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ABSTRACT

The self-attention mechanism in Transformer models is widely adopted but re-
mains vulnerable to attention noise. Differential Transformer and its variant DEX
attempt to address this issue; however, the former requires training from scratch,
while the latter cannot directly mitigate noise during the attention computation
process. In this paper, we propose DAA (Differential Attention Adaption), a novel
method that can both reduce attention noise and be flexibly inserted during the
fine-tuning stage. Specifically, DAA introduces lightweight learnable modules in
the process of calculating attention scores, implementing the differential mecha-
nism to suppress noise. We find that DAA can offset attention noise while intro-
ducing few parameters (less than 1% of the total model parameters) and directly
act on the updates of the K and Q matrices, achieving effects similar to those of
a Differential Transformer model trained from scratch. We further compare our
approach with two methods that explore different positions of differentiation: one
modifies the input sequence to separately compute K, Q, or V, while the other reg-
ulates the output matrix (DEX). Experimental results show that DAA can better
effectively improve model performance with a small amount of fine-tuning data.

1 INTRODUCTION

The Transformer architecture has become the cornerstone of modern language models and a pivotal
technology in a wide array of artificial intelligence applications Vaswani et al. (2017); Dosovitskiy
et al. (2020); Radford et al. (undefined); Kirillov et al. (2023); Carion et al. (undefined).Although
Transformers are widely used, many studies have shown that this architecture has difficulties in
retrieving key information due to the presence of attention noise.This misallocation of focus can
degrade language model performance, particularly in tasks involving long sequences or complex
data Liu et al. (2023); Lu et al. (2021).

In response to this critical issue, researchers have proposed Differential Transformer Ye et al. (2025),
a novel architecture to reduce attention noise, inspired by differential amplifiers in electrical engi-
neering. It computes the difference between two parallel softmax attention maps to suppress noise
and amplify the signal from relevant tokens. While effective, the Differential Transformer necessi-
tates training a model from scratch, preventing its application to the existing pretrained language
models. To circumvent the need for complete retraining, some other methods are introduced Wu
et al. (2025); Kong et al. (2025). For example, OpAmp adaption shows excellent results in the fine-
tuning process, but complex processing of fine-tuned data is required in advance Wu et al. (2025).
The other method, DEX, aims to integrate the benefits of Differential Transformer into the normal
fine-tuning stage by applying a learnable differential operation to the output value matrix Kong et al.
(2025). However, it does not directly intervene in the attention score calculation, thus failing to
mitigate noise during the crucial attention computation phase.

Building on these insights, we introduce Differential Attention Adaption (DAA), a novel method
designed to overcome the limitations of both the Differential Transformer and DEX when applied to
conventional training datasets. Our approach inserts learnable modules directly into the self-attention
mechanism, implementing a differential operation during the calculation of attention scores. Specif-
ically, these modules act on the product of the Key (K) and Query (Q) matrices, allowing DAA
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Figure 1: Attention scores on ARC-E (Science Question Answering Generation task) for DAA (top)
and DEX (bottom). Darker red indicates stronger attention. Green boxes highlight that DAA demon-
strates more focused and accurate attention on core scientific associations (e.g., plants→plants sub-
ject continuity, sunlight→photosynthesis key scientific logic) compared to DEX.

Table 1: Comparison of differential attention architectures, where dmodel represents the dimension of
the model’s hidden states.

Architecture Reduce
Attention Noise

Introduced to Existing
Transformer Models

# Parameters of Each
Attention Layer (h heads)

DIFF Transformer ✓ X 7d2model

DEX X ✓ (4 + 1
h
)d2

model

DiffK (Ours) ✓ ✓ 5d2model

DiffQ (Ours) ✓ ✓ 5d2model

DiffV (Ours) X ✓ 5d2model

DAA (Ours) ✓ ✓ (4 + 1
h
)d2

model

to mitigate attention noise at its source. This direct intervention achieves an effect analogous to a
Differential Transformer but without the need for training the model from scratch. To validate our
approach, we compare DAA against two alternative differentiation strategies: one that alters the
input sequence to compute K, Q, or V separately, and another (DEX) that adjusts the final output
matrix. Our analysis reveals that, unlike these methods, which tend to focus excessively on either
local or global features, DAA integrates a differential mechanism throughout the entire attention
score computation process. This holistic approach enables DAA to effectively offset attention noise
with the significant advantage of being applicable to pre-trained models.

As highlighted in Table 1, DAA uniquely combines the key advantages of its predecessors. It effec-
tively reduces attention noise, similar to the original Differential Transformer, but crucially, it can
be applied to existing pre-trained models. Furthermore, it achieves this with the same parameter ef-
ficiency as DEX, introducing a minimal number of new parameters (less than 1% of the total model
parameters). As experimental results demonstrate, DAA enhances model performance with only a
small amount of fine-tuning data effectively, offering a practical and efficient solution for fine-tuning
pretrained Transformer models.

