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ABSTRACT

As machine learning models advance in complexity and increasingly depend on
large volumes of publicly sourced data, such as the human-annotated labels used
in training large language models, they become more vulnerable to label poisoning
attacks. These attacks, in which adversaries subtly alter the labels within a training
dataset, can severely degrade model performance, posing significant risks in critical
applications. In this paper, we propose FLORAL, an adversarial training defense
strategy based on support vector machines (SVMs) to counter label poisoning
attacks. Utilizing a bilevel optimization framework, we cast the adversarial
training process as a non-zero-sum Stackelberg game between an attacker, who
strategically poisons critical training labels, and the model, which seeks to recover
from such attacks. Our approach introduces a projected gradient descent algorithm
with kernel SVMs for adversarial training. We provide a theoretical analysis of
our algorithm’s convergence properties and empirically evaluate its effectiveness
across diverse classification tasks including sentiment analysis on the IMDB
dataset. Compared to baseline robust models and robust foundation models such
as RoBERTa, our method consistently achieves higher robust accuracy as the
attacker’s budget increases. These results underscore the potential of FLORAL to
enhance the resilience of machine learning models against label poisoning threats,
thereby ensuring robust classification in adversarial environments.

1 INTRODUCTION

The susceptibility of machine learning models to the integrity of their training data is a growing
concern, especially as these models become more complex and reliant on large volumes of publicly
sourced data, such as the human-annotated labels used in training large language models (Kumar
et al., 2020; Cheng et al., 2020; Wang et al., 2023). Any compromise in training data can severely
undermine a model’s performance and reliability (Dalvi et al., 2004; Szegedy et al., 2014)— leading
to catastrophic outcomes in security-critical applications, such as fraud detection (Fiore et al., 2019),
medical diagnosis (Finlayson et al., 2019), and autonomous driving (Deng et al., 2020).

One of the most insidious forms of threat is the data
poisoning (causative) attack (Barreno et al., 2010),
where an adversary subtly manipulates a subset of
the training data, causing the model to learn incorrect
associations between inputs and outputs. Causative
attacks can involve either feature or label perturbations.
Unlike feature poisoning, which alters the input data
itself, (triggerless) label poisoning is particularly
challenging to detect because the input data remains
unchanged, and only the labels are tampered with,
as illustrated in Figure 2. Deep learning models are
inherently vulnerable to random label noise (Zhang
et al., 2017). This vulnerability is further exacerbated
in the context of adversarial label poisoning, where
the noise is intentionally crafted to be more damaging,
making it substantially harder for models to cope.
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Figure 1: The graph shows the test accuracy
degradation of RoBERTa fine-tuned on the
IMDB dataset with adversarial labels. This
highlights the vulnerability of RoBERTa to
label poisoning attacks.
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classifier

less robust

feature attack
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Figure 2: The differential vulnerability of data points to adversarial attacks reveals distinct charac-
teristics between feature perturbation and label poisoning. In feature attacks, points near the decision
boundary are particularly vulnerable and less robust (Zhang et al., 2021; Xu et al., 2023). Conversely,
label poisoning affects any point in the input space uniformly, introducing a more pervasive risk.

We demonstrate this in Figure 1, where the RoBERTa model (Liu et al., 2019), fine-tuned for a
sentiment analysis task, shows significant vulnerability to label poisoning attacks (Zhu et al., 2022).
The impact increases with the growing budget of the attacker. Here, the adversarially labeled dataset
is generated by poisoning the labels of the important training data points using a fine-tuned model
on the clean dataset (see Appendix C.3 for details).

A line of work has addressed label poisoning through designing triggerless attacks against SVMs
(Biggio et al., 2012; Xiao et al., 2012; 2015), backdoor attacks within vision contexts (Chen et al.,
2022; Jha et al., 2023) or combining label poisoning with adversarial attacks (Fowl et al., 2021;
Geiping et al., 2021). Defense mechanisms against such attacks typically focus on filtering (data
sanitization) techniques (Laishram & Phoha, 2016; Paudice et al., 2018), kernel correction (Biggio
et al., 2011), intrinsic dimensionality-based sample weighting (Weerasinghe et al., 2021) and robust
learning methods (Steinhardt et al., 2017). One widely adopted empirical defense against data
poisoning, adversarial training (AT) (Goodfellow et al., 2015; Madry et al., 2017), has proven
effective in enhancing model robustness. AT frames the problem as a zero-sum game between the
attacker and the victim model, training the model on adversarially perturbed data to enhance its
resilience to future attacks (Huang et al., 2015; Kurakin et al., 2016). However, the application of
AT specifically to label poisoning attacks is yet to be explored in depth.

