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ABSTRACT

Code localization is a fundamental challenge in repository-level software engi-
neering tasks such as bug fixing. While existing methods equip language agents
with comprehensive tools/interfaces to fetch information from the repository, they
overlook the critical aspect of memory, where each instance is typically handled
from scratch assuming no prior repository knowledge. In contrast, human develop-
ers naturally build long-term repository memory, such as the functionality of key
modules and associations between various bug types and their likely fix locations.
In this work, we augment language agents with such memory by leveraging a
repository’s commit history—a rich yet underutilized resource that chronicles the
codebase’s evolution. We introduce tools that allow the agent to retrieve from a
non-parametric memory encompassing recent historical commits and linked is-
sues, as well as functionality summaries of actively evolving parts of the codebase
identified via commit patterns. We demonstrate that augmenting such a memory
can significantly improve LocAgent, a state-of-the-art localization framework, on
both SWE-bench-verified and the more recent SWE-bench-live benchmarks. Our
research contributes towards developing agents that can accumulate and leverage
past experience for long-horizon tasks, more closely emulating the expertise of
human developers.

1 INTRODUCTION

Repository-level software engineering tasks, such as bug fixing, are a promising application for Large
Language Model (LLM)-powered agents (Jimenez et al., 2024). A crucial first step in these tasks is
code localization: identifying the specific files and code segments that need to be modified to resolve
the issue at hand. Existing methods mainly focus on building powerful toolsets that help agents
navigate and reason over code relationships (Liu et al., 2025; Yu et al., 2025; Ouyang et al., 2025;
Chen et al., 2025b; Ma et al., 2025). A leading framework is LocAgent (Chen et al., 2025b), which
parses codebases into directed heterogeneous graphs that capture code structures and dependencies,
enabling effective search for relevant entities.

Despite steady progress, current approaches share a key limitation: they treat every problem as a
fresh puzzle, solved from scratch assuming no prior knowledge of the repository. Human developers,
by contrast, accumulate and leverage long-term repository memory over time—this includes cached
understanding of the purpose of core and actively evolving modules, and various associations between
recurring bug patterns and their likely fix locations. This accumulated memory is what allows
developers to grow into experts in a codebase.

The importance of such memory is also clear when looking at failure cases of existing localization
frameworks. To illustrate, consider a failure case of LocAgent on a bug in the django repository
from SWE-bench, as illustrated in Figure 2. The example is about django’s migration system,
which generates migration programs from a user-defined schema. Here, the challenge is to find where
import statements for certain base classes are synthesized, since the bug stems from missing imports
in the generated program. Without prior knowledge of the repository, an agent must embark on a
complex investigation, carefully tracing data/control flows and function calls across different folders
and files to find the source of the error. In this example, while the agent successfully located some
initial key entities, it eventually failed to complete the reasoning chain and stopped prematurely.
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Issue Description
Missing import statement in generated migration 
(NameError: name 'models' is not defined)
------------------------------------------------------
Given the following contents of models.py:
from django.db import models
class MyField(models.TextField):
…

16eec | Deprecated Signal.disconnect weak parameter.
    - [dispatch/dispatcher.py]

7f20f  | Maintained import order in migration writer.
    - [db/migrations/writer.py]

8f4ee | Moved django.db.migrations.writer…. Reduces 
the possibility of circular imports.
    - [conf/__init__.py, db/migrations/serializer.py, …]

Recent history commits

Summary of actively evolving files

db/models/sql/query.py
This Django module defines SQL query generation for 
Django's ORM (Object-Relational Mapping) …

middleware/csrf.py
This module provides middleware that implements 
protection against Cross Site Request Forgery (CSRF)…

db/migrations/serializer.py
This module provides various serializer classes to 
convert Python objects into a serialized form suitable 
for migration files … returns a string representation of 
the object and necessary import statements…

a) Constructing Repository Memory b) Integration with Agentic Frameworks

SearchCommit

ExamineCommit

ViewSummary

SearchSummary

Tooling
Observation

Action

Thought

Localization

(+ existing tools)

Thought

…
…

…
…

…
…

SearchCommit(‘migration file missing import 
statements’)

8f4ee | Moved django.db.migrations.writer…. 
Reduces the possibility of circular imports.
    - [conf/…, db/migrations/serializer.py, …]

Observation

Action
ViewSummary(‘db/migrations/serializer.py’)
TraverseGraph(‘db/migrations’)

This module provides various serializer classes 
to convert Python objects into a …

…

Figure 1: An overview of our repository memory design. (a) We construct the memory by leveraging
the recent commit history of the repository. This involves creating a searchable database of past
commits and their linked issues, and identifying frequently edited files to let LLMs generate high-level
functionality summaries. (b) The memory is accessed by the language agent via a set of tools that
perform search based on custom queries and support closer examination of individual memory entries.
Details in §3.

Experienced developers would likely approach the problem differently. They could draw on episodic
memory of past issues/codebase changes related to the migration system, or recall from semantic
memory the modules that are potentially responsible for handling such imports within the codebase.
These memories could provide strong priors for the investigation, guiding the search/reasoning to
more effectively reach the error source.

