
EF21: A New, Simpler, Theoretically Better,
and Practically Faster Error Feedback

Peter Richtárik
KAUST*

Igor Sokolov
KAUST

Ilyas Fatkhullin
KAUST† & TU Munich

Abstract

Error feedback (EF), also known as error compensation, is an immensely popular
convergence stabilization mechanism in the context of distributed training of super-
vised machine learning models enhanced by the use of contractive communication
compression mechanisms, such as Top-𝑘. First proposed by Seide et al. [2014] as
a heuristic, EF resisted any theoretical understanding until recently [Stich et al.,
2018, Alistarh et al., 2018]. While these early breakthroughs were followed by
a steady stream of works offering various improvements and generalizations, the
current theoretical understanding of EF is still very limited. Indeed, to the best of
our knowledge, all existing analyses either i) apply to the single node setting only,
ii) rely on very strong and often unreasonable assumptions, such as global bound-
edness of the gradients, or iterate-dependent assumptions that cannot be checked
a-priori and may not hold in practice, or iii) circumvent these issues via the intro-
duction of additional unbiased compressors, which increase the communication
cost. In this work we fix all these deficiencies by proposing and analyzing a new EF
mechanism, which we call EF21, which consistently and substantially outperforms
EF in practice. Moreover, our theoretical analysis relies on standard assumptions
only, works in the distributed heterogeneous data setting, and leads to better and
more meaningful rates. In particular, we prove that EF21 enjoys a fast 𝒪(1/𝑇)
convergence rate for smooth nonconvex problems, beating the previous bound of
𝒪(1/𝑇 2/3), which was shown under a strong bounded gradients assumption. We
further improve this to a fast linear rate for Polyak-Lojasiewicz functions, which
is the first linear convergence result for an error feedback method not relying on
unbiased compressors. Since EF has a large number of applications where it reigns
supreme, we believe that our 2021 variant, EF21, can have a large impact on the
practice of communication efficient distributed learning.

1 Introduction

In order to obtain state-of-the-art performance, modern machine learning models rely on elaborate
architectures, need to be trained on data sets of enormous sizes, and involve a very large number of
parameters. Some of the most successful models are heavily over-parameterized, which means that
they involve more parameters than the number of available training data points [Arora et al., 2018].
Naturally, these circumstances should inform the design of optimization methods that could be most
efficient to perform the training.

First, the reliance on sophisticated model architectures, as opposed to simple linear models, generally
leads to nonconvex optimization problems, which are more challenging than convex problems [Jain
and Kar, 2017]. Second, the need for very large training data sizes necessitates the use of distributed

*King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
†This paper was written while Ilyas Fatkhullin was an intern at KAUST.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

computing [Verbraeken et al., 2019]. Due to its enormous size, the data needs to be partitioned
across a number of machines able to work in parallel. Typically, for further efficiency gains, each
such machine further parallelizes its local computations using one or more hardware accelerators.
Third, the very large number of parameters describing these models exerts an extra stress on the
communication links used to exchange model updates among the machines. These links are typically
slow compared to the speed at which computation takes place, and communication often forms the
bottleneck of distributed systems even in less extreme situations than over-parameterized training
where the number of parameters, and hence the nominal size of communicated messages, can be truly
staggering. For this reason, modern efficient optimization methods typically employ elaborate lossy
communication compression techniques to reduce the size of the communicated messages.

Due to the above reasons, in this paper we are interested in solving the nonconvex distributed
optimization problem

min
𝑥∈R𝑑

[︃
𝑓(𝑥)

def
=

1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑥)

]︃
, (1)

where 𝑥 ∈ R𝑑 represents the parameters of a machine learning model we wish to train, 𝑛 is the
number of workers/nodes/machines, and 𝑓𝑖(𝑥) is the loss of model 𝑥 on the data stored on node 𝑖.
We specifically focus on the development of new and more efficient communication efficient first-
order methods for solving (1) utilizing biased compression operators, with a special emphasis on
clean convergence analysis which removes the strong and often unrealistic assumptions, such as the
bounded gradient assumption, which are currently needed to analyze such methods (see Table 1).

The remainder of the paper is organized as follows. In Section 2 we describe the key concepts, results
and open problems that form the motivation for our work, and summarize our main contributions.
Our main theoretical results are presented in Section 4. In Section 4.4 we establish a connection
between EF and EF21. Finally, experimental results are described in Section 5.

2 Background and Motivation

To better motivate our approach and contributions, we first offer a concise walk-through over the key
considerations, difficulties, advances and open problems in this area.

2.1 Two families of compression operators

Compression is typically performed via the application of a (possibly randomized) mapping 𝒞 :
R𝑑 → R𝑑, where 𝑑 is the dimension of the vector/tensor that needs to be communicated, with the
property that it is much easier/quicker to transfer 𝒞(𝑥) than it is to transfer the original message 𝑥.
This can be achieved in several ways, for instance by sparsifying the input vector [Alistarh et al.,
2018], or by quantizing its entries [Alistarh et al., 2017, Horváth et al., 2019a], or via a combination
of these and other approaches [Horváth et al., 2019a, Beznosikov et al., 2020].

There are two large classes of compression operators 𝒞 often studied in the literature: i) unbiased
compression operators satisfying a variance bound proportional to the square norm of the input
vector, and ii) biased compression operators whose square distortion is contractive with respect to
the square norm of the input vector.

