
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REVISITING DIFFERENTIAL ATTENTION: A FINE-
TUNING PERSPECTIVE ON PRACTICAL NOISE MITI-
GATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The self-attention mechanism in Transformer models is widely adopted but re-
mains vulnerable to attention noise. Differential Transformer and its variant DEX
attempt to address this issue; however, the former requires training from scratch,
while the latter cannot directly mitigate noise during the attention computation
process. In this paper, we propose DAA (Differential Attention Adaption), a novel
method that can both reduce attention noise and be flexibly inserted during the
fine-tuning stage. Specifically, DAA introduces lightweight learnable modules in
the process of calculating attention scores, implementing the differential mecha-
nism to suppress noise. We find that DAA can offset attention noise while intro-
ducing few parameters (less than 1% of the total model parameters) and directly
act on the updates of the K and Q matrices, achieving effects similar to those of
a Differential Transformer model trained from scratch. We further compare our
approach with two methods that explore different positions of differentiation: one
modifies the input sequence to separately compute K, Q, or V, while the other reg-
ulates the output matrix (DEX). Experimental results show that DAA can better
effectively improve model performance with a small amount of fine-tuning data.

1 INTRODUCTION

The Transformer architecture has become the cornerstone of modern language models and a pivotal
technology in a wide array of artificial intelligence applications Vaswani et al. (2017); Dosovitskiy
et al. (2020); Radford et al. (undefined); Kirillov et al. (2023); Carion et al. (undefined).Although
Transformers are widely used, many studies have shown that this architecture has difficulties in
retrieving key information due to the presence of attention noise.This misallocation of focus can
degrade language model performance, particularly in tasks involving long sequences or complex
data Liu et al. (2023); Lu et al. (2021).

In response to this critical issue, researchers have proposed Differential Transformer Ye et al. (2025),
a novel architecture to reduce attention noise, inspired by differential amplifiers in electrical engi-
neering. It computes the difference between two parallel softmax attention maps to suppress noise
and amplify the signal from relevant tokens. While effective, the Differential Transformer necessi-
tates training a model from scratch, preventing its application to the existing pretrained language
models. To circumvent the need for complete retraining, some other methods are introduced Wu
et al. (2025); Kong et al. (2025). For example, OpAmp adaption shows excellent results in the fine-
tuning process, but complex processing of fine-tuned data is required in advance Wu et al. (2025).
The other method, DEX, aims to integrate the benefits of Differential Transformer into the normal
fine-tuning stage by applying a learnable differential operation to the output value matrix Kong et al.
(2025). However, it does not directly intervene in the attention score calculation, thus failing to
mitigate noise during the crucial attention computation phase.

Building on these insights, we introduce Differential Attention Adaption (DAA), a novel method
designed to overcome the limitations of both the Differential Transformer and DEX when applied to
conventional training datasets. Our approach inserts learnable modules directly into the self-attention
mechanism, implementing a differential operation during the calculation of attention scores. Specif-
ically, these modules act on the product of the Key (K) and Query (Q) matrices, allowing DAA

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Attention scores on ARC-E (Science Question Answering Generation task) for DAA (top)
and DEX (bottom). Darker red indicates stronger attention. Green boxes highlight that DAA demon-
strates more focused and accurate attention on core scientific associations (e.g., plants→plants sub-
ject continuity, sunlight→photosynthesis key scientific logic) compared to DEX.

Table 1: Comparison of differential attention architectures, where dmodel represents the dimension of
the model’s hidden states.

Architecture Reduce
Attention Noise

Introduced to Existing
Transformer Models

Parameters of Each
Attention Layer (h heads)

DIFF Transformer ✓ X 7d2model

DEX X ✓ (4 + 1
h
)d2

model

DiffK (Ours) ✓ ✓ 5d2model

DiffQ (Ours) ✓ ✓ 5d2model

DiffV (Ours) X ✓ 5d2model

DAA (Ours) ✓ ✓ (4 + 1
h
)d2

model

to mitigate attention noise at its source. This direct intervention achieves an effect analogous to a
Differential Transformer but without the need for training the model from scratch. To validate our
approach, we compare DAA against two alternative differentiation strategies: one that alters the
input sequence to compute K, Q, or V separately, and another (DEX) that adjusts the final output
matrix. Our analysis reveals that, unlike these methods, which tend to focus excessively on either
local or global features, DAA integrates a differential mechanism throughout the entire attention
score computation process. This holistic approach enables DAA to effectively offset attention noise
with the significant advantage of being applicable to pre-trained models.

As highlighted in Table 1, DAA uniquely combines the key advantages of its predecessors. It effec-
tively reduces attention noise, similar to the original Differential Transformer, but crucially, it can
be applied to existing pre-trained models. Furthermore, it achieves this with the same parameter ef-
ficiency as DEX, introducing a minimal number of new parameters (less than 1% of the total model
parameters). As experimental results demonstrate, DAA enhances model performance with only a
small amount of fine-tuning data effectively, offering a practical and efficient solution for fine-tuning
pretrained Transformer models.

2 BACKGROUND

The attention noise in Transformer models has spurred the development of novel architectures aimed
at enhancing signal clarity during the self-attention process. In this section, we review two significant
preceding works : the Differential Transformer and its lightweight adaptation, DEX.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 DIFFERENTIAL TRANSFORMER

Inspired by differential amplifiers in electrical engineering, the Differential Transformer Ye et al.
(2025) introduces a novel attention mechanism, known as DIFF attention, to actively suppress atten-
tion noise and amplify relevant signals within the input sequence. This is achieved by computing the
difference between two parallel attention maps, which effectively cancels out common-mode noise.

