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Abstract

Biological discovery and design are increasingly being guided by surrogate models
trained on data from high-throughput assays in place of costly experimentation.
However, existing datasets are often biased due to an overrepresentation from
model organisms, leading to failures when performing evolutionary studies in
non-model species. We present a hybrid framework that leverages high-throughput
molecular assays and active learning to quantify biological properties across evo-
lutionary space. We focus on transcriptional activators, which contain activation
domains (ADs) that promote gene expression. ADs are intrinsically disordered
and poorly conserved, which limits their study using alignment-based algorithms.
Here, we develop ADhunter, a high-capacity regression model that outperforms
state-of-the-art algorithms in identifying and quantifying the strength of ADs.
Predictive uncertainty was used to guide evolutionary sampling across 7,842,516
proteins from 2,400 fungal genomes. We functionally characterized 9,836 ADs
from 1,071 fungal genomes, providing a 15.5-fold expansion in genome represen-
tation compared to existing datasets. Comprehensive sampling improved model
generalizability and provides the first functional annotation for 3,416 proteins
in non-model fungi, highlighting the importance of sampling from non-model
genomes to build evolutionarily robust models for predicting biological properties.

1 Introduction

Advances in DNA synthesis and sequencing have enabled high-throughput assays that are transform-
ing biological research [1], [2]. These methodologies have shifted experimentation from small-scale
characterization of a few hypotheses to large-scale assays capable of evaluating hundreds to thou-
sands of hypotheses in parallel. While small-scale experiments have elucidated gene-level principles,
large-scale approaches enable researchers to uncover genome-level features that govern biological
functions [3], [4].

In biological discovery and design, high-capacity regression models are increasingly replacing
costly and time-consuming functional characterization with cheap and fast inference [5]-[8]. These
surrogate models approximate the behavior of a more complex or computationally expensive function,
enabling estimation or inference by serving as a proxy for biological properties. High-throughput
assays provide functional measurements for training surrogate models, but existing datasets are often
biased by overrepresentation of sequences from model organisms, limiting model generalizability in
evolutionary studies (Fig. 1A). Decades of sequencing and experimentation have highlighted that
model organisms represent only a fraction of biological diversity. While experimental scientists
rely on model systems to elucidate biological principles through standardized procedures, high-
throughput assays are limited by the constraints of DNA synthesis rather than by organismal origin.
Evolutionary space represents a broad distribution of functionally enriched sequences, especially
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from non-model organisms, that challenge high-throughput assays with edge cases, enabling a more
rigorous evaluation of the assay’s capacity to quantify biological properties (Fig. 1B). Furthermore,
most algorithms are known to suffer from pathologies such as overconfident predictions and reduced
accuracy when performing inference on regimes far from the training distribution [9], [10]. Therefore,
models trained exclusively on sequences from model organisms are unreliable when performing
inference on divergent sequences from non-model species. Successful design of predictive models
for evolutionary studies thus requires comprehensive training datasets to capture underrepresented
features relevant to a property of interest.
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Figure 1: Surrogate models for evolutionary studies of biological properties. (A) Model organ-
isms (e.g., S. cerevisiae, A. thaliana, M. musculus) are useful experimental systems, however, their
sequence space represents a fraction of biological diversity for their respective branches of life. (B)
Surrogate models used to predict biological properties trained exclusively on sequences from model
organisms perform poorly in evolutionary studies. These models can be made into generalizable
predictors of biological properties by acquiring labeled data with high uncertainty across protein
evolution and updating the initial model.

One such property is sequence-to-function prediction of transcriptional activators, which promote
gene expression [11]. Activation domains (ADs) undergo dynamic interactions with components
of transcriptional machinery to enhance expression of target genes. Predicting the extent to which
ADs promote gene expression remains difficult due to their intrinsic disorder, multiple modes of
binding, and poor sequence conservation, limiting comparative genomics approaches [12]. Recently
developed high-throughput assays have enabled quantification of thousands of ADs in parallel [11],
[13], providing functional measurements for training surrogate models. While existing models
can identify key properties of AD sequences, most datasets are biased toward the model fungus,
Saccharomyces cerevisiae [14], [15], and the model plant, Arabidopsis thaliana [16], [17]. Surrogate
models trained on these datasets can identify a functionally-conserved class of ADs known as acidic
ADs [18]-[20], but fail to detect less-characterized AD classes, limiting their generalizability in
non-model genomes. Since ADs lack structural constraints, they can explore a much larger sequence
space compared to structured proteins, making model generalizability imperative for evolutionary
studies of gene regulation.