In particular, we say that a (possibly randomized) map 𝒞 : R𝑑 → R𝑑 is an unbiased compression
operator, or simply just unbiased compressor, if there exists a constant 𝜔 ≥ 0 such that

E [𝒞(𝑥)] = 𝑥, E
[︀
‖𝒞(𝑥) − 𝑥‖2

]︀
≤ 𝜔‖𝑥‖2, ∀𝑥 ∈ R𝑑. (2)

The family of such operators will be denoted by U(𝜔). Further, we say that a (possibly randomized)
map 𝒞 : R𝑑 → R𝑑 is a biased compression operator, or simply just biased compressor, if there exists
a constant 0 < 𝛼 ≤ 1 such that

E
[︀
‖𝒞(𝑥) − 𝑥‖2

]︀
≤ (1 − 𝛼) ‖𝑥‖2, ∀𝑥 ∈ R𝑑. (3)

The family of such operators will be denoted by B(𝛼). It is well known that, in a certain sense, the
latter class contains the former. In particular, it is easy to verify that if 𝒞 ∈ U(𝜔), then (1 + 𝜔)−1𝒞 ∈
B(1/(1+𝜔)). However, the latter class is strictly larger, i.e., it contains compressors which do not arise
via a scaling of an unbiased compressor. A canonical example of this is the Top-𝑘 compressor, which

2

preserves the 𝑘 largest (in absolute value) entries of the input, and zeros out the remaining entries,
and for which 𝛼 = 𝑘/𝑑. We refer to [Beznosikov et al., 2020, Safaryan et al., 2021, Table 1] for more
examples of unbiased and biased compressors, and to Xu et al. [2020] for a systems-oriented survey.

When used in an appropriate way, greedy biased compressors, such as Top-𝑘, are often empirically
superior to their unbiased counterparts [Seide et al., 2014], such as Rand-𝑘. Intuitively, such greedy
compressors retain more of the “information” or “energy” contained within the message, and hence
introduce less distortion. This is beneficial in practice, at least in the simplistic single node (i.e.,
non-distributed) setting, albeit even here we do not have convincing theory that would explain this.
Indeed, both Top-𝑘 and Rand-𝑘 impart the same distortion in the worst case, which happens when
the energy is distributed uniformly across all entries of the input vector, and it is not easy to capture
theoretically that this worst case situation will not happen repeatedly throughout the iterations. As
a result, there is currently no separation between the worst case complexity of first order methods,
such as gradient descent, combined with biased vs related unbiased compressors [Beznosikov et al.,
2020]. If one makes a-priori statistical assumptions on the distribution of the messages/gradients that
need to be compressed, such a separation can be made [Beznosikov et al., 2020]. While insightful,
this is not satisfactory. Indeed, the gradients produced by methods such as gradient descent evolve
in a non-stationary way, and hence modeling them as samples coming from a fixed distribution
raises questions. Further, gradient compression affects the iterates and hence also the gradients that
will be produced in all subsequent iterations, which is another phenomenon not captured by the
aforementioned approach.

2.2 Error feedback: what it is good for, and what we still do not know

The difference between what we know about unbiased and biased compressors is larger still in the
distributed setting.

In particular, unbiasedness turns out to be a very effective tool facilitating the analysis of distributed
first order methods utilizing unbiased compressors, and for this reason, the landscape of methods
using such compressors is very rich and relatively well understood. For example, using unbiased
compressors we know how to

i) analyze distributed compressed gradient descent [Khirirat et al., 2018, Mishchenko et al.,
2020],

ii) remove the variance introduced by compression to achieve faster convergence [Mishchenko
et al., 2019, Horváth et al., 2019b, Mishchenko et al., 2020],

iii) perform bidirectional compression at the workers and also at the master [Horváth et al.,
2019a, Philippenko and Dieuleveut, 2020, Gorbunov et al., 2020b],

iv) develop a general theory for SGD which, besides more standard methods, also includes
variants using unbiased compression of (stochastic) gradients [Gorbunov et al., 2020a,
Khaled et al., 2020, Li and Richtárik, 2020],

v) achieve Nesterov acceleration in the strongly convex regime [Li et al., 2020],

vi) how to analyze these methods in the nonconvex regime [Mishchenko et al., 2019, Horváth
et al., 2019a, Li and Richtárik, 2020],

vii) achieve acceleration in the nonconvex regime [Gorbunov et al., 2021], and even how to

viii) apply unbiased compressors to Hessian matrices to obtain communication-efficient second-
order methods [Islamov et al., 2021].

The situation with general biased compressors (i.e., those that do not arise from unbiased compressors
via scaling) is much more challenging. The key complication comes from the fact that their naive
use within first order methods, such as gradient descent, can lead to divergence. We refer the reader
to [Karimireddy et al., 2019, Counterexamples 1-3] and [Beznosikov et al., 2020, Example 1] for
illustrative examples. In the latter, the gradient descent “enhanced” with the Top-1 compressor leads
to exponential divergence when applied to the problem of minimizing the average of three strongly
convex quadratics in R3. However, divergence of gradient descent enhanced with biased compressors
such as Top-𝑘 was observed empirically much sooner, and a fix for this problem, known as error
feedback (EF), or error compensation (EC), was suggested by Seide et al. [2014]. This fix remained a
heuristic until very recently.

3

The first theoretical breakthroughs focused on the simpler single-node setting [Stich et al., 2018,
Alistarh et al., 2018]. The first analysis in the general distributed heterogeneous data3 setting was
performed by Beznosikov et al. [2020], and was confined to the strongly convex regime. While
without compression, one can expect a linear rate, the rate in [Beznosikov et al., 2020] is linear only
in the special case of an over-parameterized regime (i.e., the regime in which the loss functions on
all nodes share a common minimizer) with a requirement of full gradient computations on each
node. These deficiencies were later fixed by Gorbunov et al. [2020b], who developed the first
linearly convergent methods EC-GD-DIANA and EC-LSVRG-DIANA, and also analyzed the convex
case. Further, Qian et al. [2020a,b] showed that error-compensated methods can be accelerated in
the sense of Nesterov [Nesterov, 2004] and can be combined with variance reduction techniques.
However, these advances were achieved through the use of additional unbiased compressors or extra
communication of full vectors, and hence via an increase in communication in each round. In the
orthogonal line of works, Sun et al. [2020], Magnússon et al. [2019] designed special types of biased
quantization operators. However, these quantization schemes are unable to compress gradients below
𝒪 (𝑑)4, and the suggested methods require hyperparameters which cannot be efficiently estimated.

In particular, whether it is possible to obtain a linearly convergent error-
compensated method in the general heterogeneous data setting, relying on general
biased compressors only, is still an open problem.