How can we equip agents with such kind of memory? We propose to leverage the repository’s commit
history—a natural record of its past evolution. In particular, new problems are often connected
to some past changes, where the related commit patches and linked issue contents could provide
valuable data source for approximating the episodic memory. Commit statistics could also naturally
reveal which parts of the codebase are most active, making them prime candidates for building
semantic memory. Returning to the example in Figure 2, we find that even a simple keyword search
(“migration”, “import”) over the commit messages retrieves many related history patches in the
django migration system, such as problems with circular imports and nested classes. Likewise,
analyzing commit frequency highlights the target file as a module under active development, and
a pre-computed summary of its functionality—managing object-to-string conversion and import
statements—could provide a strong signal of its relevance to the issue.

Building on these intuitions, we design two simple memory mechanisms to augment existing frame-
works:

• Episodic Memory of Past Commits. We crawl and preprocess the commit history and linked
data, and provide tools for agents to 1) search this corpus via custom queries that are matched
with the commit messages, and 2) examine the details of individual commits, such as linked
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Issue Description
Missing import statement in generated migration (NameError: name 'models' is not defined)
-----------------------------------------------------------------------------------------------------------
Given the following contents of models.py:

from django.db import models
class MyField(models.TextField):

…
class Meta:

abstract = True
…
class MyModel(MyMixin, MyBaseModel):

name = MyField(primary_key=True)

The makemigrations command will generate the 
following migration file:

import app.models
from django.db import migrations
class Migration(migrations.Migration):

…
bases=(app.models.MyMixin, models.Model),

]
NameError: name 'models' is not defined

History Commits (keyword search)
0d79292 | Fixed #25109 -- Stopped silencing explicitly specified migration modules import errors.
     - [db/migrations/loader.py, db/migrations/questioner.py, db/migrations/writer.py]
8f4eee1  | Moved django.db.migrations.writer…. Reduces the possibility of circular imports.
     -  [conf/__init__.py, db/migrations/serializer.py, db/migrations/writer.py]
4a7d374 | Explicitly imported migration operations in optimizer.     -  [db/migrations/optimizer.py]
29d8198 | Fixed serialization of nested classes in migrations.     -  [db/migrations/serializer.py]…

Localization Trace of LocAgent
Action: explore_tree_structure([“core/management/…”, …])
Observation: …
…
Action: get_entity_content([“core/management/…”, …])
Observation:
class Command(BaseCommand):

def handle(...):
...
else:

self.write_migration_files(changes)
def write_migration_files(self,...):

...
writer = MigrationWriter(migration, self.include_header)
if ...

writer.as_string()

Action: get_entity_content([“db/migrations/writer.py:MigrationWriter…”])
Observation:
class MigrationWriter:
    def as_string(self):
        ...
        for operation in self.migration.operations:
                ..., operation_imports = OperationWriter(operation).serialize()
        imports.update(operation_imports)
…
    def serialize(cls, value):
        return serializer_factory(value).serialize()

class BaseSequenceSerializer(BaseSerializer):
  def serialize(self):
    for item in self.value:
      serializer_selected = serializer_factory(item)
      item_string, item_imports = serializer_selected.serialize()
      …
class TypeSerializer(BaseSerializer):
    def serialize(self):...
        …

LocAgent localization

Ground truth localization

Source Code of target file(s) (db/migrations/serializer.py)
…
class SetSerializer(BaseSequenceSerializer):

def _format(self):
return '{%s}' if self.value else 'set(%s)’

…
class TupleSerializer(BaseSequenceSerializer):

def _format(self):
…

…

…
class TypeSerializer(BaseSerializer):

def serialize(self):
special_cases = [

(models.Model, "models.Model", []),
      (type(None), 'type(None)', []),

for case, string, imports in special_cases:
return string, set(imports)

…
-----------------------------------------------------------------------------------------------------------
LLM summary: This module provides various serializer classes to convert Python objects into a 
serialized form suitable for migration files. The module includes a base class `BaseSerializer` and … 
each serializer implements a `serialize()` method that returns a string representation of the object and 
necessary import statements. The `Serializer` class maintains a registry of type-to-serializer 
mappings, allowing easy registration and usage of …

Figure 2: (Left) Localization trajectory of a failure case of LocAgent on SWE-bench-verified
(django django-14580). While the agent successfully traces some initial key entities, it fails to
reason in greater depth and granularity to pinpoint the error source, resulting in wrong localizations.
(Right) The original issue description (top), accompanying history commits obtained via simple
keyword search on commit messages (middle), the source code and LLM-generated functionality
summary of the ground truth target file containing the error source (bottom).

issues and commit patches. The episodic memory allows agents to reference past codebase
changes to aid in resolving the current issue.

• Semantic Memory of Active Code Functionality. We identify the most active parts of the
codebase by analyzing commit frequency to find the most frequently edited files. For these key
files, we use an LLM to generate high-level summaries of their functionalities. This creates a
compact knowledge base of the most dynamic parts of the codebase, which the agent can query
to understand the purpose of potentially relevant modules.

Experiments show that augmenting LocAgent with these memory components could significantly im-
prove localization performance, where we observe strong gains on both SWE-bench-verified (Jimenez
et al., 2024) and the more recent SWE-bench-live (Zhang et al., 2025) benchmark.

To summarize, we make the following contributions:

• We identify the lack of long-term memory as a critical limitation in current language agents for
repository-level software engineering tasks such as code localization.

