Formulating and Unveiling In-Context Learning over Graphs

Anonymous ACL submission

Abstract

In-context learning (ICL) is a fascinating ca-
pability of large language models (LLMs),
which can adapt to queries through demon-
strations without optimizing model parame-
ters. Although LLMs have demonstrated the
ability of ICL in graph tasks, the graph in-
context learning (GraphICL) mechanism is still
a black box. In this paper, we introduce a
novel framework for understanding and ana-
lyzing in-context learning over graphs, focus-
ing on graph tasks, with thorough formula-
tions, innovative mechanisms, and comprehen-
sive benchmarks.We are the first to systemati-
cally and rigorously formalize GraphICL by
explicitly defining task categories, the num-
ber of demonstrations, and graph structures in
graph reasoning tasks. We reveal the mecha-
nism of GraphICL, where the LLMs generate
more accurate answers by weighting and ag-
gregating the query representations and demon-
strations representations. However, existing
benchmarks lack datas with the same graph
structure, which is crucial for analyzing the im-
pact of graph structure on the GraphICL abil-
ity. We introduce two new datasets, compris-
ing a total of 17,155 graph questions across
graphs of varying sizes and multiple task cat-
egories. With these datasets, our experiments
comprehensively explore for the first time how
to activate GraphICL’s capabilities from the
perspectives of the number of demonstrations,
graph structures, task categories, etc., and ver-
ify our proposed formulation and mechanism.
The benchmarks and codes are available at:
https://github.com/Graph-ICL/GraphICL.

1 Introduction

The rapid advancement of large language models
(LLMs) such as GPT-4 (Achiam et al., 2023), Gem-
ini (Team et al., 2024) and DeepSeek (Lu et al.,
2024) have ushered in a new era of artificial in-
telligence, showcasing unprecedented capabilities
in understanding (Nam et al., 2024), generating

(Si et al., 2024), and reasoning (Hao et al., 2024)
with human-like proficiency across a wide range
of tasks. Graphs, with their non-Euclidean nature
(Wu et al., 2021), present a particularly challeng-
ing yet promising frontier for LLMs exploration
(Jin et al., 2024). Graphlnstruct (Luo et al., 2024),
LLM4DyG (Zhang et al., 2023) explore the graph
reasoning capabilities of LLLMs, finding that al-
though LLMs have certain capabilities, they per-
form poorly on complex graph tasks.

Recently, one of the most exciting features
emerging in LLMs is ICL (Brown et al., 2020;
Nguyen et al., 2023; Wies et al., 2023), which
allows LLMs to perform new tasks with several
demonstrations and no additional training. This
capability has sparked interest in using GraphICL
to improve answer accuracies in graph tasks. NL-
Graph (Wang et al., 2023a) tests the GraphICL’s
ability of LLMs and finds that adding demon-
strations does not improve the performance of
LLMs in complex graph tasks (e.g., Hamiltonian
paths). GPT4Graph (Guo et al., 2023) finds that
in some cases, demonstrations introduce noise,
bias, or incomplete information that hinders the
LLMs’ overall understanding. Graphwiz (Chen
et al., 2024a) tests GraphICL in GPT-4 and finds
that in nine types of graph tasks, the accuracy of
two-demonstration is improved compared to zero-
demonstration. The above studies show that the
GraphICL ability of LLMs is affected by factors
such as the number and quality of demonstrations
and the difficulty of the problem, which also show
that LLMs are very brittle with demonstrations. Al-
though current research studies GraphICL through
simple experiments, the mechanisms of GraphICL
is still in a "black box" and lack theoretical expla-
nation and sufficient verification.

In graph tasks, the complexity of node and edge
information, as well as the intricacy of the graph
problems themselves, significantly increases the
difficulty of revealing the mechanisms of Graph-

ICL. Many studies provide explanations from dif-
ferent perspectives, such as Bayesian models (Pan-
war et al., 2024), gradient descent (Li et al., 2023a),
and attention mechanisms (Dai et al., 2023), but
they do not explicitly focus on graph structures. Al-
though some works have demonstrated that LLMs
can improve the accuracy of graph tasks with some
demonstrations, the demonstrations in current stud-
ies are either randomly selected or fixed (Zhao
et al., 2021; Lu et al., 2022). This demonstration
selection method does not allow for a deeper study
of the impact of the demonstrations themselves on
the GraphICL ability. At the same time, current re-
search has not systematically analyzed how graph
demonstrations affect the graph reasoning ability of
LLMs from a "'graph perspective' . For example,
factors such as the graph structure, task category,
and graph size in the demonstrations are all nec-
essary to study in GraphlCL. However, there is
currently no suitable benchmark in the graph field
to fully solve the above problems, which is a major
gap in current research.

In this paper, we formally define GraphICL, con-
structing the query and several demonstrations as
a unified in-context. We explicitly represent the
categories of demonstrations , number of demon-
strations, the structure of graphs , etc., providing a
standardized expression for GraphICL. To further
reveal the intrinsic mechanism of GraphICL, we
interact tthe query representations, graph question
representations, and answer representations in a
demonstration set, explicitly giving the intrinsic
mechanism of GraphICL. In order to discuss in
detail the impact of factors such as the number of
demonstrations, categories, and graph structures,
we construct new datasets GraphSCB and Graph-
TRB. GraphSCB contains three different types of
graph question answering tasks, through which we
can study the impact of the similarity between the
graph structure in the demonstration and the graph
structure in the query on the accuracy of the ques-
tion. GraphTRB contains seven types of graph
reasoning tasks, through which we can study the
correlation between the task category in the demon-
stration and the category in the query, and the im-
pact on the accuracy of the question. Our main
contributions are as follows:

1. We define GraphICL for the first time, estab-
lishing a unified framework that explicitly ad-
dresses the category, number, and graph struc-
ture in demonstrations.

2. We reveal the mechanism of GraphICL, show-
ing how the LLMs generate answers by
weighting and aggregating the query represen-
tations and demonstrations representations.

3. We release two new open-source datasets,
GraphSCB and GraphTRB, which provide
comprehensive benchmarks for analyzing how
to activate GraphICL capabilities of LLMs.

2 Related Work

2.1 Large Language Models for Graph Tasks

Recent studies explore the powerful generaliza-
tion capabilities of LLMs for graph understand-
ing. Researchers have conducted empirical perfor-
mance evaluations on projects such as NLGraph
(Wang et al., 2023a), GPT4Graph (Guo et al.,
2023), TAPE (He et al., 2024), GraphWiz (Chen
et al., 2024a), GraphTMI (Das et al., 2023) and
LLM4DyG (Zhang et al., 2023), each exploring
whether LLMs can understand graph-structured
data. (Fatemi et al., 2023) systematically studies
the impact of different graph description languages
on LLMs’ understanding of graph data. GraphTMI
(Das et al., 2023) and (Chen et al., 2024b) explore
the potential of LLMs on graph node classification
tasks. The work closest to ours is done by NLgraph
(Wang et al., 2023a) and GraphWiz (Chen et al.,
2024a).

2.2 Demonstrations Selection for ICL

LLMs enable ICL techniques to solve different
tasks with only several demonstrations. However,
studies have shown that the choice of demonstra-
tions significantly impacts performance. A promis-
ing approach to enhance ICL is demonstration se-
lection, where the most relevant demonstrations are
retrieved through a retrieval-based paradigm. (Liu
et al., 2021; Li et al., 2023b) model this process
using off-the-shelf retrievers that leverage sentence
encoders to identify semantically similar demon-
strations. The multilingual ICL can benefit from
cross-lingual k-NN retrieval to improve source-
target language alignment (Tanwar et al., 2023).
However, the heuristic nature of these off-the-shelf
retrievers and the lack of task-specific supervision
make them suboptimal. To address this limitation,
supervised methods have been proposed (Rubin
et al., 2022; Wang et al., 2023b; Zhang et al., 2022).

[Demonstrations|
Question : Suppose there is a graph with the edge set of
{3, 1),(3,0),(1,0),(2,0), (2, 1)} and the point set of {0,
1,2, 3}. What is the shortest path between 2 and 3 in the
graph?
Answer : 3 -0 —2

{(1,2), (1, 3), (2, 3), (4, 2), (4, 3)} and the point set of {1,
2,3,4}. What is the shortest path between 1 and 4 in the
graph?