The core of the Differential Transformer lies in its unique formulation of the attention mechanism.
Given an input sequence X ∈ RN×dmodel , it first generates two distinct sets of queries (Q1, Q2) and
keys (K1,K2) from separate learnable projection matrices, while sharing a single value matrix V .
The differential attention is then computed as follows:

[Q1;Q2] = XWQ, [K1;K2] = XWK , V = XWV ,

A1 = softmax
(
Q1K

T
1√

d

)
,

A2 = softmax
(
Q2K

T
2√

d

)
,

O′ = (A1 − λA2)V,

(1)

where WQ,WK ,WV ∈ Rdmodel×2d are learnable parameter matrices, Q1, Q2,K1,K2 ∈ RN×d and
V ∈ RN×2d denote projected matrices. A1, A2 are the softmax attention scores, λ is a learnable
scalar that balances the contribution of the two attention maps. O′ is the differential attention output.

The primary advantage of the Differential Transformer is its remarkable effectiveness in reduc-
ing attention noise, leading to sparser and more focused attention patterns. This noise cancellation
enhances the model’s ability to identify and prioritize key information, which has been shown to
improve performance on a variety of downstream tasks, including long-context modeling, mitigat-
ing hallucinations, and in-context learning. By design, it directly intervenes in the attention score
calculation to improve the signal-to-noise ratio.

However, despite its innovative approach, the Differential Transformer has a significant limitation: it
requires training a model from scratch. This necessity prevents its direct application to the vast num-
ber of powerful, pre-existing language models. This makes it hard for researchers and practitioners
to enhance existing language models.

2.2 DEX (DIFFERENTIAL EXTENSION)

To address the training-from-scratch limitation of the Differential Transformer, DEX (Differential
Extension) Kong et al. (2025) is proposed as a more lightweight and flexible alternative. DEX is
designed to integrate the principles of differential mechanisms into pre-trained models without re-
quiring complete retraining.

Instead of modifying the core attention score computation, DEX applies a differential adaptation
to the output of the attention heads. The standard attention scores A are first calculated. Then, a
differential update is applied:

Q = XWQ, K = XWK , V = XWV

A = softmax
(
QKT

√
d

)
O′ = AV (I − λ(t))WDEX,

(2)

where WDEX is a learnable matrix, initialized as an identity matrix, I is an identity matrix. λ(t)
is a time-dependent weighting factor. This approach allows for targeted updates (attention layer
parameters) while keeping most of the model parameters, including the feed-forward networks,
frozen during training.

The main strength of DEX lies in its high adaptability and efficiency. It can be integrated into existing
pre-trained models, avoiding the prohibitive costs associated with training a large model from the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Comparison of DEX, DAA, and Differentiate K,Q, or V to Differential Attention archi-
tectures. DEX inserts a learnable matrix to regulate output during the attention output stage; DAA
inserts a learnable matrix to regulate Q−K connections during the attention score calculation stage;
the last three methods transform the input hidden states X when they are projected into Q,K, or V
matrices, to differentiate attention output.

ground up. By focusing the updates on a small subset of parameters within the self-attention module,
it provides a lightweight solution for fine-tuning.

However, since the differential operation is applied to the output value matrix after the attention
scores have been computed, DEX does not directly address the attention noise during the process of
score calculation. This is inconsistent with the Differential Transformer, which eliminates attention
noise directly during computation.

While both the Differential Transformer and DEX represent significant advancements in mitigating
attention noise, they possess notable limitations. The former requires complete model retraining,
and the latter only indirectly addresses noise in attention scores. This creates a clear need for a
method that is not only highly adaptable to pre-trained models but also directly optimizes attention
computations. Our proposed method is designed to fill this critical gap.

3 METHOD

Based on the analysis of Differential Transformer and DEX in the last Section, we discuss methods
for adjusting the attention mechanism during the fine-tuning phase to reduce attention noise in this
section. Specifically, our core idea is to introduce a lightweight, learnable module similar to DEX
and combine it with the existing self-attention mechanism to achieve an explicit differential attention
mechanism. Depending on the position where the module is inserted, we explore two approaches
to perform differential computation: (1) directly inserting it into the attention score calculation (our
proposal DAA), and (2) inserting it at the input sequence level, before projecting onto the query, key,
or value matrices. In the following subsections, we will detail the components of our framework and
their theoretical foundations.

3.1 WHY DIFFERENTIAL ADAPTION WORKS

Standard Transformer models (such as Llama) are highly correlated with differential Transformer
models in the absolute values of attention scores Kong et al. (2025), indicating that both Atten-
tions consistently identify important information. Differential Transformer enhances flexibility by

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

introducing negative attention scores Lv et al. (2024), enabling better differentiation of noise infor-
mation. These factors allow the self-attention of pretrained models to transition appropriately to the
differential attention.

Both the Differential Transformer (equation 4) and DEX (equation 2) introduce λ to regulate the dif-
ferential magnitude. In the Differential Transformer, λ is reparameterized through several learnable
vectors rather than being learned as a single scalar, which helps improve its learning stability and
expressive power. In DEX, λ introduces an annealing mechanism. During the early stages of fine
tuning, λ gradually increases from an initialized zero value, guiding the model to adopt the differen-
tial mechanism; in the later stages of fine tuning, λ’s value is fully learned by the model, allowing it
to adaptively adjust the differential strength. In this paper, we adopt the λ mechanism from DEX to
regulate the differential mechanism, enabling the model to maximize the inheritance of pre-trained
knowledge while preliminarily introducing the differential mechanism to enhance performance.

3.2 DIFFERENTIAL ARCHITECTURES VIA Q−K INTERACTION (DAA)

Our proposed method, DAA (Differential Attention Adaption), directly regulates the attention score
calculation process to reduce attention noise. Instead of creating parallel attention mechanisms, DAA
introduces a learnable matrix into the query-key interaction. Specifically, for each attention head, we
introduce a small, learnable differential matrix WDAA ∈ Rdk×dk , which is initialized as an identity
matrix to preserve the pretrained knowledge at the beginning of fine-tuning.

The DAA mechanism computes two attention score matrices. The standard attention scores A1 are
also first calculated, A2 and then computed by applying the differential matrix WDAA to the dot
product of the query matrix Q with the key matrix K. The final attention distribution is the difference
between these two scores, modulated by a dynamic weight λ(t) like DEX Kong et al. (2025):

λ(t) = (1− α)

[
t

T
λinit

]
+ αλlearn, α = min

(
1,

t

T

)
(3)

where t is the current step in training, T is the annealing duration, λlearn is a learnable parameter
initialized around zero, and λinit is a constant.