2 BACKGROUND

The attention noise in Transformer models has spurred the development of novel architectures aimed
at enhancing signal clarity during the self-attention process. In this section, we review two significant
preceding works : the Differential Transformer and its lightweight adaptation, DEX.
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2.1 DIFFERENTIAL TRANSFORMER

Inspired by differential amplifiers in electrical engineering, the Differential Transformer Ye et al.
(2025) introduces a novel attention mechanism, known as DIFF attention, to actively suppress atten-
tion noise and amplify relevant signals within the input sequence. This is achieved by computing the
difference between two parallel attention maps, which effectively cancels out common-mode noise.

The core of the Differential Transformer lies in its unique formulation of the attention mechanism.
Given an input sequence X ∈ RN×dmodel , it first generates two distinct sets of queries (Q1, Q2) and
keys (K1,K2) from separate learnable projection matrices, while sharing a single value matrix V .
The differential attention is then computed as follows:

[Q1;Q2] = XWQ, [K1;K2] = XWK , V = XWV ,

A1 = softmax
(
Q1K

T
1√

d

)
,

A2 = softmax
(
Q2K

T
2√

d

)
,

O′ = (A1 − λA2)V,

(1)

where WQ,WK ,WV ∈ Rdmodel×2d are learnable parameter matrices, Q1, Q2,K1,K2 ∈ RN×d and
V ∈ RN×2d denote projected matrices. A1, A2 are the softmax attention scores, λ is a learnable
scalar that balances the contribution of the two attention maps. O′ is the differential attention output.

The primary advantage of the Differential Transformer is its remarkable effectiveness in reduc-
ing attention noise, leading to sparser and more focused attention patterns. This noise cancellation
enhances the model’s ability to identify and prioritize key information, which has been shown to
improve performance on a variety of downstream tasks, including long-context modeling, mitigat-
ing hallucinations, and in-context learning. By design, it directly intervenes in the attention score
calculation to improve the signal-to-noise ratio.

However, despite its innovative approach, the Differential Transformer has a significant limitation: it
requires training a model from scratch. This necessity prevents its direct application to the vast num-
ber of powerful, pre-existing language models. This makes it hard for researchers and practitioners
to enhance existing language models.

2.2 DEX (DIFFERENTIAL EXTENSION)

To address the training-from-scratch limitation of the Differential Transformer, DEX (Differential
Extension) Kong et al. (2025) is proposed as a more lightweight and flexible alternative. DEX is
designed to integrate the principles of differential mechanisms into pre-trained models without re-
quiring complete retraining.

Instead of modifying the core attention score computation, DEX applies a differential adaptation
to the output of the attention heads. The standard attention scores A are first calculated. Then, a
differential update is applied:

Q = XWQ, K = XWK , V = XWV

A = softmax
(
QKT

√
d

)
O′ = AV (I − λ(t))WDEX,

(2)

where WDEX is a learnable matrix, initialized as an identity matrix, I is an identity matrix. λ(t)
is a time-dependent weighting factor. This approach allows for targeted updates (attention layer
parameters) while keeping most of the model parameters, including the feed-forward networks,
frozen during training.

The main strength of DEX lies in its high adaptability and efficiency. It can be integrated into existing
pre-trained models, avoiding the prohibitive costs associated with training a large model from the
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Figure 2: Comparison of DEX, DAA, and Differentiate K,Q, or V to Differential Attention archi-
tectures. DEX inserts a learnable matrix to regulate output during the attention output stage; DAA
inserts a learnable matrix to regulate Q−K connections during the attention score calculation stage;
the last three methods transform the input hidden states X when they are projected into Q,K, or V
matrices, to differentiate attention output.

ground up. By focusing the updates on a small subset of parameters within the self-attention module,
it provides a lightweight solution for fine-tuning.

However, since the differential operation is applied to the output value matrix after the attention
scores have been computed, DEX does not directly address the attention noise during the process of
score calculation. This is inconsistent with the Differential Transformer, which eliminates attention
noise directly during computation.

While both the Differential Transformer and DEX represent significant advancements in mitigating
attention noise, they possess notable limitations. The former requires complete model retraining,
and the latter only indirectly addresses noise in attention scores. This creates a clear need for a
method that is not only highly adaptable to pre-trained models but also directly optimizes attention
computations. Our proposed method is designed to fill this critical gap.

3 METHOD

Based on the analysis of Differential Transformer and DEX in the last Section, we discuss methods
for adjusting the attention mechanism during the fine-tuning phase to reduce attention noise in this
section. Specifically, our core idea is to introduce a lightweight, learnable module similar to DEX
and combine it with the existing self-attention mechanism to achieve an explicit differential attention
mechanism. Depending on the position where the module is inserted, we explore two approaches
to perform differential computation: (1) directly inserting it into the attention score calculation (our
proposal DAA), and (2) inserting it at the input sequence level, before projecting onto the query, key,
or value matrices. In the following subsections, we will detail the components of our framework and
their theoretical foundations.

3.1 WHY DIFFERENTIAL ADAPTION WORKS

Standard Transformer models (such as Llama) are highly correlated with differential Transformer
models in the absolute values of attention scores Kong et al. (2025), indicating that both Atten-
tions consistently identify important information. Differential Transformer enhances flexibility by
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introducing negative attention scores Lv et al. (2024), enabling better differentiation of noise infor-
mation. These factors allow the self-attention of pretrained models to transition appropriately to the
differential attention.