• We propose to leverage commit history as a natural and rich source for building repository
memory, and introduce two simple memory mechanisms—episodic memory of past commits and
semantic memory of active code functionality—that integrate easily into existing frameworks.

• We show that these mechanisms yield substantial improvements in code localization, highlighting
the value of incorporating long-term memory into agent workflows.
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2 RELATED WORK

2.1 CODE LOCALIZATION IN REPOSITORY-LEVEL SOFTWARE ENGINEERING TASKS

Existing methods for code localization could be broadly categorized into three types: 1) retrieval-
based, 2) agentic approaches and 3) procedural approaches.

Retrieval-based methods represent the most conventional approach, leveraging lexical or semantic
matching to rank code snippets based on their proximity to the query (Wang et al., 2025b). Recent
advances have focused on improving the quality of code embeddings, often through contrastive
learning objectives (Li et al., 2022; Wang et al., 2023; Zhang et al., 2024a; Suresh et al., 2025).
Among these, CoRNStack (Suresh et al., 2025) represents the current state of the art, achieving
strong performance through large-scale training coupled with rigorous data filtering and hard negative
mining strategies.

Agentic frameworks. Agentic approaches augment LLMs with the ability to interact with an external
environment to gather information via a set of tools/interfaces, where the major focus has been to
improve the comprehensiveness of the tool designs (Yang et al., 2024; Cognition, 2024; Örwall, 2024;
Zhang et al., 2024b; Chen et al., 2025b; Wang et al., 2025a; Yu et al., 2025; Ouyang et al., 2025; Ma
et al., 2025; Liu et al., 2025). Notably, LocAgent (Chen et al., 2025b) is a SoTA agentic framework
for code localization. It parses codebases into heterogeneous graphs capturing code structures and
various kinds of dependencies (e.g., import, invoke and inherit relationships), which allows LLM
agents to more effectively comprehend and navigate through the codebase.

Procedural approaches directly employ LLMs to perform localization in a pre-designed proce-
dure (Zhang et al., 2023; Wu et al., 2024; Xia et al., 2025; Liang et al., 2024), which avoids the
complex setups of agentic approaches. The most representative and high-performing method is Agent-
less (Xia et al., 2025), which performs localization by prompting LLMs with the issue description
and a concise representation of the repository’s file and directory structure.

2.2 MEMORY-ENHANCED LANGUAGE AGENTS

Our work is connected with the broader literature on enhancing language agents with memory or
experience (Qian et al., 2024; Chen et al., 2025a; Wang et al., 2024; 2025c; Zheng et al., 2025). The
most related work is arguably Chen et al. (2025a), which distills procedural knowledge from an
agent’s past success and failure trajectories to facilitate online problem-solving. Orthogonally, our
approach leverages commit histories to construct a repository-specific memory, providing knowledge
that is grounded in the codebase’s evolution rather than the agent’s individual experience.

3 REPOSITORY MEMORY

To bridge the gap between memoryless agents and experienced developers, we tap into the repository’s
commit history—a rich, structured chronicle of its evolution. We structure this historical data into
two complementary memory stores, designed to be lightweight and easily integrated into existing
agentic frameworks. The first, an episodic memory, captures the narrative of specific past changes.
The second, a semantic memory, distills high-level functional knowledge about the codebase’s most
dynamic areas. An illustration of this design is provided in Figure 1.

3.1 EPISODIC MEMORY OF PAST COMMITS

Memory Construction. This memory captures concrete entries of past problems and their solutions.
We build a structured corpus from the repository’s recent commit history, storing the code patches and
also the rich metadata surrounding them: commit messages, timestamps, and links to associated issues.
The corpus only includes commits made prior to the issue to be resolved (to avoid contamination).
We further filter this datastore to remove issues that have overlapping text with the test instance and
commits that are linked to these issues, to prevent leakage.

Memory Interfaces. The agent interacts with this historical database through a dedicated interface,
allowing it to query for past events that are related to its current task:

4
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• SearchCommit(query, top k): This tool performs case-based retrieval. The agent can
issue a query, which could be derived from the given bug report or current problem-solving state,
to find semantically related historical commits. We use BM25 for matching the query against
the commit messages, as it is highly effective for the semi-structured, keyword-rich nature of
commit messages. The interface returns a ranked list of the top-k relevant commits, including
their unique IDs (commit SHAs), messages, and modified files in the commit patch.

• ExamineCommit(id): Once a potentially relevant commit is identified, this tool allows the
agent to “zoom in” and retrieve its full context based on its ID, including the complete code
patch (in diff format) and any linked issues, providing a comprehensive view of the original
problem and its corresponding solution.

By using these tools, the agent can ground its reasoning in historical precedent, leveraging past
solutions as powerful exemplars to aid in its understanding of the codebase/problem and guide its
investigation.

3.2 SEMANTIC MEMORY OF ACTIVE CODE FUNCTIONALITY

Memory Construction. While episodic memory provides specific examples, semantic memory
offers a generalized, high-level understanding of the codebase. The rationale is that files frequently
modified in the recent past are “development hotspots”—areas that are either central to the repository’s
functionality or are undergoing active change, making them more likely to be relevant to new issues.
We first analyze the commit history to identify the top-k most edited files, where k is much smaller
than the total amount of files in the codebase. Then, for each of these files, we use an LLM to read its
source code and distill its functionalities into a high-level natural language summary. This process
creates a compact semantic knowledge base that maps critical files to their core responsibilities,
focusing exclusively on the most dynamic parts of the repository.