Answer:1—-2—4, 1-3—4

[Query]
Suppose there is a graph with the edge set of {(5, 7),
(5, 6), (7, 8), (6, 8), (6, 7)} and the vertex set of {5, 6, 7, 8}. Is

1
|
1
|
1
|
|
|
1
1
I Question : Suppose there is a graph with the edge set of
1
|
1
|
1
|
1
|
1
1 there a cycle in the graph?

Figure 1: An example of using the ICL ability of LLMs
to solve the graph reasoning problem.

3 Methodology

In this section, we delve into the theoretical and
practical aspects of GraphICL. It formalizes a uni-
fied framework for integrating demonstrations and
query input using pre-trained language models, pro-
viding a structured foundation for graph tasks. A
linear update mechanism was proposed to reveal
the basic principles of GraphICL. Furthermore, as-
sumptions are introduced to analyze how factors
such as graph structure similarity, demonstration
quantity, and category interaction influence the per-
formance of LLMs in graph reasoning tasks.

3.1 Formulations of ICL over Graphs

In this paper, we focus on ICL for graph reasoning
tasks using various LLMs. We assume a pre-trained
language model M, which stacks L layers of the
same Transformer structure, each layer consisting
of an attention module and a feed-forward network.
For a graph reasoning task, given a query Q(G),
where the graph G = (V| F), including a point set
V and an edge set F/, we need to generate the an-
swer A to the query based on n demonstrations
C = {(Q¥(G)), Aijk) }”k Where QF(G) rep-
resents the questions with graph information in
demonstrations, A, refers the answers in demon-
strations, ¢ refers to the number of ICL demonstra-
tions, j indexes the different graphs and k repre-
sents the category of graph tasks, such as Shortest
path, Maximum Flow.

Formally, given a pre-trained language model M,
we input demonstrations C' and query Q(G). The

conditional probability for generating the answer A
can be written as Py/(A | C,Q(G)). Specifically,
the zero-demonstration prediction is denoted as
Pru(A]Q(G)).

Our formulation Q¥ (G) introduces three dimen-
sions 4, j, and k, providing great flexibility. For
example, for a query Q(G), we can use multiple
different graph structures and graph task categories
in the demonstration set, and the number of ex-
amples ¢ can also vary. This flexibility enables
the dynamic configuration of demonstrations based
on the specific requirements of graph reasoning
tasks. Such an approach facilitates the adaptation
of the GraphICL framework to a wide range of
tasks, allowing diverse graph tasks to complement
and interact effectively. The graphic representation
of the GraphICL example can be seen in Figure
1. In practice, we usually format demonstrations
using predefined templates and splice them into the
context before the query question.

3.2 Mechanisms of ICL over Graphs

Given a query Q(G), the query description text is
represented by their embedding ¢(Q(G)) € R,
where ¢(-) represents a text encoder. The initial
prediction, denoted as Fiyj;, is obtained through a
linear transformation using a pre-trained parame-
ter matrix Wy € ReutXdin je Fiu(G,Q) =
Wop(Q(G)). Here, Wy captures the model’s prior
knowledge without considering any task-specific
demonstrations. This transformation forms the
zero-demonstration baseline for the prediction.

To adapt the predictions to task-specific require-
ments, demonstrations are introduced. Given the
set of demonstrations C' = {(Q¥(G;), Aij) }ijk »
where Q¥(G) represents the i-th demonstration’s
graph problem and A;;;, denotes the answer to
the ¢-th demonstration, let its representation be
?(Q%(G;)) € R¥%in, with A;j;’s corresponding em-
bedding ¢(A;j1,) € Rdout,

The model integrates the in-context information
through an update matrix AW € RoutXdin de-
fined as: AW = 37, &(Air) @ ¢(QF(G))),
where ® denotes the outer product. This update
encodes the interactions between the answer repre-
sentations ¢(A;;;) and the representations of graph
problems ¢(Q*(G)) of the demonstrations.

The updated transformation for the query rep-

resentation ¢(Q(G)) incorporates both the pre-
trained parameter matrix Wy and the in-context

update AW:

]:C(G7 Q)
=(Wo + AW)¢ (Q(Q))
=W (Q(G)) + AWH(Q(G))
~Woo (Q(G) + Y (¢(Aige) @ 6 (QE(G)))) #(QIG))
ijk
=Woo (Q(G)) + Y ¢(Au) (¢(QH(G) 6 (Q(G)))
ijk

=Fui(G.Q) + Y é(Ai) (6(QH(G) 0 (Q(G))) -

ijk

Here the Fini (G, Q) represents the model’s predic-
tion based solely on pre-trained knowledge, while
AW - ¢(Q(Q)) captures the task-specific adjust-
ments contributed by the demonstrations.

Remarkably, we explicitly demonstrate the in-
ternal mechanism of LLMs in GraphICL, where
the output answer embedding Fc (G, Q) is de-
termined jointly by ¢(QF(G;))T¢ (Q(G)) and
¢(Aijx), where ¢(QF(G;))T ¢ (Q(G)) measures
the relevance between graph problem representa-
tion in query ¢(Q(G)) and the the graph represen-
tation in demonstration Q¥(G}).

Besides, we can see that the answer to the query
is closely related to the graph information in the
query, the graph information in the demonstration
G, the task categories k, and the answer A, etc.
Therefore, to better study how graph demonstra-
tions activate the GraphICL capabilities of LLMs,
we can make the following assumptions.

Assumption 1. The correctness of answers is
influenced by the number of demonstrations .

For the k-th graph task category, let C* :=
{(Q¥(Gj), A jx)}i; C C denote the subset of
demonstrations C' related to the k-th graph task
category. Given the query Q™ (G) corresponding
to the m-th graph task category, we assume that
the model’s prediction in answering questions of
the m-th task category, Py (A | CF,Q™(@)), is
influenced by the corresponding number of demon-
strations I* := max{i | Q¥(G;) € C*}.

Assumption 2. The correctness of answers is
influenced by the structural similarity of graphs
between the query and demonstrations.

When the structural similarity between the j-
th graph G'; of the demonstrations and the graph
G of the query varies, the accuracy of the gener-
ated answers follows a pattern defined by the rele-
vance between the query representation ¢(Q(G))
and the graph representation in the demonstration

¢(Q%(Gj)). Specifically, the prediction accuracy
Py (A] C,Q(@)) is influenced by the inner prod-
uct ¢(Q¥(G;))T#(Q(G)), which reflects the sim-
ilarity between graph structures in the demonstra-
tions and graph structure in the query :

Py(A | C,Q(G)) o p(QF(G))Td(Q(G)).

We assume that the textual descriptions of the
Query and Demonstrations, which include graph
structure information, follow the same format, and
we only focus on the variations in the graph struc-
ture information. When the graph structure of the
demonstration is more similar to the graph struc-
ture of the query, the accuracy of the generated
answers is higher. Particularly, a completely identi-
cal graph can significantly improve the reliability
of the generated answers.

Assumption 3. The correctness of the answers
is influenced by the interaction of task categories
between demonstrations and the query.

Let Q*(G) represent questions of the k-th cat-
egory, and let D := C*1 U ... U C*n denote the
subset of demonstrations C' corresponding to m
different graph task categories. We assume that
the correctness of the answer A is influenced by
the interaction between the problem category k
and the query categories k1, . .., k. The predic-
tion Ppr(A | D,Q*(G)) is governed by this in-
teraction; when the interaction between categories
ki,...,kn and k is beneficial, the accuracy of the
generated answers improves. However, certain cat-
egories of demonstrations may not provide comple-
mentary information to the query, and may even
introduce interference information, which can neg-
atively impact the accuracy of the response.

4 Benchmarks

4.1 Limitations of Existing Benchmarks

In this section, we highlight the limitations of ex-
isting benchmarks in evaluating GraphICL, such
as inconsistent graph structures in QA pairs and
lack of detailed classification. To address these is-
sues, we introduce two new benchmarks, Graph
Structural Consistency Benchmark (GraphSCB)
and Graph Task-Related Benchmark (GraphTRB),
which enable more systematic analyze how graph
structure and task category affect activate the abil-
ity of GraphICL in LLMs.