The computation of attention output for a single head i is as follows:

A1 = softmax
(
QKT

√
d

)
,

A2 = softmax
(
QWDAAK

T

√
d

)
O′ = (A1 − λ(t)A2)V

(4)

This formulation allows the model to learn to subtract a noise pattern identified by the second at-
tention scores, directly improving the final attention distribution. Because WDAA has only dk × dk
parameters in each head, this adaptation is extremely lightweight.

3.3 DIFFERENTIAL ARCHITECTURES VIA INPUT DIFFERENTIATION

We also explore alternative methods, transforming the input hidden states X ∈ RN×dmodel when
they are projected into Q,K, or V matrices, to implement differential attention. These methods all
introduce a single learnable identity matrix WD ∈ Rdmodel×dmodel , ensuring a stable start to training
by beginning with a standard attention configuration. The core idea is to generate a differentiated
representation of the input and use the difference between the standard and differentiated pathways
to calculate the attention output.

Differential Adaption via Query. This architecture generates a different query matrix, Q2, from
the transformed input sequence X ′ = XWDQ

. The standard query, Q1, is computed from the orig-
inal input X . The attention is then calculated as the difference between two attention maps. The
subtraction of attention maps derived from a primary query (Q1) and a differentiated query (Q2)
acts as a differential mechanism:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Q1 = XWQ, Q2 = X ′WQ = (XWDQ
)WQ

A1 = softmax
(
Q1K

T

√
dk

)
A2 = softmax

(
Q2K

T

√
dk

)
O′ = (A1 − λ(t)A2)V

(5)

Differential Adaption via Key. Analogously, we can calculate another key matrix, K2, generated
from the transformed input X ′. While the standard key, K1, is derived from X . This approach
evaluates the query against two different content representations (via K1 and K2):

K1 = XWK , K2 = X ′WK = (XWDK
)WK

A1 = softmax
(
QKT

1√
dk

)
A2 = softmax

(
QKT

2√
dk

)
O′ = (A1 − λ(t)A2)V

(6)

Differential Adaption via Value. This approach modifies the value stream directly. Instead of
subtracting attention distributions, it computes a modified value matrix V ′ by applying a dynami-
cally weighted differential transformation to the input sequence. This is distinct from DEX, as the
modification occurs before the final attention-weighted sum. The method effectively creates a pri-
mary value stream (V1) and a secondary stream (V2) that is subtracted from it. This can be viewed
as a learned, dynamic feature suppression mechanism that filters irrelevant information from the
retrieved content itself, rather than altering the attention scores.

WE = I − λ(t)WDE

V ′ = (XWE)WV = XWV − λ(t)XWDE
WV = V1 − λ(t)V2

A = softmax
(
QKT

√
dk

)
O′ = AV ′ = AV1 − λ(t)AV2

(7)

Here, WE serves as an effective transformation matrix that directly modulates the information car-
ried by the value vectors.

3.4 THEORETICAL ANALYSIS OF ADAPTATION STRATEGIES

Among the various differential fine-tuning adaptations, DAA is theoretically positioned as the most
effective due to its direct and holistic intervention in the attention score calculation process. The
principal source of attention noise is often the computation of inaccurate similarity scores within
the QKT dot product, which can arise from spurious correlations or ”common-mode” distractions
where irrelevant tokens receive undue attention Ye et al. (2025).

We can formally model the computed attention logits, Scomputed, as the sum of an ideal, noise-free
signal, Sideal, and a noise component, ξ:

Scomputed = Sideal + ξ =
QKT

√
dk

+ ξ (8)

The goal of a noise mitigation strategy is to suppress the influence of the noise matrix ξ before the
softmax function, which can otherwise amplify these erroneous signals and degrade model perfor-
mance Liu et al. (2023). The attention noise ξ is sampled from a multivariate normal distribution,
ξ ∼ N (0, σ2

pId). The symbol N denotes a multivariate normal distribution. The parameter, σ2
pId,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

is the covariance matrix. Here, σ2
p (sigma-p squared) is the variance, which measures the spread or

power of the noise. Id is the d-dimensional identity matrix.

DAA addresses this challenge directly. By generating a primary attention map from the noisy logits
and subtracting a secondary, corrective map, it performs an explicit noise cancellation operation.
The two attention distributions are:

A1 = softmax(Scomputed) and A2 = softmax
(
QWDAAK

T

√
dk

)
(9)

The core hypothesis is that the lightweight, learnable matrix WDAA enables the model to learn a
transformation that isolates the noise pattern. During fine-tuning, the model is incentivized to learn
a WDAA such that the secondary logits approximate the noise component itself:

A1 − λA2 ≈ softmax(Sideal) (10)

By subtracting the resulting attention map, O′ = (A1 − λA2)V , DAA directly counteracts the
noise within the attention distribution. This mechanism is a close parallel to the common-mode
signal rejection found in differential amplifiers, which is the original inspiration for the Differential
Transformer Ye et al. (2025).

In contrast, other architectures offer more indirect solutions. Input differentiation methods (DiffQ,
DiffK) alter one of the core components of the attention calculation. For example, DiffQ computes
its secondary attention map using a transformed query, Q′ = (XWDQ

)WQ. While this generates
a different attention map, it is less direct because the noise N arises from the interaction of the
original Q and K. The model must learn a global transformation WDQ

on the entire hidden state
in the hope that the resulting Q′ will produce an attention map suitable for subtraction, rather than
directly modeling the noisy interaction itself.

Similarly, post-hoc correction methods like DEX operate after the potentially noisy attention scores
have already been computed and applied. The DEX operation is applied to the final output:

O′ = (A1V)(I − λ(t)WDEX) (11)

Here, the attention map A1 = softmax(Scomputed) is already corrupted by N . DEX can only attempt
to filter the output by transforming the weighted value vectors; it cannot rectify the misallocated
attention weights within A1. DAA, by intervening at the critical stage of score calculation, provides
a more principled and direct mechanism for noise mitigation, which we expect to yield superior
performance.

