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Abstract

In-context learning (ICL) is a fascinating ca-001
pability of large language models (LLMs),002
which can adapt to queries through demon-003
strations without optimizing model parame-004
ters. Although LLMs have demonstrated the005
ability of ICL in graph tasks, the graph in-006
context learning (GraphICL) mechanism is still007
a black box. In this paper, we introduce a008
novel framework for understanding and ana-009
lyzing in-context learning over graphs, focus-010
ing on graph tasks, with thorough formula-011
tions, innovative mechanisms, and comprehen-012
sive benchmarks.We are the first to systemati-013
cally and rigorously formalize GraphICL by014
explicitly defining task categories, the num-015
ber of demonstrations, and graph structures in016
graph reasoning tasks. We reveal the mecha-017
nism of GraphICL, where the LLMs generate018
more accurate answers by weighting and ag-019
gregating the query representations and demon-020
strations representations. However, existing021
benchmarks lack datas with the same graph022
structure, which is crucial for analyzing the im-023
pact of graph structure on the GraphICL abil-024
ity. We introduce two new datasets, compris-025
ing a total of 17,155 graph questions across026
graphs of varying sizes and multiple task cat-027
egories. With these datasets, our experiments028
comprehensively explore for the first time how029
to activate GraphICL’s capabilities from the030
perspectives of the number of demonstrations,031
graph structures, task categories, etc., and ver-032
ify our proposed formulation and mechanism.033
The benchmarks and codes are available at:034
https://github.com/Graph-ICL/GraphICL.035

1 Introduction036

The rapid advancement of large language models037

(LLMs) such as GPT-4 (Achiam et al., 2023), Gem-038

ini (Team et al., 2024) and DeepSeek (Lu et al.,039

2024) have ushered in a new era of artificial in-040

telligence, showcasing unprecedented capabilities041

in understanding (Nam et al., 2024), generating042

(Si et al., 2024), and reasoning (Hao et al., 2024) 043

with human-like proficiency across a wide range 044

of tasks. Graphs, with their non-Euclidean nature 045

(Wu et al., 2021), present a particularly challeng- 046

ing yet promising frontier for LLMs exploration 047

(Jin et al., 2024). GraphInstruct (Luo et al., 2024), 048

LLM4DyG (Zhang et al., 2023) explore the graph 049

reasoning capabilities of LLMs, finding that al- 050

though LLMs have certain capabilities, they per- 051

form poorly on complex graph tasks. 052

Recently, one of the most exciting features 053

emerging in LLMs is ICL (Brown et al., 2020; 054

Nguyen et al., 2023; Wies et al., 2023), which 055

allows LLMs to perform new tasks with several 056

demonstrations and no additional training. This 057

capability has sparked interest in using GraphICL 058

to improve answer accuracies in graph tasks. NL- 059

Graph (Wang et al., 2023a) tests the GraphICL’s 060

ability of LLMs and finds that adding demon- 061

strations does not improve the performance of 062

LLMs in complex graph tasks (e.g., Hamiltonian 063

paths). GPT4Graph (Guo et al., 2023) finds that 064

in some cases, demonstrations introduce noise, 065

bias, or incomplete information that hinders the 066

LLMs’ overall understanding. Graphwiz (Chen 067

et al., 2024a) tests GraphICL in GPT-4 and finds 068

that in nine types of graph tasks, the accuracy of 069

two-demonstration is improved compared to zero- 070

demonstration. The above studies show that the 071

GraphICL ability of LLMs is affected by factors 072

such as the number and quality of demonstrations 073

and the difficulty of the problem, which also show 074

that LLMs are very brittle with demonstrations. Al- 075

though current research studies GraphICL through 076

simple experiments, the mechanisms of GraphICL 077

is still in a "black box" and lack theoretical expla- 078

nation and sufficient verification. 079

In graph tasks, the complexity of node and edge 080

information, as well as the intricacy of the graph 081

problems themselves, significantly increases the 082

difficulty of revealing the mechanisms of Graph- 083
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ICL. Many studies provide explanations from dif-084

ferent perspectives, such as Bayesian models (Pan-085

war et al., 2024), gradient descent (Li et al., 2023a),086

and attention mechanisms (Dai et al., 2023), but087

they do not explicitly focus on graph structures. Al-088

though some works have demonstrated that LLMs089

can improve the accuracy of graph tasks with some090

demonstrations, the demonstrations in current stud-091

ies are either randomly selected or fixed (Zhao092

et al., 2021; Lu et al., 2022). This demonstration093

selection method does not allow for a deeper study094

of the impact of the demonstrations themselves on095

the GraphICL ability. At the same time, current re-096

search has not systematically analyzed how graph097

demonstrations affect the graph reasoning ability of098

LLMs from a "graph perspective" . For example,099

factors such as the graph structure, task category,100

and graph size in the demonstrations are all nec-101

essary to study in GraphICL. However, there is102

currently no suitable benchmark in the graph field103

to fully solve the above problems, which is a major104

gap in current research.105

In this paper, we formally define GraphICL, con-106

structing the query and several demonstrations as107

a unified in-context. We explicitly represent the108

categories of demonstrations , number of demon-109

strations, the structure of graphs , etc., providing a110

standardized expression for GraphICL. To further111

reveal the intrinsic mechanism of GraphICL, we112

interact tthe query representations, graph question113

representations, and answer representations in a114

demonstration set, explicitly giving the intrinsic115

mechanism of GraphICL. In order to discuss in116

detail the impact of factors such as the number of117

demonstrations, categories, and graph structures,118

we construct new datasets GraphSCB and Graph-119

TRB. GraphSCB contains three different types of120

graph question answering tasks, through which we121

can study the impact of the similarity between the122

graph structure in the demonstration and the graph123

structure in the query on the accuracy of the ques-124

tion. GraphTRB contains seven types of graph125

reasoning tasks, through which we can study the126

correlation between the task category in the demon-127

stration and the category in the query, and the im-128

pact on the accuracy of the question. Our main129

contributions are as follows:130

1. We define GraphICL for the first time, estab-131

lishing a unified framework that explicitly ad-132

dresses the category, number, and graph struc-133

ture in demonstrations.134

2. We reveal the mechanism of GraphICL, show- 135

ing how the LLMs generate answers by 136

weighting and aggregating the query represen- 137

tations and demonstrations representations. 138

3. We release two new open-source datasets, 139

GraphSCB and GraphTRB, which provide 140

comprehensive benchmarks for analyzing how 141

to activate GraphICL capabilities of LLMs. 142

2 Related Work 143

2.1 Large Language Models for Graph Tasks 144

Recent studies explore the powerful generaliza- 145

tion capabilities of LLMs for graph understand- 146

ing. Researchers have conducted empirical perfor- 147

mance evaluations on projects such as NLGraph 148

(Wang et al., 2023a), GPT4Graph (Guo et al., 149

2023), TAPE (He et al., 2024), GraphWiz (Chen 150

et al., 2024a), GraphTMI (Das et al., 2023) and 151

LLM4DyG (Zhang et al., 2023), each exploring 152

whether LLMs can understand graph-structured 153

data. (Fatemi et al., 2023) systematically studies 154

the impact of different graph description languages 155

on LLMs’ understanding of graph data. GraphTMI 156

(Das et al., 2023) and (Chen et al., 2024b) explore 157

the potential of LLMs on graph node classification 158

tasks. The work closest to ours is done by NLgraph 159

(Wang et al., 2023a) and GraphWiz (Chen et al., 160

2024a). 161

2.2 Demonstrations Selection for ICL 162

LLMs enable ICL techniques to solve different 163

tasks with only several demonstrations. However, 164

studies have shown that the choice of demonstra- 165

tions significantly impacts performance. A promis- 166

ing approach to enhance ICL is demonstration se- 167

lection, where the most relevant demonstrations are 168

retrieved through a retrieval-based paradigm. (Liu 169

et al., 2021; Li et al., 2023b) model this process 170

using off-the-shelf retrievers that leverage sentence 171

encoders to identify semantically similar demon- 172

strations. The multilingual ICL can benefit from 173

cross-lingual k-NN retrieval to improve source- 174

target language alignment (Tanwar et al., 2023). 175

However, the heuristic nature of these off-the-shelf 176

retrievers and the lack of task-specific supervision 177

make them suboptimal. To address this limitation, 178

supervised methods have been proposed (Rubin 179

et al., 2022; Wang et al., 2023b; Zhang et al., 2022). 180
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Figure 1: An example of using the ICL ability of LLMs
to solve the graph reasoning problem.

