vector dual variables c;, we can apply (2.2) to each
dimension of a; € R®. Mathematically we have,

N N
g(@i) =D enlwi ;) Zaj ,plx;)) = Zvec (a;p(z) p(;))
" = 2.3)
w > (9(x)) T way) plai) = <Z¢ (z;)®a] ,¢<mz>> = (W, ¢(,)),

where (a) comes from the vectorization property of the Kronecker product (Graham, 2018) and
W € RP*. The output g in the dual space and the attention output share a similar formulation,
indicating that the attention mechanism could potentially be represented in the primal space.

However, the attention score is inherently asymmetric, which violates the Mercer condition (Mer-
cer, [1909). Several works studied this issue and provided a mathematical foundation for allowing
asymmetry, as the following definition,

Definition 1 (Asymmetric kernel trick, (Wright & Gonzalez, 2021} |Lin et al.,[2022; |He et al.|,|2023aj
Chen et al.,2023))). An asymmetric kernel trick from reproducing kernel Banach spaces (RKBS) with
the associated kernel function k(-,-) : X X Z — R can be defined by the inner product of two real
measurable feature maps from a pair of Banach spaces By, Bz on X, Z:

R(wvz):<¢q(w)v¢k(z)>a vwe){vd)q EBX»ZGZvd)k GBZ~ (24)

2.2  PRIMPHORMER

Here, we elaborate on the construction of Primphormer. A unique characteristic of the aforemen-
tioned kernels is their asymmetry, denoted as k(x,y) # x(y,x). This can be understood as a
directional similarity from a query to a key, providing a pair of directed similarities between x, y.
Consequently, for each input @, the output should be computed by considering aspects of both
queries and keys: e(z) = . h;r(x,x;) and r(x) := >, hir(x;, @). It is intriguing to in-
vestigate a suitable primal representation, as we recognize the resemblance in formulation between
attention outputs and the dual representation in kernel machines, both associated with an asymmetric
kernel. To address this, we present an optimization problem to explore its primal-dual relationship,

. T T _ T
Wﬁvvn‘}ilyleinJ Z e Aez + = Z T A'I"J Tr(W W )
1=1 (25)
s.t. e; = fXWe¢q($i)77’ € [N]7
r;= ward)k(mj)ﬂj € [NL

where W,, W,. € RV=*P are the projection weights, A € R%* represents a diagonal regularization
coefficient matrix. ¢(-), ¢x () : R? — RP correspond to the feature maps of queries and keys,
respectively. The expected primal representations are the projection scores e;,r; € R? in the con-
straints. fx € R**Ms is a data-dependent projection and is defined by fx := F + BX 151;5 with

data-independent projections F' € R**Ns and B € R**?. In graph representation learning, fx
serves as a virtual node (Cai et al.} 2023) that aggregates information of each node in the graph.

The objective function J minimizes the coupling term and the squares of e, r regarding queries and
keys by introducing a variational principle of asymmetric kernels as discussed by [Suykens| (2016).
Below, we present the theorem on the solution to the dual problem of the primal problem (2.5)),



Under review as a conference paper at ICLR 2025

Theorem 1 (Duality of the optimization (2.3)). The dual problem of the optimization under
the Karush-Kuhn-Tucker (KKT) conditions is the following linear system,

KH,Fx = H.%,

2.6
K'"H.Fx =H,X, 26)

which collects the solutions corresponding to the non-zero entries in A such that ¥ = A~L
H. = |h.,,....he]" € RY%, and H, := [h,,,...,h,,]T € RN* are dual variables.
K corresponds to the attention score, induced by K,;; := <¢>q(ml) ¢r(x;)). The detailed proofs,
Lagrangian, and KKT conditions are provided in Appendix[C.1]
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Figure 1 Illustrations of the architectures in one layer. a) The GPS architecture. b) The standard
self-attention architecture. The attention score Kat¢n is induced by two feature mappings ¢4 and ¢y,
involving pair-wise computations. ¢) Primphormer eliminates the need for pair-wise computations
by introducing the primal representation, resulting in a new computationally efficient GT.

Primal and dual relationship. The KKT conditions (C2)) yields a fact that the optimized projections
W, and W, in the primal space are composed of all the tokens,

W, = Z b ()T
W, = Zi:l theid’q(wi)T

2.7)

According to the primal-dual relationship between (2.3) and (2.6), and by applying (2.7)) to the pro-
jection scores e, r, we can formulate them in the followmg two ways: (a) the primal representation
under KKT conditions, and (b) the dual representation as the standard self-attention mechanism,

N

, e(z) = fx Wy (), e(x) = ijl hy k(x, z;),
Primal : (@) = fx W, dn(a) Dual : N (2.8)
= JXVWrQk ; B ~ _
r(x) = Zi:l he,k(xz;, x),
where Fx := fx fx,and h,, := Fxh,, he, = FXh . In the primal space, we integrate token

information into the projection weights W and W representlng self-attention through linear
projection to avoid pair-wise computations. The data- dependent projection fx inside serves as a vir-
tual node aggregating information across all graph nodes, intended to introduce graph information to
each node. Correspondingly, in the dual space, the attention score is computed using an asymmetric
kernel trick, denoted as x(x;, x;) := (dq(xi), dr(x;)), and the data-adaptive basis h.,.,, h., act as
values, forming a standard self-attention formulation. These values are influenced by fx, leading
to an auto-correlation projection F'y without centering fx. This auto-correlation projection F'x is
significantly affected by the mean value of fx, i.e., the virtual node. This offers a new perspective
on bridging virtual nodes and the self-attention mechanism.

Chen et al.|(2023)) introduced an alternative form of primal-dual relationship for sequence data. Its
data-dependent projection is uniformly sampled from sequences under an inductive bias assumption
that sequences are ordered, which is natural to sequences but not graphs. Sequences are inherently
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ordered, and thus such sub-sequences contain semantic information from the original sequence. In
contrast, for graph data, their structure is dictated by the edges, and the arrangement or ordering
of nodes is not explicitly specified, rendering this method unsuitable for graph data. Moreover, its
data-dependent projection is integrated into the kernel trick as a data-adaptive weight, incapable of
altering the space where potential outputs may lie. In contrast, our data-adaptive basis aggregates
graph information in the form of virtual nodes and directly influences the basis of outputs, as shown
in equation (2.8), potentially enhancing the model’s capacity.