In this paper, we address robust classification in the presence of label poisoning attacks and propose
FLORAL (Flipping Labels for Adversarial Learning), a defense strategy in the form of support
vector machine (SVM)-based adversarial training. We formulate our defense strategy as a bilevel
optimization problem (Robey et al., 2024), which enables efficient generation of optimal label attacks,
resulting in a non-zero-sum Stackelberg game between an attacker (or adversary), targeting critical
training labels, and the model, recovering from such attacks. We propose a projected gradient descent
algorithm tailored for kernel SVMs to solve the bilevel optimization problem. As demonstrated in our
experiments on various classification tasks, FLORAL improves robustness in the face of adversarially
manipulated labels by effectively leveraging the inherent robustness of SVMs combined with the
strengths of adversarial training— leading to an enhanced model resilience against label poisoning
while maintaining a balance with classification accuracy.

Contributions. Our main contributions are the following.

• We propose FLORAL, a support vector machine-based adversarial training strategy that defends
against label poisoning attacks. To the best of our knowledge, this is the first work to introduce
adversarial training as a defense for label poisoning attacks. We consider kernel SVMs in our
formulation, however, the method can be integrated with other classifiers such as neural networks.

• We utilize a bilevel optimization formulation for the robust learning problem, leading to a
non-zero-sum Stackelberg game between an attacker who poisons the labels of influential training
points and the model trying to recover from such attacks. We provide a projected gradient descent
(PGD)–based algorithm to solve the game efficiently.

• We theoretically analyze the local asymptotic stability of our algorithm by proving that its iterative
updates remain bounded and characterizing its convergence to the Stackelberg equilibrium.

• We empirically analyze the effectiveness of our approach through experiments on various
classification tasks against baseline robust models as well as robust foundation models such as
RoBERTa. Our results demonstrate that as the attacker’s budget increases, FLORAL maintains
higher robust accuracy compared to baselines trained on adversarial data.

• Finally, we show the generalizability of FLORAL against attacks from the literature, alfa,
alfa-tilt (Xiao et al., 2015) and LFA (Paudice et al., 2018), which aim to maximize the
difference in empirical risk between classifiers trained on tainted and untainted label sets.
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2 PROBLEM STATEMENT AND BACKGROUND

We tackle the problem of robust binary classification in the presence of label poisoning at-
tacks (see Section 3 for an extension to multi-class classification). Given a training dataset
D = {(xi, yi) ∈ (X ,Y)}ni=1, where X ⊆ Rd are the input features and Y = {±1} denotes the
corresponding binary labels (potentially involving adversarial labels), we consider a kernel SVM
classifier fλ(x) := sign(

∑
j λjyjk(x, xj) + b), parametrized by λ ∈ Rn and bias b ∈ R, which

assigns a label to each data point and is derived from the following quadratic program (dual
formulation) (Boser et al., 1992; Hearst et al., 1998):

D(fλ;D) : min
λ∈Rn

1

2
λTQλ− 1Tλ (1)

subject to yTλ = 0 (2)
0 ≤ λ ≤ C, (3)

where Q ∈ Rn×n is a positive semi-definite matrix, with elements Qij = yiyjKij and 1 is the
n-dimensional vector of all ones. Here, K is the Gram matrix with entries Kij = k(xi, xj),∀i, j ∈
[n] := {1, . . . , n}, derived from a kernel function k. A common kernel choice is the radial basis
function (RBF), given as k(xi, xj) = exp(−γ ∥xi − xj∥2), with width parameter γ. The parameter
C ∈ R is a regularization term, balancing the trade-off between maximizing the margin and
minimizing classification errors. In this formulation, each dual variable λi, i ∈ [n] corresponds to
the Lagrange multiplier associated with the misclassification constraint for the training point xi.