Memory Interfaces. The agent accesses this knowledge base again through a simple query interface:

• ViewSummary(file name): This retrieves the cached summary for a specific file (if it exists
in the memory), allowing the agent to quickly understand a file’s purpose without needing to read
its entire source code.

• SearchSummary(query, top k): This allows the agent to perform a keyword-based
search over the entire collection of file summaries. It returns the top-k most relevant (file,
summary) pairs, helping the agent to locate modules that are related to the issue or current
exploration intent.

The semantic memory provides the agent with crucial architectural context, biasing its search towards
more promising areas and preventing it from getting lost in the vast, irrelevant or stable parts of the
codebase.

3.3 INTEGRATION WITH LOCAGENT

The memory tools are designed to be modular and can be straightforwardly integrated into existing
agentic frameworks. In this work, we integrate them into LocAgent, a state-of-the-art localization
framework that operates based on the ReAct paradigm (Yao et al., 2023). A LocAgent-powered agent
iteratively cycles through a “Thought, Act, Observation” loop. In the “Act” step, it synthesizes an
API call to one of its available tools, whose execution feedback is returned to the agents via the next
“Observation” entry. For context, LocAgent’s core tools allow it to navigate a heterogeneous graph
representation of the codebase:

• SearchEntity: Searches the codebase for entities matching a keyword query, typically
serving as an entry point for exploration.

• TraverseGraph: Performs a multi-hop, type-aware breadth-first search from a starting entity
to explore code relationships, which include 1) basic contain relationships between folders and
files, 2) invoke relationships between functions and classes, 3) import relationships from files to
functions/classes, and 4) the inherit relationship between classes.

• RetrieveEntity: Fetches the full source code and detailed information for a specific code
entity (e.g., a file, class, or function).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Main results on code localization benchmarks. RepoMem significantly outperforms all other
methods across both benchmarks, demonstrating the effectiveness of incorporating repository memory.
Both episodic and semantic memory components contribute positively, with their combination
yielding the best performance.

Methods SWE-bench-verified SWE-bench-live
Acc@1 Acc@3 Acc@5 Acc@1 Acc@3 Acc@5

CodeRankEmbed (Suresh et al., 2025) 29.6 45.1 54.3 26.2 44.6 52.3
Agentless (Xia et al., 2025) 53.3 67.8 71.4 40.0 60.0 62.3
LocAgent (Chen et al., 2025b) 64.8 70.4 71.6 59.2 60.8 63.1

RepoMem (episodic-only) 67.8 72.4 74.3 60.0 61.5 64.6
RepoMem (semantic-only) 65.0 71.0 72.8 56.9 61.5 63.9
RepoMem 68.6 74.5 76.5 60.8 63.9 66.2

Our integration simply expands the action space with the memory-based tools, as illustrated in
Figure 1. Intuitively, the memory-based tools could nicely complement the existing toolset in
LocAgent. For example, an agent can now use memory search tools to fetch related commits or files,
combined with concrete examination of individual entries when necessary, to form an experience-
based hypothesis. It can then use LocAgent’s tools to perform a more detailed investigation of the
code entities surrounding these candidates. This creates a powerful synergy between high-level,
memory-guided direction and low-level, structural code analysis.

4 EXPERIMENTS

4.1 SETUP

Datasets. We evaluate our approach on two benchmarks: SWE-bench-verified (Jimenez et al., 2024),
which contains 500 examples from 12 repositories, and the more recent SWE-bench-live (Zhang et al.,
2025) benchmark. For SWE-bench-live, we use a high-quality subset created from the intersection of
its ‘lite’ and ‘verified’ splits, filtering for instances requiring five or fewer files to be modified. This
results in 130 examples across 62 repositories.

Baselines. We compare our method, RepoMem, against several state-of-the-art methods in different
types of approaches:

• CodeRankEmbed (Suresh et al., 2025), a leading retrieval-based method leveraging large-scale
training with careful data filtering and hard negative mining.

• Agentless (Xia et al., 2025), a leading procedural method that prompts an LLM with repository
structure.

• LocAgent (Chen et al., 2025b), a state-of-the-art agentic framework for localization as discussed
earlier, which our RepoMem method is built directly upon. This also allows for a direct comparison
of the impact of integrating repository memory.

Evaluation Metrics. We evaluate file-level localization performance via Accuracy@k (following
prior work (Chen et al., 2025b)), defined as the percentage of examples where the set of top-k
predicted files completely covers the ground-truth files.

Implementation Details. All experiments use GPT-4o (2024-05-13) as the backbone LLM. For
memory construction, we consider the 7,000 commits prior to the given issue’s base commit, and
identify the top 200 most frequently edited files for constructing the semantic memory.

4.2 MAIN RESULTS

Table 1 presents the main experimental results. RepoMem consistently outperforms baselines
on both benchmarks. On SWE-bench-verified, RepoMem achieves an Acc@5 of 76.5%, a 4.9%
absolute improvement over the strong LocAgent baseline. The gains are also consistent on the
more diverse SWE-bench-live dataset. Ablating on the effect of each memory, using only episodic
memory (‘episodic-only’) provides a significant boost over LocAgent, demonstrating the value of
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Table 2: Per-repository performance comparison (Acc@5) on SWE-bench-verified. Repositories are
sorted by the average number of historical commits available, where “others” is the union of repos
with less than 10K commits. Our method sees strong gains in repositories with rich commit histories
but can be hindered in those with limited or irrelevant history.