Both the Differential Transformer (equation 4) and DEX (equation 2) introduce λ to regulate the dif-
ferential magnitude. In the Differential Transformer, λ is reparameterized through several learnable
vectors rather than being learned as a single scalar, which helps improve its learning stability and
expressive power. In DEX, λ introduces an annealing mechanism. During the early stages of fine
tuning, λ gradually increases from an initialized zero value, guiding the model to adopt the differen-
tial mechanism; in the later stages of fine tuning, λ’s value is fully learned by the model, allowing it
to adaptively adjust the differential strength. In this paper, we adopt the λ mechanism from DEX to
regulate the differential mechanism, enabling the model to maximize the inheritance of pre-trained
knowledge while preliminarily introducing the differential mechanism to enhance performance.

3.2 DIFFERENTIAL ARCHITECTURES VIA Q−K INTERACTION (DAA)

Our proposed method, DAA (Differential Attention Adaption), directly regulates the attention score
calculation process to reduce attention noise. Instead of creating parallel attention mechanisms, DAA
introduces a learnable matrix into the query-key interaction. Specifically, for each attention head, we
introduce a small, learnable differential matrix WDAA ∈ Rdk×dk , which is initialized as an identity
matrix to preserve the pretrained knowledge at the beginning of fine-tuning.

The DAA mechanism computes two attention score matrices. The standard attention scores A1 are
also first calculated, A2 and then computed by applying the differential matrix WDAA to the dot
product of the query matrix Q with the key matrix K. The final attention distribution is the difference
between these two scores, modulated by a dynamic weight λ(t) like DEX Kong et al. (2025):

λ(t) = (1− α)

[
t

T
λinit

]
+ αλlearn, α = min

(
1,

t

T

)
(3)

where t is the current step in training, T is the annealing duration, λlearn is a learnable parameter
initialized around zero, and λinit is a constant.

The computation of attention output for a single head i is as follows:

A1 = softmax
(
QKT

√
d

)
,

A2 = softmax
(
QWDAAK

T

√
d

)
O′ = (A1 − λ(t)A2)V

(4)

This formulation allows the model to learn to subtract a noise pattern identified by the second at-
tention scores, directly improving the final attention distribution. Because WDAA has only dk × dk
parameters in each head, this adaptation is extremely lightweight.

3.3 DIFFERENTIAL ARCHITECTURES VIA INPUT DIFFERENTIATION

We also explore alternative methods, transforming the input hidden states X ∈ RN×dmodel when
they are projected into Q,K, or V matrices, to implement differential attention. These methods all
introduce a single learnable identity matrix WD ∈ Rdmodel×dmodel , ensuring a stable start to training
by beginning with a standard attention configuration. The core idea is to generate a differentiated
representation of the input and use the difference between the standard and differentiated pathways
to calculate the attention output.

Differential Adaption via Query. This architecture generates a different query matrix, Q2, from
the transformed input sequence X ′ = XWDQ

. The standard query, Q1, is computed from the orig-
inal input X . The attention is then calculated as the difference between two attention maps. The
subtraction of attention maps derived from a primary query (Q1) and a differentiated query (Q2)
acts as a differential mechanism:
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Q1 = XWQ, Q2 = X ′WQ = (XWDQ
)WQ

A1 = softmax
(
Q1K

T

√
dk

)
A2 = softmax

(
Q2K

T

√
dk

)
O′ = (A1 − λ(t)A2)V

(5)

Differential Adaption via Key. Analogously, we can calculate another key matrix, K2, generated
from the transformed input X ′. While the standard key, K1, is derived from X . This approach
evaluates the query against two different content representations (via K1 and K2):

K1 = XWK , K2 = X ′WK = (XWDK
)WK

A1 = softmax
(
QKT

1√
dk

)
A2 = softmax

(
QKT

2√
dk

)
O′ = (A1 − λ(t)A2)V

(6)

Differential Adaption via Value. This approach modifies the value stream directly. Instead of
subtracting attention distributions, it computes a modified value matrix V ′ by applying a dynami-
cally weighted differential transformation to the input sequence. This is distinct from DEX, as the
modification occurs before the final attention-weighted sum. The method effectively creates a pri-
mary value stream (V1) and a secondary stream (V2) that is subtracted from it. This can be viewed
as a learned, dynamic feature suppression mechanism that filters irrelevant information from the
retrieved content itself, rather than altering the attention scores.

WE = I − λ(t)WDE

V ′ = (XWE)WV = XWV − λ(t)XWDE
WV = V1 − λ(t)V2

A = softmax
(
QKT

√
dk

)
O′ = AV ′ = AV1 − λ(t)AV2

(7)

Here, WE serves as an effective transformation matrix that directly modulates the information car-
ried by the value vectors.

3.4 THEORETICAL ANALYSIS OF ADAPTATION STRATEGIES

Among the various differential fine-tuning adaptations, DAA is theoretically positioned as the most
effective due to its direct and holistic intervention in the attention score calculation process. The
principal source of attention noise is often the computation of inaccurate similarity scores within
the QKT dot product, which can arise from spurious correlations or ”common-mode” distractions
where irrelevant tokens receive undue attention Ye et al. (2025).