3 THE FLORAL APPROACH

In the context of label poisoning attacks, the attacker’s objective is to maximize the model’s test
classification error by strategically altering the labels to an optimal adversarial configuration. Unlike
feature perturbations, label poisoning attacks have distinct implications for classification error, as
depicted in Figure 2. These triggerless attacks are particularly challenging to detect because any
point in the input space can be targeted; misclassifying even a single point impacts the overall
accuracy in the same way, making the attack both subtle and broadly effective compared to feature
perturbation attacks. It is important to note that in feature attacks only certain features or regions
of the input space are vulnerable. A straightforward and naive (Robey et al., 2024) way to perform
adversarial training under label poisoning would be to use the following minimax formulation:

min
λ∈Rn

1

n

n∑
i=1

 max∑
i∈[n] 1{yi ̸=ỹi}=k

ỹi∈Y,i∈[n]

L (fλ(xi), ỹi)

 , (4)

where L denotes a loss function, which in the case of the kernel SVM is related to the hinge loss,
and ỹ represents the adversarial label set. Here, the attacker’s budget is limited to k label flips. This
formulation is problematic for multiple reasons:

1. The inner problem is a variant of knapsack, which is NP-complete. Hence, computing its
solution is challenging for large datasets.

2. The loss is only a surrogate for the test accuracy, which is the actual quantity of interest to both
the learner and the attacker. However, from an optimization perspective, maximizing an upper
bound (such as the hinge loss in SVMs) on the classification error is not meaningful as such
a bound does not represent the true objective of the attacker.

3. In the case of an SVM-based classifier, the minimax formulation would only safeguard against
attacks that target data points very far from the decision boundary. These attacks are unlikely
to alter the SVM classifier significantly, as such points are less likely to be support vectors, i.e.
the critical data points that define the decision boundary.

4. Even if a bilevel formulation is used where the attacker minimizes the margin, the problem
remains computationally challenging. This is because the attacker must order data points
according to the margin and search for the optimal adversarial label set within the constraints
of its budget, which leads to a vast space of combinatorial possibilities.

As a result of these, we formulate our adversarial training routine as a non-zero-sum Stackelberg
game (Von Stackelberg, 2010; Conitzer & Sandholm, 2006) and propose FLORAL defense using
the bilevel optimization formulation (Bard, 2013):

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

D(fλ;D) : min
λ∈Rn

1

2
λTQλ− 1Tλ (5)

subject to ỹ(λ)Tλ = 0 (6)
0 ≤ λ ≤ C (7)

where ỹ(λ) ∈ arg max
y′∈Yn,u∈{0,1}n

λTu (8)

subject to y′i = yi(1− 2ui),∀i ∈ [n] (9)∑
i∈[n]

1{yi ̸= y′i} = k. (10)

In the outer (model’s) problem, defined by (5-7), the SVM classifier is derived under an adversarial
label set. The key difference from the formulation in Section 2 is that the elements of Q are now
defined as Qij = ỹiỹjKij . Meanwhile, the inner (attacker’s) problem, given by (8-10) identifies
the top-k most influential data points affecting the model’s decision boundary. The intuition behind
this approach is similar to identifying the most responsible training points for the model’s prediction
as in (Koh & Liang, 2017). However, rather than relying on influence functions (Hampel, 1974),
the attacker leverages the dual variables λ, which provides direct access to the most influential data
points. These points correspond to the support vectors, and the higher the value of a dual variable, the
more critical that data point is in determining the model’s decision boundary. We solve the bilevel

Nonlinear SVM
adversarial training via PGD:

𝝀𝒕+𝟏 ← 𝑷𝒓𝒐𝒋(𝝀𝒕, 𝑫𝒕+𝟏
𝒂𝒅𝒗)

Attacker
poison labels of points via 
randomized top-k(𝝀𝒕) rule

Adversarial dataset 𝑫𝒕+𝟏
𝒂𝒅𝒗

Dual parameters 𝝀𝒕

Figure 3: An illustration of FLORAL, adversarial training under label poisoning attacks.