Model architecture. The Transformer layer consists of two core components: the self-attention
module and the feed-forward module which is applied token-wise (Vaswani et al., [2017). In this
paper, we consider GPS, a powerful GT architecture that merges the MPNN and Transformer layers
(Rampasek et al.,|2022). We replace the self-attention module in the Transformer layer with our pri-
mal representation and name our method Primphormer. Illustrations of Primphormer’s architecture
are shown in Figure[I] with detailed algorithms presented in Appendix [D}

Complexity analysis. The primal representation is a more user-friendly approach in terms of
both time and memory costs. The dual representation requires O(N?s) time complexity and
O(N? + Ns) memory complexity. In contrast, the primal representation only requires O(Nps)
time complexity and O(2Ngs + 2Np) memory complexity with Ny < N making an efficient
self-attention mechanism feasible. The final output is obtained by concatenating two projection
scores o(x) := [e(x); r(x)]. To align with the user-dependent dimension d,, a compatibility ma-
trix W, € R% 2% can be further applied to the output score.

3 THEORETICAL RESULTS

In this section, we provide the main theorems of Primphormer. The proof details can be found in
Appendix

3.1 ZERO-VALUED OBJECTIVE

In the implementation of Primphormer, our goal is to reach the KKT point. Theorem [I] establishes
that when the KKT conditions are met, the dual representation of Primphormer aligns with the
standard self-attention formulation. However, solving the linear system in the dual space in-
troduces a cubic computational complexity. To efficiently approach the KKT points, we introduce
the following theorem,

Theorem 2 (Zero-valued objective with stationary solutions). The solutions of H., H,., 3. in the
dual space (2.6) lead to a zero-valued objective J in the primal space (2.3).

The essence of Theorem [2| lies in the necessity for the primal objective value to be zero under
the KKT conditions, suggesting an alternative optimization approach instead of solving the dual
problem. Therefore, we implement Primphormer by jointly minimizing an additional loss towards
zero as follows,

L= Lusc+ny_ i, 3.0

where 7 € R is a regularization coefficient, Ly, is the task-oriented loss and the final term sums
up the primal objective loss across layer [. Through regularization of this additional loss,
the self-attention mechanism can be effectively represented in the primal space upon achieving a
zero-valued objective.

3.2 UNIVERSAL APPROXIMATION

By substituting the self-attention layer with our primal representation, we obtain a new network
architecture. Subsequently, the first question that intrigues us concerns expressivity, particularly
delving into which functions can be uniformly approximated utilizing our network.  Here, we
demonstrate that Primphormer allows universal approximation for continuous functions on both
sequences and graphs. The proofs of these theorems rely on a mild assumption: let feature spaces be
X,Y C R% and let X be a compact set. We first introduce the concept of permutation equivariance
and then show that Primphormer is a universal approximator.
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Definition 2 (Permutation equivariance, (Hutter, |2020; |Alberti et al.l [2023)). A continuous
sequence-to-sequence function f : XN — YN is equivariant to the order of elements in a sequence
if for each permutation 7 : [N] — [N],

F([®r@), s Tan)]) = [ (X)), s fr ) (X)]

where XN 3 X = [@1,--- ,&N] is a sequence of N elements. We denote f € FR(X,Y) if f
conforms to this definition.

We are now ready to state the universal approximation property of Primphormer on permutation
equivariant sequence-to-sequence functions.

Theorem 3. For any function f € ]—'ég (X, ) and for each € > 0 there exists a Primphormer Tpy;
such that

sup |[|f(X) = Tpri(X)[oo < e (3.2)
XexnN

Next, we develop the theorem for any continuous sequence-to-sequence function, stating that with
a positional encoding E € R?*"  a Primphormer Tpg(X) = Tp,i(X + E) can approximate any
continuous sequence-to-sequence functions on the compact domain.

Theorem 4. For any continuous function f : [0,1]9*N — RN and for each ¢ > 0 there exists a
Primphormer with the positional encoding Tpg such that

sup [If(X) = Tpe(X)[e < e (3.3)
XexnN

Theorems provide universal approximation properties for functions on sequences. In the realm
of graph learning, an interesting question arises: does the universality extend to functions on graphs?

Universal approximator for functions on graphs. To answer the question, we construct node and
edge Primphormers on graphs. For an input graph G, the edge Primphormer processes input as a
sequence of ordered pairs ((4,5),0;;) where ¢ < j, 4,5 € [N] and an edge indicator o;;. It is evi-
dent that any permutation on these pairs describes the same graph. Considering the set of functions
f o RNX(N=1) _y RNX(N=1) with permutation equivariance, Theorem [3| asserts that the function
f can be approximated with arbitrary accuracy by Primphormer on edge input. Similarly, the node
Primphormer takes an identity matrix as input and the padded adjacency matrix as a positional en-
coding which can be interpreted as a one-hot encoding of each node’s neighbors. Considering the set
of continuous functions f : [0, 1]V*Y — RN*N Theorem E] states that f can be approximated as
closely as desired by an appropriate Primphormer on node inputs. These results indicate that Prim-
phormer can offer an approximate solution to the graph isomorphism problem, although they do not
imply the existence of efficient algorithms for solving this problem. For more detailed explorations,
we recommend referring to Kreuzer et al.| (2021)).

4 EXPERIMENTAL RESULTS

In this section, we evaluate the empirical performance of Primphormer on various graph bench-
marks. To ensure diversity, datasets are collected from different sources, a detailed description of
which can be found in Appendix [A] In particular, we conducted experiments on the benchmark
datasets including the image-based graph datasets CIFAR10, MNIST, COCO-SP, and Pascal VOC-
SP; the synthetic SBM datasets PATTERN and CLUSTER; the code graph dataset MalNet-Tiny; the
molecular datasets including Peptides-Func, Peptides-Struct, and PCQM-Contact (Dwived: et al.,
2022a [Freitas et al.l 2021} [Dwivedi et al., [2022b} [2023); and the large-scale ogbn-products dataset
(Hu et al., 2020). In our experiments, we use feature maps defined as ¢, () := ¢(x)/||¢(x)||2 and
dr(x) := k(x)/||k(x)||2 as used by (Chen et al.|(2023).