In this study, we leverage the growing volume of sequencing data from non-model fungal genomes
and active learning to discover transcriptional activators across fungal evolutionary space. Fungi are
largely understudied, yet biosynthesize natural products that have transformed modern medicine [21].
Functional characterization has primarily focused on sequences from Saccharomycotina, while the
broader protein diversity across Ascomycota and other fungal divisions remains largely uncharted. We
developed ADhunter, a high-capacity regression model that outperforms the state-of-the-art model,
TADA [22], at identifying and quantifying the strength of transcriptional activators. Machine-based
uncertainty was used to predict the activity for 7,842,516 proteins across 2,400 fungal genomes.
The predicted activity and associated uncertainty guided the acquisition and downstream functional
characterization of 9,836 proteins from 1,071 fungal genomes. We demonstrate how performing active
learning on non-model genomes significantly enhanced ADhunter’s ability to quantify the activity of
diverse transcriptional activators, especially non-acidic sequences that are leucine- and phenylalanine-
enriched. Our results demonstrate how integrating high-throughput assays with active learning from
non-model genomes enables scaling of genome-level characterization towards evolutionary-level
functional genomics.



2 Results

2.1 Sequence-to-function modeling for precise quantification of transcriptional activators

Algorithms that are robust across evolutionary space require comprehensive training datasets to
predict a biological property of interest. We sought to create a regression model to quantitatively
predict AD activity. A quantitative model would enable accurate identification of AD boundaries
and peak activity in natural sequences to study intrinsically disordered protein evolution, such as
in non-model organisms that have evolved genetic regulation to biosynthesize natural products and
adapt to ecological niches. Furthermore, a quantitative model can be used in protein engineering
contexts to design transcription factors (TFs) for fine-tuned gene expression in synthetic biology.

We systematically evaluated protein sequence representations to enhance sample efficiency, using
performance on a held-out test dataset as the benchmark. Functional characterization of AD sequences
is costly and time-consuming, making it essential for surrogate models to extract the most information
from each datapoint. Binary encodings of protein sequences are frequently used due to their simplicity;
however, this approach fails to capture secondary structure and biochemical properties of amino acids
[23], [24]. Alternatively, features from human-selected sequence descriptors may introduce biases.
Combining both approaches can lead to unequal weighting and increased complexity, resulting in
reduced performance (Table 3). For instance, PADDLE [15] performs well at identifying acidic ADs,
but had poor quantitative performance on the initial dataset (Pearson r = 0.261; RMSE = 0.336).
Excluding secondary structure predictions improved performance (Pearson r = 0.338; RMSE = 0.329).
Continuous neural encodings from pretrained protein language models provide general, task-agnostic
features that capture evolutionary signals [25]-[27].

Our initial dataset consists of 17,609 53 AA tiles from fungal and plant proteins previously character-
ized for AD activity with a high-throughput assay [16]. We trained a convolutional neural network
(CNN) and found that neural encodings from an evolutionary-scale protein language model (ESM)
[28], [29] outperformed one-hot and all other representations on a held-out test dataset (Pearson
r = 0.744; RMSE = 0.664). These results indicate that neural encodings from pretrained models
outperform simple encodings, and that pretrained protein language models learn representations that
are informative for modeling intrinsically disordered and poorly conserved regions like ADs.

After determining the protein sequence representation, we evaluated model architectures to bal-
ance optimal performance while minimizing model complexity. Neural encodings combined with
lightweight regressors have been shown to outperform complex architectures trained on simpler
features [29]. A CNN with residual connections (ResNet) had the highest performance on the
held-out test dataset. This model with ESM encodings was named ADhunter. The state-of-the-art
AD predictor model, TADA [17], has been shown to outperform first-generation models ADpred
[14] and PADDLE [15]. When trained on the initial dataset, ADhunter achieved better quantitative
performance than TADA (Pearson r = 0.538; RMSE = 0.995) (Table 4). An ablation study of TADA’s
architecture reveals that the CNN layer alone is sufficient to achieve optimal predictive performance
(Table 5). These results demonstrate how a ResNet trained with neural encodings can outperform
a more complex architecture trained on human-selected features at quantitatively predicting AD
activity.