3 Methodology181

In this section, we delve into the theoretical and182

practical aspects of GraphICL. It formalizes a uni-183

fied framework for integrating demonstrations and184

query input using pre-trained language models, pro-185

viding a structured foundation for graph tasks. A186

linear update mechanism was proposed to reveal187

the basic principles of GraphICL. Furthermore, as-188

sumptions are introduced to analyze how factors189

such as graph structure similarity, demonstration190

quantity, and category interaction influence the per-191

formance of LLMs in graph reasoning tasks.192

3.1 Formulations of ICL over Graphs193

In this paper, we focus on ICL for graph reasoning194

tasks using various LLMs. We assume a pre-trained195

language model M , which stacks L layers of the196

same Transformer structure, each layer consisting197

of an attention module and a feed-forward network.198

For a graph reasoning task, given a query Q(G),199

where the graph G = (V,E), including a point set200

V and an edge set E, we need to generate the an-201

swer A to the query based on n demonstrations202

C :=
{(

Qk
i (Gj), Aijk

)}
i,j,k

. Where Qk
i (Gj) rep-203

resents the questions with graph information in204

demonstrations, Aijk refers the answers in demon-205

strations, i refers to the number of ICL demonstra-206

tions, j indexes the different graphs and k repre-207

sents the category of graph tasks, such as Shortest208

path, Maximum Flow.209

Formally, given a pre-trained language model M ,210

we input demonstrations C and query Q(G). The211

conditional probability for generating the answer A 212

can be written as PM (A | C,Q(G)). Specifically, 213

the zero-demonstration prediction is denoted as 214

PM (A | Q(G)). 215

Our formulation Qk
i (Gj) introduces three dimen- 216

sions i, j, and k, providing great flexibility. For 217

example, for a query Q(G), we can use multiple 218

different graph structures and graph task categories 219

in the demonstration set, and the number of ex- 220

amples i can also vary. This flexibility enables 221

the dynamic configuration of demonstrations based 222

on the specific requirements of graph reasoning 223

tasks. Such an approach facilitates the adaptation 224

of the GraphICL framework to a wide range of 225

tasks, allowing diverse graph tasks to complement 226

and interact effectively. The graphic representation 227

of the GraphICL example can be seen in Figure 228

1. In practice, we usually format demonstrations 229

using predefined templates and splice them into the 230

context before the query question. 231

3.2 Mechanisms of ICL over Graphs 232

Given a query Q(G), the query description text is 233

represented by their embedding ϕ(Q(G)) ∈ Rdin , 234

where ϕ(·) represents a text encoder. The initial 235

prediction, denoted as Finit, is obtained through a 236

linear transformation using a pre-trained parame- 237

ter matrix W0 ∈ Rdout×din , i.e. Finit(G,Q) := 238

W0ϕ(Q(G)). Here, W0 captures the model’s prior 239

knowledge without considering any task-specific 240

demonstrations. This transformation forms the 241

zero-demonstration baseline for the prediction. 242

To adapt the predictions to task-specific require- 243

ments, demonstrations are introduced. Given the 244

set of demonstrations C = {(Qk
i (Gj), Aijk)}i,j.k , 245

where Qk
i (Gj) represents the i-th demonstration’s 246

graph problem and Aijk denotes the answer to 247

the i-th demonstration, let its representation be 248

ϕ(Qk
i (Gj)) ∈ Rdin , with Aijk’s corresponding em- 249

bedding ϕ(Aijk) ∈ Rdout . 250

The model integrates the in-context information 251

through an update matrix ∆W ∈ Rdout×din , de- 252

fined as: ∆W :=
∑

ijk ϕ(Aijk) ⊗ ϕ(Qk
i (Gj)), 253

where ⊗ denotes the outer product. This update 254

encodes the interactions between the answer repre- 255

sentations ϕ(Aijk) and the representations of graph 256

problems ϕ(Qk
i (Gj)) of the demonstrations. 257

The updated transformation for the query rep- 258

resentation ϕ(Q(G)) incorporates both the pre- 259

trained parameter matrix W0 and the in-context 260
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update ∆W:261

FC(G,Q)

=(W0 +∆W)ϕ (Q(G))

=W0ϕ (Q(G)) + ∆Wϕ(Q(G))

=W0ϕ (Q(G)) +
∑
ijk

(
ϕ(Aijk)⊗ ϕ

(
Qk

i (Gj)
))

ϕ (Q(G))

=W0ϕ (Q(G)) +
∑
ijk

ϕ(Aijk)
(
ϕ(Qk

i (Gj))
Tϕ (Q(G))

)
=Finit(G,Q) +

∑
ijk

ϕ(Aijk)
(
ϕ(Qk

i (Gj))
Tϕ (Q(G))

)
.

262

Here the Finit(G,Q) represents the model’s predic-263

tion based solely on pre-trained knowledge, while264

∆W · ϕ(Q(G)) captures the task-specific adjust-265

ments contributed by the demonstrations.266

Remarkably, we explicitly demonstrate the in-267

ternal mechanism of LLMs in GraphICL, where268

the output answer embedding FC(G,Q) is de-269

termined jointly by ϕ(Qk
i (Gj))

Tϕ (Q(G)) and270

ϕ(Aijk), where ϕ(Qk
i (Gj))

Tϕ (Q(G)) measures271

the relevance between graph problem representa-272

tion in query ϕ(Q(G)) and the the graph represen-273

tation in demonstration Qk
i (Gj).274

Besides, we can see that the answer to the query275

is closely related to the graph information in the276

query, the graph information in the demonstration277

G, the task categories k, and the answer A, etc.278

Therefore, to better study how graph demonstra-279

tions activate the GraphICL capabilities of LLMs,280

we can make the following assumptions.281

Assumption 1. The correctness of answers is282

influenced by the number of demonstrations .283

For the k-th graph task category, let Ck :=284

{(Qk
i (Gj), Ai,j,k)}i,j ⊂ C denote the subset of285

demonstrations C related to the k-th graph task286

category. Given the query Qm(G) corresponding287

to the m-th graph task category, we assume that288

the model’s prediction in answering questions of289

the m-th task category, PM (A | Ck, Qm(G)), is290

influenced by the corresponding number of demon-291

strations Ik := max{i | Qk
i (Gj) ∈ Ck}.292

Assumption 2. The correctness of answers is293

influenced by the structural similarity of graphs294

between the query and demonstrations.295

When the structural similarity between the j-296

th graph Gj of the demonstrations and the graph297

G of the query varies, the accuracy of the gener-298

ated answers follows a pattern defined by the rele-299

vance between the query representation ϕ(Q(G))300

and the graph representation in the demonstration301

ϕ(Qk
i (Gj)). Specifically, the prediction accuracy 302

PM (A | C,Q(G)) is influenced by the inner prod- 303

uct ϕ(Qk
i (Gj))