optimization problem given by (5-10) through a non-zero-sum Stackelberg game (Von Stackelberg,
2010; Conitzer & Sandholm, 2006) between the learning model, and the attacker acting as the
leader and follower, respectively, as shown in Figure 3. Starting with an initial kernel SVM model
fλ0

and a training dataset D0, the game proceeds iteratively. In each round t, the model shares its
dual parameters with the attacker, who then generates an adversarially labeled dataset Dt using
a randomized top-k rule. That is, the attacker identifies the top-B data points based on their λt−1

values, constrained by the budget B. Among these, the labels of k randomly selected points are
poisoned. We incorporate randomization to account for the attacker’s budget and to reduce the risk
of settling in local optima. The adversarial training is then performed via a projected gradient descent
step using parameters λt−1 and Dt, after which the updated parameters, λt, are shared with the
attacker. This iterative interplay between the attacker and defender model forms a soft-margin kernel
SVM robust to adversarial label poisoning attacks. Our overall approach is detailed in Algorithm 1.

Algorithm 1 FLORAL

1: Input: Initial kernel SVM model fλ0
, training dataset D0 = {(xi, yi)}ni=1, xi ∈ Rd, yi ∈ {±1},

attacker budget B, parameter k, where k ≪ B, learning rate η.
2: for round t = 1, . . . , T do
3: ỹt ← Solve (8-10) via randomly selecting k points from top B w.r.t. λt−1. */ Label poisoning
4: Dt ← {(xi, ỹ

t
i)}ni=1 */ Adversarial dataset

5: Compute gradient of the objective (5),∇λD(fλ;D), based on λt−1,Dt as given in (11).
6: Take a PGD step λt ← PROXS(ỹt)(λt−1 − η∇λD(fλt−1 ;Dt)). */ Adversarial training
7: end for
8: return fλT

The attacker’s capability. The attacker solves (8-10) with respect to the shared model parameters
λ. Under the constraint (7), the attacker effectively generates a label attack by identifying the most
influential support vectors. Specifically, among the B data points with the highest λ values, the
labels of k randomly selected points are poisoned. The attack is classified as a white-box attack
(Wu et al., 2023) as the attacker has direct access to the model parameters. In practice, the attacker’s
knowledge of the training data may be limited. To account for this, we assume the attacker operates
under a constrained budget, allowing the poisoning of at most B labels per round, from which k

4
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points are further selected. While this scenario may still seem to give the attacker significant power,
it is important to note that: (i) relying on secrecy for security is generally considered poor practice
(Biggio et al., 2013), and (ii) our method is designed to defend against the strongest possible attacker.
Even in more restrictive black-box attack scenarios, where the attacker lacks direct access to the
model parameters, our approach remains effective for generating transferable attacks (Zheng et al.,
2023). In such cases, the attacker could fit a kernel SVM on the available data and use a similar
selection rule to identify influential support vectors and generate an adversarial label set.

Gradient of the objective (5). In each round, the adversarial training PGD step requires computing
the gradient ∇λD(fλ;D) of the objective (5) based on λt−1 and Dt, which is defined as

∇λt−1D(fλ;Dt) = Aλt−1 − 1, (11)

where A is the matrix with entries Aij = ỹti ỹ
t
jKij ,∀i, j ∈ [n], detailed in Appendix B.

Projection. The feasible set S changes in each round t depending on the adversarial label set
ỹt (see (6)). We introduce the variable zt := λt−1 − η∇λD(fλt−1 ;Dt) and define the projection
operator PROXS(ỹt) : Rn → Rn as follows:

PROXS(ỹt) : λt ∈ arg min
λ∈Rn

1

2
∥λ− zt∥2 (12)

subject to ỹt
T

λ = 0 (13)
0 ≤ λ ≤ C. (14)

However, solving this quadratic program for large-scale instances may be computationally challenging
unless the specific problem structure is exploited. We, therefore, provide a scalable and efficient
implementation of Algorithm 1 that relies on a fixed point iteration strategy as detailed in Section 3.2.

A form of geometry-aware AT. The concept behind FLORAL is closely aligned with the
geometry-aware adversarial training principles (Zhang et al., 2021). The support vectors with a larger
Lagrange multiplier (λ) play a crucial role in defining the decision boundary (Hearst et al., 1998).
In FLORAL, the attacker strategically identifies these key points using a randomized top-k rule. This
method inherently integrates the geometric proximity to the decision boundary into the label attack,
targeting points that have a substantial impact on the hinge loss.