4 EXPERIMENTS AND ANALYSIS

We first conduct comparative experiments on different differential adaptation methods using the
pre-trained language model GPT-2 (117M) Radford et al. (2019). Subsequently, we introduce the
DAA architecture into the Llama-3.2-1B, Llama-3.1-8B models Dubey et al. (2024); Meta (2024)
for fine-tuning to validate the generality of the DAA architecture. The comparative experiments
quantitatively validate the effectiveness of DAA in eliminating attention noise and improving model
performance.

4.1 DIFFERENTIAL ADAPTION FOR FOUNDATIONAL LANGUAGE MODELING

Experimental Settings. We introduce five differential attention architectures (DEX; DAA; differ-
entiate via key, query, value) into the pre-trained GPT-2 model to construct five new models. To
ensure that the fine-tuned models still keep basic capabilities, we select a subset of the OpenWeb-
Text dataset (OWT) Peterson et al. (2019) as the fine-tuning data source (this dataset is similar to
the GPT-2 pre-training data). Finally, we fine-tune the five new architecture models and the standard
attention mechanism (eager) GPT-2 model on the fine-tuning dataset.

Experimental Results and Analysis. During training, every model records the training loss every
100 steps, and the results are shown in the Figure 3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of models before and after fine-tuning with different attention architectures. FT
represents the standard fine-tuning method. PPL stands for Perplexity, lower is better. ACC stands
for Accuracy, higher is better. Bold values indicate the best performance in that column. WKT2
represents the WikiText2 corpus, NR represents the needle retrieval.

Model OWT (PPL) OWT(new) (PPL) WKT2 (PPL) LAMBADA (PPL) LAMBADA (ACC) NR (ACC)
GPT-2 (117M)
Base 33.3 32.4 24.7 42.98 47.3 84.9
+ FT 29.0 28.1 25.6 43.1 48.1 85.3
+ DEX 28.9 28.2 25.2 42.95 48.2 87.4
+ DiffQ (Ours) 29.2 28.4 24.4 43.55 48.0 84.4
+ DiffK (Ours) 29.3 28.5 24.4 43.55 48.1 88.3
+ DiffV (Ours) 29.1 28.3 25.3 43.21 48.1 84.4
+ DAA (Ours) 28.9 28.1 24.7 42.25 48.9 89.5

Figure 3: Training loss of different attention architectures

According to the experimental results, the two architectures, differential adaption via key and query,
keep the low loss throughout the entire training process. The training loss of DAA is significantly
lower than DEX, while the training loss of the standard attention mechanism is the highest. Accord-
ing to Liu et al. (2020), training loss of the model in the general dataset does not fully reflect its
generalization performance. In order to test the general capabilities of the models, we also conduct
a performance analysis of these models, and the results are shown in the Table 2.

The evaluation results reveal the distinct advantages of the DAA architecture. While all fine-tuning
methods demonstrate improved perplexity on the OpenWebText dataset compared to the base GPT-2
model, their performance diverges on downstream tasks that are more sensitive to attention quality.
Most notably, DAA achieves the highest accuracy on both the LAMBADA Grave et al. (2016) and
Needlehaystack benchmarks. This strongly indicates its superior ability to mitigate attention noise
and focus on relevant tokens. While DiffQ and DiffK show competitive perplexity on WikiText2,
they do not match DAA’s gains in the more challenging retrieval and reasoning tasks. The perfor-
mance of DiffV, which is comparable to standard fine-tuning, suggests that altering the value stream
is less effective than directly intervening in the attention score computation. Collectively, these re-
sults validate our hypothesis that directly modulating the Q-K interaction, as DAA does, provides a
more effective and robust mechanism for improving model performance by reducing attention noise
during fine-tuning.

4.2 DIFFERENTIAL ADAPTION FOR MULTI-TASKS MODELING

Experimental Settings. We further apply the five differential attention architectures (DEX; DAA;
differentiate via key, query, value) to the Llama-3.2-1B, Llama-3.1-8B models. Since the models
all have undergone pre-training, we select a subset of the allenai/tulu-3-sft-olmo-2-mixture-0225
dataset as fine-tuning data. The allenai/tulu-3-sft-olmo-2-mixture-0225 dataset is a large-scale, mul-
tilingual text dataset released by Allen Institute for Artificial Intelligence (AllenAI), specifically
designed for supervised fine-tuning (SFT) of language models OLMo et al. (2024). This corpus con-
tains 552M tokens (Llama-3 tokenizer), significantly smaller than the dataset size used for models
pretraining.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Green indicates improvement over the baseline, while gray indicates a decrease.

Model Arc-E Arc-C BoolQ Hellaswag OBQA WIC Winogrande WSC AVG ∆

Llama-3.2-1B
Base 62.08 36.3 61.8 63.6 34.6 48.6 56.49 36.5 51.31 -

+ FT 65.08 33.56 57 64.13 30.8 50.1 56.2 39.42 49.54 -1.77
+ DEX 65.86 34.92 60.24 64.16 31.6 48.43 56.75 53.65 51.93 +0.62
+ DiffQ (Ours) 65.26 35.25 58.97 64.06 31.6 48.8 54.2 55.29 51.68 +0.37
+ DiffK (Ours) 66.31 35.59 62.51 64.11 29.4 48.8 49.3 55.72 50.1 +0.37
+ DiffV (Ours) 67.72 31.86 57.61 64.03 28.4 50.2 56.91 43.27 50.0 -1.31
+ DAA (Ours) 65.96 33.22 62.78 64.29 33.4 49.9 56.51 52.88 52.37 +1.06
Llama-3.1-8B
Base 78.9 52.6 74.9 78 42.1 51.9 73.1 58.6 63.76 -