Tϕ(Q(G)), which reflects the sim- 304

ilarity between graph structures in the demonstra- 305

tions and graph structure in the query : 306

PM (A | C,Q(G)) ∝ ϕ(Qk
i (Gj))

Tϕ(Q(G)). 307

We assume that the textual descriptions of the 308

Query and Demonstrations, which include graph 309

structure information, follow the same format, and 310

we only focus on the variations in the graph struc- 311

ture information. When the graph structure of the 312

demonstration is more similar to the graph struc- 313

ture of the query, the accuracy of the generated 314

answers is higher. Particularly, a completely identi- 315

cal graph can significantly improve the reliability 316

of the generated answers. 317

Assumption 3. The correctness of the answers 318

is influenced by the interaction of task categories 319

between demonstrations and the query. 320

Let Qk(G) represent questions of the k-th cat- 321

egory, and let D := Ck1 ∪ · · · ∪ Ckm denote the 322

subset of demonstrations C corresponding to m 323

different graph task categories. We assume that 324

the correctness of the answer A is influenced by 325

the interaction between the problem category k 326

and the query categories k1, . . . , km. The predic- 327

tion PM (A | D, Qk(G)) is governed by this in- 328

teraction; when the interaction between categories 329

k1, . . . , km and k is beneficial, the accuracy of the 330

generated answers improves. However, certain cat- 331

egories of demonstrations may not provide comple- 332

mentary information to the query, and may even 333

introduce interference information, which can neg- 334

atively impact the accuracy of the response. 335

4 Benchmarks 336

4.1 Limitations of Existing Benchmarks 337

In this section, we highlight the limitations of ex- 338

isting benchmarks in evaluating GraphICL, such 339

as inconsistent graph structures in QA pairs and 340

lack of detailed classification. To address these is- 341

sues, we introduce two new benchmarks, Graph 342

Structural Consistency Benchmark (GraphSCB) 343

and Graph Task-Related Benchmark (GraphTRB), 344

which enable more systematic analyze how graph 345

structure and task category affect activate the abil- 346

ity of GraphICL in LLMs. 347

Inconsistent Graph Structures in QA Pairs. 348

The graph structures in the question-answering 349
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Figure 2: An overview of the GraphICL Benchmark. The two newly proposed benchmarks for evaluating GraphICL,
designed to assess how graph structure and task category activate GraphICL. The GraphSCB examines how the
similarity between the graph structures in demonstrations and the graph structures in query influences accuracy,
while the GraphTRB explores how task categories in the demonstrations impact performance. Together, these
benchmarks provide a more systematic approach to understanding the role of graph structure and task categories in
activating ICL for graph-based tasks.

(QA) pairs of previous benchmarks were entirely350

different, preventing in-depth exploration of the351

impact of the graph structure in demonstrations on352

question accuracy. The absence of consistent graph353

structures hindered the study of how the similar-354

ity or difference between the graph structures in355

the demonstration and the query affected model356

performance.357

Lack of Multiple Examples for the Same358

Graph. In previous benchmarks, each question359

in the QA pairs corresponded to a different graph.360

When exploring the interaction between different361

task categories, it was necessary to keep the graph362

the same to ensure the uniqueness of the indepen-363

dent variable. However, previous benchmarks lack364

such demonstrations, i.e., there is only one demon-365

stration of the same category of questions, which366

makes it impossible to add multiple demonstrations367

of the same graph. This limitation prevented sys-368

tematic analyze of the interaction between question369

categories while controlling for graph structure.370

Insufficient Detailed Classification of Graph371

Structures and Question Categories. Previ-372

ous datasets lacked detailed classification of graph373

structures and question categories. For example,374

important graph characteristics such as Connec-375

tivity and size were not considered in the classi-376

fication. This makes it difficult to fully explore377

the impact of different graph structures and task378

categories on the ability to activate GraphICL. 379

To address these limitations and provide a more 380

comprehensive evaluation of GraphICL, we in- 381

troduce two new benchmarks: the Graph Struc- 382

tural Consistency Benchmark (GraphSCB) and 383

the Graph Task-Related Benchmark (GraphTRB). 384

These benchmarks are designed based on the def- 385

initions and concepts presented in Figure 2, en- 386

abling systematic analyze how graph structure, task 387

category, and number of demonstrations activate 388

GraphICL performance, thus filling the gap left by 389

existing benchmarks. 390

4.2 Descriptions of the New Benchmarks 391

GraphSCB is a newly constructed dataset derived 392

from GraphInstruct (Chen et al., 2024a), compris- 393

ing three distinct types of graph computation tasks: 394

Shortest Path, Maximum Flow, and Connectivity. 395

Each task type is extracted from GraphInstruct, 396

using data corresponding to the same task type 397

but with varying graph sizes. The tasks is de- 398

fined by categorizing graphs based on their node 399

count: graphs with 10 to 35 nodes are considered 400

small, those with 36 to 65 nodes are categorized as 401

medium, and graphs with 66 to 100 nodes are clas- 402

sified as large. Additionally, for each data point, 16 403

distinct data instances are generated, each maintain- 404

ing the same task type and graph structure. Conse- 405

quently, the dataset contains a total of 10,891 data 406

instances. This is the first new benchmark that can 407
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explore the impact of the graph structure in the408

demonstrations being the same as or different from409

the graph structure in the queyr on accuracy.410

GraphTRB is a new dataset converted from411

GraphInstruct, which contains 7 types of graph412

computing tasks, namely Connectivity, Cycle De-413

tection, Bipartite Graph Check, Topological Sort-414

ing, Shortest Path, Maximum Flow and Hamilton415

Path. First, extract data of different graph sizes416

from GraphInstruct, but the node range of the graph417

is between 10 to 30. Then generate 6 data with the418

same graph but different task categories for each419

data, and generate data with the same graph, the420

same problem category and different problems for421

each newly generated data again, for a total of 6264422

data. This is the first benchmark that can explore423

the relationship between the categories of graph424

tasks in demonstrations and the categories of graph425

tasks in query. Our newly constructed datasets are426

shown in the comparison in Table 1. The detailed427

explanation of the tasks in the dataset is provided428

in Appendix A.429

5 Experiments430

In this section, we discuss the ICL ability of graphs431

by addressing the following questions. Q1: How432

do the ICL capabilities of different LLMs perform433

on graph reasoning tasks ? Q2: What is the impact434

of graph structure similarity between the demon-435

strations and the query on the accuracy of answers?436

Q3: Is there an interaction between the task cat-437

egories of demonstrations and the task category438

of query? For example, can the Cycle task in the439

demonstrations promote the accuracy of the Short-440

est Path task in the query?441

5.1 Experimental Settings442

Datasets: We use GraphInstruct (Chen et al.,443

2024a), GraphSCB and GraphTRB as our datasets.444

GraphInstruct is a large-scale instruction tuning445

dataset that contains nine categories of graph tasks446

and a total of 18,125 graph questions, where each447

pair consists of a graph question description and a448

corresponding explicit reasoning path or solution.449

Models and Settings: We conducted experi-450

ments using open-source models such as Qwen2.5-451

7B, Qwen2.5-14B, and LLaMa3-8B. Our experi-452

ments were run on 8 NVIDIA A6000 GPUs with453

49GB of memory. To ensure the accuracy of the454

experimental data, each experiment was run five455

times, and the average value was taken. For all456

tasks, we gradually adjust i from 0, 2, 4, and 8 to 457

fully explore the impact of the number of demon- 458

strations on the accuracies of various graph tasks. 459

We set the temperature to 1.0 to allow for diverse 460

and non-deterministic responses. For each query, 461

the model generate a single response. The maxi- 462

mum number of tokens per response is limited to 463

8192 to allow sufficiently long answers without ex- 464

cessive output. The maximum sequence length was 465

set to 1024 tokens, ensuring that inputs exceeding 466

this length were truncated appropriately. Nucleus 467

sampling with a top-p value of 0.9 is applied. Due 468

to computational resource limitations, we use rela- 469

tively small LLMs for testing on GraphInstruct as 470

well as our extended datasets, while we encourage 471

future research to leverage the extended version for 472

enhanced evaluation. 473

Table 1: Comparison between our datasets and other
state-of-the-art datasets, demonstrating its superiority
and comprehensiveness over the latest 2024 datasets.