2.2 Deep ensembling enables uncertainty estimation and improves model generalizability

Quantifying uncertainty enables researchers to distinguish between confident predictions and those
that are unreliable, guiding prioritization of candidates for experimental validation and exploration
of uncharacterized sequence space. Existing predictive models of AD activity have no notion of
uncertainty, leading to biased, overconfident, or misleading predictions. While neural networks do
not inherently represent uncertainty, deep ensembles provide an approach for estimating prediction
uncertainty [30]. We used a deep ensemble for scalable and robust estimates of epistemic uncertainty
in high-dimensional, non-linear settings. This approach avoids the restrictive kernel assumptions and
computational bottlenecks of sparse Gaussian processes, as well as the optimization and calibration
challenges of Bayesian neural networks. Machine-based uncertainty can inform the optimization of
predictive models in evolutionary studies by guiding sampling from non-model genomes to build a
more comprehensive training dataset.



Uncertainty can originate from the assay, known as aleatoric uncertainty, or from the predictive
model, known as epistemic uncertainty. We incorporated machine-based uncertainty into ADhunter
to quantify epistemic uncertainty (See Appendix 5.1). Furthermore, model ensembling improves
predictive performance by combining the strengths of multiple regressors, which reduces individual
model biases. As expected, the model ensemble outperformed a single model on a held-out test
dataset. In particular, performance improved as a function of ensemble size and we selected an
ensemble with 20 models (Pearson r = 0.775; RMSE = 0.632) for computational tractability of
downstream tasks. These results indicate that the model ensemble improved ADhunter performance
and provides a machine-based estimation of uncertainty to select diverse sequences that will improve
model generalizability for evolutionary studies.

We simulated out-of-distribution inference by performing spectral clustering of the training dataset.
When evaluated on a held-out test cluster, TADA (Pearson r = 0.381; RMSE = 1.021) underperformed
relative to ADhunter (Pearson r =0.512; RMSE = 0.826) (Table 6). A single instance of ADhunter with
neural encodings outperforms one-hot encodings, and ensembling further improved out-of-distribution
performance. These results indicate that ADhunter has superior generalizability performance relative
to the state-of-the-art AD prediction model.

2.3 Evolutionary sampling of transcriptional activators using machine-based uncertainty

We sought to further improve ADhunter for use in evolutionary studies with active learning from
sequences in non-model genomes. Active learning involves performing inference on a design space,
functional characterization of selected sequences defined by an acquisition function, and updating
the model on the active learning dataset [31], [32]. This framework has successfully been used in
protein engineering applications, such as in directed evolution, where the objective is to optimize a
property of interest [33]-[35]. In comparison to structured proteins, we have limited knowledge of
the activity landscape for disordered proteins, such as transcriptional activators. For studying gene
regulation, our objective is to minimize prediction error. In place of mutagenesis libraries for protein
engineering, we created an active learning dataset from the sequence space sampled by evolution.

To enhance ADhunter’s robustness across evolutionary space, we performed in silico discovery of
ADs. From the MycoCosm collection [36] we obtained 2,400 fungal genomes totaling 87,542,943
proteins. Sequences were deduplicated, resulting in 9,395,825 unique proteins (Fig. 2A). We
clustered sequences with 90% identity to retain maximum diversity of protein space. The 7,842,516
representative sequences from each cluster were sliced into 53 AA tiles with 10 AA stride, totaling
72,057,539 tiles. ADhunter predicted the activity and associated uncertainty for each tile. In contrast
to previously characterized sequences from the model fungus, the evaluated sequences encompass
both unicellular and multicellular fungi with diverse morphologies and ecological niches.