We can formally model the computed attention logits, Scomputed, as the sum of an ideal, noise-free
signal, Sideal, and a noise component, ξ:

Scomputed = Sideal + ξ =
QKT

√
dk

+ ξ (8)

The goal of a noise mitigation strategy is to suppress the influence of the noise matrix ξ before the
softmax function, which can otherwise amplify these erroneous signals and degrade model perfor-
mance Liu et al. (2023). The attention noise ξ is sampled from a multivariate normal distribution,
ξ ∼ N (0, σ2

pId). The symbol N denotes a multivariate normal distribution. The parameter, σ2
pId,
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is the covariance matrix. Here, σ2
p (sigma-p squared) is the variance, which measures the spread or

power of the noise. Id is the d-dimensional identity matrix.

DAA addresses this challenge directly. By generating a primary attention map from the noisy logits
and subtracting a secondary, corrective map, it performs an explicit noise cancellation operation.
The two attention distributions are:

A1 = softmax(Scomputed) and A2 = softmax
(
QWDAAK

T

√
dk

)
(9)

The core hypothesis is that the lightweight, learnable matrix WDAA enables the model to learn a
transformation that isolates the noise pattern. During fine-tuning, the model is incentivized to learn
a WDAA such that the secondary logits approximate the noise component itself:

A1 − λA2 ≈ softmax(Sideal) (10)

By subtracting the resulting attention map, O′ = (A1 − λA2)V , DAA directly counteracts the
noise within the attention distribution. This mechanism is a close parallel to the common-mode
signal rejection found in differential amplifiers, which is the original inspiration for the Differential
Transformer Ye et al. (2025).

In contrast, other architectures offer more indirect solutions. Input differentiation methods (DiffQ,
DiffK) alter one of the core components of the attention calculation. For example, DiffQ computes
its secondary attention map using a transformed query, Q′ = (XWDQ

)WQ. While this generates
a different attention map, it is less direct because the noise N arises from the interaction of the
original Q and K. The model must learn a global transformation WDQ

on the entire hidden state
in the hope that the resulting Q′ will produce an attention map suitable for subtraction, rather than
directly modeling the noisy interaction itself.

Similarly, post-hoc correction methods like DEX operate after the potentially noisy attention scores
have already been computed and applied. The DEX operation is applied to the final output:

O′ = (A1V )(I − λ(t)WDEX) (11)

Here, the attention map A1 = softmax(Scomputed) is already corrupted by N . DEX can only attempt
to filter the output by transforming the weighted value vectors; it cannot rectify the misallocated
attention weights within A1. DAA, by intervening at the critical stage of score calculation, provides
a more principled and direct mechanism for noise mitigation, which we expect to yield superior
performance.

4 EXPERIMENTS AND ANALYSIS

We first conduct comparative experiments on different differential adaptation methods using the
pre-trained language model GPT-2 (117M) Radford et al. (2019). Subsequently, we introduce the
DAA architecture into the Llama-3.2-1B, Llama-3.1-8B models Dubey et al. (2024); Meta (2024)
for fine-tuning to validate the generality of the DAA architecture. The comparative experiments
quantitatively validate the effectiveness of DAA in eliminating attention noise and improving model
performance.

4.1 DIFFERENTIAL ADAPTION FOR FOUNDATIONAL LANGUAGE MODELING

Experimental Settings. We introduce five differential attention architectures (DEX; DAA; differ-
entiate via key, query, value) into the pre-trained GPT-2 model to construct five new models. To
ensure that the fine-tuned models still keep basic capabilities, we select a subset of the OpenWeb-
Text dataset (OWT) Peterson et al. (2019) as the fine-tuning data source (this dataset is similar to
the GPT-2 pre-training data). Finally, we fine-tune the five new architecture models and the standard
attention mechanism (eager) GPT-2 model on the fine-tuning dataset.

Experimental Results and Analysis. During training, every model records the training loss every
100 steps, and the results are shown in the Figure 3.
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Table 2: Comparison of models before and after fine-tuning with different attention architectures. FT
represents the standard fine-tuning method. PPL stands for Perplexity, lower is better. ACC stands
for Accuracy, higher is better. Bold values indicate the best performance in that column. WKT2
represents the WikiText2 corpus, NR represents the needle retrieval.

Model OWT (PPL) OWT(new) (PPL) WKT2 (PPL) LAMBADA (PPL) LAMBADA (ACC) NR (ACC)
GPT-2 (117M)
Base 33.3 32.4 24.7 42.98 47.3 84.9
+ FT 29.0 28.1 25.6 43.1 48.1 85.3
+ DEX 28.9 28.2 25.2 42.95 48.2 87.4
+ DiffQ (Ours) 29.2 28.4 24.4 43.55 48.0 84.4
+ DiffK (Ours) 29.3 28.5 24.4 43.55 48.1 88.3
+ DiffV (Ours) 29.1 28.3 25.3 43.21 48.1 84.4
+ DAA (Ours) 28.9 28.1 24.7 42.25 48.9 89.5

Figure 3: Training loss of different attention architectures

According to the experimental results, the two architectures, differential adaption via key and query,
keep the low loss throughout the entire training process. The training loss of DAA is significantly
lower than DEX, while the training loss of the standard attention mechanism is the highest. Accord-
ing to Liu et al. (2020), training loss of the model in the general dataset does not fully reflect its
generalization performance. In order to test the general capabilities of the models, we also conduct
a performance analysis of these models, and the results are shown in the Table 2.