Inconsistent Graph Structures in QA Pairs.
The graph structures in the question-answering

¥

\ , - -----------------------"-----"---"""""""" N 1
0. 2, 4,

1 1
1 1
i i
1 1
1 1
-
Connected, [|
Disconnected [!
1
1 1
\

~

T

1
Cycle 1
Detection :
Topological !

Graph Sort :
1

Connectivity Shortest Path

Bipartite Maximum Flow

1
1
I
1
1 :
(]
1
Directed, .Same,] : ' '
. Different, 1
Undirected S 1y
Similar -
1

____________________________________ / N e e e e e = = =

Graph Structural Consistency Graph Task-Related
\ Benchmark (GraphSCB)

Benchmark (GraphTRB)
Figure 2: An overview of the GraphICL Benchmark. The two newly proposed benchmarks for evaluating GraphICL,
designed to assess how graph structure and task category activate GraphICL. The GraphSCB examines how the
similarity between the graph structures in demonstrations and the graph structures in query influences accuracy,
while the GraphTRB explores how task categories in the demonstrations impact performance. Together, these
benchmarks provide a more systematic approach to understanding the role of graph structure and task categories in

activating ICL for graph-based tasks.

(QA) pairs of previous benchmarks were entirely
different, preventing in-depth exploration of the
impact of the graph structure in demonstrations on
question accuracy. The absence of consistent graph
structures hindered the study of how the similar-
ity or difference between the graph structures in
the demonstration and the query affected model
performance.

Lack of Multiple Examples for the Same
Graph. In previous benchmarks, each question
in the QA pairs corresponded to a different graph.
When exploring the interaction between different
task categories, it was necessary to keep the graph
the same to ensure the uniqueness of the indepen-
dent variable. However, previous benchmarks lack
such demonstrations, i.e., there is only one demon-
stration of the same category of questions, which
makes it impossible to add multiple demonstrations
of the same graph. This limitation prevented sys-
tematic analyze of the interaction between question
categories while controlling for graph structure.

Insufficient Detailed Classification of Graph
Structures and Question Categories. Previ-
ous datasets lacked detailed classification of graph
structures and question categories. For example,
important graph characteristics such as Connec-
tivity and size were not considered in the classi-
fication. This makes it difficult to fully explore
the impact of different graph structures and task

categories on the ability to activate GraphICL.

To address these limitations and provide a more
comprehensive evaluation of GraphICL, we in-
troduce two new benchmarks: the Graph Struc-
tural Consistency Benchmark (GraphSCB) and
the Graph Task-Related Benchmark (GraphTRB).
These benchmarks are designed based on the def-
initions and concepts presented in Figure 2, en-
abling systematic analyze how graph structure, task
category, and number of demonstrations activate
GraphICL performance, thus filling the gap left by
existing benchmarks.

4.2 Descriptions of the New Benchmarks

GraphSCB is a newly constructed dataset derived
from Graphlnstruct (Chen et al., 2024a), compris-
ing three distinct types of graph computation tasks:
Shortest Path, Maximum Flow, and Connectivity.
Each task type is extracted from Graphlnstruct,
using data corresponding to the same task type
but with varying graph sizes. The tasks is de-
fined by categorizing graphs based on their node
count: graphs with 10 to 35 nodes are considered
small, those with 36 to 65 nodes are categorized as
medium, and graphs with 66 to 100 nodes are clas-
sified as large. Additionally, for each data point, 16
distinct data instances are generated, each maintain-
ing the same task type and graph structure. Conse-
quently, the dataset contains a total of 10,891 data
instances. This is the first new benchmark that can

explore the impact of the graph structure in the
demonstrations being the same as or different from
the graph structure in the queyr on accuracy.

GraphTRB is a new dataset converted from
Graphlnstruct, which contains 7 types of graph
computing tasks, namely Connectivity, Cycle De-
tection, Bipartite Graph Check, Topological Sort-
ing, Shortest Path, Maximum Flow and Hamilton
Path. First, extract data of different graph sizes
from Graphlnstruct, but the node range of the graph
is between 10 to 30. Then generate 6 data with the
same graph but different task categories for each
data, and generate data with the same graph, the
same problem category and different problems for
each newly generated data again, for a total of 6264
data. This is the first benchmark that can explore
the relationship between the categories of graph
tasks in demonstrations and the categories of graph
tasks in query. Our newly constructed datasets are
shown in the comparison in Table 1. The detailed
explanation of the tasks in the dataset is provided
in Appendix A.

5 Experiments

In this section, we discuss the ICL ability of graphs
by addressing the following questions. Q1: How
do the ICL capabilities of different LLMs perform
on graph reasoning tasks ? Q2: What is the impact
of graph structure similarity between the demon-
strations and the query on the accuracy of answers?
Q3: Is there an interaction between the task cat-
egories of demonstrations and the task category
of query? For example, can the Cycle task in the
demonstrations promote the accuracy of the Short-
est Path task in the query?

5.1 Experimental Settings

Datasets: We use Graphlnstruct (Chen et al.,
2024a), GraphSCB and GraphTRB as our datasets.
Graphlnstruct is a large-scale instruction tuning
dataset that contains nine categories of graph tasks
and a total of 18,125 graph questions, where each
pair consists of a graph question description and a
corresponding explicit reasoning path or solution.

Models and Settings: We conducted experi-
ments using open-source models such as Qwen2.5-
7B, Qwen2.5-14B, and LLaMa3-8B. Our experi-
ments were run on 8 NVIDIA A6000 GPUs with
49GB of memory. To ensure the accuracy of the
experimental data, each experiment was run five
times, and the average value was taken. For all

tasks, we gradually adjust ¢ from 0, 2, 4, and 8 to
fully explore the impact of the number of demon-
strations on the accuracies of various graph tasks.
We set the temperature to 1.0 to allow for diverse
and non-deterministic responses. For each query,
the model generate a single response. The maxi-
mum number of tokens per response is limited to
8192 to allow sufficiently long answers without ex-
cessive output. The maximum sequence length was
set to 1024 tokens, ensuring that inputs exceeding
this length were truncated appropriately. Nucleus
sampling with a top-p value of 0.9 is applied. Due
to computational resource limitations, we use rela-
tively small LLMs for testing on GraphlInstruct as
well as our extended datasets, while we encourage
future research to leverage the extended version for
enhanced evaluation.

Table 1: Comparison between our datasets and other
state-of-the-art datasets, demonstrating its superiority
and comprehensiveness over the latest 2024 datasets.

Include Same

Datasets Tasks Node Scale Edge Scale Numbers Graph?
NLGraph 8 9-35 10-30 29,370 No
Graphlnstruct 9 2-100 5-500 18,125 No
GraphSCB 3 10-100 15-500 10,891 No
GraphTRB 7 10-30 10-200 6,264 Yes

5.2 Results for the Number of Demonstrations
QD

Increasing the number of demonstrations can
better activate the ICL ability of LLMs, but
more is not always better. To evaluate how the
number of demonstrations can activate the Graph-
ICL of LLMs and promote the development of
graph reasoning tasks, we conducted extensive ex-
periments on Graphlnstruct dataset. For the query,
we selected demonstrations from the dataset that
are of the same task category as the query, but with
different numbers of demonstrations. The reason
for selecting same category graph problems is to
eliminate the random errors that may be introduced
by random selection (interactions between different
categories of tasks or randomly selecting the same
graph, etc.). The experimental results are shown in
Table 2 and reveal several key findings: As the num-
ber of demonstrations increases, all models show
improvement in performance, demonstrating the
ability of LLMs to learn from in-context. However,
for LLaMa3-8B, the accuracy reaches its peak with
four demonstrations, and adding more demonstra-
tions causes a decline in performance. This could

Table 2: Test accuracies (%) of different LLMs with different numbers of demonstrations in nine types of graph
question answering tasks. We highlight the best results in each column in bold.