Long-range graph benchmark. We conducted experiments on the long-range graph benchmark
(LRGB, Dwivedi et al.| (2022b))) to evaluate the models’ capabilities in learning long-range depen-
dencies within input graphs. Table [T] presents the results of Primphormer with several baselines.
Our approach outperforms the baselines on three of the five datasets while showing competitive
performance on the rest of the datasets.
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GNN benchmark datasets. We also evaluate our method with broader baselines on graph bench-
mark datasets, namely CIFAR10, MNIST, CLUSTER, PATTERN, and the code graph dataset
MalNet-Tiny (Dwivedi et al., 2023; |Freitas et al., [2021), as reported in Table Q It is observed
that Primphormer outperforms on MNIST and ranks as the second-best performer on two additional
datasets, showcasing its strong performance across various dataset types.

Table 1 Comparison of Primphormer with baselines on the long-range graph benchmark. Best results

are colored in first,

, third.

Model PascalVOC-SP COCO-SP Peptides-Func Peptides-Struct PCQM-Contact
F11 F1t APt MAE| MRR?

GCN 0.1268 £ 0.0060  0.0841 +0.0010  0.5930 4 0.0023  0.3496 £ 0.0013  0.3234 + 0.0006
GINE 0.1265 £ 0.0076  0.1339 + 0.0044  0.5498 £+ 0.0079  0.3547 £ 0.0045  0.3180 + 0.0027
GatedGCN 0.2873 £0.0219  0.2641 +0.0045 0.5864 4+ 0.0077  0.3420 £ 0.0013  0.3218 £ 0.0011
GatedGCN+RWSE  0.2860 + 0.0085  0.2574 +0.0034  0.6069 £ 0.0035  0.3357 £ 0.0006  0.3242 + 0.0008
Trans.+LapPE 0.2694 £ 0.0098  0.2618 +0.0031  0.6326 + 0.0126  0.2529 £ 0.0016  0.3174 £ 0.0020
SAN+LapPE 0.3230 £ 0.0039  0.2592 + 0.0158  0.6384 4+ 0.0121  0.2683 £ 0.0043  0.3350 + 0.0003
SAN+RWSE 0.3216 £ 0.0027  0.2434 + 0.0156  0.6439 + 0.0075 0.2545 +0.0012  0.3341 £ 0.0006
GraphGPS 0.3748 + 0.0109  0.3412 + 0.0044 0.2500 + 0.0005  0.3337 £ 0.0006
Exphormer 0.3455 + 0.0009  0.6527 + 0.0043  0.2481 + 0.0007

Primphormer 0.3980 + 0.0075 0.6612 + 0.0065 0.3757 + 0.0079

Table 2 Comparison of Primphormer with baselines on GNN benchmark datasets.

Best results are

colored in first, , third.
Model CIFAR10 MalNet-Tiny MNIST CLUSTER PATTERN
Accuracy? Accuracyt Accuracy Accuracyt Accuracy
GCN 55.71 £ 0.381 81.0 90.71 £0.218 68.50 £0.976  71.89 4+ 0.334
GIN 55.26 £1.527 88.98 £0.557 96.49 +0.252 64.72 +£1.553 85.39 £0.136
GAT 64.22 £0.455 92.104+0.242 9554 +0.205 70.59 £+ 0.447 78.27 +£0.186
GatedGCN 67.31 £0.311 9223 +£0.650 97.34 +0.143 73.84 £ 0.326 85.57 £+ 0.088
PNA 70.35 £+ 0.630 - 97.94 + 0.120 - -
DGN 72.84 + 0.417 - - - 86.68 £+ 0.034
CRaWL 69.01 £+ 0.259 - 97.94 4+ 0.050 - -
GIN-AK+ 72.19 +0.130 - - - 86.85 + 0.057
SAN - - - 76.69 + 0.650  86.58 + 0.037
K-Subgraph SAT - - - 77.86 + 0.104
EGT 68.70 £+ 0.409 - 98.17 + 0.087 79.23 + 0.348  86.82 + 0.020
GraphGPS 72.30 £ 0.356  93.50 £ 0.410 98.05+0.126 78.02 + 0.180  86.69 + 0.059
Exphormer 74.69 + 0.125  94.02 + 0.209 86.74 £ 0.015
Primphormer 98.56 + 0.042  78.01 + 0.162  86.68 + 0.056

Efficiency validation. Primphormer leverages the primal representation for GTs to reduce com-
putational burden. As the aforementioned results demonstrate the promising performance of Prim-
phormer, we further validate its efficiency by comparing it to other computationally efficient at-
tention mechanisms within the GPS architecture (Rampasek et al.| 2022). The selected mecha-
nisms include linear attention models BigBird (Zaheer et al., |2020) and Performer (Choromanski
et al.,[2021)), a sparse attention mechanism, Exphormer (Shirzad et al., [2023)), the sequence-specific
Primal-Atten (Chen et al., [2023)), and the full attention mechanism. We conduct the experiments on
CIFAR10, MalNet-Tiny, PascalVOC, Peptides-Func and a large-scale graph ogbn-products. Since
ogbn-products is too large to be loaded into GPU, we use the random partitioning method previously
used by [Wu et al.|(2022;2023)). The results across the five datasets are reported in Tables |Z| andE[

As shown in Table [3] Primphormer demonstrates superior performance over other attention mecha-
nisms such as BigBird, Performer, and Prim-Atten, while also exhibiting competitive performance
with Exphormer. Table[d]presents a comparison of running time and peak memory usage across dif-
ferent methods. Primphormer demonstrates superior performance in both running time and memory
consumption compared to other approaches. For example, in the MalNet-Tiny dataset, linear atten-
tion mechanisms introduce significant computational overhead. While Prim-Atten offers good effi-
ciency, its performance on graph tasks lags due to its sequence-specific nature. Both Primphormer
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Table 3 Comparison of attention mechanisms in GPS. Best results are colored in first,

OOM means out of memory.

Model CIFAR10 MalNet-Tiny  PascalVOC-SP Peptides-Func  OGBN-products
GPS Accuracyt Accuracy F11 APT Accuracyt
MPNN-only 69.95 £0.499 9223 £0.650 0.3016 +0.0031 0.6159 £ 0.0048  74.25 £ 0.214s
+Transformer 72.31 +0.344 93.50 £ 0.410 0.3736 + 0.0158 OOM
+BigBird 7048 £0.106 92.34 +0.340 0.2762 £ 0.0069  0.5854 + 0.0079 73.82 £ 0.412
+Performer 70.67 £0.338  92.64 £0.780 0.3724 £ 0.0131  0.6475 £ 0.0056 74.30 £ 0.211
+Prim-Atten 71.57 £0.256 9297 £0.228 0.3173 £ 0.0055 0.6447 £ 0.0046 74.47 £+ 0.134
+Exphormer 74.69 + 0.125  94.02 + 0.209 0.6527 + 0.0043

+Primphormer 0.3980 £ 0.0075  0.6612 + 0.0065 74.89 + 0.281

, third.