The evaluation results reveal the distinct advantages of the DAA architecture. While all fine-tuning
methods demonstrate improved perplexity on the OpenWebText dataset compared to the base GPT-2
model, their performance diverges on downstream tasks that are more sensitive to attention quality.
Most notably, DAA achieves the highest accuracy on both the LAMBADA Grave et al. (2016) and
Needlehaystack benchmarks. This strongly indicates its superior ability to mitigate attention noise
and focus on relevant tokens. While DiffQ and DiffK show competitive perplexity on WikiText2,
they do not match DAA’s gains in the more challenging retrieval and reasoning tasks. The perfor-
mance of DiffV, which is comparable to standard fine-tuning, suggests that altering the value stream
is less effective than directly intervening in the attention score computation. Collectively, these re-
sults validate our hypothesis that directly modulating the Q-K interaction, as DAA does, provides a
more effective and robust mechanism for improving model performance by reducing attention noise
during fine-tuning.

4.2 DIFFERENTIAL ADAPTION FOR MULTI-TASKS MODELING

Experimental Settings. We further apply the five differential attention architectures (DEX; DAA;
differentiate via key, query, value) to the Llama-3.2-1B, Llama-3.1-8B models. Since the models
all have undergone pre-training, we select a subset of the allenai/tulu-3-sft-olmo-2-mixture-0225
dataset as fine-tuning data. The allenai/tulu-3-sft-olmo-2-mixture-0225 dataset is a large-scale, mul-
tilingual text dataset released by Allen Institute for Artificial Intelligence (AllenAI), specifically
designed for supervised fine-tuning (SFT) of language models OLMo et al. (2024). This corpus con-
tains 552M tokens (Llama-3 tokenizer), significantly smaller than the dataset size used for models
pretraining.
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Table 3: Green indicates improvement over the baseline, while gray indicates a decrease.

Model Arc-E Arc-C BoolQ Hellaswag OBQA WIC Winogrande WSC AVG ∆

Llama-3.2-1B
Base 62.08 36.3 61.8 63.6 34.6 48.6 56.49 36.5 51.31 -

+ FT 65.08 33.56 57 64.13 30.8 50.1 56.2 39.42 49.54 -1.77
+ DEX 65.86 34.92 60.24 64.16 31.6 48.43 56.75 53.65 51.93 +0.62
+ DiffQ (Ours) 65.26 35.25 58.97 64.06 31.6 48.8 54.2 55.29 51.68 +0.37
+ DiffK (Ours) 66.31 35.59 62.51 64.11 29.4 48.8 49.3 55.72 50.1 +0.37
+ DiffV (Ours) 67.72 31.86 57.61 64.03 28.4 50.2 56.91 43.27 50.0 -1.31
+ DAA (Ours) 65.96 33.22 62.78 64.29 33.4 49.9 56.51 52.88 52.37 +1.06
Llama-3.1-8B
Base 78.9 52.6 74.9 78 42.1 51.9 73.1 58.6 63.76 -

+ FT 76.01 52.2 74.39 80.5 43.2 52.8 73.46 58.94 63.94 +0.18
+ DEX 77.2 52.66 78.4 78.6 42.3 52.5 73.9 59.1 64.33 +0.57
+ DiffQ (Ours) 78.6 51.39 73.21 79.3 43.8 52 70.62 56.54 63.18 -0.58
+ DiffK (Ours) 75.49 51.5 74.83 78.6 44.4 52.2 70.54 58.65 63.28 -0.48
+ DiffV (Ours) 76.72 50.51 78.52 78.5 44.4 52.1 71.8 53.51 63.26 -0.5
+ DAA (Ours) 76.9 52.71 79.04 77.4 42.8 53.3 74.25 59.62 64.50 +0.74

Experimental Results and Analysis. We report performances on 8 widely used language model-
ing benchmarksClark et al. (undefined); Wang et al. (undefined); Mihaylov et al. (undefined); Bisk
et al. (undefined); Sakaguchi et al. (undefined). The experimental results, summarized in Table 3,
unequivocally establish the superior performance of our proposed DAA architecture across different
model scales in the multi-task fine-tuning context. A crucial initial observation is the suboptimal
performance of standard fine-tuning (FT). For the Llama-3.2-1B model, standard FT leads to per-
formance degradation relative to the base model. While the larger Llama-3.1-8B model does not
degrade, it sees only a negligible gain. This highlights a key challenge: standard fine-tuning with
limited data can harm or fail to improve a model’s general capabilities, likely due to catastrophic
forgetting or overfitting Kirkpatrick et al. (2017).