+ FT 76.01 52.2 74.39 80.5 43.2 52.8 73.46 58.94 63.94 +0.18
+ DEX 77.2 52.66 78.4 78.6 42.3 52.5 73.9 59.1 64.33 +0.57
+ DiffQ (Ours) 78.6 51.39 73.21 79.3 43.8 52 70.62 56.54 63.18 -0.58
+ DiffK (Ours) 75.49 51.5 74.83 78.6 44.4 52.2 70.54 58.65 63.28 -0.48
+ DiffV (Ours) 76.72 50.51 78.52 78.5 44.4 52.1 71.8 53.51 63.26 -0.5
+ DAA (Ours) 76.9 52.71 79.04 77.4 42.8 53.3 74.25 59.62 64.50 +0.74

Experimental Results and Analysis. We report performances on 8 widely used language model-
ing benchmarksClark et al. (undefined); Wang et al. (undefined); Mihaylov et al. (undefined); Bisk
et al. (undefined); Sakaguchi et al. (undefined). The experimental results, summarized in Table 3,
unequivocally establish the superior performance of our proposed DAA architecture across different
model scales in the multi-task fine-tuning context. A crucial initial observation is the suboptimal
performance of standard fine-tuning (FT). For the Llama-3.2-1B model, standard FT leads to per-
formance degradation relative to the base model. While the larger Llama-3.1-8B model does not
degrade, it sees only a negligible gain. This highlights a key challenge: standard fine-tuning with
limited data can harm or fail to improve a model’s general capabilities, likely due to catastrophic
forgetting or overfitting Kirkpatrick et al. (2017).

In contrast, the various differential adaptation methods show divergent outcomes, revealing the im-
portance of where the differential mechanism is applied. The architectures that differentiate the input
sequence (DiffQ, DiffK, and DiffV) produce inconsistent and ultimately poor results. While DiffQ
and DiffK offer marginal gains on the 1B model, they are detrimental to the performance of the 8B
model, causing average scores to drop. The DiffV method is the least effective, resulting in a per-
formance decrease for both the 1B and 8B models. This strongly suggests that modifying the value
stream after attention scores are computed, or altering the input streams in isolation, is a less robust
strategy for noise mitigation.

The DAA and DEX methods, however, consistently improve upon the base models. While the exist-
ing lightweight method, DEX, provides a solid improvement and successfully counteracts the degra-
dation seen in standard FT, our proposed DAA method achieves the most substantial and consistent
performance gains across both model scales. By directly intervening at the core of the attention score
computation—the Q-K interaction—DAA is able to more effectively model and subtract attention
noise at its source (as shown in Figure 1). Unlike methods that apply localized changes or post-hoc
corrections, DAA’s holistic modulation of the query-key relationship proves to be a more principled
and impactful mechanism for enhancing model performance during fine-tuning.

5 CONCLUSION

In this work, we propose Differential Attention Adaption (DAA), a novel, parameter-efficient fine-
tuning method that directly mitigates attention noise by inserting a learnable module into the core
query-key computation of the self-attention mechanism. Unlike methods that require training from
scratch or apply corrections after the calculation of attention outputs, DAA intervenes at the source
of noise generation. Our experiments on several language models confirm that DAA significantly
outperforms standard fine-tuning and other adaptive differential techniques, successfully enhanc-
ing model performance on downstream tasks without causing catastrophic forgetting. DAA thus
presents a practical and effective solution for fine-tuning pre-trained Transformer models, offering a
principled approach to noise reduction that is both lightweight and highly impactful.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We have taken the necessary steps to ensure the reproducibility of our results. Specifically, Section
4.1 discusses the general experiment settings in our paper. Appendix B provides the detailed steps
to collect and process the datasets used in downstream tasks. Appendix C includes the detailed
steps to construct the fictitious synthetic data used by our method. Finally, Appendix D and the
supplementary material list the implementation details of our method and all baselines, including
the codebase, training hyperparameters, evaluation details, etc.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. Proceedings of the AAAI Conference on Artificial
Intelligence, undefined.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. Lecture notes in computer
science, undefined.

Peter E. Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv (Cornell University), undefined.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, G. Heigold, S. Gelly, Jakob Uszkoreit, and
N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony S.
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, C. Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Cantón Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz,
Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego
Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab A. AlBadawy, Elina Lobanova, Emily Dinan,
Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriele Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guanglong Pang, Guillem Cucurell, Hailey
Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M.
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, J. Geffert, Jana Vranes, Jason
Park, Jay Mahadeokar, Jeet Shah, J. V. D. Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Ju-Qing Jia, Kalyan Vasuden Al-
wala, K. Upasani, Kate Plawiak, Keqian Li, K. Heafield, Kevin Stone, Khalid El-Arini, Krithika
Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, L. Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, M. Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, M. Kambadur, Mike Lewis, Min
Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Niko-
lay Bogoychev, Niladri S. Chatterji, Olivier Duchenne, Onur cCelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasić, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krish-
nan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganap-
athy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Gird-
har, Rohit Patel, R. Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui
Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun So-
nia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, S. Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, S. Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
Whit ney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yiqian Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zhengxu Yan, Zhengxing Chen,
Zoe Papakipos, Aaditya K. Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajn-
feld, Adi Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boe-
senberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, A. Kallet, Amit Sangani, Anam Yunus,
Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, An-
drew Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ash-