Table 4 Efficiency comparisons on running time and peak memory consumption.

Model Time (s/epoch) Peak memory usage (GB)

GPS CIFAR. MalNet. Pascal. Func. prod. \ CIFAR. MalNet. Pascal. Func.  prod.
MPNN-only 20.3 24.5 15.7 48 21.1 \ 2.31 1.92 418 245 1197
+Transformer 28.0 2324 35.6 12.8 - 3.81 35.32 7.82 846 OOM
+BigBird 55.2 325.6 523 519 939 499 499 17.29
+Performer 50.8 73.5 49.7 21.7 227 10.5 11.59 6.14 771 16.14
+Prim-Atten 32.1 62.5 7.9 2.74 2.58 3.38

+Exphormer 44.5 35.2 7.6 254 5.54 10.38 7.35  4.81  31.09
+Primphormer 61.9 25.3 22.1 \ 2.74 2.86 4.72 13.35

and Exphormer, designed for graphs, exhibit similar running times. Nevertheless, Primphormer con-
sumes less memory as its complexity depends solely on the number of nodes, whereas Exphormer’s
complexity is controlled by the number of nodes and edges. In the ogbn-products dataset, which
comprises approximately 2 million nodes and 61 million edges, Primphormer showcases the most
efficient results compared with other methods. In summary, our experiments demonstrate that Prim-
phormer exhibits competitive performance while maintaining user-friendly memory and computa-
tional costs.

5 RELATED WORK

Graph Transformers. Transformers have demonstrated success in natural language processing
(Vaswani et al.l [2017) and computer vision tasks (Liu et al., 2021). Recently, researchers have
explored the application of Transformers in graph representation learning to address issues such as
over-smoothing (Nguyen et al.,[2023)) and over-squashing (Giraldo et al.|2023)) observed in MPNNSs.
Graph Transformers operate on a fully connected graph where nodes are pairwise connected, en-
coding the original graph structure into positional encodings. Spectral Attention Networks (SAN)
(Kreuzer et al. 2021)) introduce conditional attention for both real and virtual edges and implement
Laplacian positional encoding for nodes. Graphormer (Ying et al.,2021)) and GraphiT (Mialon et al.},
2021) incorporate relative positional encodings based on pairwise graph distances and diffusion ker-
nels, respectively. GPS proposes a framework that combines MPNNs with attention mechanisms
(Rampasek et al., [2022)).

The quadratic complexity in traditional GTs has motivated the development of computationally ef-
ficient attention mechanisms. Nodeformer (Wu et al., [2022) utilizes the kernelized Gumbel softmax
operator to facilitate information propagation between all pairs of nodes efficiently. Difformer (Wu
et al.| 2023)) introduces a diffusion-based Transformer model with linear complexity, although their
attention mechanisms are limited to nodes in randomly sampled mini-batches. Another strategy is
the sparse Transformer, which enhances computational efficiency by restricting node interactions.
Exphormer (Shirzad et al.||2023) limits interactions across real and expander edges, achieving linear
complexity to the number of nodes and edges. However, the efficiency of Exphormer diminishes as
graphs become denser. A survey on efficient Transformers is given by |Fournier et al.[(2023).
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Primal-dual relationship. The quadratic complexity also arises in kernel machines in duality and
can be circumvented by transferring a dual problem to its primal form. Models such as the support
vector machine (Cortes & Vapnikl [1993)), least squares support vector machine (Suykens & Vande-
wallel, [1999)), and kernel principal component analysis (Mika et al.| |[1999) exhibit this characteristic.
The associated pair-wise kernels are symmetric and positive-definite, whereas attention scores are
inherently asymmetric, violating the Mercer condition (Mercer, |1909). Recent research has explored
a new primal-dual perspective to accommodate such asymmetry in kernel machines. To incorporate
asymmetric kernel functions, [Lin et al. (2022) propose an asymmetric kernel trick from a pair of
RKBSs. He et al.| (2023b) convert an asymmetric kernel to a complex-valued Hermitian function
by the magnetic transform. [Suykens| (2016)) introduces a novel variational principle to dissect the
primal-dual relationship concerning the singular value decomposition of an asymmetric kernel ma-
trix, a concept further extended to classification tasks by He et al.|(2023a)). This variational principle
is also leveraged by |Chen et al.|(2023)) to interpret attention mechanisms in sequences. However, due
to the distinctions between sequences and graphs, this model is unsuitable for graph-based learning.

6 CONCLUSION

In this paper, we propose Primphormer, a new framework for graph Transformers. Primphormer
models the self-attention mechanism on graphs in the primal space, avoiding pair-wise computa-
tions, which enables an efficient variant of graph Transformers. Our primal-dual analysis shows
that Primphormer can be implemented by introducing an additional primal objective loss. Due to
its efficiency in both runtime and memory storage, Primphormer has the potential to support larger
and deeper neural networks and enable larger batch sizes, enhancing model capacity and general-
ization ability. Primphormer also benefits from the universal approximation property for functions
on both sequences and graphs, potentially possessing strong generalization capabilities to unseen
data or tasks. Experimental results on various graph benchmarks demonstrate the effectiveness and
efficiency of the proposed Primphormer.

An interesting avenue for future work is exploring how edge features can be incorporated into Prim-
phormer’s structure. Edge features can be added to attention scores in an entry-wise manner as
data-adaptive kernels (Liu et al., 2020). Exploring the primal representation of these kernels allows
us to incorporate edge information into attention mechanisms, potentially resulting in a stronger
GT. Additionally, fine-tuning schemes like LoRA (Hu et al.} [2022) are promising for large models.
Studying LoRA from a primal-dual perspective may lead to more efficient fine-tuning methods. Al-
though experimentally evaluating the universal approximation property poses challenges, it is crucial
and valuable for our theoretical foundations. We can begin by manually designing graph-to-graph
functions and then study validation errors concerning hidden dimensions and sample size. For tasks
that focus on short-range interactions, the data-dependent projection could be further adjusted to
better aggregate local information.
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APPENDIX

A DATA DESCRIPTIONS

Here, we introduce the datasets in the experiments. A summary of the dataset statistics is shown in

Tab.[AT]

CIFAR10 and MNIST. CIFAR10 and MNIST are the graph equivalents of the image classification
datasets of the same name. A graph is created by constructing the 8-nearest neighbor graph of the

SLIC superpixels of the image. These are both 10-class graph classification problems (Dwivedi
et al.l [2023)).