The current state-of-the-art theoretical result for error-compensated methods in the smooth non-
convex regime are due to Koloskova et al. [2020, Theorem 4.1], who consider the more general
problem of decentralized optimization over a network. In the case when full (as opposed to stochastic)
gradients are computed on each node, they show that after 𝑇 communication rounds it is possible to
find a random vector �̂�𝑇 with the guarantee

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

= 𝒪
(︂
𝐺2/3

𝑇 2/3

)︂
, (4)

under the bounded gradient assumption which requires the existence of a constant 𝐺 > 0 such that

‖∇𝑓𝑖(𝑥)‖2 ≤ 𝐺2 (5)

holds for all 𝑥 ∈ R𝑑 and all 𝑖 ∈ {1,2, . . . ,𝑛}. This was a slight improvement in rate over an result
obtained by Lian et al. [2017], who instead use the bounded dissimilarity assumption

1

𝑛

𝑛∑︁
𝑖=1

‖∇𝑓𝑖(𝑥) −∇𝑓(𝑥)‖2 ≤ 𝐺2. (6)

A summary of the limitations of known results for EF-based methods is provided in Table 1.

In this work we argue that the bounded gradients (5) and bounded dissimilarity
(6) assumptions are too strong5, and that the sublinear rate (4) is not what one
should expect from a good analysis of a well designed error-compensated first-
order method. Instead, one could hope for the faster 𝒪(1/𝑇) rate, which is what
one obtains with methods using unbiased compressors [Gorbunov et al., 2021,
Theorem 2.1]. The resolution of these issues is an open problem.

3 Summary of contributions

In this work we address and resolve the aforementioned challenges. Our key contributions are:
3Problem (1) is in the heterogeneous data regime if no similarity among the functions (and hence among the

data stored across different nodes giving rise to these functions) is assumed.
4This is very limiting as in large scale learning, 𝑑 is enormous, and one usually needs to use dramatic

sparsification such as Top-1.
5The bounded gradient (5) and bounded dissimilarity (6) assumptions are too strong as they are rarely

satisfied. For example, neither hold even for simple quadratic functions. To see this, let 𝑓𝑖(𝑥) = 𝑥⊤A𝑖𝑥, where
A𝑖 ∈ R𝑑×𝑑. Since ∇𝑓𝑖(𝑥) = B𝑖𝑥, where B𝑖 = A𝑖 + A⊤

𝑖 , the bounded gradient assumption requires the
vectors sup𝑥 max𝑖 ‖B𝑖𝑥‖ to be bounded, which is not the case, unless all matrices B𝑖 are zero. The bounded
dissimilarity assumption (6), which can be written in the form 1

𝑛

∑︀𝑛
𝑖=1 ‖(B𝑖 − 1

𝑛

∑︀𝑛
𝑗=1 B𝑗)𝑥‖2 ≤ 𝐺2, also

does not hold, unless B𝑖 = B𝑗 for all 𝑖,𝑗, which reduces to the identical data regime, which is of limited interest.

4

Algorithm sCVX nCVX DIST key limitation
EF

Stich et al. [2018], Cordonnier [2018] 3 7 3
bounded gradients;

sublinear rate in sCVX case
EF-SGD

Stich and Karimireddy [2019] 3 3 7 single node only

EF
Ajalloeian and Stich [2020] 3 3 7 single node only

SignSGD
Karimireddy et al. [2019] 7 3 7

moment bound;
single node only

EC-SGD
Beznosikov et al. [2020] 3 7 3

linear rate only
if ∇𝑓𝑖(𝑥

⋆) = 0 ∀𝑖
EC-SGD

Gorbunov et al. [2020b] 3 7 3
linear rate only using

an extra unbiased compressor
DoubleSqueeze
Tang et al. [2020] 7 3 3

bounded compression error;
slow 𝒪(1/𝑇2/3) rate in nCVX case

Qsparse-SGD, CSER
Basu et al. [2019], Xie et al. [2020] 3 3 3

bounded gradients;
slow 𝒪(1/𝑇1/2) rate in nCVX case

EC-SGD
Koloskova et al. [2020] 7 3 3† bounded gradients;

slow 𝒪(1/𝑇2/3) rate in nCVX case

Table 1: Known results for first order methods using biased compressors. sCVX = supports strongly
convex functions, nCVX= supports nonconvex functions, DIST = works in the distributed regime.
†decentralized method

Assumptions Complexity Theorem
𝑓𝑖 is 𝐿𝑖-smooth

𝑓 is lower bounded by 𝑓 inf E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 2(𝑓(𝑥0)−𝑓 inf)

𝛾𝑇 +
E[𝐺0]
𝜃𝑇 2

𝑓𝑖 is 𝐿𝑖-smooth
𝑓 is lower bounded by 𝑓 inf

𝑓 satisfies PL condition
E
[︀
Ψ𝑇
]︀
≤ (1 − 𝛾𝜇)𝑇E

[︀
Ψ0
]︀

3

Table 2: Summary of complexity results obtained in this paper. Quantities: 𝜇 = PL constant; 𝛾 =
stepsize; 𝐺0 = see (14); Ψ𝑡 = Lyapunov function defined in Theorem 3.

A. New error feedback mechanism. We propose a new error feedback (resp. error com-
pensation) mechanism, which we call EF21 (resp. EC21) – see Algorithms 1 and 2. Unlike
most results on error compensation, EF21 naturally works in the distributed heterogeneous
data setting.

B. Standard assumptions and fast rates. Our theoretical analysis of EF21 relies on
standard assumptions only, which are:

i) 𝐿𝑖-smoothness of the individual functions 𝑓𝑖, and
ii) existence of a global lower bound 𝑓 inf ∈ R on 𝑓 .

We prove that under these assumptions, EF21 enjoys the desirable 𝒪(1/𝑇) convergence
rate, which improves upon the previous 𝒪(1/𝑇 2/3) state-of-the-art result of Koloskova et al.
[2020] both in terms of the rate, and in terms of the strength of the assumptions needed to
obtain this result. These complexity results are summarized in the first row of Table 2.