Robust multi-class classification. We extend our algorithm to multi-class classification tasks, as
detailed in Algorithm 3 in Appendix E. The primary modification involves adopting a one-vs-all
approach and considering multiple attackers, with each attacker corresponding to a different class.

3.1 STABILITY ANALYSIS

We theoretically analyze the stability of FLORAL (Algorithm 1) by (i) demonstrating that
its iterative updates are bounded and (ii) characterizing its convergence to the Stackel-
berg equilibrium. For simplicity of notation, let us define the update rule at round t as
λt := PROXS(yt)(zt) = PROXS(yt)(λt−1 − η∇λf(λt−1, yt)), where PROX is defined in (12-14).
We use the operator LFLIP : X × Y → Y to define label poisoning attack formulated in (8-10).

Lemma 1. Let (λ̂, ŷ(λ̂)) denote a Stackelberg equilibrium, i.e., ŷ(λ̂) := LFLIP(λ̂) and λ̂ :=

PROXS(ŷ(λ̂))(ẑ) = PROXS(ŷ(λ̂))(λ̂− η∇λf(λ̂, ŷ(λ̂))) and {λ}Tt=0 be the sequence of iterates gener-
ated by FLORAL (Algorithm 1). The following bound holds for the iterates:

∥λt − λ̂∥∞ ≤ ∥zt − ẑ∥∞ + κy∥yt − ŷ(λ̂)∥∞ (15)
where κy is a constant defined by the index set such that λt ∈ (0, C) and the PROX operator penalty
term, as detailed in Appendix A.1, and ∥ · ∥∞ denotes the infinity norm.

Proof. See Appendix A.1 for the complete proof.

Lemma 2. Let (λ̂, ŷ(λ̂)) denote the Stackelberg equilibrium as before. The following bound holds
for the non-projected iterates {z}Tt=0 of FLORAL (Algorithm 1):

∥zt − ẑ∥∞ ≤ κλ∥λt−1 − λ̂∥∞ + κ′
y∥yt − ŷ(λ̂)∥∞ (16)

where κλ and κ′
y are kernel dependent constants that are below 1 for small enough η, as detailed

in Appendix A.2.

Proof. See Appendix A.2 for the complete proof.
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Theorem 3.1 (ε-local asymptotic stability). The Stackelberg equilibrium (λ̂, ŷ(λ̂)) defined as before,
is ε-locally asymptotically stable for the Stackelberg game solved via Algorithm 1 for a small enough
step size η. This implies that for every ε > 0, there exists δ > 0 such that

∥λ0 − λ̂∥∞ < δ ⇒ ∥λt − λ̂∥∞ < ε,∀t > 0 and λt → λ̂. (17)

Proof (sketch). The proof relies on characterizing the distance between the update λt at round t and
the equilibrium λ̂ using Lemma 1 and Lemma 2, then leveraging the fact that the LFLIP operator re-
turns the same adversarial label set when λt is within an ε distance from the equilibrium. The complete
proof is given in Appendix A.3, with the global convergence result discussed in Appendix A.4.

3.2 LARGE-SCALE IMPLEMENTATION

We efficiently scale our algorithm for large problem instances by approximating the projection
operation (step 6 in Algorithm 1) via a fixed-point iteration method, as outlined in Algorithm 2. The
key idea leverages the optimal λ⋆ expression from Appendix A.1 and involves an iterative splitting of
variables based on non-projected λ values within the range [0, C]. In each iteration, the variable µ is
updated using the expression in Appendix A.1 until convergence to a specified error ϵ is achieved.