PascalVOC-SP and COCO-SP. These are similar graph versions of image datasets, but they are
larger images and the task is to perform node classification, i.e., semantic segmentation of super-
pixels. These graphs are larger, and the tasks are more complex than CIFAR10 and MNIST (Dwivedi
et al., [2022a).

CLUSTER and PATTERN. PATTERN and CLUSTER are node classification problems. Both
are synthetic datasets that are sampled from a Stochastic Block Model (SBM), is a popular way to
model communities. In PATTERN, the prediction task is to identify if a node belongs to one of the
100 possible predetermined sub-graph patterns. In CLUSTER, the goal is to classify nodes into six
different clusters with the same distribution (Dwivedi et al., [2023)).

MalNet-Tiny. Malnet-Tiny is a smaller dataset generated from a larger dataset for identifying mal-
ware based on function call graphs from Android APKs. The tiny dataset contains 5000 graphs,
each with up to 5000 nodes. The task is to predict the graph as being benign or from one of four
types of malware (Freitas et al., 2021).

Peptides-Func, Peptides-Struct, and PCQM-Contact. These datasets are molecular graphs in-
troduced as a part of the Long Range Graph Benchmark (LRGB). On PCQM-Contact, the task is
edge-level, and we need to rank the edges. Peptides-Func is a multi-label graph classification task
with 10 labels. Peptides-Struct is graph-level regression of 11 structural properties of the molecules
(Dwivedi et al.l [2022agb)).

OGBN-products. The ogbn-products dataset is an undirected and unweighted graph, representing
an Amazon product co-purchasing network. Nodes represent products sold in Amazon, and edges
between two products indicate that the products are purchased together. Specifically, node features
are generated by extracting bag-of-words features from the product descriptions followed by a Prin-
cipal Component Analysis to reduce the dimension to 100. The task is to predict the category of
a product in a multi-class classification setup, where the 47 top-level categories are used for target
labels (Hu et al., [2020). We use the random partitioning method with ten partitions as previously
utilized in /Wu et al.| (2022;[2023).

Table A1 Dataset statistics

Dataset Graphs  Avg. nodes  Avg.edges Task level Class Metric
MNIST 70,000 70.6 564.5 graph 10 Acc
CIFARI10 60,000 117.6 941.1 graph 10 Acc
PATTERN 14,000 118.9 3039.3 inductive node 2 Acc
CLUSTER 12,000 117.2 2150.9 inductive node 6 Acc
MalNet-Tiny 5,000 1,410.3 2,859.9 graph 5 Acc
PascalVOC-SP 11,355 479.4 2710.5 inductive node 21 F1
COCO-SP 123,286 476.9 2710.5 inductive node 81 F1
PCQM-Contact 529,434 30.1 61.0 inductive link  link ranking ~ MRR
Peptides-func 15,535 150.9 307.3 graph 10 AP
Peptides-struct 15,535 150.9 309.3 graph 11 MAE
OGBN-products 1 2,449,029 61,859,140 node 47 Acc
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B HYPERPARAMETERS

Our selection of hyperparameters was guided by the instructions in GPS (Rampasek et al.| [2022)
and Exphormer (Shirzad et al| 2023). Further details can be found in Tables.[A3} [A4]

In our model, we introduced additional hyperparameters, the dimensions of the data-dependent pro-
jection, denoted as IV, and its low rank s, and the regularization coefficient . We utilized grid search
to explore these hyperparameters across Ny, s € {20, 30,40,50,60}, and n € {0.1,0.01}. For the
remaining hyperparameters, we conducted a linear search for each parameter to determine the best
values. Throughout all experiments, we employed CustomGatedGCN as the MPNN module along-
side Primphormer except for ogbn-products dataset where we use GCN. To ensure fair comparisons,
we maintained a similar parameter budget to that of GraphGPS.

Table [Ad] presents the hyperparameters used in our efficiency experiments. To maintain consis-
tency in our evaluations of various attention mechanisms, we applied the same parameters for a fair
comparison.

Table A2 Hyperparameters used in Primphormer for datasets: PascalVOC-SP, COCO-SP, Peptides-
Func, Peptides-Struct, PCQM-Contact.

Hyperparmeter | PascalVOC-SP COCO-SP  Peptides-Func ~ Peptides-Struct PCQM-Contact

#Layers 6 7 4 4 7
Hidden dim 80 56 96 96 64

# Heads 1 2 4 4 4
Dropout 0.15 0.0 0.1 0.15 0.0
Attention dropout 0.5 0.5 0.1 0.5 0.56
PE LapPE LapPE RWSE RWSE LapPE
PE dim 16 16 16 20 16
Batch size 200 150 200 200 128
Learning rate le-3 le-3 le-3 le-3 3e-4
#Epochs 300 300 250 250 250
Weight decay le-5 le-2 le-2 le-2 0.0
N 30 20 30 40 30

n 0.1 0.1 0.1 0.1 0.1

s 30 20 30 40 30
#Parameters | 508305 315305 470693 468783 386526

Table A3 Hyperparameters used in Primphormer for datasets: CIFAR10, MNIST, MalNet-Tiny,
PATTERN, CLUSTER.

Hyperparmeter \CIFARIO MNIST MalNet-Tiny PATTERN CLUSTER

#Layers 3 4 5 6 12
Hidden dim 52 40 84 48 52
#Heads 1 1 1 1 1
Dropout 0.15 0.1 0.15 0.0 0.15
Attention dropout 0.5 0.5 0.5 0.5 0.5
PE ESLapPE  ESLapPE - ESLapPE ESLapPE
PE dim 8 8 - 8 10
Batch size 200 200 64 128 48
Learning rate le-3 le-3 le-3 le-3 le-3
#Epochs 300 300 300 200 300
Weight decay le-2 le-5 le-3 le-5 le-5
N 20 30 50 30 40

n 0.1 0.1 0.1 0.1 0.1

s 20 30 50 30 40
#Parameters | 112957 101714 519605 208387 499386
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Table A4 Hyperparameters used in Table.
Hyperparmeter | CIFAR10 MalNet-Tiny PasvalVOC-SP  Peptides-Func  ogbn-products

#Layers 5 5 4 4 2
Hidden dim 40 64 96 96 128
Batch size 128 4 32 128 -

C PROOFS OF THEORETICAL RESULTS

In this section, we provide the proofs of theoretical results in this paper.