Datasets Tasks Node Scale Edge Scale Numbers
Include Same

Graph?

NLGraph 8 9-35 10-30 29,370 No
GraphInstruct 9 2-100 5-500 18,125 No

GraphSCB 3 10-100 15-500 10,891 No
GraphTRB 7 10-30 10-200 6,264 Yes

5.2 Results for the Number of Demonstrations 474

(Q1) 475

Increasing the number of demonstrations can 476

better activate the ICL ability of LLMs, but 477

more is not always better. To evaluate how the 478

number of demonstrations can activate the Graph- 479

ICL of LLMs and promote the development of 480

graph reasoning tasks, we conducted extensive ex- 481

periments on GraphInstruct dataset. For the query, 482

we selected demonstrations from the dataset that 483

are of the same task category as the query, but with 484

different numbers of demonstrations. The reason 485

for selecting same category graph problems is to 486

eliminate the random errors that may be introduced 487

by random selection (interactions between different 488

categories of tasks or randomly selecting the same 489

graph, etc.). The experimental results are shown in 490

Table 2 and reveal several key findings: As the num- 491

ber of demonstrations increases, all models show 492

improvement in performance, demonstrating the 493

ability of LLMs to learn from in-context. However, 494

for LLaMa3-8B, the accuracy reaches its peak with 495

four demonstrations, and adding more demonstra- 496

tions causes a decline in performance. This could 497
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Table 2: Test accuracies (%) of different LLMs with different numbers of demonstrations in nine types of graph
question answering tasks. We highlight the best results in each column in bold.

Models ICL-Examples Tasks Average
Cycle Connectivity Bipartite Topology Shortest Triangle Flow Hamilton Subgraph

Qwen2.5-7B

0 98.45 77.11 73.27 60.21 28.30 85.38 37.04 65.57 56.31 56.83
2 99.26 88.28 75.01 81.54 30.75 91.58 39.01 58.08 59.92 61.79
4 99.26 88.50 75.11 83.26 31.54 93.11 41.23 59.13 59.17 71.42
8 99.30 88.80 73.57 87.96 33.48 92.20 41.73 60.04 59.48 77.69

Qwen2.5-14B

0 97.72 78.45 67.46 65.83 35.34 80.7 44.44 54.51 65.38 65.53
2 98.05 78.56 77.00 77.18 47.99 91.87 64.20 52.03 68.96 72.87
4 98.12 79.23 75.16 92.09 49.57 94.70 62.96 51.88 69.77 74.83
8 98.45 80.05 74.91 92.43 50.50 95.83 64.69 52.07 70.68 75.51

LLaMa3-8B

0 81.19 83.10 54.94 51.15 27.73 26.60 34.07 69.19 42.31 52.25
2 91.65 84.26 53.35 82.11 28.23 67.27 38.52 57.89 53.74 61.89
4 93.26 85.97 60.71 91.28 30.03 67.49 39.26 55.08 56.72 64.42
8 82.11 85.30 62.30 90.48 28.66 71.52 37.28 33.33 28.47 57.71

Table 3: Test accuracies (%) on the three-class graph
question answering tasks. The best result in each row,
corresponding to the same number of demonstrations,
is highlighted in bold.

Connectivity

ICL-Examples SameGraph DifferentGraph

Small Medium Large Average Small Medium Large Average

0 79.24 75.12 72.58 75.65 79.24 75.12 72.58 75.65
2 89.24 75.25 71.43 78.64 86.71 75.61 66.96 76.43
4 90.00 76.35 70.52 78.96 89.24 79.17 69.52 79.31

Maximum Flow

ICL-Examples SameGraph DifferentGraph

Small Medium Large Average Small Medium Large Average

0 31.01 21.32 19.92 24.08 31.01 21.32 19.92 24.08
2 38.75 23.90 21.29 27.98 37.12 19.49 17.97 24.86
4 46.25 24.26 24.41 31.64 39.38 20.22 19.73 26.44

Shortest Path

ICL-Examples SameGraph DifferentGraph

Small Medium Large Average Small Medium Large Average

0 30.03 7.00 5.65 14.23 30.03 7.00 5.65 14.23
2 46.15 13.88 11.61 23.88 42.56 11.75 8.33 20.88
4 47.05 16.00 11.31 24.79 42.82 10.88 6.70 20.13

Notice: In the case of zero-demonstration, we used the same data in SameGraph
and DifferentGraph. Since zero-demonstration does not provide any in-context
information, our experiments directly count the accuracy of small, medium, and
large graph questions in the GraphSCB dataset.

be due to the LLMs being limited by the maximum498

token length, which negatively impacts its ability499

to answer effectively with longer contexts.500

There are also significant differences between501

LLMs in terms of tasks accuracy. For instance, in502

the Subgraph task, Qwen2.5-7B achieves an accu-503

racy of 56.31% with zero examples, Qwen2.5-14B504

reaches 65.38%, while LLaMa3-8B only scores505

42.31%. Some tasks experience a notable perfor-506

mance boost after adding two demonstrations, such507

as the Topology and Triangle tasks. However, for508

the Hamilton task, the accuracy of all three LLMs509

decreases as more demonstrations are added.510

For the same task, different LLMs have vary-511

ing requirements for the number of demonstrations.512

In the Bipartite task, Qwen2.5-7B shows a consis-513

tent increase in accuracy as more demonstrations 514

are provided, reaching the highest accuracy with 515

eight demonstrations. In contrast, Qwen2.5-14B 516

achieves optimal performance with just two demon- 517

strations. 518

5.3 Results for the Graph Structures (Q2) 519

The Graph Structure in Demonstrations Has a 520

Significant Impact on Activating the GraphICL 521

Ability of LLMs. In order to further study how 522

to activate the GraphICL ability of the LLMs, we 523

conducted experiments on the newly constructed 524

GraphSCB. Through comparative experiments, 525

we selected two types of demonstrations: one with 526

the same graph structure as the query and one with 527

a different graph structure. Here, different demon- 528

strations refer to demonstrations extracted from 529

different graphs in the same question category. The 530

experimental results are shown in Table 3. We 531

found that when the graph structure in the demon- 532

strations is the same as the graph structure in the 533

query, it significantly activates the GraphICL. 534

When the graph structure in demonstration is 535

the same as the graph structure in the query, the 536

accuracy of answers in 2 demonstrations and 4 537

demonstrations is the highest, which is verified in 538

the Maximum Flow and Shortest Path tasks. For 539

Connectivity, when the number of demonstrations 540

is 2, the accuracy of the same graph structure is 541

2.21% higher than that of different graph structures. 542

When the number of demonstrations is 4, the aver- 543

age accuracy is 79.31%, which is slightly higher 544

than the same graph structure, indicating that for 545

computationally simple tasks such as Connectivity, 546

demonstrations with different graph structures may 547

provide a wider range of graph structure features, 548

which can better predict. 549
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Table 4: Test accuracies (%) on the seven-class graph tasks, demonstrating the impact of demonstration categories.
We bold the largest number in each row and underline the second largest number. We use zero-demonstration as
the benchmark, light red indicates values greater than zero-demonstration, and light blue indicate values less than
zero-demonstration.