Using quantile-balanced uncertainty sampling as our acquisition function, we selected 8,935 se-
quences with maximum uncertainty across the range of predicted activity. The acquired sequences are
represented in 1,050 of 2,400 fungal genomes (43.8%) compared to 21 fungal genomes (0.00875%)
from the initial dataset and 69 fungal genomes (0.0288%) from the S. cerevisiae TF dataset [15]
(Fig. 2B). Once harmonized, a process that maps the new dataset onto the same distribution of
empirical activity as the initial dataset, the updated dataset will represent the diversity from 1,071
fungal genomes (44.6%). Interestingly, acquired sequences with high uncertainty originate from all
clades except Saccharomycotina, which is sampled by the initial dataset and contain the model fungus
S. cerevisiae. Our active learning dataset provides comprehensive exploration of evolutionary space
for functional characterization of diverse ADs from non-model fungi, including deeper sampling
within Ascomycota and the first high-throughput characterization across fungal divisions.

Completing the active learning cycle requires functional characterization of the new dataset, harmo-
nizing the initial and new datasets, then retraining ADhunter on the harmonized dataset. We used
a previously developed high-throughput assay to quantify AD activity [11]. Overall, the test tiles
from non-model fungi had lower activity relative to the initial dataset. Interestingly, there was poor
correlation between the empirical and predicted activity for test tiles from non-model fungi (Pearson r
=0.178; RMSE = 1.15). These results indicate that there are novel sequence-to-function relationships
within proteins from non-model fungi in the active learning dataset that were not in the initial dataset.

The distribution of net charge versus fraction of non-polar residues in the initial dataset and the S.
cerevisiae TF dataset show that prediction error originates outside the sampled distribution (Fig. 2C).
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Figure 2: Machine-guided exploration of fungal protein evolution. (A) The MycoCosm collection
consists of 9,395,825 unique proteins from 2,400 fungi. Clustering by 90% sequence identity resulted
in 7,842,516 proteins that were sliced into 72,057,539 tiles to perform inference with ADhunter. (B)
Test tiles from evolutionary space (green) represent the diversity of 1,050 non-model fungal genomes
compared to 21 fungal genomes from the initial dataset (brown) and 69 fungal genomes from the S.
cerevisiae TF dataset (yellow). Uncertainty sampling avoided sequences from the Saccharomycotina
subdivision (grey), which contains the model fungus S. cerevisiae. (C) Tiles acquired from non-model
fungal genomes exhibit more diverse sequence properties, particularly in net charge and fraction of
non-polar residues, compared to prior datasets. The initial model fails to accurately predict the activity
of tiles with sequence features that lie outside the range observed in previously characterized datasets.
(D) Performing inference using the updated model across fungal protein evolution reduces uncertainty,
enabling ADhunter to better capture sequence-to-function relationships for use in evolutionary studies
of gene regulation.

The active learning dataset acquired sequences that span both distributions with a higher overall
fraction of non-polar residues. In particular, the tiles with the strongest activity from non-model fungi,
as well as those with the largest prediction error, contain a higher fraction of leucine and phenylalanine
residues compared to previously characterized datasets. Tiles above the median absolute prediction
error are found in 7,236 proteins across 849 fungal genomes. Therefore, adding these sequences
with high uncertainty to the training dataset should enable ADhunter to identify ADs from a larger
sequence space relative to the initial dataset.

2.4 Active learning enables quantification of protein codes from non-model genomes

After harmonizing the datasets, we evaluated the improvement in performance from active learning on
a new held-out test dataset. This dataset included sequences from both the initial and newly acquired
dataset, representing the diversity of 406 fungal genomes. ADhunter trained on the initial dataset was
able to perform well on the test sequences from yeast, but there was a clear subset of sequences with
high prediction error and uncertainty from non-model fungi (Pearson r = 0.541; RMSE = 0.963). In
particular, prediction error and uncertainty were highest outside sequences from Saccharomycotina.
ADhunter trained on the harmonized dataset was able to identify these patterns and achieved much
lower prediction error and uncertainty across the held-out test dataset (Pearson r = 0.824; RMSE =



0.570). These results demonstrate that active learning reduced uncertainty in ADhunter and identified
novel sequence-to-function relationships of ADs from a diverse sampling of fungal evolutionary
space. Therefore, active learning improved ADhunter’s ability to generalize across fungal proteins,
enabling deeper insights for evolutionary studies of gene regulation.