C.1 PROOF DETAILS OF THEOREM([]]

The Lagrangian of (2.3)) is defined by,

N N
1 1
LWe, Wy eirj ey hey) = 5 > el Aei+ 3 > vl Ar, - Te(W,W,)

i=1 j=1

N
=Y hl(ei— [xWedg(m:)) — b (r; — [xW,on(;)),
i=1

(&)
where he,, h,., € R®s are dual variable vectors corresponding to the equality constraints regarding
the projection scores e; and ;.

By taking the partial derivatives to the Lagrangian (CIJ), the Karush-Kuhn-Tucker (KKT) conditions
lead to the following equalities,

oL a
W~ 0=W, = ;:1 FxPe,dq(xi)

oL ZN T T
aWr =0= v‘/e :j:1 thTJ(bk(wJ)

oL ;

Fe. = 0= Ae; =h,,, i€[N] (C2)
oL ;
airj_():>A’l"j—hrj7 JG[N}

oL ;

Oh., =0=e; = fxWepy(x;), i€[N]
oL '

S = 0=r; = fxWyér(x;), j€[N]

By eliminating the primal variables W, and W,., we have,
N
> Fxhy,ér(x;) dg(xi) = A he,, i€ [N,
j=1
N (C3)
ZFXhe,;QZ)q(zi)Td)k(mj) :Ailhrjv JE [N],

i=1

where Fy = fxfy € S9° is the auto-correlation matrix. It can be expressed in the following
matrix form,
Onxn [%(fﬂi)wk(wg—)}] [H] {H} -1
Fx = A C4
[[¢k(wj)T¢q($i)] OnxnN H. "X~ |H, €4

with H, := [Re,,. .., hey]” € RV and H, = [hy,, ... hyy]T € RVXs,
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Then it can be noticed that the KSVD optimization problem in the dual space yields the following
generalized eigenvalue problem with an asymmetric kernel K,

KH,Fx = H.X,
K'"H.Fx =H,X,
which collects the solutions corresponding to the non-zero entries in A such that & £ A~!. The

asymmetric kernel matrix K, induced by K;; := (¢4(x;), dx(x;)), Vi, j € [N], corresponds to the
attention matrix.

(C5)

C.2 DERIVATION OF SCORES (2.8)) IN THE PRIMAL AND DUAL SPACES

With the derivations and KKT conditions of the primal-dual optimization above, the primal and dual
representation for the self-attention can be formulated as follows,

e(x) = fxWeo,(z),
r(z) = fxW,or(T).

e(az) = fXWequ(wi) = ZA: FXth¢k(wj)T¢q(x)7
Dual : J_ (C7)

() = fxW,oi(:) Z Fxhe,dq(xi) dr(x).

Then, the primal and dual representations for self-attention can be folumated as follows,

N .
Primal : {e(:c) e|x¢q($) e(x) = ijl h k(x, x;),

Primal : { (Co)

Dual :
(SE) = T\X(bk(w)’ ’I"(CC) = Z]\i Bein(wiax)a

where WJlX = fxW, € RS¥P, WTTX = fx W, € R¥*P and ilrj = Fthj’i:’/ei := Fxh,, are
values for self-attention, respectively.

(C8)

C.3 PROOF DETAILS OF THEOREM[2]

Proof. Based on the KKT conditions (C2)) and (2.6), the objective on stationary points is,

1 N 1 N
J = 5 Zz ) eTAei + = Z rTArj —Tr (WTWT)

— 3 (A )T AN 5 S (A h) T AN,
_Tr< Z or(z;) ,fo Z frhe, dq(x) ))
:,ZZ ) CA A h,, = Z 1h —Tr (Z O m])h Fxhe,dq(x;) )

- nmsHT) ¢ 5Tr (HTEHTT T (Zij%(mi) ¢k(mj)herXhej)

2

%Tr (H.XH]) + %Tr (H,*H,) - Tr (KH,FxH)

%Tr (KH,FxH,) + %Tr (K'"H.FxH)-Tr (KH,FxH,)

%Tr (K"H.FxH,) - %Tr (KH,FxH,)

%Tr (H.FxH/K") - %Tr (KH,FxH,)

%Tr( (H.FxH K')') - %T&" (KH,FxH,)

%T& (KH,FxH,) — %T& (KH,FxH.]) =0.

(C9)

This completes the proof. O
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C.4 PROOF DETAILS OF THEOREM[3]

Proof. The proof follows ideas in (Alberti et al., 2023)). We first introduce the Sumformer S and
we divide the approximation into two parts: 1) approximate f by a S and 2) approximate S by a
Primphormer 7p,;.

Definition 3 (Sumformer). Let d’ € N and let there be two functions ¢ : X — RY, P X X R —
Y. A Sumformer is a sequence-to-sequence function S : XN — YN which is evaluated by first
computing

N
== 3¢ 10
k=1
and then
N ([wla T 7mN]) = [w(wh E)a t ,Ql)(wN, E)] . (C1D)

Theorem 5 (Universal approximation of Sumformer). For each function f € fé’g(é\f , V) and for
each € > 0 there exists a Sumformer S such that

sup || f(X) = S(X)[oc <e. (C12)
XexnN

We divide the approximation into two steps by the triangular inequality: 1) approximate f by a
Sumformer S and 2) approximate S by a Primphormer 7p,;.

sup || /(X) =T (X)lloo < sup [[f(X) =S(X)lloo+ sup [[S(X) =Tpri(X)l|oo. (C13)

Xexn T xex XexN

According to Theorem [5] we know that there exists a Sumformer S which approximates f to an
error of €/2. This Sumformer has the inherent latent dimension d’'.

Secondly, we turn to the second term and construct a Primphormer that is able to approximate
Sumformer to €/2 error. The structure of Transformer is X + FC (X + Att(X)) where FC and
Att are the fully-connected and self-attention modules, respectively. The attention map Att(X) of
Primphormer is calculated in the primal space (2.8)) and the rest of the architecture in Primphormer
stays the same. Here, we follow the proof idea proposed in (Alberti et al.,|2023)) and refer readers to
this work for detailed information on the theoretical result.