Query
Demonstrations

Cycle Connectivity Bipartite Topology Shortest Flow Hamilton Zero-Demonstration
Cycle 96.52 81.59 83.95 83.05 93.27 93.15 81.93 94.84

Connectivity 92.33 90.67 86.56 90.44 88.00 89.67 94.11 90.44
Bipartite 90.57 91.25 94.39 92.37 81.26 31.65 73.51 90.46
Topology 5.95 6.06 7.74 30.19 6.73 7.63 8.53 17.40
Shortest 42.33 38.89 36.67 39.67 39.89 36.89 39.33 38.11

Flow 17.11 32.00 20.89 17.56 28.89 39.22 20.22 34.56
Hamilton 68.80 73.29 60.04 69.36 70.93 69.70 93.49 66.33

When the graph structures are different, adding550

demonstrations can also improve the generaliza-551

tion ability of the model, but the effect is slightly552

inferior to the same graph structure. This shows553

that the model can still learn useful information554

from different graph structures, but the learning555

effect is limited. At the same time, for all three556

tasks, we experimented with the size of the graph.557

For small graph tasks, whether providing demon-558

strations of the same graphs or different graphs,559

the accuracy of the question was greatly improved.560

When the scale of the graph increases from small561

to large, the accuracy gradually decreases, but even562

on the largest graph tasks, adding demonstrations563

can significantly improve accuracy.564

5.4 Results for Task Categories (Q3)565

The Category of the Demonstrations Interacts566

with the Category of the Query. In order to567

better evaluate the ability of GraphICL, we con-568

duct experiments on the GraphTRB dataset from569

the perspective of task categories. We fix the num-570

ber of demonstrations to 4, and the experimental571

results are shown in the Table 4. For all seven cat-572

egories of tasks, selecting demonstrations of the573

same category as the query being asked can signif-574

icantly promote the question accuracy compared575

with Zero-Demonstration. For Cycle, Bipartite,576

Topology, Flow, and Hamilton questions, using577

demonstrations of the self category (i.e., the query578

and the demonstration category are the same) can579

achieve the highest accuracy. It is worth noting580

that for Connectivity and Shortest questions, cross-581

category demonstrations selection can also have a582

positive impact on the accuracy of the query, which583

may be due to the certain complementarity between584

different tasks, so that different category demon-585

strations can also provide valuable information. For586

example, the performance of the Connectivity task 587

under the Cycle and Hamilton demonstration cat- 588

egories is higher than its performance under the 589

self-category demonstration (90.67%). 590

However, for Cycle, Flow, and Hamilton ques- 591

tions, when selecting demonstrations that are 592

different from the category of the query, the 593

accuracy drops significantly compared to Zero- 594

Demonstration. This shows that for these three 595

categories of tasks, other categories cannot provide 596

effective complementary information and may even 597

introduce noise, thus affecting the performance 598

of the model. Through this experiment, we show 599

the mutual influence between task categories and 600

point out the importance of demonstration selection 601

strategies in GraphICL. 602

6 Conclusion 603

In this paper, we formalize GraphICL and propose 604

a unified framework that integrates the query repre- 605

sentations along with the graph question represen- 606

tations and answer representations derived from the 607

demonstration set through a linear mechanism. We 608

introduce two new datasets, GraphSCB and Graph- 609

TRB, to evaluate GraphICL. Our experiments show 610

that LLMs exhibit capabilities of GraphICL, and its 611

performance is greatly affected by graph structure 612

similarity and task complementarity. Same or simi- 613

lar graph structures improve accuracy, while cross- 614

task demonstrations may introduce noise unless the 615

task information is complementary. Our work es- 616

tablishes foundational insights and benchmarks for 617

advancing the state-of-the-art in GraphICL, high- 618

lights the need for improving demonstrations selec- 619

tion strategies, and lays the foundation for future 620

explorations of GraphICL on more complex and 621

diverse graph tasks. 622
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7 Limitations623

Despite systematically exploring GraphICL and624

providing key insights, our study still has some lim-625

itations. Our experiments are conducted entirely626

on open source models, the performance of propri-627

etary, larger-scale LLMs (e.g., GPT-4o) remains628

unexplored, and large-scale batch testing is limited629

by the instability of API-based reasoning, which630

highlights the need for local deployment to ensure631

reproducibility and efficiency. In addition, graph632

question descriptions are usually long, and the max-633

imum token length limit hinders the performance of634

LLMs when incorporating multiple demonstrations.635

Our experiments are limited by computational re-636

sources, which restricts the exploration of larger637

graphs and longer contexts.638
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A TASK DEFINITION 798

1. Cycle. In an undirected graph G = (V,E), 799

the task is to detect whether a cycle exists. A 800

cycle is a sequence of vertices v1, v2, . . . , vk 801

with k ≥ 3, forming a closed loop where 802

v1 = vk. Each vertex vi must be distinct for 803

all 1 ≤ i < k, and there must be an edge 804

connecting vi to vi+1. 805

2. Connectivity. Given an undirected graph 806

G = (V,E), the task is to determine if two 807

randomly selected nodes u, v ∈ V are con- 808

nected through a sequence of edges in E. 809

3. Bipartite Graph Check. For a directed graph 810

G = (V,E), the task is to check if the graph is 811

bipartite. A graph is bipartite if its nodes can 812

be divided into two disjoint sets U, V ⊆ V 813

such that no two nodes within the same set are 814

adjacent. 815

4. Topology Sort. The task is to find a valid 816

topological ordering of a directed graph G = 817

(V,E). In a topological sort, the nodes are 818

linearly ordered such that for every directed 819

edge (u, v) ∈ E, node u comes before v in 820

the ordering. 821

5. Shortest Path. In an undirected, weighted 822

graph G = (V,E,w) where w : E → R+ 823

assigns a positive weight to each edge, the 824

task is to find the path of minimal total weight 825

between any two nodes s, t ∈ V . 826

6. Maximum Weight Triangle. Given an undi- 827

rected, weighted graph G = (V,E, l) where 828

l : V → R+ assigns a positive weight to each 829

vertex, the task is to identify a triangle (a cycle 830

10

https://proceedings.neurips.cc/paper_files/paper/2023/hash/1e75f7539cbde5de895fab238ff42519-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1e75f7539cbde5de895fab238ff42519-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1e75f7539cbde5de895fab238ff42519-Abstract-Conference.html
https://openreview.net/forum?id=HX5ujdsSon
https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2305.05940
https://arxiv.org/abs/2305.05940
https://arxiv.org/abs/2305.05940
https://arxiv.org/abs/2305.05940
https://arxiv.org/abs/2305.05940
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://proceedings.neurips.cc/paper_files/paper/2023/hash/622afc4edf2824a1b6aaf5afe153fa93-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/622afc4edf2824a1b6aaf5afe153fa93-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/622afc4edf2824a1b6aaf5afe153fa93-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/3255a7554605a88800f4e120b3a929e1-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/73950f0eb4ac0925dc71ba2406893320-Abstract-Conference.html
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/2211.04486
https://arxiv.org/abs/2211.04486
https://arxiv.org/abs/2211.04486
https://arxiv.org/abs/2310.17110
https://arxiv.org/abs/2310.17110
https://arxiv.org/abs/2310.17110
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html