Repo matplotlib sympy astropy django scikit-learn sphinx pytest others
# Examples 34 73 22 231 32 44 18 46
# Avg. Commits 43.9K 39.8K 31.2K 29.2K 25.1K 17.2K 12.4K 4.5K
LocAgent Acc@5 76.5 69.9 86.4 72.3 93.8 47.7 61.1 67.4
RepoMem Acc@5 82.4 (+5.9) 72.6 (+2.7) 86.4 (+0.0) 79.7 (+7.4) 96.9 (+3.1) 59.1 (+11.4) 77.8 (+16.7) 54.3 (-13.1)

referencing past commit history. Similarly, using only semantic memory (‘semantic-only’) also
improves performance by helping the agent focus on actively developed parts of the codebase. The
best results are achieved when both memory components are combined, indicating that they provide
complementary information: episodic memory offers concrete solutions to similar past problems,
while semantic memory provides high-level architectural context for the agent to leverage.

Table 2 provides a breakdown of performance by repository on SWE-bench-verified, sorted by the
average number of historical commits available. The results reveal a clear correlation: repositories
with a rich commit history benefit the most from RepoMem. This strongly supports our hypothesis
that commit history is a valuable source for memory building. Conversely, for the “others” group
which consists of repositories with limited history, performance degrades. This is likely because the
memory contains too little relevant information, and the agent’s exploration of this sparse history can
be more distracting than helpful.

4.3 ANALYSIS

We perform a series of analyses of RepoMem on SWE-bench-verified, to gain deeper insights into
the effect of integrating repository memory.

Shift in Agent Behavior. The introduction of memory drastically alters the agent’s problem-solving
strategy. As shown in Figure 3, agents equipped with the memory significantly reduce their reliance on
exhaustive exploration tools (TraverseGraph) and direct code inspection (RetrieveEntity).
This reflects a strategic shift from brute-force navigation to a more targeted, hypothesis-driven
investigation, where the agent integrates its accumulated repository knowledge to form hypotheses,
and performs detailed exploration/verification leverating the original LocAgent tools—a process that
more closely mirrors an experienced human developer’s workflow.
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Figure 3: Tool use distribution for LocAgent vs. RepoMem. The introduction of memory-based
tools drastically alters agent behavior. RepoMem significantly reduces its reliance on exhaustive
exploration tools like TraverseGraph and direct code reading (RetrieveEntity), indicating
a strategic shift from brute-force navigation to a more targeted, hypothesis-driven investigation guided
by memory.
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Figure 4: Per-example cost comparison (LA: LocAgent, RM: RepoMem). This scatter plot
shows the LLM API cost for each example, where the x and y coordinates correspond to the cost
of LocAgent and RepoMem, respectively. Points below the diagonal line indicate RepoMem was
cheaper, while points above indicate it was more expensive. The high variance reveals that the
efficiency impact of integrating memory is problem-dependent: it provides significant savings on
some tasks but incurs overhead on others, a nuance missed by average cost metrics.

Table 3: Cross-comparison of LLM API cost
(LA: LocAgent, RM: RepoMem). Each cell
shows the average cost per example for LocA-
gent → RepoMem. The largest cost increase
occurs in the bottom two quadrants, which are
examples where LocAgent fails. This indicates
that the additional cost is primarily a strategic in-
vestment to improve accuracy on difficult tasks.

RM Succeeds RM Fails

LA Succeeds $0.58 → $0.68 $0.59 → $0.66

LA Fails $0.54 → $0.89 $0.59 → $0.87

Table 4: Impact of retrieval method for mem-
ory interface on the performance of django
repository. Sparse retrieval using BM25 with a
custom LLM-based tokenizer outperforms both
a standard tokenizer and a strong dense retrieval
model (GritLM-7B).

Retrieval Methods django/django
Acc@1 Acc@3 Acc@5

Dense retrieval 65.8 71.9 73.6
BM25 (whitespace) 67.1 74.5 77.9
BM25 (LLM) 70.1 76.6 79.7

Efficiency Analysis. We find that integrating the memory introduces a strategic cost-effectiveness
trade-off instead of a uniform overhead. First, as shown in the cross-comparison in Table 3, the
additional expenditure is primarily allocated to solving difficult problems—the most significant
cost increase occurs in examples where LocAgent fails. This indicates that overall, our method
strategically invests additional resources to solve challenging problems that the baseline cannot, rather
than spending wastefully on problems that could already be solved without resorting to the memory.

More interestingly, the cost impact is highly variable at the instance level. Figure 4 shows a scatter
plot of per-example costs, again cross-comparing the two methods. While the average cost increases,
the plot reveals high variance across the examples. For many problems, RepoMem is significantly
cheaper than LocAgent (points far below the diagonal), likely because the memory provided a more
direct hint to the solution. For some others, it could instead be much more expensive (points far
above the diagonal), likely on problems where the memory proved fruitless and only added overhead
and distractions. This heterogeneity highlights that average cost can be a misleading metric, and
the efficiency of our memory-augmented agent is highly dependent on the relationship between the
current problem and the repository’s history.