We have the input X = [z, - ,zy] € XY with z; € R?. Set the attention in the first layers
to zero, we obtain the feed-forward layers without attention. We first map X with a feed-forward
transformation to

{wl “’N}GRWN. (Cl14)
wl PRy ajN

Then, a two-layer feed-forward network can be constructed to act as the identity on the first N

components while approximating the function £ in Sumformer (Hornik et al.| 1989 |Alberti et al.,
2023). We have.

{{(9’;11) o g(ﬂgv)} c Rld+d)xN (C15)

Before getting to the second step, we we add a linear mapping with

)

.
W — |:0d><1 I;  Ogxa ded/} € RO+d+2d)x (d+d")

Ouvx1 Oaxa Iy Ogxa (C16)
b— [11\’ ONX(de/))}T c R(1+d+2d’)><N’
and get an output after the first step:
1 1
S(mwll) 5(9;1\]/\[) c R(A+d+2d")xN (C17)
Opx1 -+ Owxa
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Secondly, we turn to attention scheme to represent the sum = = Zfil &(x;) defined in the definition
. Set Wq = Wk = [617 O(1+d+2d’)><(d+2d/)] with €] = [1, le(d+2d/)]—r. we have,
T /
Dq(X1) = oi(X1) = [Inx1,O0nx(dt2a)] € R(FF2d)XN, (C18)

Let the data-dependent projection f(X) = BX1y 1X,S with B = [0g/x1, 04 xd, Lar, Oqr car], we

have,
N

N N
F(X) = [Zs<mi>,~-~ S e@)| =B 5] e RIXN., (C19)
i=1 i=1
Let W, = W, = [ey, 0(1+d+2d')x(Nr1)]T, the projection scores in li are
{e(Xl) = [(X))Wepy(X1) =8, 8 e RV, o)
T(Xl) :f(Xl)WT¢k(X1) = [E’... 73} GRdIXN~

To fit the dimension of the output, we concatenate the projection scores [e(X1); r(X;)] € R24' >N,
and choose a compatibility matrix W = [0(14ata)x2a; 310, 31a] € R(+d+2d")x2d" gych that

o(X1) = W, {E(XJ - [O(l“id’)“ 0 D) ¢ g2 )N ooy
- T(Xl)_ = e =
Then apply a residual connection and obtain the same output as outlined in (Alberti et al.,[2023),
o1 .. 1
1 T TN (14d+2d")x N
eR . C22
E) - Ezy) ©2

Because only the attention map Att(X) is changed in the architecture and the rest stays the same, the
construction of ¢ is as same as that in (Alberti et al., 2023), i.e., O(N ()N /N1) feed-forward layers
for approximating v in the discontinuous case and two feed-forward layers for approximating v in
the continuous case. Above all, we can construct a Primphormer that approximates the Sumformer
to €/2 error. O

C.5 PROOF DETAILS OF THEOREM [4]

Proof. The proof can be done in a similar way as Theorem Firstly, let the target function f(X) :=
[g(x1,{x2, - ,2N}), - ,g9(®N,{x1, -+ ,ZN_1]})]. Since the target function f is continuous, its
component functions fi,- - - , fn, i.e., g, are also continuous. The compactness of X shows that X'V
is also compact and therefore g is uniformly continuous. Without loss of generality, let the compact
support of g be contained in [0, 1]?*"V. Then we can define a piece-wise constant function g by

9(X) =Y 9(P)1{X € Cp}, (C23)
PeGs
where the grid G5 := {0,6,---,1 — 6} for some § := 4+ with A € N consisting of cubes

Cp = HZJL Hi:ﬂpzyk’ P, \, + 9). Because g is uniformly continuous, for each € > 0, there exists
a d > 0 such that

sup [l9(X) — g(X)[[c < (C24)
XexnN

Secondly, choose the positional encoding

012 ... N-1
o1 2 .- N-1
E=|. . . .| eRPN, (C25)
o012 ... N-1
After applying the quantization, the output is in the following set,
Hs := {P + E € R"N|P € Gs} . (C26)
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Then the i-th column of X + FE is in the range [i — 1,4)¢, meaning that the entries corresponding
to different tokens lie in disjoint intervals. More precisely, for any H € Gy, its i-th column H; €
[f—1:6:4—19].

Consider a vector u = N6 d+1 X (1 oL .- ,5’d+1) € RY. Tt is easy to check that for any
H < Gy, the map l(H) = u' H; is one- to -one,

T (1- . - -1
u H; ¢ 5d+1 Z 'N5d' 5d+126 5d1 : (€27)

Therefore, for each column H;, the image of [(H,) is in an interval disjoint from the other columns.
We can know that [( H;) can be thought as a “column id” for different columns, for any permutation
m: [N] = [N],

l (Hﬂ.(l)) <l (Hﬂ.(g)) <-ee<l (Hﬂ.(N)) . (C28)
Besides, it can be easily checked that the image of [ lies within the interval [0, 1],
OSZ(HW(l)) <l(Hﬂ.(2)) < - <l(Hﬂ.(N)) <1 (C29)

Next, we want to represent g using an appropriate S. Without loss of generality, we choose the
k-th component of f, i.e., g(xk, {z;|i # k,i € [N]}). Assign each grid point H a coordinate
X(H) = b € [0,1]" by the construction of the function I. Let b = [I(H,)|i € [N]] € [0,1]¥
The map x is bijective and there are finitely many b. We can enumerate all b using a function
w : [0,1]¥ — N. This function could be represented by the Kolmogorov-Arnold representation
theorem (Khesin & Tabachnikovl, [2014; [Zaheer et al.,|2017)), as stated below,

Theorem 6 (Kolmogorov-Arnold representation). Let f : [0, 1]Y — R be an arbitrary multivariate
continuous function iff it has the representation,

N

n=1

with continuous outer and inner functions p : R*N+1 — Rand ¢ : R — R2NT1. The inner function
¢ is independent of the function f.