C. Linear rate for Polyak-Lojasiewicz functions. We show that under the additional
assumption that 𝑓 satisfies the Polyak-Lojasiewicz inequality, EF21 enjoys a linear conver-
gence rate. This improves upon the results of Beznosikov et al. [2020], who only obtain
a linear rate in the case when ∇𝑓𝑖(𝑥

⋆) = 0 for all 𝑖, where 𝑥⋆ = arg min 𝑓 , and provides
an alternative to the linear convergence results of Gorbunov et al. [2020b], who needed to
introduce additional unbiased compressors into their scheme, and hence additional com-
munication, in order to obtain their results. Our complexity results are summarized in the
second row of Table 2.

D. Empirical superiority. We show through extensive numerical experimentation on both
synthetic problems and deep learning benchmarks that EF21 consistently and substantially
outperforms EF in practice. One of the reasons behind this is the fact that our method
is able to admit much larger learning rates. Since EF has a large number of applications

5

where it reigns supreme, we believe that EF21 will have a large impact on the practice of
communication efficient distributed learning.
E. A more aggressive variant. We further propose a more aggressive variant, EF21+ (see
Section 4.6), which has an even better empirical behavior. We show that if 𝒞 is deterministic,
the same theorems capturing the convergence of EF21 hold for EF21+ as well.
F. Stochastic setting. We describe an extension to the stochastic setting, i.e., when each
node computes a stochastic gradient instead of the exact/full gradient, in Appendix H.

4 Main Results

Since we are about to re-engineer the classical error feedback technique, it will be useful to take a
step back and re-examine the issues inherent to the simplest first order method which uses biased
compressors but does not employ error feedback: distributed compressed gradient descent (DCGD).

Let 𝑥𝑡 be the 𝑡-th iterate, shared by all 𝑛 nodes. Each node 𝑖 first computes its local gradient ∇𝑓𝑖(𝑥
𝑡),

compresses it using some 𝒞 ∈ B(𝛼), and sends the compressed gradient 𝒞(∇𝑓𝑖(𝑥
𝑡)) to the master.

The master aggregates all 𝑛 messages via averaging, and performs the optimization step

𝑥𝑡+1 = 𝑥𝑡 − 𝛾

𝑛

𝑛∑︁
𝑖=1

𝒞(∇𝑓𝑖(𝑥
𝑡)). (7)

As mentioned before, this method can diverge, even in simple quadratic problems in low dimen-
sions [Beznosikov et al., 2020]. Let us look at this problem from a different angle. Assume, for the
sake of an intuitive argument, that the sequence of iterates actually converges to some 𝑥†. Since in
general there is no reason for the gradients ∇𝑓𝑖(𝑥

†) to be all zero, even if 𝑥† is the minimizer of 𝑓 ,
the application of 𝒞 to the gradients ∇𝑓𝑖(𝑥

𝑡) will introduce a nonzero distortion even if 𝑥𝑡 ≈ 𝑥†.
Indeed, in view of (3), all that can be guaranteed is that

E
[︁⃦⃦

𝒞(∇𝑓𝑖(𝑥
𝑡)) −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁ ≤ (1 − 𝛼)

⃦⃦
∇𝑓𝑖(𝑥

𝑡)
⃦⃦2

,

which can be large if the norm of ∇𝑓𝑖(𝑥
𝑡) is large. So, the method is intrinsically unstable around 𝑥†,

and hence can not converge to 𝑥†.

Our idea is to fix this issue by compressing different vectors instead of the gradients, vectors that
would hopefully converge to zeros instead. Since in view of (3) the application of 𝒞 to progressively
vanishing vectors introduces progressively vanishing distortion, the stabilization problem would be
solved. But what vectors should we compress? In order to answer this question, it will be useful to
consider a simpler and more abstract setting first, which we shall do next.

4.1 Markov compressors

Assume we are given a sequence of input vectors {𝑣𝑡}𝑡≥0 (e.g., gradients) generated by some
algorithm. This sequence does not necessarily converge to zero. Our goal is to produce a sequence
of “good” and “easy to communicate” (to some entity, which we shall call the “master”) estimates
of these vectors, making use of a compressor 𝒞 ∈ B(𝛼). Let us proceed through several steps of
discovery.

Naive idea. The first and naive approach, described above, is to simply output the sequence of
compressed inputs: {𝒞(𝑣𝑡)}𝑡≥0. However, while these estimates can be communicated efficiently,

they are not getting “better”. That is, the distortion E
[︁
‖𝒞(𝑣𝑡) − 𝑣𝑡‖2

]︁
is not necessarily improving.

Good but not implementable idea. What can we do better? Consider the following idea. If we
knew, hypothetically, the limit of this sequence, 𝑣*, we could output 𝑣* + 𝒞(𝑣𝑡 − 𝑣*) at iteration 𝑡
instead. Since 𝑣𝑡 → 𝑣*, the distortion between the input and the output at iteration 𝑡 is

E
[︁⃦⃦

𝑣* + 𝒞(𝑣𝑡 − 𝑣*) − 𝑣𝑡
⃦⃦2]︁

= E
[︁⃦⃦

𝒞(𝑣𝑡 − 𝑣*) − (𝑣𝑡 − 𝑣*)
⃦⃦2]︁ (3)

≤ (1 − 𝛼)
⃦⃦
𝑣𝑡 − 𝑣*

⃦⃦2 → 0.

So, the distortion issue is fixed! Moreover, if we assume the master knows 𝑣*, then the output vector
at each iteration can be communicated cheaply as well, since all we need to communicate is the

6

Algorithm 1 EF21 (Single node)

1: Input: starting point 𝑥0 ∈ R𝑑, learning rate 𝛾 > 0, 𝑔0 = 𝒞(∇𝑓(𝑥0))
2: for 𝑡 = 0,1, 2, . . . , 𝑇 − 1 do
3: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡

4: 𝑔𝑡+1 = 𝑔𝑡 + 𝒞(∇𝑓(𝑥𝑡+1) − 𝑔𝑡)
5: end for

compressed vector 𝒞(𝑣𝑡 − 𝑣*). It will be useful to think of this operation as a new compressor, called
𝒞𝑣* , one that takes 𝑣𝑡 as an input, and gives 𝑣* + 𝒞(𝑣𝑡 − 𝑣*) as its output. That is, we can define

𝒞𝑣*(𝑣)
def
= 𝑣* + 𝒞(𝑣 − 𝑣*). (8)

While the compressor 𝒞𝑣* satisfies all our requirements, it is not implementable, since the vector 𝑣*
is not known. We will now use this intuition to construct an implementable mechanism.