of three connected vertices (v1, v2, v3)) that831

maximizes the sum l(v1) + l(v2) + l(v3).832

7. Maximum Flow. For a directed, weighted833

graph G = (V,E, c) where c : E → R+834

assigns a positive capacity to each edge, the835

task is to maximize the flow from a source836

node s ∈ V to a sink node t ∈ V .837

8. Hamiltonian Path Detection. The task is838

to ascertain the presence of a Hamiltonian839

path in an undirected graph G = (V,E). A840

Hamiltonian path is a path that visits each841

vertex in V exactly once.842

9. Substructure Matching. Given two graphs843

G = (V,E) and G′ = (V ′, E′), the task is to844

determine if there is a subgraph of G that is845

isomorphic to G′.846

B ADDITIONAL EXPERIMENTS847

B.1 Impact of Graph Size in Demonstrations848

on Problem Accuracy849

The experimental results presented in Table 5 re-850

veal several key insights into the impact of graph851

size in demonstrations on the accuracy of Connec-852

tivity task answers. Firstly, for questions involving853

small, medium, and large graphs, the optimal per-854

formance is consistently achieved when the graphs855

in the demonstrations are relatively small. This856

suggests that smaller graph demonstrations provide857

a more effective learning signal for the model, en-858

abling it to better grasp the underlying connectivity859

concepts. Secondly, regardless of the size of the860

graphs in the questions, the accuracy of the answers861

decreases as the size of the graphs in the demon-862

strations increases. This indicates that larger graph863

demonstrations may introduce unnecessary com-864

plexity, hindering the model’s ability to generalize865

effectively. Thirdly, as the size of the graphs in866

the qurey increases, the overall accuracy of the an-867

swers decreases, which is consistent with the find-868

ings in Table 2. This trend highlights the challenge869

of maintaining high accuracy when dealing with870

larger and more complex graph structures. Lastly,871

the results show that the accuracy of the answers872

improves with an increasing number of demonstra-873

tions, underscoring the importance of providing874

sufficient demonstrations to enhance the model’s875

performance. These findings emphasize the need to876

carefully select demonstrations with smaller graph877

sizes to maximize the model’s accuracy in answer-878

ing connectivity questions, while also considering879

the number of demonstrations provided. In this 880

experiment, we explored the effect of graph size 881

in demonstrations on performance on connectivity 882

tasks and showed that smaller graph examples gen- 883

erally improve accuracy on tasks of varying graph 884

sizes. However, this trend may not be universally 885

applicable to all graph tasks. Future work can fur- 886

ther investigate how graph size and other factors 887

influence the ICL ability for various graph tasks 888

to develop more effective demonstration selection 889

strategies. 890

B.2 Discussion of Tasks Group Performance 891

To further explore the interactions between dif- 892

ferent categories of graph tasks in GraphICL, we 893

conducted task grouping experiments, with the re- 894

sults presented in Table 6. We fixed the number of 895

demonstrations at 4 and randomly selected demon- 896

strations to ensure the law of large numbers. Based 897

on the experimental results in Table 4, we selected 898

six categories of tasks and grouped them accord- 899

ing to their graph task types and the nature of the 900

graph algorithms involved. Group 1 includes tasks 901

such as Cycle, Bipartite, and Hamilton, which fo- 902

cus more on graph traversal and structural prop- 903

erties. Group 2 includes tasks such as shortest 904

path, maximum flow, and connectivity, which fo- 905

cus more on graph connectivity and optimization. 906

This grouping enables us to systematically ana- 907

lyze how tasks within the same group or between 908

different groups interact and affect each other’s per- 909

formance. The results show that the relevance of 910

demonstrations to tasks significantly impacts per- 911

formance. Tasks within the same group are more 912

likely to benefit from each other’s demonstrations, 913

while using demonstrations from different groups 914

may introduce noise and reduce the model’s ability 915

to generalize effectively. The grouped experiments 916

emphasize the importance of task relevance in the 917

selection of graph demonstrations for ICL. Future 918

research should focus on developing more sophisti- 919

cated methods for selecting and formatting demon- 920

strations to maximize their utility and improve the 921

model’s performance on graph reasoning tasks. 922

B.3 Performance Gain of ICL over 923

Zero-Demonstration for Graph Tasks 924

We processed the data in Table 4, and Figure 3 925

presents a heatmap that illustrates the gain in ac- 926

curacy (percentage) when using several demon- 927

strations compared to zero demonstration learning 928

in various graph tasks. Heatmaps provide a vi- 929
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Table 5: Test accuracies (%) on the connectivity graph question answering tasks. We highlight the best result in
bold.

Connectivity

ICL-Examples Small Medium Large

Small Medium Large Small Medium Large Small Medium Large

2 87.99 87.48 87.67 79.33 77.23 70.98 73.55 67.55 65.59
4 89.14 88.05 88.18 80.57 74.69 74.13 75.32 68.88 72.03
8 89.67 89.07 87.22 81.54 77.54 73.27 76.14 71.59 69.32

Table 6: Test accuracies (%) Comparison of Different Task Groups. We highlight the best result in bold.

Group
Group1 Group2

Cycle Bipartite Hamilton Shortest Flow Connectivity

Group1
Cycle

86.57 63.49Bipartite
Hamilton

Group2
Shortest

41.00 48.15Flow
Connectivity

sual representation of performance improvement930

or degradation, offering valuable informations into931

the effectiveness of different example categories932

for specific tasks.933

Figure 3: Performance Gain of In-Context Learning
over Zero-Demonstration for Graph Tasks. Green
shades indicate positive accuracy gains, with darker
green showing higher improvements, while red shades
represent negative gains, with darker red highlighting
significant degradation.

C PROMPT CASES 934

In this section, we provide all the prompts for test- 935

ing the performance of LLMs in different tasks. 936

Table 7, 8, 9, 10, 11, 12, 13, 14, 15 provide the 937

prompts for tasks in Table 2, Table 16, 17 provide 938

the prompts for tasks in Table 3, and Table 18, 19 939

provide the prompts for tasks in Table 4. 940
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Table 7: Prompts of Cycle Task.

Prompt of Cycle Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether or not there is a cycle in an undirected graph. In an undirected graph, (i,j) means that
node i and node j are connected with an undirected edge.
Q: The nodes are numbered from 0 to 3, and the edges are: (0, 1) (1, 3) (1, 2). Is there a cycle in this
graph?
A: Starting from node 0, we can only reach node 1. From node 1, we can reach nodes 0, 3, and 2. From
node 2, we can only reach node 1. From node 3, we can only reach node 1. There is no way to form a
cycle with these connections without revisiting an edge. Thus, with no cycle formation possible without
reusing edges, there is no cycle in this graph.
Q: The nodes are numbered from 0 to 3, and the edges are: (0, 2) (1, 3). Is there a cycle in this graph?
A: There are two disjoint paths in this graph: [0→2] and [1→3]. There is no way to form a cycle with
only two edges, because a cycle requires at least three edges and a closed loop. Therefore, there is no
cycle in this graph.

Input:
Q: he nodes are numbered from 0 to 3, and the edges are: (0, 3) (2, 3). Is there a cycle in this graph?
A: <Answer >

Table 8: Prompts of Connectivity Task.