Models ICL-Examples Tasks Average
Cycle Connectivity Bipartite Topology Shortest Triangle Flow Hamilton Subgraph
0 98.45 77.11 73.27 60.21 28.30 85.38 37.04 65.57 56.31 56.83
Qwen2.5-7B 2 99.26 88.28 75.01 81.54 30.75 91.58 39.01 58.08 59.92 61.79
4 99.26 88.50 75.11 83.26 31.54 93.11 41.23 59.13 59.17 71.42
8 99.30 88.80 73.57 87.96 33.48 9220 41.73 60.04 59.48 77.69
0 97.72 78.45 67.46 65.83 35.34 80.7 44.44 54.51 65.38 65.53
Qwen2.5-14B 2 98.05 78.56 77.00 77.18 47.99 91.87 64.20 52.03 68.96 72.87
4 98.12 79.23 75.16 92.09 49.57 9470 62.96 51.88 69.77 74.83
8 98.45 80.05 74.91 92.43 50.50 9583 64.69 52.07 70.68 75.51
0 81.19 83.10 54.94 51.15 27.73 26.60 34.07 69.19 42.31 52.25
LLaMa3-8B 2 91.65 84.26 53.35 82.11 28.23 67.27 38.52 57.89 53.74 61.89
4 93.26 85.97 60.71 91.28 30.03 6749 39.26 55.08 56.72 64.42
8 82.11 85.30 62.30 90.48 28.66 71.52 37.28 33.33 28.47 57.71

Table 3: Test accuracies (%) on the three-class graph
question answering tasks. The best result in each row,
corresponding to the same number of demonstrations,
is highlighted in bold.

‘ Connectivity
ICL-Examples ‘ SameGraph ‘ DifferentGraph
‘ Small Medium Large Average ‘ Small Medium Large Average
0 7924 7512 7258 7565 7924 7512 7258 75.65
2 8924 7525 7143 78.64 86.71 7561 6696 7643
4 90.00 7635 7052 7896 89.24 79.17 69.52 79.31
‘ Maximum Flow
ICL-Examples ‘ SameGraph DifferentGraph
‘ Small Medium Large Average Small Medium Large Average
0 31.01 21.32 1992 2408 31.01 21.32 1992 24.08
2 3875 2390 2129 2798 37.12 1949 1797 2486
4 4625 2426 2441 3164 3938 2022 1973 2644
‘ Shortest Path
ICL-Examples ‘ SameGraph DifferentGraph
‘ Small Medium Large Average Small Medium Large Average
0 30.03 7.00 5.65 1423 30.03 7.00 5.65 14.23
2 46.15 13.88 11.61 23.88 4256 1175 8.33 20.88
4 4705 1600 1131 2479 4282 10.88 6.70 20.13

Notice: In the case of zero-demonstration, we used the same data in SameGraph
and DifferentGraph. Since zero-demonstration does not provide any in-context
information, our experiments directly count the accuracy of small, medium, and
large graph questions in the GraphSCB dataset.

be due to the LLMs being limited by the maximum
token length, which negatively impacts its ability
to answer effectively with longer contexts.

There are also significant differences between
LLM:s in terms of tasks accuracy. For instance, in
the Subgraph task, Qwen2.5-7B achieves an accu-
racy of 56.31% with zero examples, Qwen2.5-14B
reaches 65.38%, while LLaMa3-8B only scores
42.31%. Some tasks experience a notable perfor-
mance boost after adding two demonstrations, such
as the Topology and Triangle tasks. However, for
the Hamilton task, the accuracy of all three LLMs
decreases as more demonstrations are added.

For the same task, different LLMs have vary-
ing requirements for the number of demonstrations.
In the Bipartite task, Qwen2.5-7B shows a consis-

tent increase in accuracy as more demonstrations
are provided, reaching the highest accuracy with
eight demonstrations. In contrast, Qwen2.5-14B
achieves optimal performance with just two demon-
strations.

5.3 Results for the Graph Structures (Q2)

The Graph Structure in Demonstrations Has a
Significant Impact on Activating the GraphICL
Ability of LLMs. In order to further study how
to activate the GraphICL ability of the LLMs, we
conducted experiments on the newly constructed
GraphSCB. Through comparative experiments,
we selected two types of demonstrations: one with
the same graph structure as the query and one with
a different graph structure. Here, different demon-
strations refer to demonstrations extracted from
different graphs in the same question category. The
experimental results are shown in Table 3. We
found that when the graph structure in the demon-
strations is the same as the graph structure in the
query, it significantly activates the GraphICL.

When the graph structure in demonstration is
the same as the graph structure in the query, the
accuracy of answers in 2 demonstrations and 4
demonstrations is the highest, which is verified in
the Maximum Flow and Shortest Path tasks. For
Connectivity, when the number of demonstrations
is 2, the accuracy of the same graph structure is
2.21% higher than that of different graph structures.
When the number of demonstrations is 4, the aver-
age accuracy is 79.31%, which is slightly higher
than the same graph structure, indicating that for
computationally simple tasks such as Connectivity,
demonstrations with different graph structures may
provide a wider range of graph structure features,
which can better predict.

Table 4: Test accuracies (%) on the seven-class graph tasks, demonstrating the impact of demonstration categories.
We bold the largest number in each row and underline the second largest number. We use zero-demonstration as
the benchmark, light red indicates values greater than zero-demonstration, and light blue indicate values less than

zero-demonstration.

Demonstrations

Query Cycle Connectivity Bipartite Topology Shortest Flow Hamilton Zero-Demonstration
Cycle 96.52 81.59 83.95 83.05 9327 93.15 81.93 94.84
Connectivity 92.33 90.67 86.56 90.44 88.00 89.67 94.11 90.44
Bipartite 90.57 91.25 94.39 92.37 81.26 31.65 73.51 90.46
Topology 5.95 6.06 7.74 30.19 6.73 7.63 8.53 17.40
Shortest 42.33 38.89 36.67 39.67 39.89 36.89 39.33 38.11
Flow 17.11 32.00 20.89 17.56 28.89 39.22 20.22 34.56
Hamilton 68.80 73.29 60.04 69.36 7093 69.70 93.49 66.33

When the graph structures are different, adding
demonstrations can also improve the generaliza-
tion ability of the model, but the effect is slightly
inferior to the same graph structure. This shows
that the model can still learn useful information
from different graph structures, but the learning
effect is limited. At the same time, for all three
tasks, we experimented with the size of the graph.
For small graph tasks, whether providing demon-
strations of the same graphs or different graphs,
the accuracy of the question was greatly improved.
When the scale of the graph increases from small
to large, the accuracy gradually decreases, but even
on the largest graph tasks, adding demonstrations
can significantly improve accuracy.

5.4 Results for Task Categories (Q3)

The Category of the Demonstrations Interacts
with the Category of the Query. In order to
better evaluate the ability of GraphICL, we con-
duct experiments on the GraphTRB dataset from
the perspective of task categories. We fix the num-
ber of demonstrations to 4, and the experimental
results are shown in the Table 4. For all seven cat-
egories of tasks, selecting demonstrations of the
same category as the query being asked can signif-
icantly promote the question accuracy compared
with Zero-Demonstration. For Cycle, Bipartite,
Topology, Flow, and Hamilton questions, using
demonstrations of the self category (i.e., the query
and the demonstration category are the same) can
achieve the highest accuracy. It is worth noting
that for Connectivity and Shortest questions, cross-
category demonstrations selection can also have a
positive impact on the accuracy of the query, which
may be due to the certain complementarity between
different tasks, so that different category demon-
strations can also provide valuable information. For

example, the performance of the Connectivity task
under the Cycle and Hamilton demonstration cat-
egories is higher than its performance under the
self-category demonstration (90.67%).

However, for Cycle, Flow, and Hamilton ques-
tions, when selecting demonstrations that are
different from the category of the query, the
accuracy drops significantly compared to Zero-
Demonstration. This shows that for these three
categories of tasks, other categories cannot provide
effective complementary information and may even
introduce noise, thus affecting the performance
of the model. Through this experiment, we show
the mutual influence between task categories and
point out the importance of demonstration selection
strategies in GraphICL.

6 Conclusion

In this paper, we formalize GraphICL and propose
a unified framework that integrates the query repre-
sentations along with the graph question represen-
tations and answer representations derived from the
demonstration set through a linear mechanism. We
introduce two new datasets, GraphSCB and Graph-
TRB, to evaluate GraphICL. Our experiments show
that LLMs exhibit capabilities of GraphICL, and its
performance is greatly affected by graph structure
similarity and task complementarity. Same or simi-
lar graph structures improve accuracy, while cross-
task demonstrations may introduce noise unless the
task information is complementary. Our work es-
tablishes foundational insights and benchmarks for
advancing the state-of-the-art in GraphICL, high-
lights the need for improving demonstrations selec-
tion strategies, and lays the foundation for future
explorations of GraphICL on more complex and
diverse graph tasks.