In contrast, the various differential adaptation methods show divergent outcomes, revealing the im-
portance of where the differential mechanism is applied. The architectures that differentiate the input
sequence (DiffQ, DiffK, and DiffV) produce inconsistent and ultimately poor results. While DiffQ
and DiffK offer marginal gains on the 1B model, they are detrimental to the performance of the 8B
model, causing average scores to drop. The DiffV method is the least effective, resulting in a per-
formance decrease for both the 1B and 8B models. This strongly suggests that modifying the value
stream after attention scores are computed, or altering the input streams in isolation, is a less robust
strategy for noise mitigation.

The DAA and DEX methods, however, consistently improve upon the base models. While the exist-
ing lightweight method, DEX, provides a solid improvement and successfully counteracts the degra-
dation seen in standard FT, our proposed DAA method achieves the most substantial and consistent
performance gains across both model scales. By directly intervening at the core of the attention score
computation—the Q-K interaction—DAA is able to more effectively model and subtract attention
noise at its source (as shown in Figure 1). Unlike methods that apply localized changes or post-hoc
corrections, DAA’s holistic modulation of the query-key relationship proves to be a more principled
and impactful mechanism for enhancing model performance during fine-tuning.

5 CONCLUSION

In this work, we propose Differential Attention Adaption (DAA), a novel, parameter-efficient fine-
tuning method that directly mitigates attention noise by inserting a learnable module into the core
query-key computation of the self-attention mechanism. Unlike methods that require training from
scratch or apply corrections after the calculation of attention outputs, DAA intervenes at the source
of noise generation. Our experiments on several language models confirm that DAA significantly
outperforms standard fine-tuning and other adaptive differential techniques, successfully enhanc-
ing model performance on downstream tasks without causing catastrophic forgetting. DAA thus
presents a practical and effective solution for fine-tuning pre-trained Transformer models, offering a
principled approach to noise reduction that is both lightweight and highly impactful.
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6 REPRODUCIBILITY STATEMENT

We have taken the necessary steps to ensure the reproducibility of our results. Specifically, Section
4.1 discusses the general experiment settings in our paper. Appendix B provides the detailed steps
to collect and process the datasets used in downstream tasks. Appendix C includes the detailed
steps to construct the fictitious synthetic data used by our method. Finally, Appendix D and the
supplementary material list the implementation details of our method and all baselines, including
the codebase, training hyperparameters, evaluation details, etc.
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A USE OF LARGE LANGUAGE MODELS

During the preparation of this work, the authors used Large Language Models (LLMs) to assist with
editing and refining the language. The LLMs were primarily used for improving grammar, clarity,
and phrasing of the manuscript. All scientific contributions, including the core ideas, experimental
design, and analysis of results, were conceived and executed by the human authors.

B # PARAMETERS OF EACH ARCHITECTURE’S ATTENTION LAYER

In this section, we provide a detailed derivation of the number of parameters for each attention layer
in the architectures discussed in this paper and compared in Table 1. We use the following notation:

• dmodel: The dimension of the model’s hidden states.

• h: The number of attention heads.

• dk: The dimension of the key and query vectors for each head, where dk = dmodel/h.

• dv: The dimension of the value vectors for each head, where dv = dmodel/h.

For simplicity and consistency with the standard Transformer architecture, we assume dk = dv .

B.1 STANDARD TRANSFORMER ATTENTION

A standard multi-head attention layer consists of four main learnable weight matrices:

1. Query projection (WQ): Maps the input hidden states to the query space. Dimensions:
dmodel × dmodel.

2. Key projection (WK): Maps the input hidden states to the key space. Dimensions: dmodel×
dmodel.

3. Value projection (WV ): Maps the input hidden states to the value space. Dimensions:
dmodel × dmodel.

4. Output projection (WO): Maps the concatenated output of the attention heads back to the
hidden state dimension. Dimensions: dmodel × dmodel.

The total number of parameters is the sum of the parameters of these four matrices:

NStandard = d2model + d2model + d2model + d2model = 4d2model

B.2 DIFFERENTIAL (DIFF) TRANSFORMER

The Differential Transformer essentially creates two parallel attention streams and computes their
difference. This can be interpreted as having separate projection matrices for each stream, followed
by a single shared output projection.

1. Stream 1 Projections (WQ1
,WK1

,WV1
): Three matrices of size dmodel × dmodel. Total:

3d2model.

2. Stream 2 Projections (WQ2
,WK2

,WV2
): Three matrices of size dmodel × dmodel. Total:

3d2model.

3. Output projection (WO): A single matrix of size dmodel × dmodel to project the final com-
bined output. Total: d2model.

The total number of parameters is the sum of these components:

NDIFF = 3d2model + 3d2model + d2model = 7d2model
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B.3 DEX (DIFFERENTIAL EXTENSION)

DEX builds upon the standard attention architecture by adding a learnable matrix WDEX that operates
on the output value matrix V . Crucially, this operation is applied per head.

1. Standard Attention Parameters: The base WQ,WK ,WV ,WO matrices. Total: 4d2model.

2. DEX Matrix (WDEX): A separate learnable matrix W
(i)
DEX is introduced for each of the h

heads. Each matrix has dimensions dv × dv .