Now, we can utilize Theorem [6]to find the representation for the function i,

N
b) = p (Z An¢<bn)> : (C31)

Define = := Z:Ll &(by) = Zn 1 An (b)) and a quantization function ¢ such that b,, = I(q(x,+
E,)). It is feasible because b,, varies for different indices, as claimed in “column id” (C28). Now
we can recover the grid H,

H=x"op " op(E). (C32)
We then define the function v such that the related S is equal to g:
Y(xg, B) =7 (L(X_l op~to p(B) — E)) , (C33)

with ¢ : P+ (Py, Pj) to fit the input requirement of g. Since we chose g to uniformly approxi-
mate g, i.e., each component of f up to € error, it implies that S with a positional encoding uniformly
approximates f up to e error.

Thirdly, we need to prove the universal approximation between a Sumformer and a Primphormer
after adding a positional encoding. The proof (C.4) still holds because it only involves the archi-
tecture. We can claim that there exists a Primphormer with a positional encoding 7pg uniformly
approximating a Sumformer S.

Above all, we end the proof by using the triangular inequality,
sup |[|f(X) = Tpe(X)[leo < sup [[f(X) = S(X)[ec + sup [[S(X) = Ter(X)[w <
XexnN Xexn XexnN

(C34)
O
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D PSEUDO-CODE

Algorithm 1 PyTorch-like Pseudo-Code for Primphormer Module.

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch_geometric.nn import global mean_pool
from torch_geometric.utils import to_dense_batch

class Primphormer (nn.Module) :
def _ _init__ (self, in_dim, out_dim, n_heads, Ns, low_rank):

super () .__init_ ()
self.d_keys = out_dim // n_heads
self.q proj = nn.Linear(in_dim, out_dim)
self.k_proj = nn.Linear (in_dim, out_dim)
self.vn_proj = nn.Linear(in_dim, out_dim)
self.n_heads = n_heads

self.We = nn.Parameter (nn.init.orthogonal_(torch.Tensor (Ns, n_heads, self.d_keys)))
self.Wr = nn.Parameter(nn.init.orthogonal_ (torch.Tensor(Ns, n_heads, self.d_keys)))

self.Lambda = nn.Parameter (nn.init.uniform_ (torch.Tensor (n_heads, low_rank)))
self.concate_weight = nn.Linear (2xlow_rank, self.d keys)

def feature_map(self, Q, K):
Q = F.normalized(Q, p=2, dim=-1)
K = F.normalized (K, p=2, dim=-1)
return Q, K

def propagate_vn(self, batch, h):
h = self.vn_proj(h)
h_vn = global mean_pool (h, batch.batch) .unsqueeze (1)
fx = h_vn + batch.fx
return fx

def forward(self, batch):

x = batch.x

x_dense, mask = to_dense_batch(x, batch.batch)

B, M = mask.shape
x = self.propagate_vn(batch, x)
Q = self.q proj(x_dense) .view(B, M, self.n_heads, -1)
= self.k_proj(x_dense) .view(B, M, self.n_heads, -1)
, K = self.feature map(Q, K)

H

10 R

We_X = torch.einsum(’bdv,vhe->bdhe’, fx.transpose(2, 1), self.We)
Wr_X = torch.einsum(’bdv,vhe->bdhe’, fx.transpose(2, 1), self.Wr)

escore = torch.einsum(’bmhd, bhde->bmhe’, Q, We_X.permute(0, 2, 3, 1)) [mask]
rscore = torch.einsum(’bmhd, bhde->bmhe’, K, Wr_X.permute(0, 2, 3, 1)) [mask]

score = torch.cat ((escore, rscore), dim=-1)
out = self.concate_weight (score) .contiguous ()
out = out.view(-1l, self.n_heads * self.d keys)
batch.fx = fx

loss_escore = (torch.einsum(’nhd, hd->nhd’, escore,
self.Lambda) .norm(dim=-1, p=2) **2) .mean() / 2
loss_rscore = (torch.einsum(’nhd, hd->nhd’, rscore,

self.Lambda) .norm(dim=-1,p=2) **2) .mean() / 2

loss_trace = torch.einsum(’dhe, ehk->dhk’, self.We.permute(2, 1, 0),
self.Wr) .mean(dim=1) .trace()

loss_svd = (loss_escore + loss_rscore - loss_trace) *x 2

return out, loss_svd

20



Under review as a conference paper at ICLR 2025

Algorithm 2 Algorithm for Primphormer in the GPS architecture.

Input: Graph G = (V, E) with N nodes and M edges; Adjacency matrix A € RY*N; Node

features X € R4 >N Edge features E € R%*M; Node and edge encoders; Local message
passing model instance MPNN. ; Primphormer model instance P r im; Positional encoding func-
tion fpg; Layers [ € [L — 1].

Output: Node representations X* € RN and edge representations EX € R¥*M for down-

10:
11:
12:

S S

stream tasks.
Pnodca Pcdgc — 9
Pnodea Pedge — fPE(X7 E)
X'+ @, 4. NodeEncoder(X), Paode)
E' + Deage (EdgeEncoder(E), Pedge)
fori=1,---,L—1do
X0t B vpNN (XU B A)
Xgl —Prim! (Xl)
Xﬂ'l < BatchNorm (Dropout (le\jl) + Xl)
Xﬁj’l < BatchNorm (Dropout (X?‘l) + Xl)

X mrp! (X5 4+ X5
end for
return X~ and EL

E

ADDITIONAL EXPERIMENTS

We also conduct experiments to compare against more models (Ma et al., [2023} [Tonshotf et al.
2023)). Notably, Tonshoff et al.| (2023)) introduced an additional data preprocessing step (feature
normalization, FN), which is parallel to our method and can be implemented similarly. We report
the experimental results in Tables[A5]and [A6]

Table A5 Comparisons between our method and GRIT(Ma et al., 2023).

Model CIFAR10 MNIST

GPS ACCTH Time(s/epoch) ~ Memory(GB) | ACCH Time(s/epoch)  Memory(GB)
Primphormer 74.13 £ 0.241 32.6 2.74 \ 98.56 £ 0.042 43.7 1.71
GRIT(Mactal2023)  76.46 4+ 0.881 158.8 22.8 \ 98.11 £0.111 70.1 7.69

Table A6 Comparisons w/o FN between our method and GPS(Tonshoff et al.| [2023).

F11 \ Ours GPS Ours+FN GPS+FN

Pascal-VOC | 0.3980 £ 0.0075 0.3748 £ 0.0109  0.4602 £ 0.0077  0.4440 £ 0.0065
COCO-SP 0.3438 £0.0046  0.3412 £0.0044 0.3903 £ 0.0061  0.3884 £ 0.0055
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