Good and implementable idea. In the above construction, we have used the fact that 𝑣𝑡 − 𝑣* → 0
to construct a good mechanism, but one that is not implementable. How can we fix this issue? The
rescue comes from the recursive observation that if we indeed succeed in constructing a compressor,
let’s call it ℳ, such that the distortion between ℳ(𝑣𝑡) and 𝑣𝑡 vanishes as 𝑡 → ∞, then it must be
the case that 𝑣𝑡 −ℳ(𝑣𝑡) → 0. So, we can compress this vanishing vector instead. This idea gives
rise to the following recursive definition of ℳ:

ℳ(𝑣0)
def
= 𝒞(𝑣0) (9)

ℳ(𝑣𝑡+1)
def
= ℳ(𝑣𝑡) + 𝒞(𝑣𝑡+1 −ℳ(𝑣𝑡)), 𝑡 ≥ 0 (10)

Note that (10) is similar to (8), with one key difference: we are using the previously compressed
vector ℳ(𝑣𝑡), which is known, instead of the limit vector 𝑣*, which is unknown. This property also
makes our new compressor non-stationary, i.e., it has a Markov property.

It is easy to establish (see Appendix B) that under some assumptions about the speed at which the
input sequence 𝑣𝑡 converges to 𝑣*, it will be the case that E

[︁
‖ℳ(𝑣𝑡) − 𝑣𝑡‖2

]︁
→ 0. For instance, if

the convergence rate of the input sequence is linear, then the distortion will converge to 0. While this
is interesting on its own, let us deploy our new tool, which we call Markov compressor, in the context
of gradient descent, and then in the context of distributed gradient descent.

4.2 Compressed gradient descent using the Markov compressor

For simplicity, consider solving problem (1) in the 𝑛 = 1 case, i.e., the problem

min
𝑥∈R𝑑

𝑓(𝑥), (11)

using the compressed gradient descent method featuring the Markov compressor. Start with 𝑥0 ∈ R𝑑,
stepsize 𝛾 > 0, and let

ℳ(∇𝑓(𝑥0)) = 𝒞(∇𝑓(𝑥0)).

After this, for 𝑡 ≥ 0 iterate:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾ℳ(∇𝑓(𝑥𝑡)) (12)

ℳ(∇𝑓(𝑥𝑡+1)) = ℳ(∇𝑓(𝑥𝑡)) + 𝒞(∇𝑓(𝑥𝑡+1) −ℳ(∇𝑓(𝑥𝑡))). (13)

Note that the situation here is more complicated than the abstract setting described earlier since
now there is interaction between the input sequence {∇𝑓(𝑥𝑡)}𝑡≥0 of gradients and the sequence
ℳ(∇𝑓(𝑥𝑡)) of compressed gradients via the Markov compressor. Indeed, the output of ℳ at
iteration 𝑡 influences the next iterate 𝑥𝑡+1 (via (12)), which in turn defines the next input vector
𝑣𝑡+1 = ∇𝑓(𝑥𝑡+1) in the sequence, and so on.

To lighten up the heavy notation in (12) and (13), it will be useful to write 𝑔𝑡 = ℳ(∇𝑓(𝑥𝑡)). Using
this new notation that hides the fact that 𝑔𝑡 is the application of the Markov compressor to the gradient,
the method described above is formalized as Algorithm 1. This is precisely our proposed new variant
of error feedback, EF21, specialized to the single node problem (11).

7

Algorithm 2 EF21 (Multiple nodes)

1: Input: starting point 𝑥0 ∈ R𝑑; 𝑔0𝑖 = 𝒞(∇𝑓𝑖(𝑥
0)) for 𝑖 = 1, . . . , 𝑛 (known by nodes and the

master); learning rate 𝛾 > 0; 𝑔0 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

0
𝑖 (known by master)

2: for 𝑡 = 0,1, 2, . . . , 𝑇 − 1 do
3: Master computes 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 and broadcasts 𝑥𝑡+1 to all nodes
4: for all nodes 𝑖 = 1, . . . , 𝑛 in parallel do
5: Compress 𝑐𝑡𝑖 = 𝒞(∇𝑓𝑖(𝑥

𝑡+1) − 𝑔𝑡𝑖) and send 𝑐𝑡𝑖 to the master
6: Update local state 𝑔𝑡+1

𝑖 = 𝑔𝑡𝑖 + 𝒞(∇𝑓𝑖(𝑥
𝑡+1) − 𝑔𝑡𝑖)

7: end for
8: Master computes 𝑔𝑡+1 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡+1
𝑖 via 𝑔𝑡+1 = 𝑔𝑡 + 1

𝑛

∑︀𝑛
𝑖=1 𝑐

𝑡
𝑖

9: end for

4.3 Distributed variant of EF21

The main method of this paper, which we now present as Algorithm 2, is an extension of Algorithm 1
to the general finite-sum problem (1). In particular, we apply the Markov compressor individually on
each node to the local gradients ∇𝑓𝑖(𝑥

𝑡), and communicate the compressed gradients to the master.
Recall that we only need to communicate the vectors 𝒞(∇𝑓𝑖(𝑥

𝑡+1) − 𝑔𝑡𝑖) since the additive terms
𝑔𝑡𝑖 appearing in the Markov compressor were communicated in the previous round. Master then
averages all gradient estimators, obtaining 𝑔𝑡+1 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡+1
𝑖 , which can be done by performing

the calculation 𝑔𝑡+1 = 𝑔𝑡 + 1
𝑛

∑︀𝑛
𝑖=1 𝑐

𝑡
𝑖, where 𝑔𝑡 is the average from the previous round which the

master maintains, and 𝑐𝑡𝑖 = 𝒞(∇𝑓𝑖(𝑥
𝑡+1) − 𝑔𝑡𝑖) are the compressed messages. After this, the master

takes a gradient-like step, and broadcasts the new model to all nodes.