7 Limitations

Despite systematically exploring GraphICL and
providing key insights, our study still has some lim-
itations. Our experiments are conducted entirely
on open source models, the performance of propri-
etary, larger-scale LLMs (e.g., GPT-40) remains
unexplored, and large-scale batch testing is limited
by the instability of API-based reasoning, which
highlights the need for local deployment to ensure
reproducibility and efficiency. In addition, graph
question descriptions are usually long, and the max-
imum token length limit hinders the performance of
LLMs when incorporating multiple demonstrations.
Our experiments are limited by computational re-
sources, which restricts the exploration of larger
graphs and longer contexts.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems, volume 33, pages 1877—1901. Curran
Associates, Inc.

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li.
2024a. Graphwiz: An instruction-following lan-
guage model for graph problems. arXiv preprint
arXiv:2402.16029. Version 5.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
Wenqi Fan, Hui Liu, and Jiliang Tang. 2024b.
Exploring the potential of large language models
(Ilms)in learning on graphs. SIGKDD Explor. Newsl.,
25(2):42-61.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023. Why can GPT
learn in-context? language models secretly perform
gradient descent as meta-optimizers. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 4005-4019, Toronto, Canada. Associa-
tion for Computational Linguistics.

Debarati Das, Ishaan Gupta, Jaideep Srivastava, and
Dongyeop Kang. 2023. Which modality should i
use—text, motif, or image?: Understanding graphs
with large language models. arXiv preprint
arXiv:2311.09862.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi.
2023. Talk like a graph: Encoding graphs for large
language models. arXiv preprint arXiv:2310.04560.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi
He, and Shi Han. 2023. Gptdgraph: Can large
language models understand graph structured data?
an empirical evaluation and benchmarking. arXiv
preprint arXiv:2305.15066. Version 2.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan
Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma,
Adithya Samavedhi, Qiyue Gao, et al. 2024. Llm
reasoners: New evaluation, library, and analysis of
step-by-step reasoning with large language models.
arXiv preprint arXiv:2404.05221. Version 2.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Bryan
Hooi, et al. 2024. Explanations as features: Llm-
based features for text-attributed graphs. arXiv
preprint arXiv:2305.19523. Version 5.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji,
and Jiawei Han. 2024. Large language models on
graphs: A comprehensive survey. IEEE Transactions
on Knowledge and Data Engineering, 36(12):8622—
8642.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi
Zhou. 2023a. The closeness of in-context learning
and weight shifting for softmax regression. arXiv
preprint arXiv:2304.13276.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu,
Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng
Qiu. 2023b. Unified demonstration retriever for in-
context learning. arXiv preprint arXiv:2305.04320.
Version 2.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-
oshu Li, Hao Yang, et al. 2024. Deepseek-vl: towards
real-world vision-language understanding. arXiv
preprint arXiv:2403.05525. Version 2.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786. Version 2.

Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian,
Chenhao Zhang, Jinqgi Jiang, and Xing Xie. 2024.
Graphinstruct: Empowering large language models
with graph understanding and reasoning capability.
arXiv preprint arXiv:2403.04483.

Daye Nam, Andrew Macvean, Vincent Hellendoorn,
Bogdan Vasilescu, and Brad Myers. 2024. Using an
IIm to help with code understanding. In Proceedings
of the IEEE/ACM 46th International Conference on

https://doi.org/10.48550/arXiv.2303.08774
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2402.16029
https://arxiv.org/abs/2402.16029
https://arxiv.org/abs/2402.16029
https://doi.org/10.1145/3655103.3655110
https://doi.org/10.1145/3655103.3655110
https://doi.org/10.1145/3655103.3655110
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://arxiv.org/abs/2311.09862
https://arxiv.org/abs/2311.09862
https://arxiv.org/abs/2311.09862
https://arxiv.org/abs/2311.09862
https://arxiv.org/abs/2311.09862
https://arxiv.org/abs/2310.04560
https://arxiv.org/abs/2310.04560
https://arxiv.org/abs/2310.04560
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2404.05221
https://arxiv.org/abs/2404.05221
https://arxiv.org/abs/2404.05221
https://arxiv.org/abs/2404.05221
https://arxiv.org/abs/2404.05221
https://arxiv.org/abs/2305.19523
https://arxiv.org/abs/2305.19523
https://arxiv.org/abs/2305.19523
https://doi.org/10.1109/TKDE.2024.3469578
https://doi.org/10.1109/TKDE.2024.3469578
https://doi.org/10.1109/TKDE.2024.3469578
https://arxiv.org/abs/2304.13276
https://arxiv.org/abs/2304.13276
https://arxiv.org/abs/2304.13276
https://arxiv.org/abs/2305.04320
https://arxiv.org/abs/2305.04320
https://arxiv.org/abs/2305.04320
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2101.06804
https://doi.org/10.48550/arXiv.2403.05525
https://doi.org/10.48550/arXiv.2403.05525
https://doi.org/10.48550/arXiv.2403.05525
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2403.04483
https://arxiv.org/abs/2403.04483
https://arxiv.org/abs/2403.04483
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3597503.3639187

Software Engineering, ICSE °24, pages 1-13, New
York, NY, USA. Association for Computing Machin-
ery.

Thao Nguyen, Yuheng Li, Utkarsh Ojha, and Yong Jae
Lee. 2023. Visual instruction inversion: Image edit-
ing via image prompting. In Advances in Neural
Information Processing Systems, volume 36, pages
9598-9613. Curran Associates, Inc.

Madhur Panwar, Kabir Ahuja, and Navin Goyal. 2024.
In-context learning through the bayesian prism. In
The Twelfth International Conference on Learning
Representations. OpenReview.net.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633. Version
2.

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. 2024.
Can llms generate novel research ideas? a large-
scale human study with 100+ nlp researchers. arXiv
preprint arXiv:2409.04109.

Eshaan Tanwar, Subhabrata Dutta, Manish Borthakur,
and Tanmoy Chakraborty. 2023. Multilingual 1lms
are better cross-lingual in-context learners with align-
ment. arXiv preprint arXiv:2305.05940. Version
3.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2024. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805. Version 4.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2023a.
Can language models solve graph problems in nat-
ural language? In Advances in Neural Information
Processing Systems, volume 36, pages 30840-30861.
Curran Associates, Inc.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark
Steyvers, and William Yang Wang. 2023b. Large
language models are latent variable models: Explain-
ing and finding good demonstrations for in-context
learning. In Advances in Neural Information Process-
ing Systems, volume 36, pages 15614-15638. Curran
Associates, Inc.

Noam Wies, Yoav Levine, and Amnon Shashua. 2023.
The learnability of in-context learning. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 36637-36651. Curran Associates,
Inc.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu. 2021. A
comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, 32(1):4-24.

10

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022. Ac-
tive example selection for in-context learning. arXiv
preprint arXiv:2211.04486.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang
Li, Yijian Qin, Simin Wu, and Wenwu Zhu.
2023. Llm4dyg: Can large language models solve
problems on dynamic graphs? arXiv preprint
arXiv:2310.17110. Version 3.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12697-12706.
PMLR.

TASK DEFINITION

. Cycle. In an undirected graph G = (V, E),
the task is to detect whether a cycle exists. A
cycle is a sequence of vertices vy, vo, . .., Uk
with k& > 3, forming a closed loop where
v1 = vg. Each vertex v; must be distinct for
all 1 < ¢ < k, and there must be an edge
connecting v; to vj41.

. Connectivity. Given an undirected graph
G = (V, E), the task is to determine if two
randomly selected nodes u,v € V are con-
nected through a sequence of edges in F.

. Bipartite Graph Check. For a directed graph
G = (V, E), the task is to check if the graph is
bipartite. A graph is bipartite if its nodes can
be divided into two disjoint sets U,V C V
such that no two nodes within the same set are
adjacent.