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

ley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Ben
Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Shang-Wen Li, Danny Wyatt, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang,
Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani,
Emily Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei
Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzm’an, Frank J.
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, G. Thattai, Grant Herman, G. Sizov, Guangyi Zhang, Guna Lakshminarayanan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Han Zha, Haroun Habeeb, Harrison Rudolph, He-
len Suk, Henry Aspegren, Hunter Goldman, Igor Molybog, I. Tufanov, Irina-Elena Veliche, Itai
Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Mar-
cus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong,
Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Tor-
res, Josh Ginsburg, Junjie Wang, Kaixing(Kai) Wu, U. KamHou, Karan Saxena, Karthik Prasad,
Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, K. Veeraraghavan, Kelly Michelena,
Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya
Garg, A. Lavender, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron
Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, M. Tsimpoukelli,
Martynas Mankus, Matan Hasson, M. Lennie, Matthias Reso, Maxim Groshev, Maxim Nau-
mov, Maya Lathi, Meghan Keneally, M. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel,
Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks,
Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich
Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar,
Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bon-
trager, Pierre Roux, Piotr Dollár, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian
Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mi-
tra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes,
Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha
Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay,
Sheng Feng, Shenghao Lin, S. Zha, Shiva Shankar, Shuqiang Zhang, Sinong Wang, Sneha Agar-
wal, S. Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Sung-Bae Cho, Sunny Virk, Suraj Subramanian,
Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas
Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Von-
timitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla,
Vlad Ionescu, V. Poenaru, Vlad T. Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xia Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang,
Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,
Ying Zhang, Yossi Adi, Youngjin Nam, Yu Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3
herd of models. ArXiv, abs/2407.21783, 2024.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models with a
continuous cache. In International Conference on Learning Representations, 2016.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew E. Peters, Pradeep
Dasigi, Jemix Gu, David Atkinson, Aleksandra Piktus, Shmuel Amar, Oyvind Tafjord, Sam
Skjonsberg, Haritz Puerto, Iz Beltagy, Hanna Hajishirzi, Noah A. Smith, Yejin Choi, and Luke
Zettlemoyer. Camels in a changing climate: Enhancing lm adaptation with tulu 2, 2023.

A. Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, A. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick. Segment anything.
2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3992–4003, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Chaerin Kong, Jiho Jang, and Nojun Kwak. Understanding differential transformer unchains pre-
trained self-attentions. arXiv preprint arXiv:2505.16333, 2025.

T. Kwiatkowski, J. Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris Alberti,
D. Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc V. Le, and Slav Petrov. Natural
questions: A benchmark for question answering research. In Transactions of the Association for
Computational Linguistics, 2019. doi: 10.1162/tacl a 00276.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge.
In Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth In-
ternational Conference, KR 2012, Rome, Italy, June 10-14, 2012. AAAI Press, 2012. URL
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4492.

Jinlong Liu, Guoqing Jiang, Yunzhi Bai, Ting Chen, and Huayan Wang. Understanding why neural
networks generalize well through gsnr of parameters. arXiv preprint arXiv:2001.07384, 2020.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, F. Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2023.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically or-
dered prompts and where to find them: Overcoming few-shot prompt order sensitivity. ArXiv,
abs/2104.08786, 2021.

Ang Lv, Ruobing Xie, Shuaipeng Li, Jiayi Liao, Xingwu Sun, Zhanhui Kang, Di Wang, and Rui
Yan. More expressive attention with negative weights. arXiv preprint arXiv:2411.07176, 2024.

AI Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models. Meta AI
Blog. Retrieved December, 20:2024, 2024.

Todor Mihaylov, Peter E. Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, undefined.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira
Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri,
Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill,
Lester James Validad Miranda, Jacob Daniel Morrison, Tyler C. Murray, Crystal Nam, Valentina
Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Chris Wilhelm,
Michael Wilson, Luke S. Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hanna Hajishirzi. 2 olmo
2 furious. ArXiv, abs/2501.00656, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems 32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Nicolas Penedo et al. Safe and sound: The safetensors format. https://github.com/huggingface/
safetensors, 2022.

Joshua Peterson, Stephan Meylan, and David Bourgin. Open clone of openai’s unreleased webtext
dataset scraper, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

13

http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4492
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/huggingface/safetensors
https://github.com/huggingface/safetensors

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. arXiv (Cornell Univer-
sity), undefined.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An ad-
versarial winograd schema challenge at scale. Proceedings of the AAAI Conference on Artificial
Intelligence, undefined.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. arXiv (Cornell University), undefined.

Haoyuan Wu, Rui Ming, Haisheng Zheng, Zhuolun He, and Bei Yu. Efficient opamp adaptation for
zoom attention to golden contexts. arXiv preprint arXiv:2502.12502, 2025.

Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu Wei. Differential
transformer. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=OvoCm1gGhN.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019.

14

https://openreview.net/forum?id=OvoCm1gGhN

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS

During the preparation of this work, the authors used Large Language Models (LLMs) to assist with
editing and refining the language. The LLMs were primarily used for improving grammar, clarity,
and phrasing of the manuscript. All scientific contributions, including the core ideas, experimental
design, and analysis of results, were conceived and executed by the human authors.

B # PARAMETERS OF EACH ARCHITECTURE’S ATTENTION LAYER

In this section, we provide a detailed derivation of the number of parameters for each attention layer
in the architectures discussed in this paper and compared in Table 1. We use the following notation:

• dmodel: The dimension of the model’s hidden states.

• h: The number of attention heads.

• dk: The dimension of the key and query vectors for each head, where dk = dmodel/h.

• dv: The dimension of the value vectors for each head, where dv = dmodel/h.

For simplicity and consistency with the standard Transformer architecture, we assume dk = dv .

B.1 STANDARD TRANSFORMER ATTENTION

A standard multi-head attention layer consists of four main learnable weight matrices:

1. Query projection (WQ): Maps the input hidden states to the query space. Dimensions:
dmodel × dmodel.

2. Key projection (WK): Maps the input hidden states to the key space. Dimensions: dmodel×
dmodel.

3. Value projection (WV): Maps the input hidden states to the value space. Dimensions:
dmodel × dmodel.

4. Output projection (WO): Maps the concatenated output of the attention heads back to the
hidden state dimension. Dimensions: dmodel × dmodel.

The total number of parameters is the sum of the parameters of these four matrices:

NStandard = d2model + d2model + d2model + d2model = 4d2model

B.2 DIFFERENTIAL (DIFF) TRANSFORMER

The Differential Transformer essentially creates two parallel attention streams and computes their
difference. This can be interpreted as having separate projection matrices for each stream, followed
by a single shared output projection.

1. Stream 1 Projections (WQ1
,WK1

,WV1
): Three matrices of size dmodel × dmodel. Total:

3d2model.

2. Stream 2 Projections (WQ2
,WK2

,WV2
): Three matrices of size dmodel × dmodel. Total:

3d2model.