4.4 Relationship between EF and EF21

While this is not at all apparent at first sight, it turns out that EF and EF21 are related. In particular,
under certain conditions on the compressor 𝒞, which are not met in practice, they are identical.

Theorem 1. Assume that 𝒞 is deterministic, positive homogeneous and additive. Then EF (Algo-
rithm 3; see appendix) and EF21 produce the same sequences of iterates {𝑥𝑡}𝑡≥0.

Note that while the Top-𝑘 compressor is deterministic and positively homogeneous, it is not additive.
Likewise, compressors arising via rescaling of unbiased compressors are randomized, and hence do
not satisfy the first condition. Still, the above theorem sheds some (at least to us) unexpected light on
the close connection between EF and our new variant, EF21. This connection is also what justifies
our naming decision: EF21 – error feedback mechanism from the year 2021.

4.5 Theory

We make the following assumption throughout:

Assumption 1 (Smoothness and lower boundedness). Every 𝑓𝑖 has 𝐿𝑖-Lipschitz gradient, i.e.,

‖∇𝑓𝑖(𝑥) −∇𝑓𝑖(𝑦)‖ ≤ 𝐿𝑖 ‖𝑥− 𝑦‖

for all 𝑥, 𝑦 ∈ R𝑑, and 𝑓 inf def
= inf𝑥∈R𝑑 𝑓(𝑥) > −∞.

If each 𝑓𝑖 has 𝐿𝑖-Lipschitz gradient, then it is straightforward to check by Jensen’s inequality that
𝑓 is 𝐿-Lipschitz, with 𝐿 satisfying the inequality 𝐿 ≤ 1

𝑛

∑︀
𝑖 𝐿𝑖. It will be also useful to definẽ︀𝐿 def

= (1
𝑛

∑︀𝑛
𝑖=1 𝐿

2
𝑖)1/2. By the arithmetic-quadratic mean inequality, we have 1

𝑛

∑︀
𝑖 𝐿𝑖 ≤ ̃︀𝐿. Let

𝐺𝑡 def
=

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2

, (14)

a quantity which will appear in both our theorems. In EF21 we use 𝒞 ∈ B(𝛼), where 0 < 𝛼 ≤ 1, and
define 𝜃 = 1 −

√
1 − 𝛼 and 𝛽 = 1−𝛼

1−
√
1−𝛼

. We now formulate our first complexity result.

8

Theorem 2. Let Assumption 1 hold, and let the stepsize in Algorithm 2 be set as

0 < 𝛾 ≤

(︃
𝐿 + ̃︀𝐿√︂𝛽

𝜃

)︃−1

. (15)

Fix 𝑇 ≥ 1 and let �̂�𝑇 be chosen from the iterates 𝑥0, 𝑥1, . . . , 𝑥𝑇−1 uniformly at random. Then

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 2

(︀
𝑓(𝑥0) − 𝑓 inf

)︀
𝛾𝑇

+
E
[︀
𝐺0
]︀

𝜃𝑇
. (16)

Note that
√︀

𝛽/𝜃 = (1+
√
1−𝛼)
𝛼 − 1 ≤ 2

𝛼 − 1 is decreasing in 𝛼. This makes sense since larger 𝛼
means less dramatic compression, which leads to smaller

√︀
𝛽/𝜃, and this through (15) allows for

larger stepsize, and hence fewer communication rounds. We now introduce the PL assumption, which
enables us to obtain a linear convergence result.

Assumption 2 (Polyak-Lojasiewicz). There exists 𝜇 > 0 such that 𝑓(𝑥) − 𝑓(𝑥⋆) ≤ 1
2𝜇 ‖∇𝑓(𝑥)‖2

for all 𝑥 ∈ R𝑑, where 𝑥⋆ = arg min𝑥∈R𝑑 𝑓(𝑥).

Theorem 3. Let Assumptions 1 and 2 hold, and let the stepsize in Algorithm 2 be set as

0 < 𝛾 ≤ min

⎧⎨⎩
(︃
𝐿 + ̃︀𝐿√︂2𝛽

𝜃

)︃−1

,
𝜃

2𝜇

⎫⎬⎭ . (17)

Let Ψ𝑡 def
= 𝑓(𝑥𝑡) − 𝑓(𝑥⋆) + 𝛾

𝜃𝐺
𝑡. Then for any 𝑇 ≥ 0, we have

E
[︀
Ψ𝑇
]︀
≤ (1 − 𝛾𝜇)𝑇E

[︀
Ψ0
]︀
. (18)

Our theorems hold for an arbitrary choice of the initial vectors {𝑔0𝑖 }, and not just for 𝑔0𝑖 = 𝒞(∇𝑓𝑖(𝑥
0)).

For instance, if 𝑔0𝑖 = ∇𝑓𝑖(𝑥
0) is used, then E

[︀
𝐺0
]︀

= 0, and the second term in (16) and the last
term in E

[︀
Ψ0
]︀

vanish.

4.6 EF21+: Use 𝒞 or the Markov compressor, whichever is better

We now briefly describe a new hybrid method, called EF21+, which often performs particularly
well in practice. Full description and the analysis of EF21+ are deferred to Section G. In every
communication round, EF21+ allows each node to compress using the “best” of 𝒞 and the Markov
compressor generated. So, EF21+ can be thought of as a hybrid between DCGD (see (7)) and EF21.
The decision about which compressor to use is made by each node 𝑖 individually, based on which of
the distortions ‖𝒞(𝑠) − 𝑠‖ and ‖ℳ(𝑠) − 𝑠‖ is smaller, where 𝑠 = ∇𝑓𝑖(𝑥

𝑡+1).