. Topology Sort. The task is to find a valid
topological ordering of a directed graph G =
(V,E). In a topological sort, the nodes are
linearly ordered such that for every directed
edge (u,v) € E, node u comes before v in
the ordering.

. Shortest Path. In an undirected, weighted
graph G = (V, E,w) where w : E — R*
assigns a positive weight to each edge, the
task is to find the path of minimal total weight
between any two nodes s,t € V.

. Maximum Weight Triangle. Given an undi-
rected, weighted graph G = (V, E, 1) where
[:V — R assigns a positive weight to each
vertex, the task is to identify a triangle (a cycle

https://proceedings.neurips.cc/paper_files/paper/2023/hash/1e75f7539cbde5de895fab238ff42519-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1e75f7539cbde5de895fab238ff42519-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1e75f7539cbde5de895fab238ff42519-Abstract-Conference.html
https://openreview.net/forum?id=HX5ujdsSon
https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2305.05940
https://arxiv.org/abs/2305.05940
https://arxiv.org/abs/2305.05940
https://arxiv.org/abs/2305.05940
https://arxiv.org/abs/2305.05940
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://proceedings.neurips.cc/paper_files/paper/2023/hash/622afc4edf2824a1b6aaf5afe153fa93-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/622afc4edf2824a1b6aaf5afe153fa93-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/622afc4edf2824a1b6aaf5afe153fa93-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/73950f0eb4ac0925dc71ba2406893320-Abstract-Conference.html
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/2211.04486
https://arxiv.org/abs/2211.04486
https://arxiv.org/abs/2211.04486
https://arxiv.org/abs/2310.17110
https://arxiv.org/abs/2310.17110
https://arxiv.org/abs/2310.17110
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html

of three connected vertices (v, v2, v3)) that
maximizes the sum [(v1) + [(v2) + (v3).

Maximum Flow. For a directed, weighted
graph G = (V,E,c) where ¢ : E — R*
assigns a positive capacity to each edge, the
task is to maximize the flow from a source
node s € Vtoasinknodet € V.

Hamiltonian Path Detection. The task is
to ascertain the presence of a Hamiltonian
path in an undirected graph G = (V) E). A
Hamiltonian path is a path that visits each
vertex in V' exactly once.

Substructure Matching. Given two graphs
G = (V,E)and G’ = (V', E'), the task is to
determine if there is a subgraph of G that is
isomorphic to G'.

B ADDITIONAL EXPERIMENTS

B.1 Impact of Graph Size in Demonstrations
on Problem Accuracy

The experimental results presented in Table 5 re-
veal several key insights into the impact of graph
size in demonstrations on the accuracy of Connec-
tivity task answers. Firstly, for questions involving
small, medium, and large graphs, the optimal per-
formance is consistently achieved when the graphs
in the demonstrations are relatively small. This
suggests that smaller graph demonstrations provide
a more effective learning signal for the model, en-
abling it to better grasp the underlying connectivity
concepts. Secondly, regardless of the size of the
graphs in the questions, the accuracy of the answers
decreases as the size of the graphs in the demon-
strations increases. This indicates that larger graph
demonstrations may introduce unnecessary com-
plexity, hindering the model’s ability to generalize
effectively. Thirdly, as the size of the graphs in
the qurey increases, the overall accuracy of the an-
swers decreases, which is consistent with the find-
ings in Table 2. This trend highlights the challenge
of maintaining high accuracy when dealing with
larger and more complex graph structures. Lastly,
the results show that the accuracy of the answers
improves with an increasing number of demonstra-
tions, underscoring the importance of providing
sufficient demonstrations to enhance the model’s
performance. These findings emphasize the need to
carefully select demonstrations with smaller graph
sizes to maximize the model’s accuracy in answer-
ing connectivity questions, while also considering

11

the number of demonstrations provided. In this
experiment, we explored the effect of graph size
in demonstrations on performance on connectivity
tasks and showed that smaller graph examples gen-
erally improve accuracy on tasks of varying graph
sizes. However, this trend may not be universally
applicable to all graph tasks. Future work can fur-
ther investigate how graph size and other factors
influence the ICL ability for various graph tasks
to develop more effective demonstration selection
strategies.

B.2 Discussion of Tasks Group Performance

To further explore the interactions between dif-
ferent categories of graph tasks in GraphlCL, we
conducted task grouping experiments, with the re-
sults presented in Table 6. We fixed the number of
demonstrations at 4 and randomly selected demon-
strations to ensure the law of large numbers. Based
on the experimental results in Table 4, we selected
six categories of tasks and grouped them accord-
ing to their graph task types and the nature of the
graph algorithms involved. Group 1 includes tasks
such as Cycle, Bipartite, and Hamilton, which fo-
cus more on graph traversal and structural prop-
erties. Group 2 includes tasks such as shortest
path, maximum flow, and connectivity, which fo-
cus more on graph connectivity and optimization.
This grouping enables us to systematically ana-
lyze how tasks within the same group or between
different groups interact and affect each other’s per-
formance. The results show that the relevance of
demonstrations to tasks significantly impacts per-
formance. Tasks within the same group are more
likely to benefit from each other’s demonstrations,
while using demonstrations from different groups
may introduce noise and reduce the model’s ability
to generalize effectively. The grouped experiments
emphasize the importance of task relevance in the
selection of graph demonstrations for ICL. Future
research should focus on developing more sophisti-
cated methods for selecting and formatting demon-
strations to maximize their utility and improve the
model’s performance on graph reasoning tasks.

B.3 Performance Gain of ICL over
Zero-Demonstration for Graph Tasks

We processed the data in Table 4, and Figure 3
presents a heatmap that illustrates the gain in ac-
curacy (percentage) when using several demon-
strations compared to zero demonstration learning
in various graph tasks. Heatmaps provide a vi-

Table 5: Test accuracies (%) on the connectivity graph question answering tasks. We highlight the best result in

bold.
‘ Connectivity
ICL-Examples ‘ Small Medium Large
‘ Small Medium Large Small Medium Large Small Medium Large
2 8799 8748 87.67 7933 7723 7098 73.55 67.55 65.59
4 89.14 88.05 88.18 80.57 74.69 74.13 7532 68.88 72.03
8 89.67 89.07 8722 81.54 7754 7327 7614 71.59 69.32

Table 6: Test accuracies (%) Comparison of Different Task Groups. We highlight the best result in bold.

Group Groupl Group2
Cycle Bipartite Hamilton Shortest Flow Connectivity
Cycle
Groupl Bipartite 86.57 63.49
Hamilton
Shortest
Group2 Flow 41.00 48.15
Connectivity

sual representation of performance improvement
or degradation, offering valuable informations into
the effectiveness of different example categories
for specific tasks.

@
g e 1325 -10.89 1179 157 -1.69 1291
40
g
g

16.95

bipartite

-11.45 1134 -9.66 12.79

Target Question Category
topology

shortest

flow

17.45 2.56 13.67 17.00 1434

6.29 27.16

hamilton

cccccc t bipartite ology flow hamilton

top
In-Context Example Category

Figure 3: Performance Gain of In-Context Learning
over Zero-Demonstration for Graph Tasks. Green
shades indicate positive accuracy gains, with darker
green showing higher improvements, while red shades
represent negative gains, with darker red highlighting
significant degradation.

12

C PROMPT CASES

In this section, we provide all the prompts for test-
ing the performance of LLMs in different tasks.
Table 7, 8, 9, 10, 11, 12, 13, 14, 15 provide the
prompts for tasks in Table 2, Table 16, 17 provide
the prompts for tasks in Table 3, and Table 18, 19
provide the prompts for tasks in Table 4.

Table 7: Prompts of Cycle Task.

Prompt of Cycle Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether or not there is a cycle in an undirected graph. In an undirected graph, (i,j) means that
node i and node j are connected with an undirected edge.

Q: The nodes are numbered from O to 3, and the edges are: (0, 1) (1, 3) (1, 2). Is there a cycle in this
graph?

A: Starting from node 0, we can only reach node 1. From node 1, we can reach nodes 0, 3, and 2. From
node 2, we can only reach node 1. From node 3, we can only reach node 1. There is no way to form a
cycle with these connections without revisiting an edge. Thus, with no cycle formation possible without
reusing edges, there is no cycle in this graph.