These findings also suggest a promising future direction: training agents to be more strategic about
when to use memory tools. An agent that could first assess a problem’s novelty might learn to
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rely on memory for issues that are related to the past experience, while defaulting to first-principle
explorations for unprecedented ones, optimizing the cost-effectiveness trade-off.

Retrieval Methods for Memory Interfaces. Here, we investigate the choice of retrieval method for
our memory interfaces. We compare three approaches on the django repository, with results shown
in Table 4. Here, we use the strong GritLM-7B model for dense retrieval (Muennighoff et al., 2025).
Our default method in the main results uses BM25 with an LLM-based tokenizer that recognizes code
entity names, which outperforms standard whitespace tokenization. More notably, sparse retrieval
methods significantly outperform dense retrieval. We hypothesize this is due to the unique vocabulary
of code-related utterances in software repositories—for example, entities like ‘MigrationWriter’
and ‘OperationWriter’ may be semantically close but are functionally very distinct. Sparse retrieval
methods, which rely on exact keyword matches, excel at handling this “rigid” vocabulary. Similar
phenomena are also observed in prior work, e.g., Sciavolino et al. (2021) finds that dense retrievers
could drastically underperform sparse methods in entity-centric question-answering.

Error Analysis. We conducted a small-scale analysis of the failure cases of RepoMem to better
understand its limitations. As expected, the primary failure mode occurs when memory retrieval yields
little useful information about the issue, a problem stemming from either the novelty of the issue or
shortcomings in the retrieval methods. In such instances, the agent receives irrelevant information that
can pollute its reasoning context and distract it—a well-known challenge for LLMs (Shi et al., 2023).
This can lead to performance worse than the baseline, as observed in repositories with sparse histories
(Table 2). These findings highlight promising directions for future work, such as designing/training
better memory interfaces and developing mechanisms that enable the agent to dynamically decide
whether to rely on the memory or instead fall back on first-principles reasoning (as discussed earlier).

5 CONCLUSION

In this work, we take an initial step toward addressing a key limitation of current language agents for
software engineering: their lack of long-term repository memory. We propose a simple yet effective
solution that leverages the rich contextual information embedded in a repository’s commit history.
By building two complementary memory stores—an episodic memory of past commits and linked
issues, and a semantic memory of active code functionality—we enable agents to draw on past
knowledge when tackling future tasks. Our experiments show that this memory-augmented approach
substantially improves code localization performance on established benchmarks. Further analysis
reveals a shift in agent behavior toward a more experience-guided strategy that better reflects human
expertise. Overall, this work underscores the importance of incorporating long-term memory into
agent workflows, paving the way for more capable and experienced software engineering assistants.

ETHICS STATEMENT

All authors of this paper have read and adhered to the ICLR Code of Ethics. Our research is built
upon publicly available datasets, which are derived entirely from open-source software repositories.
The study does not involve human subjects, and our data processing steps do not introduce any new
ethical concerns regarding privacy, bias, or fairness. The proposed methods are designed for software
engineering assistance and do not present foreseeable risks of misuse or negative societal impact.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure our work is reproducible. Our experiments are conducted on the
public SWE-bench-verified and SWE-bench-live benchmarks. The methodology for constructing
the episodic and semantic memory components is detailed in §3, and the implementation details
are provided in §4.1. To further facilitate replication, we provide comprehensive documentations,
examples, and prompts used for our agent in Appendix A and Appendix B. The source code for our
framework and experiments will also be made publicly available upon publication.
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A DOCUMENTATION AND EXAMPLE RESPONSES OF MEMORY TOOLS

Figure 5, 6, 7, 8 show the documentation and example responses of the memory tools.

SearchCommit 
Doc: 
This tool searches the repository's commit history to find commits similar to a given query - typically a hypothetical commit 
message. It uses the BM25 ranking algorithm to match the input against historical commit messages, surfacing relevant past 
changes. Using this tool early in the investigation is recommended, as it can help identify related issues or changes from the past, 
allowing you to quickly locate potential areas in the codebase to focus on. 
 
Parameters: { 
    'type': 'object', 
    'properties': { 
        'query_list': { 
            'type': 'array', 
            'items': {'type': 'string'}, 
            'description': ( 
                "A list of queries. Each query can be a hypothetical commit message, which would be matched with the history commit 
messages to retrieve similar commits." 
            ) 
        }, 
        'top_k': { 
            'type': 'integer', 
            'description': ( 
                "top_k commits will be returned." 
            ), 
            'default': 20 
        } 
    }, 
    'required': ['query_list'], 
} 
 
Example API call: SearchCommit(query=‘Fix Cannot drop unique_together constraint on a single field with its own unique=True 
constraint’, top_k=20) 
Observation: 
##Searching for query `Fix Cannot drop unique_together constraint on a single field with its own unique=True constraint`... 
### Search Result: 
SHA: 73a6ab638 | Commit message: Fixed #25551 -- Fixed migration operations ordering when adding fields and a 
unique_together constraint. | Edited files: ['django/db/migrations/autodetector.py'] 
SHA: 533b20877 | Commit message: Fixed #29224 -- Fixed removing index_together indexes if exists unique_together constraint 
on the same fields. | Edited files: ['django/db/backends/base/schema.py'] 
SHA: f5a324391 | Commit message: Fixed #33125 -- Avoided redundant unique constraint when converting a non-unique field to 
primary key on MySQL and PostgreSQL. | Edited files: ['django/db/backends/base/schema.py', 
'django/db/backends/oracle/schema.py'] 
… 
================================================================================================= 
ExamineCommit 
Doc: 
This tool examines the details of a commit based on the short (9-digit) commit sha, including the commit patch and optionally the 
issue description. 
Note that the line numbers displayed in the patch are from those history commits, not the current repo you are working on. 
 