The total number of parameters for all WDEX matrices across all heads is:

NDEX extra = h× (dv × dv) = h×
(
dmodel

h
× dmodel

h

)
= h× d2model

h2
=

d2model

h

Therefore, the total parameter count for a DEX layer is:

NDEX = 4d2model +
d2model

h
=

(
4 +

1

h

)
d2model

B.4 DAA (DIFFERENTIAL ATTENTION ADAPTION)

Our proposed DAA method also builds on the standard architecture. It introduces a learnable matrix
WDAA directly into the query-key interaction for each attention head.

1. Standard Attention Parameters: The base WQ,WK ,WV ,WO matrices. Total: 4d2model.

2. DAA Matrix (WDAA): A learnable matrix W
(i)
DAA is inserted for each of the h heads. Since

it modulates the QiK
T
i product, its dimensions must be dk × dk.

Similar to DEX, the total number of additional parameters for all WDAA matrices is:

NDAA extra = h× (dk × dk) = h×
(
dmodel

h
× dmodel

h

)
=

d2model

h

The total parameter count for a DAA layer is therefore identical to DEX in terms of efficiency:

NDAA = 4d2model +
d2model

h
=

(
4 +

1

h

)
d2model

B.5 INPUT DIFFERENTIATION ARCHITECTURES (DIFFQ, DIFFK, DIFFV)

These methods introduce a single learnable matrix (WDQ
, WDK

, or WDV
) that transforms the input

hidden states X before the standard projections.

1. Standard Attention Parameters: The base WQ,WK ,WV ,WO matrices. Total: 4d2model.
2. Differential Input Matrix (WD): A single learnable matrix that operates on the full hidden

state X . Its dimensions are therefore dmodel × dmodel. Total: d2model.

The total parameter count for each of these architectures is the sum of the standard parameters and
the single new matrix:

NDiffQ/DiffK/DiffV = 4d2model + d2model = 5d2model

C IMPLEMENTATION OF DIFFERENTIAL ADAPTION

In this section, we provide the pseudocode for our proposed differential fine-tuning architectures.
These implementations illustrate how each method modifies the standard self-attention mechanism
in a lightweight manner. The variable X represents the input tensor of hidden states, W q, W k,
and W v are the standard projection matrices for query, key, and value, respectively. The parame-
ter lambda is the learnable, time-annealed scalar that controls the magnitude of the differential

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

component. All newly introduced matrices (W daa, W dq, etc.) are initialized as identity matrices
to preserve the model’s pre-trained knowledge at the start of fine-tuning.

We use a Python-like syntax for clarity. The operator @ denotes matrix multiplication, and tensor
shapes are provided in comments, where b is the batch size, n is the sequence length, and d is the
dimension of the head.

C.1 DAA (DIFFERENTIAL ATTENTION ADAPTION)

DAA directly intervenes in the attention score computation by introducing a learnable matrix W daa
into the query-key interaction. This allows the model to learn a transformation that creates a sec-
ondary, noise-focused attention map, which is then subtracted from the original. This is our primary
and most effective proposed method.

Listing 1: Pseudocode for Differential Attention Adaption (DAA).

def DAA(X, W_q, W_k, W_v, W_daa, lambda):
# Project inputs to query, key, and value
Q = X @ W_q
K = X @ W_k
V = X @ W_v

# Scaling factor
s = 1 / sqrt(d)

# Calculate the primary attention scores
A1 = softmax(Q @ K.transpose(-1, -2) * s)

# Calculate the secondary, differentiated attention scores
A2 = softmax(Q @ W_daa @ K.transpose(-1, -2) * s)

# Return the differentially weighted value
return (A1 - lambda * A2) @ V

C.2 ARCHITECTURES VIA INPUT DIFFERENTIATION

As an alternative to DAA, we explored three methods that apply the differential mechanism at the
input level. These approaches create a secondary, differentiated version of either the query, key, or
value stream by transforming the input hidden states X with a learnable matrix before the standard
projection.

Differential Adaption via Query (DiffQ). In this variant, we generate two distinct sets of queries.
The first, Q1, is standard, while the second, Q2, is derived from a transformed input. The final output
is based on the difference between the attention maps produced by these two queries.

Listing 2: Pseudocode for Differential Adaption via Query (DiffQ).

def DiffQ(X, W_q, W_k, W_v, W_dq, lambda):
# Standard K and V projections
K = X @ W_k
V = X @ W_v

# Generate primary and secondary queries
Q1 = X @ W_q
Q2 = (X @ W_dq) @ W_q
# Q1, Q2, K, V: [b, n, d]

# Scaling factor
s = 1 / sqrt(d)
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# Calculate attention scores for each query
A1 = softmax(Q1 @ K.transpose(-1, -2) * s)
A2 = softmax(Q2 @ K.transpose(-1, -2) * s)

# Return the differentially weighted value
return (A1 - lambda * A2) @ V

Differential Adaption via Key (DiffK). This approach is analogous to DiffQ, but the differentia-
tion is applied to the key stream. The model learns to compare the same query against two different
representations of the input content (keys K1 and K2).