Prompt of Connectivity Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether two nodes are connected in an undirected graph. In an undirected graph, (i,j) means
that node i and node j are connected with an undirected edge.
Q: The nodes are numbered from 0 to 4, and the edges are: (1, 4) (1, 2) (2, 3) (3, 4). Is there a path
between node 3 and node 4?
A: Node 3 is connected to node 4 directly by an edge, so the answer is yes.
Q: The nodes are numbered from 0 to 6, and the edges are: (0, 3) (0, 2) (1, 6) (2, 6). Is there a path
between node 1 and node 6?
A: Node 1 is connected to node 6 directly by an edge. We can follow the path: [1→6], so the answer is
yes.

Input:
Q: The nodes are numbered from 0 to 4, and the edges are: (2, 4) (2, 3). Is there a path between node 0
and node 4?
A: <Answer >
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Table 9: Prompts of Bipartite Task.

Prompt of Bipartite Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether or not a graph is bipartite. In a directed graph, (i→j) means that node i and node j are
connected with an directed edge from node i to node j.
Q: The nodes are numbered from 0 to 3, and the edges are: (0→2) (1→3) (1→2). Is this graph bipartite?
A: With this coloring, we can see that no two nodes with the same color have a direct edge, and the graph
can be divided into two groups: (0,1) and (2.3). Therefore, the graph is bipartite.
Q: The nodes are numbered from 0 to 5, and the edges are: (0→4) (0→3) (0→1) (1→2) (4→5). Is this
graph bipartite?
A: We can see that with this assignment, no two nodes in the same group are directly connected by an
edge, and every edge connects a node from group (0,2,5) to a node from group (1,3,4). Therefore, the
graph is bipartite.

Input:
Q: The nodes are numbered from 0 to 3, and the edges are: (0→2) (0→1) (1→3). Is this graph bipartite?
A: <Answer >

Table 10: Prompts of Topology Task.

Prompt of Topology Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Find one of the topology sorting paths of the given graph. In a directed graph, (i→j) means that node i
and node j are connected with a directed edge from node i to node j.
Q: The nodes are numbered from 0 to 3, and the edges are: (0→2) (0→1) (0→3) (1→3). Give one
topology sorting path of this graph.
A: We can place node 0 first, as it has no incoming edges. Then, we can place node 1 second, as its only
incoming edge is from node 0. Next, we can place node 2 third, as its only incoming edge is from node
0. Finally, we can place node 3 last, as it has incoming edges from nodes 0 and 1. Therefore, a valid
topological sorting path for this graph is [0, 1, 2, 3].
Q: The nodes are numbered from 0 to 3, and the edges are: (0→2) (0→1) (0→3) (2→3). Give one
topology sorting path of this graph.
A: Initially, node 0 is the only node that has no incoming edges, so it is the first node in the path. Next,
node 1 becomes a candidate, as its only incoming edge is from node 0, which has already been removed
from the graph. Then, node 2 is also a valid choice, as its only incoming edge is from node 0 as well.
Finally, node 3 is the last node to be added to the path, as it has incoming edges from nodes 0 and 2, which
have already been placed in the path. Therefore, a valid topology sorting path for this graph is [0, 1, 2, 3].

Input:
Q: The nodes are numbered from 0 to 3, and the edges are: (0→1) (0→2) (1→3) (1→2). Give one
topology sorting path of this graph.
A: <Answer >
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Table 11: Prompts of Shortest Task.

Prompt of Shortest Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Find the shortest path between two nodes in an undirected graph. In an undirected graph, (i,j,k) means
that node i and node j are connected with an undirected edge with weight k.
Q: The nodes are numbered from 0 to 5, and the edges are: (0,4,10) (1,4,4) (1,3,3) (4,5,2). Give the weight
of the shortest path from node 3 to node 0.
A: The weight of path 3,1,4,0 is the smallest, so the shortest path from node 3 to node 0 is [3,1,4,0] with a
total weight of 17.
Q: The nodes are numbered from 0 to 4, and the edges are: (0,4,1) (0,3,1) (1,3,10) (2,3,5). Give the weight
of the shortest path from node 0 to node 2.
A: The weight of path 0,3,2 is the smallest, so the shortest path from node 0 to node 2 is [0,3,2] with a
total weight of 6.

Input:
Q: The nodes are numbered from 0 to 4, and the edges are: (0,1,3) (0,3,1) (1,2,4). Give the weight of the
shortest path from node 1 to node 3.
A: <Answer >

Table 12: Prompts of Triangle Task.

Prompt of Triangle Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Find the maximum sum of the weights of three interconnected nodes. In an undirected graph, [i, k] means
that node i has the weight k. (i,j) means that node i and node j are connected with an undirected edge.
Q: The nodes are numbered from 0 to 3, weights of nodes are: [0, 5] [1, 2] [2, 8] [3, 10], and the edges
are: (0, 2) (0, 3) (2, 3). What is the maximum sum of the weights of three nodes?
A: Nodes 0, 2, and 3 are the only interconnected nodes in this graph, each directly connected to the other
two. The sum of their weights is [5 (Node 0) + 8 (Node 2) + 10 (Node 3) = 23]. There are no other
groups of three interconnected nodes in this graph. Therefore, the maximum sum of the weights of three
interconnected nodes in this graph is 23.
Q: The nodes are numbered from 0 to 3, weights of nodes are: [0, 9] [1, 10] [2, 1] [3, 1], and the edges
are: (0, 1) (0, 3) (1, 3). What is the maximum sum of the weights of three nodes?
A: There is only one group of three interconnected nodes in this graph, which is Nodes 0, 1, and 3. The
sum of their weights is [9 (Node 0) + 10 (Node 1) + 1 (Node 3) = 20]. There are no other groups of three
interconnected nodes in this graph. Therefore, the maximum sum of the weights of three interconnected
nodes in this graph is 20.

Input:
Q: The nodes are numbered from 0 to 3, weights of nodes are: [0, 4] [1, 10] [2, 4] [3, 6], and the edges
are: (1, 2) (1, 3) (2, 3). What is the maximum sum of the weights of three nodes?
A: <Answer >
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Table 13: Prompts of Flow Task.

Prompt of Flow Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Find the maximum flow between two nodes in a directed graph. In a directed graph, (i→j,k) means that
node i and node j are connected with an directed edge from node i to node j with weight k.
Q: The nodes are numbered from 0 to 5, and the edges are: (0→4,2) (1→2,1) (2→3,1) (3→4,7) (3→5,3).
What is the maximum flow from node 1 to node 3?
A: The only direct path from node 1 to node 3 is through node 2, which has a capacity of 1 unit. There are
no other paths that can increase the flow from node 1 to node 3, since node 0 and node 4 are not reachable
from node 1. Therefore, the maximum flow from node 1 to node 3 is 1 unit.
Q: The nodes are numbered from 0 to 9, and the edges are: (0→3,7) (2→3,9) (3→6,6) (4→9,10). What is
the maximum flow from node 0 to node 6?
A: The only path from node 0 to node 6 is through node 3, so the maximum flow is limited by the capacity
of the edge (0→3) and the edge (3→6). Since the edge (0→3) has a capacity of 7 units and the edge
(3→6) has a capacity of 6 units, the bottleneck is the edge (3→6). Therefore, the maximum flow from
node 0 to node 6 is 6 units.

Input:
Q: The nodes are numbered from 0 to 7, and the edges are: (0→1,7) (2→4,2) (2→7,3) (3→4,2) (4→5,7).
What is the maximum flow from node 3 to node 5?
A: <Answer >
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Table 14: Prompts of Hamilton Task.