We further evaluated ADhunter with respect to TADA by partitioning performance contributions
attributed to the dataset composition versus the prediction task (Table 1). Comparison across models
is complicated by differences in AD sequence lengths. To assess the role of AD sequence length,
we retrained ADhunter and TADA separately on the 40 AA from Morffy et al. or the 53 AA
harmonized dataset. ADhunter achieved superior performance relative to TADA when evaluated
on both held-out test datasets. Comparison across models is further complicated by differences in
model optimization objectives. ADhunter minimizes a regression objective (i.e., mean squared error
loss) whereas TADA minimizes a classification objective (i.e., focal loss). To assess classification
performance, we binarized the predicted activity by ADhunter as described in Morfty et al. and found
that ADhunter outperformed TADA. To assess regression performance, we used the TADA score as
the predicted activity and found that ADhunter provided more quantitative predictions. Overall, these
findings further demonstrate that ADhunter achieves state-of-the-art performance across datasets and
prediction tasks.

Prediction Task | Model Harmonized Dataset Morffy et al. Dataset
TADA Pearson correlation = 0.621; | Pearson correlation = 0.635;
Regression RMSE = 0.935 RMSE =0.961
Pearson correlation = 0.818; | Pearson correlation = 0.682;
ADhunter
RMSE = 0.556 RMSE = 0.740
' . TADA Accuracy = 0.861; Accuracy = 0.924;
Classification F1 score = 0.866 F1 score = 0.922
ADhunter Accuracy = 0.905; Accuracy = 0.932;
F1 score = 0.910 F1 score = 0.935

Table 1: ADhunter achieves state-of-the-art performance as a surrogate model for AD activity.
ADhunter was compared to the state-of-the-art AD predictor, TADA, when trained and tested on
either the harmonized dataset or the Morffy et al. dataset. ADhunter outperformed TADA on both
datasets as well as regression and classification prediction tasks. Metrics are averaged across three
random seeds.

Revisiting fungal protein evolution using ADhunter trained on the harmonized dataset revealed an
overall reduction in uncertainty and a narrower range of predicted activity compared to ADhunter
trained on the initial dataset (Fig. 2D). Since only a small subset of proteins activate gene expression,
this may account for the greater variance in uncertainty among sequences with low predicted activity
compared to those with high predicted activity in the initial model. Given that most proteins lack
an AD, this likely explains the low median predicted activity across fungal protein evolution. The
reduced uncertainty in the characterized tiles from non-model fungi and across fungal protein
evolution suggest that active learning improved model generalizability. ADhunter enables accurate
quantification of ADs across fungal protein evolution, and our framework can be extended to study
biological properties across underexplored branches of life.

3 Discussion

Biological discovery and design are increasingly being guided by surrogate models trained on data
from high-throughput assays. While large-scale experimentation is often performed in model species,
acquisition of ground-truth labels should not be limited to sequences from these organisms. In this
study, we demonstrate how a deep ensemble and active learning can be used to comprehensively
explore fungal protein evolution, thereby enhancing model generalizability for predicting biological
properties. We use machine-guided exploration to traverse the sequence landscape of transcriptional
activators in fungi, a largely uncharacterized branch of life that represent 26.9% of all eukaryotic
reference genomes. Predicting properties of intrinsically disordered proteins remains a significant



challenge, even with the most advanced computational models. We present a framework that fine-
tunes pretrained neural encodings to accurately predict transcriptional activation of disordered proteins
across evolutionary space. By integrating high-throughput assays with active learning, this framework
extends beyond transcriptional activators to enable robust functional genomics models that quantify
biological properties at an evolutionary scale.

ADhunter outperformed the state-of-the-art model in classification and quantitation of ADs for use in
evolutionary studies. We optimized model performance by replacing binary protein representations
with continuous neural encodings and deep ensembling. These features also improved model
generalizability, as demonstrated by spectral clustering analysis. While design spaces in protein
engineering often center on mutagenesis libraries, our approach leverages the rich diversity of
sequencing data to explore protein codes in non-model genomes. Evolved proteins are highly diverse
and enriched for functional sequences, offering a more expansive foundation for surrogate models to
quantify biological properties.