Q: The nodes are numbered from O to 3, and the edges are: (0, 2) (1, 3). Is there a cycle in this graph?
A: There are two disjoint paths in this graph: [0—2] and [1—3]. There is no way to form a cycle with
only two edges, because a cycle requires at least three edges and a closed loop. Therefore, there is no
cycle in this graph.

Input:
Q: he nodes are numbered from 0 to 3, and the edges are: (0, 3) (2, 3). Is there a cycle in this graph?
A: <Answer >

Table 8: Prompts of Connectivity Task.

Prompt of Connectivity Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether two nodes are connected in an undirected graph. In an undirected graph, (i,j) means
that node i and node j are connected with an undirected edge.

Q: The nodes are numbered from O to 4, and the edges are: (1, 4) (1, 2) (2, 3) (3, 4). Is there a path
between node 3 and node 4?

A: Node 3 is connected to node 4 directly by an edge, so the answer is yes.

Q: The nodes are numbered from O to 6, and the edges are: (0, 3) (0, 2) (1, 6) (2, 6). Is there a path
between node 1 and node 6?

A: Node 1 is connected to node 6 directly by an edge. We can follow the path: [1—6], so the answer is
yes.

Input:

Q: The nodes are numbered from O to 4, and the edges are: (2, 4) (2, 3). Is there a path between node 0
and node 47?

A: <Answer >

13

Table 9: Prompts of Bipartite Task.

Prompt of Bipartite Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether or not a graph is bipartite. In a directed graph, (i—j) means that node i and node j are
connected with an directed edge from node i to node j.

Q: The nodes are numbered from O to 3, and the edges are: (0—2) (1—3) (1—2). Is this graph bipartite?
A: With this coloring, we can see that no two nodes with the same color have a direct edge, and the graph
can be divided into two groups: (0,1) and (2.3). Therefore, the graph is bipartite.

Q: The nodes are numbered from O to 5, and the edges are: (0—4) (0—3) (0—1) (1—2) (4—5). Is this
graph bipartite?

A: We can see that with this assignment, no two nodes in the same group are directly connected by an
edge, and every edge connects a node from group (0,2,5) to a node from group (1,3,4). Therefore, the
graph is bipartite.

Input:
Q: The nodes are numbered from O to 3, and the edges are: (0—2) (0—1) (1—3). Is this graph bipartite?
A: <Answer >

Table 10: Prompts of Topology Task.

Prompt of Topology Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Find one of the topology sorting paths of the given graph. In a directed graph, (i—j) means that node i
and node j are connected with a directed edge from node i to node j.

Q: The nodes are numbered from O to 3, and the edges are: (0—2) (0—1) (0—3) (1—3). Give one
topology sorting path of this graph.

A: We can place node 0 first, as it has no incoming edges. Then, we can place node 1 second, as its only
incoming edge is from node 0. Next, we can place node 2 third, as its only incoming edge is from node
0. Finally, we can place node 3 last, as it has incoming edges from nodes 0 and 1. Therefore, a valid
topological sorting path for this graph is [0, 1, 2, 3].

Q: The nodes are numbered from O to 3, and the edges are: (0—2) (0—1) (0—3) (2—3). Give one
topology sorting path of this graph.

A: Initially, node O is the only node that has no incoming edges, so it is the first node in the path. Next,
node 1 becomes a candidate, as its only incoming edge is from node 0, which has already been removed
from the graph. Then, node 2 is also a valid choice, as its only incoming edge is from node 0 as well.
Finally, node 3 is the last node to be added to the path, as it has incoming edges from nodes 0 and 2, which
have already been placed in the path. Therefore, a valid topology sorting path for this graph is [0, 1, 2, 3].

Input:

Q: The nodes are numbered from O to 3, and the edges are: (0—1) (0—2) (1—3) (1—2). Give one
topology sorting path of this graph.

A: <Answer >

14

Table 11: Prompts of Shortest Task.

Prompt of Shortest Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Find the shortest path between two nodes in an undirected graph. In an undirected graph, (i,j,k) means
that node i and node j are connected with an undirected edge with weight k.

Q: The nodes are numbered from 0 to 5, and the edges are: (0,4,10) (1,4,4) (1,3,3) (4,5,2). Give the weight
of the shortest path from node 3 to node 0.

A: The weight of path 3,1,4,0 is the smallest, so the shortest path from node 3 to node 0 is [3,1,4,0] with a
total weight of 17.

Q: The nodes are numbered from O to 4, and the edges are: (0,4,1) (0,3,1) (1,3,10) (2,3,5). Give the weight
of the shortest path from node 0 to node 2.

A: The weight of path 0,3,2 is the smallest, so the shortest path from node 0 to node 2 is [0,3,2] with a
total weight of 6.

Input:

Q: The nodes are numbered from O to 4, and the edges are: (0,1,3) (0,3,1) (1,2,4). Give the weight of the
shortest path from node 1 to node 3.

A: <Answer >

Table 12: Prompts of Triangle Task.

Prompt of Triangle Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Find the maximum sum of the weights of three interconnected nodes. In an undirected graph, [i, k] means
that node i has the weight k. (i,j) means that node i and node j are connected with an undirected edge.
Q: The nodes are numbered from O to 3, weights of nodes are: [0, 5] [1, 2] [2, 8] [3, 10], and the edges
are: (0, 2) (0, 3) (2, 3). What is the maximum sum of the weights of three nodes?

A: Nodes 0, 2, and 3 are the only interconnected nodes in this graph, each directly connected to the other
two. The sum of their weights is [5 (Node 0) + 8 (Node 2) + 10 (Node 3) = 23]. There are no other
groups of three interconnected nodes in this graph. Therefore, the maximum sum of the weights of three
interconnected nodes in this graph is 23.

Q: The nodes are numbered from O to 3, weights of nodes are: [0, 9] [1, 10] [2, 1] [3, 1], and the edges
are: (0, 1) (0, 3) (1, 3). What is the maximum sum of the weights of three nodes?

A: There is only one group of three interconnected nodes in this graph, which is Nodes 0, 1, and 3. The
sum of their weights is [9 (Node 0) + 10 (Node 1) + 1 (Node 3) = 20]. There are no other groups of three
interconnected nodes in this graph. Therefore, the maximum sum of the weights of three interconnected
nodes in this graph is 20.

Input:

Q: The nodes are numbered from O to 3, weights of nodes are: [0, 4] [1, 10] [2, 4] [3, 6], and the edges
are: (1, 2) (1, 3) (2, 3). What is the maximum sum of the weights of three nodes?

A: <Answer >

15

Table 13: Prompts of Flow Task.

Prompt of Flow Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Find the maximum flow between two nodes in a directed graph. In a directed graph, (i—j,k) means that
node i and node j are connected with an directed edge from node i to node j with weight k.

Q: The nodes are numbered from O to 5, and the edges are: (0—4,2) (1—2,1) 2—3,1) (3—4,7) (3—5,3).
What is the maximum flow from node 1 to node 3?

A: The only direct path from node 1 to node 3 is through node 2, which has a capacity of 1 unit. There are
no other paths that can increase the flow from node 1 to node 3, since node 0 and node 4 are not reachable
from node 1. Therefore, the maximum flow from node 1 to node 3 is 1 unit.

Q: The nodes are numbered from O to 9, and the edges are: (0—3,7) (2—3,9) (3—6,6) (4—9,10). What is
the maximum flow from node O to node 6?

A: The only path from node O to node 6 is through node 3, so the maximum flow is limited by the capacity
of the edge (0—3) and the edge (3—6). Since the edge (0—3) has a capacity of 7 units and the edge
(3—6) has a capacity of 6 units, the bottleneck is the edge (3—6). Therefore, the maximum flow from
node 0 to node 6 is 6 units.

Input:

Q: The nodes are numbered from 0 to 7, and the edges are: (0—1,7) (2—4,2) 2—7,3) (3—4,2) (4—5,7).
What is the maximum flow from node 3 to node 5?

A: <Answer >

16

Table 14: Prompts of Hamilton Task.

Prompt of Hamilton Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether or not there is a Hamiltonian path in an undirected graph. In an undirected graph, (i,j)
means that node i and node j are connected with an undirected edge.

Q: The nodes are numbered from O to 2, and the edges are: (0, 2) (1, 2). Is there a Hamiltonian path in
this graph?