Prompt of Hamilton Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether or not there is a Hamiltonian path in an undirected graph. In an undirected graph, (i,j)
means that node i and node j are connected with an undirected edge.
Q: The nodes are numbered from 0 to 2, and the edges are: (0, 2) (1, 2). Is there a Hamiltonian path in
this graph?
A: To determine if a Hamiltonian path exists in an undirected graph, we need to check if there’s a path
that visits each node exactly once. In this simple graph with three nodes and two edges, the only possible
Hamiltonian path is: [0, 2, 1] or [1, 2, 0]. Therefore, there is a Hamiltonian path in this graph.
Q: The nodes are numbered from 0 to 3, and the edges are: (0, 1) (0, 2) (1, 2) (2, 3). Is there a Hamiltonian
path in this graph?
A: To determine if a Hamiltonian path exists in an undirected graph, we need to check if there’s a path
that visits each node exactly once. We can start at node 0. As node 0 is connected with node 1 and node 2,
we can choose either of them as the next node. Suppose we choose node 1.As node 1 is connected with
node 0 and node 2, we can choose node 2 as the next node.As node 2 is connected with node 0, node 1,
and node 3, we can choose node 3 as the next node.As node 3 is connected with node 2, we have no more
choices and we have visited all the nodes. So, one possible Hamiltonian path is: [0, 1, 2, 3]. Therefore,
there is a Hamiltonian path in this graph.

Input:
Q: The nodes are numbered from 0 to 3, and the edges are: (0, 2) (0, 1) (1, 3). Is there a Hamiltonian path
in this graph?
A: <Answer >
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Table 15: Prompts of Subgraph Task.

Prompt of Subgraph Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine if a smaller graph is present as an exact match within a larger graph. In a directed graph, (i→j)
means that node i and node j are connected with a directed edge from node i to node j.
Q: The nodes of graph G are numbered from 0 to 3, and the edges are: (0→1) (1→2) (2→3) (0→3).
The nodes of subgraph G’ are numbered from a to e, and the edges are: (a→e) (a→c) (a→d) (b→d). Is
subgraph G’ present within graph G as a direct substructure?
A: Subgraph G’ has more nodes and edges than graph G, so it cannot be present as a direct substructure
within G.
Q: The nodes of graph G are numbered from 0 to 6, and the edges are: (0→4) (0→1) (1→3) (5→6).
The nodes of subgraph G’ are numbered from a to d, and the edges are: (a→c) (a→b) (b→d) (c→d). Is
subgraph G’ present within graph G as a direct substructure?
A: No node in G satisfies the conditions of subgraph G’, so subgraph G’ is not present within graph G as
a direct substructure.

Input:
Q: The nodes of graph G are numbered from 0 to 4, and the edges are: (0→4) (1→2) (1→3) (2→3).
The nodes of subgraph G’ are numbered from a to d, and the edges are: (a→b) (a→d) (b→c) (b→d). Is
subgraph G’ present within graph G as a direct substructure?
A: <Answer >

Table 16: Prompts of Connectivity Task using the same graphs as examples.

Prompt of Connectivity Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether two nodes are connected in an undirected graph. In an undirected graph, (i,j) means
that node i and node j are connected with an undirected edge.
Q: The nodes are numbered from 0 to 4, and the edges are: (0, 4) (2, 3) (3, 4). Is there a path between
node 3 and node 0?
A: To see if there’s a path between node 3 and node 0, we can trace the connections: From node 3, you
can go to node 4 (via the edge (3, 4)). From node 4, you can go to node 0 (via the edge (0, 4)). So, yes,
there is a path between node 3 and node 0, which goes through node 4.
Q: The nodes are numbered from 0 to 4, and the edges are: (0, 4) (2, 3) (3, 4). Is there a path between
node 3 and node 4?
A: Yes, there is a direct path between node 3 and node 4. This is given by the edge (3, 4), meaning node 3
is directly connected to node 4.

Input:
Q: The nodes are numbered from 0 to 4, and the edges are: (0, 4) (2, 3) (3, 4). Is there a path between
node 0 and node 4?
A: <Answer >
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Table 17: Prompts of Connectivity Task using the different graphs as examples.

Prompt of Connectivity Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether two nodes are connected in an undirected graph. In an undirected graph, (i,j) means
that node i and node j are connected with an undirected edge.
Q: The nodes are numbered from 0 to 4, and the edges are: (1, 4) (1, 2). Is there a path between node 4
and node 2?
A: We can trace the possible connections: Node 4 is connected to node 1 (via the edge (1, 4)). Node 1 is
connected to node 2 (via the edge (1, 2)). So, there is a path from node 4 to node 2, and it goes through
node 1.
Q: The nodes are numbered from 0 to 4, and the edges are: (0, 3) (0, 2) (1, 3). Is there a path between
node 3 and node 1?
A: Let’s examine possible paths from node 3 to node 1: Start at node 3. From the edge (1, 3), we see that
node 3 is connected to node 1. So yes, there is a direct path between node 3 and node 1 via the edge (1, 3).

Input:
Q: The nodes are numbered from 0 to 4, and the edges are: (0, 4) (2, 3) (3, 4). Is there a path between
node 0 and node 4?
A: <Answer >

Table 18: Prompts of Connectivity Task using the same tasks as examples.

Prompt of Connectivity Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Determine whether two nodes are connected in an undirected graph. In an undirected graph, (i,j) means
that node i and node j are connected with an undirected edge.
Q: The nodes are numbered from 0 to 9, and the edges are: (0, 3) (2, 3) (3, 6) (4, 9). Is there a path
between node 2 and node 5?
A: Node 2 is connected to node 3 (via the edge (2, 3)). From node 3, there is a connection to node 6 (via
the edge (3, 6)). There is no direct or indirect connection from node 6 or any other node to node 5, based
on the given edges. So, there is no path between node 2 and node 5.
Q: The nodes are numbered from 0 to 9, and the edges are: (0, 3) (2, 3) (3, 6) (4, 9). Is there a path
between node 4 and node 5?
A: Node 4 is connected to node 9 (via the edge (4, 9)). There is no direct or indirect connection between
node 9 and node 5 based on the edges provided. So, there is no path between node 4 and node 5.

Input:
Q: The nodes are numbered from 0 to 9, and the edges are: (0, 3) (2, 3) (3, 6) (4, 9). Is there a path
between node 1 and node 5?
A: <Answer >
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Table 19: Prompts of Connectivity Task using the different tasks as examples.

Prompt of Connectivity Tasks (2-Demonstration)

The following is a Graph problem. Your task is to think about this problem and provide a solution based
on the [ICL Examples] I provide as hints.

Find the maximum flow between two nodes in a directed graph. In a directed graph, (i→j,k) means that
node i and node j are connected with a directed edge from node i to node j with weight k.
Q: The nodes are numbered from 0 to 9, and the edges are: (0→3,7) (2→3,9) (3→6,6) (4→9,10). What is
the maximum flow from node 3 to node 6?
A: Let’s focus on the path from node 3 to node 6, which is the edge (3→6) with a capacity of 6. Since
node 3 to node 6 is the only direct path and the edge has a capacity of 6, the maximum flow from node 3
to node 6 is 6.
Q: The nodes are numbered from 0 to 9, and the edges are: (0→3,7) (2→3,9) (3→6,6) (4→9,10). What is
the maximum flow from node 0 to node 3?
A: For the flow from node 0 to node 3, we focus on the edge (0→3) with a capacity of 7. There is no
other edge directly connecting node 0 to node 3, so the maximum flow is limited by this edge’s capacity.
Thus, the maximum flow from node 0 to node 3 is 7.

Input:
Determine whether two nodes are connected in an undirected graph. In an undirected graph, (i,j) means
that node i and node j are connected with an undirected edge.
Q: The nodes are numbered from 0 to 9, and the edges are: (0, 3) (2, 3) (3, 6) (4, 9). Is there a path
between node 0 and node 6?
A: <Answer >
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