Parameters: { 
    'type': 'object', 

Figure 5: Documentation and example outputs from the memory tools.
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    'properties': { 
        'sha_list': { 
            'type': 'array', 
            'items': {'type': 'string'}, 
            'description': ( 
                "A list of short 9-digit commit sha that you wish to examine." 
            ) 
        }, 
        'display_issue': { 
            'type': 'boolean', 
            'description': ( 
                "Set to True if you wish to include the issue description in the output."                    ), 
            'default': False 
        } 
    }, 
    'required': ['sha_list'], 
} 
 
Example API call: ExamineCommit(sha=[‘50931dfa5’], display_issue=True) 
Observation: 
##Commit for sha `50931dfa5`... 
issue summary: Allow management commands to check if database migrations are applied 
issue description: When creating a new project, you can sometimes forget to run `manage.py migrate` before creating the initial 
superuser (especially if you don't execute `runserver` before, which display a warning about migrations not applied). The resulting 
error make sense, it can't access to auth_user, since it does not exist yet: 
​  ​ {{{ 
​  ​ $ django-admin.py startproject sample 
​  ​ $ cd sample/ && python manage.py createsuperuser 
​  ​ …​  ​  
​  ​ ... but with a little try/except, it could be nicer and give a more meaningful information: 
​  ​  
​  ​ {{{ 
​  ​ $ python manage.py createsuperuser 
​  ​ CommandError: You must execute `manage.py migrate` once before creating a super user 
​  ​ }}} 
​  ​ I have a patch ready (as I said, it just a try/except, see attachment) but, if accepted, it would need unit tests to 
be complete. 
Edited file: django/contrib/auth/management/commands/changepassword.py 
Patch: 
@@ -12,7 +12,7 @@ 
 class Command(BaseCommand): 
     help = "Change a user's password for django.contrib.auth." 
- 
+    requires_migrations_checks = True 
     requires_system_checks = False 
     def _get_pass(self, prompt="Password: "): 
---- 
Edited file: django/contrib/auth/management/commands/createsuperuser.py 
Patch: 
@@ -23,6 +23,7 @@ class NotRunningInTTYException(Exception): 
 class Command(BaseCommand): 

Figure 6: Documentation and example outputs from the memory tools.
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     help = 'Used to create a superuser.' 
+    requires_migrations_checks = True 
     def __init__(self, *args, **kwargs): 
         super(Command, self).__init__(*args, **kwargs) 
 
================================================================================================= 
ViewSummary 
Doc: 
This tool views summary of python files in the repo. You can input a list of file names you wish to examine. 
 
Parameters: { 
    'type': 'object', 
    'properties': { 
        'file_list': { 
            'type': 'array', 
            'items': {'type': 'string'}, 
            'description': ( 
                "A list of filenames that you wish to view the summaries." 
            ) 
        }, 
    }, 
    'required': ['file_list'], 
} 
 
Example API call: ViewSummary(file_list=["django/db/migrations/serializer.py"]): 
Observation: 
##Summary for file `django/db/migrations/serializer.py`... 
The `serializer.py` module in Django's migration system provides various serializer classes to convert Python objects into a 
serialized form suitable for migration files. The module includes a base class `BaseSerializer` and multiple subclasses, each 
handling specific types of objects such as lists, dictionaries, datetime objects, models, and custom functions. Each serializer 
implements a `serialize()` method that returns a string representation of the object and necessary import statements. The 
`Serializer` class maintains a registry of type-to-serializer mappings, allowing easy registration and usage of serializers through 
the `serializer_factory` function. This ensures objects are properly serialized when creating or applying migrations in Django. 
 
================================================================================================= 
SearchSummary 
Doc: 
This tool searches the repository's cached file summaries to find files similar to a given query - typically a message describing 
some functionalities or keywords. It uses BM25 to match the input query against file summaries and returns top-k ones. 
 
Parameters: { 
    'type': 'object', 
    'properties': { 
        'query': { 
            'type': 'string', 
            'description': ( 
                "A query, which can be a message describing some functionalities or keywords, to be matched with the available file 
summaries to retrieve similar ones." 
            ) 
        }, 
        'top_k': { 

Figure 7: Documentation and example outputs from the memory tools.
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            'type': 'integer', 
            'description': ( 
                "the top_k files to return." 
            ), 
            'default': 5 
        } 
    }, 
    'required': ['query'], 
} 
 