A: To determine if a Hamiltonian path exists in an undirected graph, we need to check if there’s a path
that visits each node exactly once. In this simple graph with three nodes and two edges, the only possible
Hamiltonian path is: [0, 2, 1] or [1, 2, 0]. Therefore, there is a Hamiltonian path in this graph.

Q: The nodes are numbered from O to 3, and the edges are: (0, 1) (0, 2) (1, 2) (2, 3). Is there a Hamiltonian
path in this graph?

A: To determine if a Hamiltonian path exists in an undirected graph, we need to check if there’s a path
that visits each node exactly once. We can start at node 0. As node 0 is connected with node 1 and node 2,
we can choose either of them as the next node. Suppose we choose node 1.As node 1 is connected with
node 0 and node 2, we can choose node 2 as the next node.As node 2 is connected with node 0, node 1,
and node 3, we can choose node 3 as the next node.As node 3 is connected with node 2, we have no more
choices and we have visited all the nodes. So, one possible Hamiltonian path is: [0, 1, 2, 3]. Therefore,
there is a Hamiltonian path in this graph.

Input:

Q: The nodes are numbered from 0 to 3, and the edges are: (0, 2) (0, 1) (1, 3). Is there a Hamiltonian path
in this graph?

A: <Answer >

17

Table 15: Prompts of Subgraph Task.

Prompt of Subgraph Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine if a smaller graph is present as an exact match within a larger graph. In a directed graph, (i—j)
means that node i and node j are connected with a directed edge from node i to node j.

Q: The nodes of graph G are numbered from O to 3, and the edges are: (0—1) (1—2) (2—3) (0—3).
The nodes of subgraph G’ are numbered from a to e, and the edges are: (a—e) (a—c) (a—d) (b—d). Is
subgraph G’ present within graph G as a direct substructure?

A: Subgraph G’ has more nodes and edges than graph G, so it cannot be present as a direct substructure
within G.

Q: The nodes of graph G are numbered from O to 6, and the edges are: (0—4) (0—1) (1—3) (5—6).
The nodes of subgraph G’ are numbered from a to d, and the edges are: (a—c) (a—b) (b—d) (c—d). Is
subgraph G’ present within graph G as a direct substructure?

A: No node in G satisfies the conditions of subgraph G’, so subgraph G’ is not present within graph G as
a direct substructure.

Input:

Q: The nodes of graph G are numbered from O to 4, and the edges are: (0—4) (1—2) (1—3) (2—3).
The nodes of subgraph G’ are numbered from a to d, and the edges are: (a—b) (a—d) (b—c) (b—d). Is
subgraph G’ present within graph G as a direct substructure?

A: <Answer >

Table 16: Prompts of Connectivity Task using the same graphs as examples.

Prompt of Connectivity Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether two nodes are connected in an undirected graph. In an undirected graph, (i,j) means
that node i and node j are connected with an undirected edge.

Q: The nodes are numbered from O to 4, and the edges are: (0, 4) (2, 3) (3, 4). Is there a path between
node 3 and node 0?

A: To see if there’s a path between node 3 and node 0, we can trace the connections: From node 3, you
can go to node 4 (via the edge (3, 4)). From node 4, you can go to node 0O (via the edge (0, 4)). So, yes,
there is a path between node 3 and node 0, which goes through node 4.

Q: The nodes are numbered from O to 4, and the edges are: (0, 4) (2, 3) (3, 4). Is there a path between
node 3 and node 4?

A: Yes, there is a direct path between node 3 and node 4. This is given by the edge (3, 4), meaning node 3
is directly connected to node 4.

Input:

Q: The nodes are numbered from O to 4, and the edges are: (0, 4) (2, 3) (3, 4). Is there a path between
node 0 and node 4?

A: <Answer >

18

Table 17: Prompts of Connectivity Task using the different graphs as examples.

Prompt of Connectivity Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether two nodes are connected in an undirected graph. In an undirected graph, (i,j) means
that node i and node j are connected with an undirected edge.

Q: The nodes are numbered from O to 4, and the edges are: (1, 4) (1, 2). Is there a path between node 4
and node 2?

A: We can trace the possible connections: Node 4 is connected to node 1 (via the edge (1, 4)). Node 1 is
connected to node 2 (via the edge (1, 2)). So, there is a path from node 4 to node 2, and it goes through
node 1.

Q: The nodes are numbered from O to 4, and the edges are: (0, 3) (0, 2) (1, 3). Is there a path between
node 3 and node 1?

A: Let’s examine possible paths from node 3 to node 1: Start at node 3. From the edge (1, 3), we see that
node 3 is connected to node 1. So yes, there is a direct path between node 3 and node 1 via the edge (1, 3).

Input:

Q: The nodes are numbered from O to 4, and the edges are: (0, 4) (2, 3) (3, 4). Is there a path between
node 0 and node 4?

A: <Answer >

Table 18: Prompts of Connectivity Task using the same tasks as examples.

Prompt of Connectivity Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether two nodes are connected in an undirected graph. In an undirected graph, (i,j) means
that node i and node j are connected with an undirected edge.

Q: The nodes are numbered from O to 9, and the edges are: (0, 3) (2, 3) (3, 6) (4, 9). Is there a path
between node 2 and node 5?

A: Node 2 is connected to node 3 (via the edge (2, 3)). From node 3, there is a connection to node 6 (via
the edge (3, 6)). There is no direct or indirect connection from node 6 or any other node to node 5, based
on the given edges. So, there is no path between node 2 and node 5.

Q: The nodes are numbered from O to 9, and the edges are: (0, 3) (2, 3) (3, 6) (4, 9). Is there a path
between node 4 and node 5?7

A: Node 4 is connected to node 9 (via the edge (4, 9)). There is no direct or indirect connection between
node 9 and node 5 based on the edges provided. So, there is no path between node 4 and node 5.

Input:

Q: The nodes are numbered from O to 9, and the edges are: (0, 3) (2, 3) (3, 6) (4, 9). Is there a path
between node 1 and node 5?

A: <Answer >

19

Table 19: Prompts of Connectivity Task using the different tasks as examples.

Prompt of Connectivity Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Find the maximum flow between two nodes in a directed graph. In a directed graph, (i—j,k) means that
node i and node j are connected with a directed edge from node i to node j with weight k.

Q: The nodes are numbered from O to 9, and the edges are: (0—3,7) (2—3,9) (3—6,6) (4—9,10). What is
the maximum flow from node 3 to node 6?

A: Let’s focus on the path from node 3 to node 6, which is the edge (3—6) with a capacity of 6. Since
node 3 to node 6 is the only direct path and the edge has a capacity of 6, the maximum flow from node 3
to node 6 is 6.

Q: The nodes are numbered from O to 9, and the edges are: (0—3,7) (2—3,9) (3—6,6) (4—9,10). What is
the maximum flow from node 0 to node 3?

A: For the flow from node 0 to node 3, we focus on the edge (0—3) with a capacity of 7. There is no
other edge directly connecting node O to node 3, so the maximum flow is limited by this edge’s capacity.
Thus, the maximum flow from node 0 to node 3 is 7.

Input:

Determine whether two nodes are connected in an undirected graph. In an undirected graph, (i,j) means
that node i and node j are connected with an undirected edge.

Q: The nodes are numbered from O to 9, and the edges are: (0, 3) (2, 3) (3, 6) (4, 9). Is there a path
between node 0 and node 6?

A: <Answer >

20

	Introduction
	Related Work
	Large Language Models for Graph Tasks
	Demonstrations Selection for ICL

	Methodology
	Formulations of ICL over Graphs
	Mechanisms of ICL over Graphs

	Benchmarks
	Limitations of Existing Benchmarks
	Descriptions of the New Benchmarks

	Experiments
	Experimental Settings
	Results for the Number of Demonstrations (Q1)
	Results for the Graph Structures (Q2)
	Results for Task Categories (Q3)

	Conclusion
	Limitations
	TASK DEFINITION
	ADDITIONAL EXPERIMENTS
	Impact of Graph Size in Demonstrations on Problem Accuracy
	Discussion of Tasks Group Performance
	Performance Gain of ICL over Zero-Demonstration for Graph Tasks

	PROMPT CASES