Listing 3: Pseudocode for Differential Adaption via Key (DiffK).

def DiffK(X, W_q, W_k, W_v, W_dk, lambda):
# Standard Q and V projections
Q = X @ W_q
V = X @ W_v

# Generate primary and secondary keys
K1 = X @ W_k
K2 = (X @ W_dk) @ W_k
# Q, K1, K2, V: [b, n, d]

# Scaling factor
s = 1 / sqrt(d)

# Calculate attention scores for each key
A1 = softmax(Q @ K1.transpose(-1, -2) * s)
A2 = softmax(Q @ K2.transpose(-1, -2) * s)

# Return the differentially weighted value
return (A1 - lambda * A2) @ V

Differential Adaption via Value (DiffV). Unlike the other methods, DiffV applies the differential
mechanism directly to the value stream after the attention scores have been computed. It calculates
a single attention map A and uses it to weigh the difference between a primary value V1 and a
secondary value V2.

Listing 4: Pseudocode for Differential Adaption via Value (DiffV).

def DiffV(X, W_q, W_k, W_v, W_dv, lambda):
# Standard Q and K projections
Q = X @ W_q
K = X @ W_k

# Generate primary and secondary values
V1 = X @ W_v
V2 = (X @ W_dv) @ W_v
# Q, K, V1, V2: [b, n, d]

# Scaling factor
s = 1 / sqrt(d)

# Calculate a single attention score matrix
A = softmax(Q @ K.transpose(-1, -2) * s)

# Apply attention to the difference of the values
return A @ (V1 - lambda * V2)
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D IMPLEMENTATION DETAILS

All experiments were conducted using the Hugging Face transformers, datasets, and
safetensors Penedo et al. (2022) libraries, with PyTorch Paszke et al. (2019) as the backend
framework. Below we detail the specific configurations for each model family.

D.1 GPT-2 EXPERIMENTS

Model and Data. The experiments were based on the publicly available GPT-2 base model (117M
parameters). For fine-tuning, we used a subset of the OpenWebText corpus Peterson et al. (2019),
which is textually similar to the model’s original pre-training data, to ensure that the model retained
its fundamental language capabilities. The models were evaluated on perplexity using held-out por-
tions of OpenWebText (both seen and unseen during fine-tuning) and WikiText-2 Kwiatkowski et al.
(2019). We also evaluated task-specific performance using the LAMBADA dataset (accuracy) Grave
et al. (2016) and a Needle-in-a-Haystack retrieval task (accuracy).

Training Hyperparameters. For all GPT-2 based experiments, we fine-tuned only the parameters
within the attention modules (attn), freezing all other model weights. This amounted to training
approximately 28.3M parameters (standard attention), 28.9M parameters (DAA, DEX), 35.4M pa-
rameters (DiffQ, DiffK, DiffV). The shared training configuration was as follows:

• Optimizer: AdamW (adamw torch)

• Learning Rate: 3e-5

• LR Scheduler: Cosine decay with 500 warmup steps

• Epochs: 3

• Batch Size: An effective batch size of 32 is used

• Sequence Length: 512 tokens

• Precision: FP16 mixed-precision training was enabled to accelerate computation.

• Weight Decay: 0.01

Hardware. All GPT-2 fine-tuning experiments were conducted on a single server equipped with
one NVIDIA A800 80GB GPU.

D.2 LLAMA EXPERIMENTS

Model and Data. To validate the general applicability of our methods, we conducted further
experiments on more recent and larger models: Llama-3.2-1B and Llama-3.1-8B. For supervised
fine-tuning (SFT), we utilized a subset of the allenai/tulu-v2-sft-mixture dataset Ivi-
son et al. (2023), which is a collection of high-quality instruction-following data. Model perfor-
mance was evaluated on a suite of common sense reasoning benchmarks, including ARC-Easy,
ARC-Challenge, BoolQ, Hellaswag, OpenBookQA, WIC, Winogrande, and WSC Levesque et al.
(2012); Zellers et al. (2019).

Training Hyperparameters. For the Llama models, we adopted a parameter-efficient fine-tuning
strategy where only the weights of the self-attention modules (self attn) and the language model
head (lm head) were updated. All other parameters, including embeddings and feed-forward lay-
ers, remained frozen. The key training parameters are listed below:

• Optimizer: AdamW (adamw torch)

• Learning Rate: 1e-4

• LR Scheduler: Cosine decay with 500 warmup steps

• Epochs: 3

• Batch Size: An effective batch size of 32 is used

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Precision: BFloat16 (BF16) mixed-precision training was used, as it is natively supported
by the hardware.

• Gradient Clipping: Max gradient norm was set to 1.0.
• Gradient Checkpointing: Enabled to reduce memory consumption.

The tokenizer’s padding token was set to its end-of-sequence (EOS) token, and a custom data collator
was used to correctly handle the masking of labels for instruction-formatted data.

Hardware. The all Llama experiments were conducted on a server with NVIDIA A800 80GB
GPUs.

D.3 ABALATION ON λINIT

Table 4 shows DAA performance on the language modeling benchmarks (average over 8 tasks from
the table 2, using Llama-3.2-1B) when varying the λinit strategy. The results indicate relative ro-
bustness to different fixed scalar initializations (0.2-0.8).

Table 4: Ablation on λinit.

λinit 0.8 0.5 0.2

LM Acc (%) 53.3 53.25 53.37
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