4.7 Dealing with stochastic gradients

In Section H (see Algorithm 5) we describe a natural extension of EF21 to the setting where full
gradient computations are replaced by stochastic gradient estimators, i.e., we use a random vector
𝑔𝑡𝑖 ≈ ∇𝑓𝑖(𝑥

𝑡). We also outline how convergence analysis is performed in this regime.

5 Experiments

We first consider solving a logistic regression problem with a non-convex regularizer,

𝑓(𝑥) =
1

𝑁

𝑁∑︁
𝑖=1

log
(︀
1 + exp

(︀
−𝑦𝑖𝑎

⊤
𝑖 𝑥
)︀)︀

+ 𝜆

𝑑∑︁
𝑗=1

𝑥2
𝑗

1 + 𝑥2
𝑗

, (19)

where 𝑎𝑖 ∈ R𝑑, 𝑦𝑖 ∈ {−1,1} are the training data, and 𝜆 > 0 is the regularizer parameter. We set
𝜆 = 0.1 in all experiments. At each set of experiments we use Top-𝑘 with 𝑘 = 1 [Alistarh et al.,
2017] as a canonical example of biased compressor 𝒞.

9

Dataset 𝑛 𝑁 (total # of datapoints) 𝑑 (# of features) 𝑁𝑖 (# of datapoints per client)

phishing 20 11,055 68 552
mushrooms 20 8,120 112 406
a9a 20 32,560 123 1,628
w8a 20 49,749 300 2,487

Table 3: Summary of the datasets and splitting of the data among clients.

Datasets. The datasets were taken from LibSVM [Chang and Lin, 2011], and were split into 𝑛 = 20
equal parts, each associated with one of 20 clients. The last part, of size 𝑁−20 · ⌊𝑁/20⌋, was assigned
to the last worker. That is, we consider the distributed regime with heterogeneous data. A summary
can be found in Table 3. The details on hardware and implementation can be found in Section A.

Experiment 1: Stepsize tolerance. In our first experiment (see Figure 1) we test the robust-
ness/tolerance of EF, EF21, and EF21+ to large stepsizes. Note that while for all stepsize choices, EF
gets stuck at a certain accuracy level, EF21 and EF21+ do not suffer from this issue, and are hence
able to work with larger or even much larger stepsizes.

0 20000 40000
#bits/n

10 6

10 4

10 2

100

||
f(x

t)|
|2

EF

EF; k = 1; 1×
EF; k = 1; 8×
EF; k = 1; 16×
EF; k = 1; 32×
EF; k = 1; 64×
EF; k = 1; 128×

0 20000 40000
#bits/n

10 6

10 4

10 2

100

||
f(x

t)|
|2

EF21

EF21; k = 1; 1×
EF21; k = 1; 8×
EF21; k = 1; 16×
EF21; k = 1; 32×
EF21; k = 1; 64×
EF21; k = 1; 128×

0 20000 40000
#bits/n

10 6

10 4

10 2

100

||
f(x

t)|
|2

EF21+

EF21+; k = 1; 1×
EF21+; k = 1; 32×
EF21+; k = 1; 256×
EF21+; k = 1; 512×
EF21+; k = 1; 1024×
EF21+; k = 1; 2048×

Figure 1: The performance of EF, EF21, and EF21+ with Top-1 compressor, and for increasing
stepsizes. Representative dataset used: a9a. By 1×, 2×, 4× (and so on) we indicate that the stepsize
was set to a multiple of the largest stepsize predicted by our theory.

Experiment 2: Fine-tuning 𝑘 and the stepsizes. We now showcase the superior communication
efficiency of EF21 and EF21+ over classical EF. In this set of experiments, we fine-tuned 𝑘 (for
Top-𝑘) and stepsizes individually for each method (details are given in Appendix A). For comparison,
we also included distributed gradient descent (GD), which can be seen as EF21 with 𝑘 = 𝑑 (no
compression), into the mix.

0 10000 20000
#bits/n

10 6

10 4

10 2

||
f(x

t)|
|2

phishing

EF21; k = 1; 16×
EF; k = 1; 16×
EF21+; k = 1; 256×
GD; 1×

0 100000 200000
#bits/n

10 6

10 4

10 2

100

||
f(x

t)|
|2

mushrooms

EF21; k = 2; 1024×
EF; k = 2; 64×
EF21+; k = 1; 4096×
GD; 4×

0 20000 40000
#bits/n

10 6

10 4

10 2

100

||
f(x

t)|
|2

a9a

EF21; k = 4; 64×
EF; k = 4; 64×
EF21+; k = 1; 2048×
GD; 2×

0 50000 100000
#bits/n

10 6

10 4

10 2

100

||
f(x

t)|
|2

w8a

EF21; k = 1; 64×
EF; k = 1; 32×
EF21+; k = 1; 2048×
GD; 4×

Figure 2: Comparison of EF21, EF21+ to EF with Top-𝑘 for individually fine-tuned 𝑘 and fine-tuned
stepsizes for all methods.

In Figure 2 we can see that in all cases, the proposed methods outperform EF in terms of the the
number of bits sent to the server per client (bits/𝑛), and rapidly converge to the desired accuracy,
whereas EF is stuck at some accuracy levels in all cases. Moreover, in all experiments, classical GD
shows the worst convergence rate. Note that EF21 tolerates larger, and EF21+ much larger, stepsizes
than EF.

Further experiments. Further experiments, including deep learning experiments, are presented in
Appendix A.

10

References
Ahmad Ajalloeian and Sebastian U Stich. Analysis of SGD with biased gradient estimators. arXiv

preprint arXiv:2008.00051, 2020.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Advances in Neural Information Process-
ing Systems (NIPS), pages 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric
Renggli. The convergence of sparsified gradient methods. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In Proceedings of the 35th International Conference on
Machine Learning (ICML), 2018.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-SGD: Distributed
SGD with quantization, sparsification, and local computations. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. arXiv preprint arXiv:2002.12410, 2020.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011.