A key feature of ADhunter is its integration of machine-based uncertainty. By prioritizing sequences
with high uncertainty across the range of predicted activity, we focused experimental efforts on
maximally informative samples. We performed functional characterization for a library of diverse
sequences, which significantly improved ADhunter’s ability to generalize outside Saccharomycotina
and across fungal divisions. This approach enabled quantification of underrepresented sequence-to-
function relationships from non-model organisms compared to existing models that tend to identify
overrepresented patterns. As surrogate models trained on high-throughput datasets continue to guide
biological discovery and design, addressing prediction biases from the training dataset composition
is crucial. Our work highlights the importance of expanding functional characterization beyond
model organisms to include sequences from non-model genomes. By leveraging advances in scalable
molecular technologies and machine learning, we can accelerate the study of underexplored branches
of life to identify universal principles of living systems and how machine-guided design can reprogram
organisms for novel purposes.
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5 Appendix

5.1 Uncertainty quantification

We approximate the predictive distribution by averaging over M neural networks, each of which
outputs a mean /i, () and assuming heteroscedastic variance o2, (z):
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Aleatoric uncertainty captures the irreducible noise in the data, such as measurement error or inherent
biological variability, and corresponds to the average predicted variance. Epistemic uncertainty
captures uncertainty due to limited knowledge or data scarcity, reflecting the disagreement between
ensemble members and can be reduced with more informative training data. Together they form the
total predictive variance:

M M
— 1 1 . 2
VarlY | z, D] = i Z o2 (x) + i Z (m () — ()" 3)
m=1 m=1
aleatoric uncertainty epistemic uncertainty
@[Y | 2,D] =K, [02,(z)] + Var,[ws,(z)]. 4)

5.2 Data, code, and sequencing availability

All code related to this study is publicly available on GitHub (github.com/shih-lab/ADhunter). The
base model of ADhunter using binary encodings is publicly available on Github (github.com/staller-
lab/adhunter). Raw sequencing reads are publicly available through the NCBI SRA Database under
BioProject accession PRINA1183837.

5.3 Model implementation

ADhunter consists of a convolutional layer, a series of residual blocks, a pooling layer, and a
fully-connected output layer. Each residual block contains two convolutional layers with batch
normalization and ReLLU activation. ADhunter optimizes mean squared error loss using Adam
and outputs evaluation metrics for the root mean squared error, Pearson correlation, and Spearman
correlation. To prevent overfitting, we added early stopping if the validation loss did not improve after
5 epochs. Labeled datasets were preprocessed by removing duplicate entries and z-score normalizing
the activity values where 80% was used for training, 10% for validation, and 10% for testing. Since
AD activity is continuous, the value was binarized with respect to the median activity to enable
stratified shuffling of the data. Protein sequences and activation measurements from Hummel et al.
were used for the initial training dataset. ESM embeddings were obtained as described on the ESM
GitHub repository (github.com/facebookresearch/esm).

5.4 Sequencing analysis

Fungal genomes were obtained from MycoCosm via the Joint Genome Institute. Protein sequences
were deduplicated then clustered by sequence identity using CD-HIT [37]. The test tiles from the
MycoCosm collection were codon optimized for expression in S. cerevisiae whereas the original
codons were used from dataset harmonization and control tiles.

Raw sequencing reads were demultiplexed using bcl2fastq v2.19.0, trimmed using trimmomatic [38]
v0.39, and assembled using PANDAseq [39] v2.11. Only reads with a perfect match to a tile in the
library were retained. Tile and barcode sequences were extracted using a custom regular expression
matching conserved regions. For each set of eight sorted samples, reads were normalized by the total
number of reads in each bin. For each tile, counts were normalized across the eight sets to calculate
arelative abundance. Activity scores were calculated by taking the inner product between relative
abundances and the median fluorescent value of each bin, resulting in a weighted average. Tiles
with less than 50 reads were discarded. We used labtools v0.0.3 to quantify activity for each AD
tile (github.com/staller-lab/labtools). The activity score for a given tile was aggregated by taking the
mean activity across all DNA barcodes.

5.5 Active learning dataset and harmonization

In addition to the tiles from non-model fungi, we added control tiles and tiles that harmonize the
initial and active learning datasets. For dataset harmonization, 437 tiles from the held-out test dataset
were selected with the smallest difference across the range of experimental and predicted AD activity.
As controls, the same acquisition function as the evolutionary sampling was used to select a subset
of 464 tiles with the highest uncertainty that span the range of empirical activity from the yeast TF
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dataset. For each tested tile there was a median of 12 DNA barcodes. We recovered 379 of 464 control
tiles (81.7%), 404 of 437 harmonization tiles (92.4%) and 7,681 of 8,935 non-model fungal tiles
(86.0%). As expected, the control tiles spanned the range of empirical activity with high correlation
to the activity reported in Sanborn et al. (Pearson r = 0.695; RMSE = 0.841). Harmonization tiles in
the active learning dataset and the initial dataset had high correlation (Pearson r = 0.934; RMSE =
0.274).