3. Output projection (WO): A single matrix of size dmodel × dmodel to project the final com-
bined output. Total: d2model.

The total number of parameters is the sum of these components:

NDIFF = 3d2model + 3d2model + d2model = 7d2model

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.3 DEX (DIFFERENTIAL EXTENSION)

DEX builds upon the standard attention architecture by adding a learnable matrix WDEX that operates
on the output value matrix V . Crucially, this operation is applied per head.

1. Standard Attention Parameters: The base WQ,WK ,WV ,WO matrices. Total: 4d2model.

2. DEX Matrix (WDEX): A separate learnable matrix W
(i)
DEX is introduced for each of the h

heads. Each matrix has dimensions dv × dv .

The total number of parameters for all WDEX matrices across all heads is:

NDEX extra = h× (dv × dv) = h×
(
dmodel

h
× dmodel

h

)
= h× d2model

h2
=

d2model

h

Therefore, the total parameter count for a DEX layer is:

NDEX = 4d2model +
d2model

h
=

(
4 +

1

h

)
d2model

B.4 DAA (DIFFERENTIAL ATTENTION ADAPTION)

Our proposed DAA method also builds on the standard architecture. It introduces a learnable matrix
WDAA directly into the query-key interaction for each attention head.

1. Standard Attention Parameters: The base WQ,WK ,WV ,WO matrices. Total: 4d2model.

2. DAA Matrix (WDAA): A learnable matrix W
(i)
DAA is inserted for each of the h heads. Since

it modulates the QiK
T
i product, its dimensions must be dk × dk.

Similar to DEX, the total number of additional parameters for all WDAA matrices is:

NDAA extra = h× (dk × dk) = h×
(
dmodel

h
× dmodel

h

)
=

d2model

h

The total parameter count for a DAA layer is therefore identical to DEX in terms of efficiency:

NDAA = 4d2model +
d2model

h
=

(
4 +

1

h

)
d2model

B.5 INPUT DIFFERENTIATION ARCHITECTURES (DIFFQ, DIFFK, DIFFV)

These methods introduce a single learnable matrix (WDQ
, WDK

, or WDV
) that transforms the input

hidden states X before the standard projections.

1. Standard Attention Parameters: The base WQ,WK ,WV ,WO matrices. Total: 4d2model.
2. Differential Input Matrix (WD): A single learnable matrix that operates on the full hidden

state X . Its dimensions are therefore dmodel × dmodel. Total: d2model.

The total parameter count for each of these architectures is the sum of the standard parameters and
the single new matrix:

NDiffQ/DiffK/DiffV = 4d2model + d2model = 5d2model

C IMPLEMENTATION OF DIFFERENTIAL ADAPTION

In this section, we provide the pseudocode for our proposed differential fine-tuning architectures.
These implementations illustrate how each method modifies the standard self-attention mechanism
in a lightweight manner. The variable X represents the input tensor of hidden states, W q, W k,
and W v are the standard projection matrices for query, key, and value, respectively. The parame-
ter lambda is the learnable, time-annealed scalar that controls the magnitude of the differential

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

component. All newly introduced matrices (W daa, W dq, etc.) are initialized as identity matrices
to preserve the model’s pre-trained knowledge at the start of fine-tuning.

We use a Python-like syntax for clarity. The operator @ denotes matrix multiplication, and tensor
shapes are provided in comments, where b is the batch size, n is the sequence length, and d is the
dimension of the head.

C.1 DAA (DIFFERENTIAL ATTENTION ADAPTION)

DAA directly intervenes in the attention score computation by introducing a learnable matrix W daa
into the query-key interaction. This allows the model to learn a transformation that creates a sec-
ondary, noise-focused attention map, which is then subtracted from the original. This is our primary
and most effective proposed method.

Listing 1: Pseudocode for Differential Attention Adaption (DAA).

def DAA(X, W_q, W_k, W_v, W_daa, lambda):
Project inputs to query, key, and value
Q = X @ W_q
K = X @ W_k
V = X @ W_v

Scaling factor
s = 1 / sqrt(d)

Calculate the primary attention scores
A1 = softmax(Q @ K.transpose(-1, -2) * s)

Calculate the secondary, differentiated attention scores
A2 = softmax(Q @ W_daa @ K.transpose(-1, -2) * s)

Return the differentially weighted value
return (A1 - lambda * A2) @ V

C.2 ARCHITECTURES VIA INPUT DIFFERENTIATION

As an alternative to DAA, we explored three methods that apply the differential mechanism at the
input level. These approaches create a secondary, differentiated version of either the query, key, or
value stream by transforming the input hidden states X with a learnable matrix before the standard
projection.

Differential Adaption via Query (DiffQ). In this variant, we generate two distinct sets of queries.
The first, Q1, is standard, while the second, Q2, is derived from a transformed input. The final output
is based on the difference between the attention maps produced by these two queries.

Listing 2: Pseudocode for Differential Adaption via Query (DiffQ).

def DiffQ(X, W_q, W_k, W_v, W_dq, lambda):
Standard K and V projections
K = X @ W_k
V = X @ W_v

Generate primary and secondary queries
Q1 = X @ W_q
Q2 = (X @ W_dq) @ W_q
Q1, Q2, K, V: [b, n, d]

Scaling factor
s = 1 / sqrt(d)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Calculate attention scores for each query
A1 = softmax(Q1 @ K.transpose(-1, -2) * s)
A2 = softmax(Q2 @ K.transpose(-1, -2) * s)

Return the differentially weighted value
return (A1 - lambda * A2) @ V

Differential Adaption via Key (DiffK). This approach is analogous to DiffQ, but the differentia-
tion is applied to the key stream. The model learns to compare the same query against two different
representations of the input content (keys K1 and K2).