Jean-Baptiste Cordonnier. Convex optimization using sparsified stochastic gradient descent with
memory. Master’s thesis, 2018.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of SGD: Variance reduction,
sampling, quantization and coordinate descent. In The 23rd International Conference on Artificial
Intelligence and Statistics (AISTATS), 2020a.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
error compensated SGD. In 34th Conference on Neural Information Processing Systems (NeurIPS),
2020b.

Eduard Gorbunov, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-
convex distributed learning with compression. arXiv preprint arXiv:2102.07845, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

Samuel Horváth, Chen-Yu Ho, L’udovít Horváth, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. arXiv preprint arXiv:1905.10988,
2019a.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik.
Stochastic distributed learning with gradient quantization and variance reduction. arXiv preprint
arXiv:1904.05115, 2019b.

Rustem Islamov, Xun Qian, and Peter Richtárik. Distributed second order methods with fast rates
and compressed communication. arXiv preprint arXiv:2102.07158, 2021.

Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. Foundations and
Trends in Machine Learning, 10(3-4):142–336, 2017.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes
SignSGD and other gradient compression schemes. In 36th International Conference on Machine
Learning (ICML), 2019.

11

Ahmed Khaled, Othmane Sebbouh, Nicolas Loizou, Robert M. Gower, and Peter Richtárik. Unified
analysis of stochastic gradient methods for composite convex and smooth optimization. arXiv
preprint arXiv:2006.11573, 2020.

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with
compressed gradients. arXiv preprint arXiv:1806.06573, 2018.

Anastasia Koloskova, Tao Lin, S. Stich, and Martin Jaggi. Decentralized deep learning with arbitrary
communication compression. In International Conference on Learning Representations (ICLR),
2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, Toronto, 2009.

Zhize Li and Peter Richtárik. A unified analysis of stochastic gradient methods for nonconvex
federated optimization. arXiv preprint arXiv:2006.07013, 2020.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient
descent in distributed and federated optimization. In International Conference on Machine Learning
(ICML), 2020.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal
probabilistic gradient estimator for nonconvex optimization. In International Conference on
Machine Learning (ICML), 2021. arXiv:2008.10898.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In Advances in Neural Information Processing Systems (NIPS), 2017.

Sindri Magnússon, Hossein Shokri-Ghadikolaei, and Na Li. On maintaining linear convergence of dis-
tributed learning and optimization under limited communication. arXiv preprint arXiv:1902.11163,
2019.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Konstantin Mishchenko, Filip Hanzely, and Peter Richtárik. 99% of worker-master communication
in distributed optimization is not needed. In Proceedings of the 36th Conference on Uncertainty in
Artificial Intelligence (UAI), volume 124, pages 979–988, 2020.

Yurii Nesterov. Introductory lectures on convex optimization: a basic course (Applied Optimization).
Kluwer Academic Publishers, 2004.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Constantin Philippenko and Aymeric Dieuleveut. Bidirectional compression in heterogeneous settings
for distributed or federated learning with partial participation: tight convergence guarantees. arXiv
preprint arXiv:2006.14591, 2020.

Xun Qian, Hanze Dong, Peter Richtárik, and Tong Zhang. Error compensated loopless SVRG for
distributed optimization. OPT2020: 12th Annual Workshop on Optimization for Machine Learning,
2020a.

Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed SGD can be accelerated.
arXiv preprint arXiv:2010.00091, 2020b.

Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication compres-
sion in distributed and federated learning and the search for an optimal compressor. Information
and Inference: A Journal of the IMA, 2021.

12

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

Sebastian Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for SGD
with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350, 2019.

Sebastian U. Stich, J.-B. Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In Advances
in Neural Information Processing Systems (NeurIPS), 2018.

Jun Sun, Tianyi Chen, Georgios B. Giannakis, and Zaiyue Yang, Qinmin amd Yang. Lazily aggregated
quantized gradient innovation for communication-efficient federated learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020.

Hanlin Tang, Xiangru Lian, Chen Yu, Tong Zhang, and Ji Liu. DoubleSqueeze: Parallel stochastic
gradient descent with double-pass error-compensated compression. In Proceedings of the 36th
International Conference on Machine Learning (ICML), 2020.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S
Rellermeyer. A survey on distributed machine learning. ACM Computing Surveys, 2019.

Cong Xie, Shuai Zheng, Oluwasanmi Koyejo, Indranil Gupta, Mu Li, and Haibin Lin. CSER:
Communication-efficient SGD with error reset. In Advances in Neural Information Processing
Systems (NeurIPS), pages 12593–12603, 2020.

Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos
Karatsenidis, Marco Canini, and Panos Kalnis. Compressed communication for distributed deep
learning: Survey and quantitative evaluation. Technical report, KAUST, 2020.

13

	Introduction
	Background and Motivation
	Two families of compression operators
	Error feedback: what it is good for, and what we still do not know

	Summary of contributions
	Main Results
	Markov compressors
	Compressed gradient descent using the Markov compressor
	Distributed variant of EF21
	Relationship between EF and EF21
	Theory
	EF21+: Use C or the Markov compressor, whichever is better
	Dealing with stochastic gradients

	Experiments
	Extra Experiments
	Experiments with nonconvex logistic regression
	Experiment 1: Stepsize tolerance (extension)
	Experiment 2: Fine-tuning k and the stepsizes (extension)

	Experiments with least squares
	 Experiment 1: Stepsize tolerance

	Deep learning experiments
	Tuned stepsizes
	Dependence on k

	Proofs for Section 4.1: Distortion of Markov Compressor
	Proofs for Section 4.4: Theorem 1
	The original error feedback method
	The proof of Theorem 1

	Four Lemmas Needed in the Proofs of Theorems 2 and 3
	Compression distortion bound
	Optimal choice of s in Lemma 2
	A descent lemma
	Stepsize selection

	Proof of Theorem 2
	Proof of Theorem 3
	EF21+: The Algorithm and its Analysis
	The EF21+ Algorithm
	Analysis of EF21+

	Dealing with Stochastic Gradients (Details for Section 4.7)
	Computation of (s*)(s*) for some Compressors
	From unbiased to biased compressors
	Top-k and a scaled version of Rand-k