The FACS saturates at high and low signal. We determined the linear range of the assay by maximizing
the Pearson correlation between harmonization tiles in the initial and new dataset then validating the
thresholds on the Pearson correlation of the control tiles. To harmonize the two datasets, we used
a linear fit to map the activity values onto the same distribution. When evaluating the performance
improvement of active learning, ADhunter was retrained on the harmonized dataset, and a random
held-out test dataset was used for evaluation. ADhunter was retrained on the entire harmonized
dataset when performing inference on the MycoCosm collection.

5.6 Supplementary tables

Secondary Structure Included | Pearsonr | RMSE
True 0.261 0.336
False 0.338 0.329
Table 2: Evaluation of PADDLE performance. PADDLE was evaluated on the initial dataset
and achieved poor prediction performance. The model combines one-hot encodings and secondary

structure predictions. However, the secondary structure predictions result in worse performance likely
due to increased complexity of input features.

Encoding Pearsonr | RMSE
BLOSUM 0.730 0.692
NLF 0.698 0.722
One-hot 0.742 0.672
ESM1_650M_1 | 0.740 0.669
ESM1_650M_2 | 0.732 0.678
ESM1_650M_3 | 0.734 0.678
ESM1_650M_4 | 0.739 0.674
ESM1_650M_5 | 0.728 0.685
ESM2_8M 0.744 0.664
ESM2_35M 0.744 0.664
ESM2_150M 0.725 0.686
ESM2_650M 0.706 0.708
ESM2_3B 0.744 0.668

Table 3: Evaluation of protein sequence encodings. One-hot encodings outperform other simple
protein representations on a held-out test dataset. Neural encodings from pretrained protein language
models slightly outperform one-hot encodings on a held-out test dataset. Metrics were averaged
across 10 random seeds.
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Model Pearsonr | RMSE
TADA 0.538 0.995
ADhunter | 0.775 0.631

Table 4: Evaluation of the state-of-the-art model relative to ADhunter on the initial dataset.
ADhunter outperforms the state-of-the-art AD predictor, TADA, when trained on the initial dataset
and evaluated on a held-out test dataset. PADDLE was not included since the untrained model is not
available for fair comparison.

Model variant Accuracy | F1 score
Conv1D-Dropout-Conv1D-Dropout-Attention-BiLSTM-BiLSTM | 0.845 0.845
Conv1D-Dropout-Conv1D-Dropout-Attention-BiLSTM 0.845 0.845
Conv1D-Dropout-Conv1D-Dropout-Attention-MaxPooling 1 D 0.839 0.839
Conv1D-Dropout-Conv1D-Dropout-MaxPooling I D 0.852 0.852
Conv1D-Dropout-MaxPooling1D 0.849 0.849
Conv1D-Dropout-Conv 1D-Dropout-BiLSTM-BiLSTM 0.850 0.850
Conv1D-Conv1D-Attention-BiLSTM-BiLSTM 0.846 0.846
Conv1D-Conv1D-BiLSTM-BIiLSTM 0.852 0.852
Conv1D-Conv1D-MaxPooling1D 0.866 0.866
Conv1D-MaxPooling1 D 0.860 0.860
Attention-MaxPooling1D 0.839 0.838

Table 5: TADA ablation study. We evaluated the contribution of each architectural component of
TADA by incrementally removing or replacing key elements then training on the initial dataset and
evaluating on a held-out test dataset. Metrics were averaged across three random seeds.

Model Pearsonr | RMSE
TADA 0.381 1.021
ADhunter_simple | 0.416 0.884
ADhunter_neural | 0.476 0.856
ADhunter 0.512 0.826

Table 6: Evaluation of model generalizability. Using spectral clustering analysis, the ensemble
model of ADhunter with neural encodings outperforms single models of ADhunter with simple
(one-hot) or neural (ESM) encoding at generalizing on the initial dataset. Metrics were averaged
across three random seeds.
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