Listing 3: Pseudocode for Differential Adaption via Key (DiffK).

def DiffK(X, W_q, W_k, W_v, W_dk, lambda):
Standard Q and V projections
Q = X @ W_q
V = X @ W_v

Generate primary and secondary keys
K1 = X @ W_k
K2 = (X @ W_dk) @ W_k
Q, K1, K2, V: [b, n, d]

Scaling factor
s = 1 / sqrt(d)

Calculate attention scores for each key
A1 = softmax(Q @ K1.transpose(-1, -2) * s)
A2 = softmax(Q @ K2.transpose(-1, -2) * s)

Return the differentially weighted value
return (A1 - lambda * A2) @ V

Differential Adaption via Value (DiffV). Unlike the other methods, DiffV applies the differential
mechanism directly to the value stream after the attention scores have been computed. It calculates
a single attention map A and uses it to weigh the difference between a primary value V1 and a
secondary value V2.

Listing 4: Pseudocode for Differential Adaption via Value (DiffV).

def DiffV(X, W_q, W_k, W_v, W_dv, lambda):
Standard Q and K projections
Q = X @ W_q
K = X @ W_k

Generate primary and secondary values
V1 = X @ W_v
V2 = (X @ W_dv) @ W_v
Q, K, V1, V2: [b, n, d]

Scaling factor
s = 1 / sqrt(d)

Calculate a single attention score matrix
A = softmax(Q @ K.transpose(-1, -2) * s)

Apply attention to the difference of the values
return A @ (V1 - lambda * V2)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D IMPLEMENTATION DETAILS

All experiments were conducted using the Hugging Face transformers, datasets, and
safetensors Penedo et al. (2022) libraries, with PyTorch Paszke et al. (2019) as the backend
framework. Below we detail the specific configurations for each model family.

D.1 GPT-2 EXPERIMENTS

Model and Data. The experiments were based on the publicly available GPT-2 base model (117M
parameters). For fine-tuning, we used a subset of the OpenWebText corpus Peterson et al. (2019),
which is textually similar to the model’s original pre-training data, to ensure that the model retained
its fundamental language capabilities. The models were evaluated on perplexity using held-out por-
tions of OpenWebText (both seen and unseen during fine-tuning) and WikiText-2 Kwiatkowski et al.
(2019). We also evaluated task-specific performance using the LAMBADA dataset (accuracy) Grave
et al. (2016) and a Needle-in-a-Haystack retrieval task (accuracy).

Training Hyperparameters. For all GPT-2 based experiments, we fine-tuned only the parameters
within the attention modules (attn), freezing all other model weights. This amounted to training
approximately 28.3M parameters (standard attention), 28.9M parameters (DAA, DEX), 35.4M pa-
rameters (DiffQ, DiffK, DiffV). The shared training configuration was as follows:

• Optimizer: AdamW (adamw torch)

• Learning Rate: 3e-5

• LR Scheduler: Cosine decay with 500 warmup steps

• Epochs: 3

• Batch Size: An effective batch size of 32 is used

• Sequence Length: 512 tokens

• Precision: FP16 mixed-precision training was enabled to accelerate computation.

• Weight Decay: 0.01

Hardware. All GPT-2 fine-tuning experiments were conducted on a single server equipped with
one NVIDIA A800 80GB GPU.

D.2 LLAMA EXPERIMENTS

Model and Data. To validate the general applicability of our methods, we conducted further
experiments on more recent and larger models: Llama-3.2-1B and Llama-3.1-8B. For supervised
fine-tuning (SFT), we utilized a subset of the allenai/tulu-v2-sft-mixture dataset Ivi-
son et al. (2023), which is a collection of high-quality instruction-following data. Model perfor-
mance was evaluated on a suite of common sense reasoning benchmarks, including ARC-Easy,
ARC-Challenge, BoolQ, Hellaswag, OpenBookQA, WIC, Winogrande, and WSC Levesque et al.
(2012); Zellers et al. (2019).

Training Hyperparameters. For the Llama models, we adopted a parameter-efficient fine-tuning
strategy where only the weights of the self-attention modules (self attn) and the language model
head (lm head) were updated. All other parameters, including embeddings and feed-forward lay-
ers, remained frozen. The key training parameters are listed below:

• Optimizer: AdamW (adamw torch)

• Learning Rate: 1e-4

• LR Scheduler: Cosine decay with 500 warmup steps

• Epochs: 3

• Batch Size: An effective batch size of 32 is used

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Precision: BFloat16 (BF16) mixed-precision training was used, as it is natively supported
by the hardware.

• Gradient Clipping: Max gradient norm was set to 1.0.
• Gradient Checkpointing: Enabled to reduce memory consumption.

The tokenizer’s padding token was set to its end-of-sequence (EOS) token, and a custom data collator
was used to correctly handle the masking of labels for instruction-formatted data.

Hardware. The all Llama experiments were conducted on a server with NVIDIA A800 80GB
GPUs.

D.3 ABALATION ON λINIT

Table 4 shows DAA performance on the language modeling benchmarks (average over 8 tasks from
the table 2, using Llama-3.2-1B) when varying the λinit strategy. The results indicate relative ro-
bustness to different fixed scalar initializations (0.2-0.8).

Table 4: Ablation on λinit.

λinit 0.8 0.5 0.2

LM Acc (%) 53.3 53.25 53.37

20

	introduction
	Background
	Differential Transformer
	DEX (Differential Extension)

	Method
	Why Differential Adaption Works
	Differential Architectures via Q-K interaction (DAA)
	Differential Architectures via Input Differentiation
	Theoretical Analysis of Adaptation Strategies

	Experiments and Analysis
	Differential Adaption for Foundational Language Modeling
	Differential Adaption for Multi-tasks Modeling

	Conclusion
	Reproducibility Statement
	Use of Large Language Models
	# Parameters of Each Architecture's Attention Layer
	Standard Transformer Attention
	Differential (DIFF) Transformer
	DEX (Differential Extension)
	DAA (Differential Attention Adaption)
	Input Differentiation Architectures (DiffQ, DiffK, DiffV)

	Implementation of Differential Adaption
	DAA (Differential Attention Adaption)
	Architectures via Input Differentiation

	Implementation details
	GPT-2 Experiments
	Llama Experiments
	Abalation on init