Example API call: SearchSummary(query=’generates a migration file that is missing an import statement’, top_k=4): 
Observation: 
## Searching for query `generates a migration file that is missing an import statement`... 
### Search Result: 
file: django/db/migrations/operations/special.py | summary: The `special.py` file in `django/db/migrations/operations` defines three 
classes for managing database migrations in Django:\n\n1. **`SeparateDatabaseAndState`**: This class separates migration 
operations into those affecting the database and those affecting the state. It allows for operations that do not support state change 
to still apply the changes or vice versa. It includes methods to deconstruct operations, forward and backward migrations 
specifically for state and database, and a description of the combined state/database change.\n\n2. **`RunSQL`**: This class is 
used to run raw SQL statements during migrations. It supports providing a reverse SQL statement for reversible migrations and 
can handle state changes represented by state operations. It includes methods for deconstructing the operations, performing 
forward and backward migrations with SQL, and a description of the raw SQL operation.\n\n3. **`RunPython`**: This class 
facilitates running custom Python code during migrations, suitable for versioned ORM operations. It accepts a callable for forward 
migrations and an optional callable for reverse migrations. It includes methods to deconstruct the operation, perform forward and 
backward database migrations, and a description of the raw Python operation. It also ensures all models are reloaded to 
accommodate possible delays.\n\nEach class inherits from `Operation`, ensuring compatibility with Django's migration framework 
and providing essential interfaces for migration processes. 
 
file: django/db/migrations/serializer.py | summary: The `serializer.py` module in Django's migration system provides various 
serializer classes to convert Python objects into a serialized form suitable for migration files. The module includes a base class 
`BaseSerializer` and multiple subclasses, each handling specific types of objects such as lists, dictionaries, datetime objects, 
models, and custom functions. Each serializer implements a `serialize()` method that returns a string representation of the object 
and necessary import statements. The `Serializer` class maintains a registry of type-to-serializer mappings, allowing easy 
registration and usage of serializers through the `serializer_factory` function. This ensures objects are properly serialized when 
creating or applying migrations in Django. 
 
file: django/core/management/commands/makemigrations.py | summary: This Django management command, 
`makemigrations.py`, is used to create new database migration files for specified apps. It offers various options such as performing 
a dry run, merging migration conflicts, creating empty migrations, and controlling verbosity. It ensures consistent migration history 
across databases, checks for migration conflicts, and handles user prompts interactively or non-interactively. The script generates 
migration files based on detected model changes, writes them to disk, and can display the details for review. It also includes 
functionality for merging conflicting migrations interactively, ensuring consistency and resolving dependencies. 
 
file: django/core/management/sql.py | summary: … 
 

Figure 8: Documentation and example outputs from the memory tools.
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B AGENT PROMPT

We use the same task instruction prompt from the original LocAgent framework to guide the agent,
which is displayed in Figure 9 for completeness.

Given the following GitHub problem description, your objective is to localize the specific files, classes or functions, and lines 
of code that need modification or contain key information to resolve the issue.

Follow these steps to localize the issue:
## Step 1: Categorize and Extract Key Problem Information
- Classify the problem statement into the following categories:
Problem description, error trace, code to reproduce the bug, and additional context.

- Identify modules in the '{{package_name}}' package mentioned in each category.
- Use extracted keywords and line numbers to search for relevant code references for additional context.

## Step 2: Locate Referenced Modules
- Accurately determine specific modules
- Explore the repo to familiarize yourself with its structure.
- Analyze the described execution flow to identify specific modules or components being referenced.

- Pay special attention to distinguishing between modules with similar names using context and described execution flow.
- Output Format for collected relevant modules:
- Use the format: 'file_path:QualifiedName’
- E.g., for a function `calculate_sum` in the `MathUtils` class located in `src/helpers/math_helpers.py`, represent it as:
'src/helpers/math_helpers.py:MathUtils.calculate_sum'.

## Step 3: Analyze and Reproducing the Problem
- Clarify the Purpose of the Issue
- If expanding capabilities: Identify where and how to incorporate new behavior, fields, or modules.
- If addressing unexpected behavior: Focus on localizing modules containing potential bugs.

- Reconstruct the execution flow
- Identify main entry points triggering the issue.
- Trace function calls, class interactions, and sequences of events.
- Identify potential breakpoints causing the issue.
Important: Keep the reconstructed flow focused on the problem, avoiding irrelevant details.

## Step 4: Locate Areas for Modification
- Locate specific files, functions, or lines of code requiring changes or containing critical information for resolving the issue.
- Consider upstream and downstream dependencies that may affect or be affected by the issue.
- If applicable, identify where to introduce new fields, functions, or variables.
- Think Thoroughly: List multiple potential solutions and consider edge cases that could impact the resolution.

## Output Format for Final Results:
Your final output should list the locations requiring modification, wrapped with triple backticks ```
Each location should include the file path, class name (if applicable), function name, or line numbers, ordered by importance.
Your answer would better include about 5 files.

### Examples:
```
full_path1/file1.py
line: 10
class: MyClass1
function: my_function1

full_path2/file2.py
line: 76
function: MyClass2.my_function2

full_path3/file3.py
line: 24
line: 156
function: my_function3
```

Return just the location(s)
Note: Your thinking should be thorough and so it's fine if it's very long.

Prompt

Figure 9: The task instruction prompt used to guide the agent’s reasoning process.

C USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely as a general-purpose writing aid in the preparation
of this paper. Specifically, they were used to help polish grammar and improve the clarity of certain
sentences. No LLMs were used for research ideation, experimental design, data analysis, or drawing
conclusions. All substantive contributions to the research and writing were made by the authors.
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