Algorithm 2 PROJECTIONVIAFIXEDPOINTITERATION

1: Input: Non-projected λ0, adversarial label set ỹ = {ỹi}ni=1, yi ∈ {±1}, parameters C, ϵ.
2: Initialize µ0 = 0.
3: for round t = 1, . . . , Tproj do
4: λt = CLIP[0,C](λ0 − µt−1ỹ) */ clip to satisfy constraint (14)
5: if λtỹ = 0 then
6: return λt

7: end if
8: IC , Iz ← indices of λt ≥ C, λt ∈ (0, C) */ variable splitting
9: η ← max(| Iz |, 1) */ to avoid empty Iz case

10: µt ← η−|Iz|
η µt−1 +

1
η (
∑

i∈IC
Cỹi +

∑
i∈Iz

λi
tỹi)

11: if | µt − µt−1 |≤ ϵ then
12: return CLIP[0,C](λ0 − µtỹ)
13: end if
14: end for

3.3 RELATED WORK

Label poisoning. Biggio et al. (2012) were pioneers in analyzing label poisoning attacks, demon-
strating that flipping a small number of training labels can significantly degrade SVM performance.
Building on this, Xiao et al. (2012) formalized the optimal adversarial label flip attack under a
constrained budget as a bilevel optimization problem, which then expanded to transferable attacks
on black-box models (Zhao et al., 2017), considering arbitrary objective models for the attacker.

Defenses against these attacks include heuristic-based kernel correction (Biggio et al., 2011), that
replaces the Q matrix in (5) with its expected value, though assuming that each label can be indepen-
dently flipped with the same probability–an assumption which may or may not be satisfied in a given
problem. Other defenses include filtering poisoned data through clustering methods (Laishram &
Phoha, 2016), data complexity analysis (Chan et al., 2018), or re-labeling (Paudice et al., 2018). While
these methods offer straightforward solutions, they do not scale well to high-dimensional or large
datasets. Sample weighting based on local intrinsic dimensionality (LID) (Weerasinghe et al., 2021;
Ma et al., 2018) shows promise, but its effectiveness hinges on the accuracy of the LID estimation,
which requires neighborhood computation that can be prohibitively expensive in complex datasets.
Our approach, however, avoids strong assumptions about the data distribution or the attacker, pre-
serves feasibility, and scales effectively to large-scale problem instances as demonstrated in Section 4.

Recent studies predominantly address backdoor attacks in image contexts, where adversaries inject
specific triggers and target labels (Jha et al., 2023), or triggerless data with poisoned labels in
multi-label scenarios (Chen et al., 2022). In contrast, our approach focuses on triggerless poisoning
attacks. Additionally, while learning under noisy labels (Frénay & Verleysen, 2013; Natarajan et al.,
2013) may seem relevant as poisoning attacks inherently introduce label noise, our work is distinct
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in its focus on adversarial label noise (Biggio et al., 2011), where the adversary intentionally crafts
the most damaging perturbation of labels.

Adversarial training (AT). The concept of adversarial examples gained prominence with (Szegedy
et al., 2014), which revealed how small, imperceptible perturbations could cause significant mis-
classification in deep neural networks (DNNs). Building on this, AT (Goodfellow et al., 2015)
emerged as a widely adopted strategy, involving the training of models on both the original dataset
and adversarial examples—inputs deliberately perturbed to mislead the model. Defenses against
such attacks have utilized adversarial examples generated by methods such as FGSM (Goodfellow
et al., 2015), PGD (Madry et al., 2017), C&W (Carlini & Wagner, 2017), among others (Chen et al.,
2017; Moosavi-Dezfooli et al., 2015). In the context of SVMs, Zhou et al. (2012) formulated a
convex AT for linear SVMs, which was later extended to kernel SVMs by Wu et al. (2021) via doubly
stochastic gradients to enhance robustness under feature perturbations. Despite these advances, the
application of AT to label poisoning attacks remains underexplored. Our approach addressed this
gap, by leveraging AT specifically for label poisoning scenarios, where PGD is used not to generate
adversarial examples, but to train the model on poisoned datasets.

In parallel, game-theoretical approaches have modeled adversarial interactions in machine learning
as simultaneous games, where classifiers and adversaries select strategies without knowledge of
each other’s choices (Dalvi et al., 2004), or as a Stackelberg game with a leader-follower dynamic
(Brückner & Scheffer, 2011; Zhou et al., 2019; Chivukula et al., 2020). The advent of AT has further
connected these concepts, particularly in simultaneous zero-sum games (Hsieh et al., 2019; Pinot
et al., 2020; Pal & Vidal, 2020), which were later reformulated as non-zero-sum games (Robey et al.,
2024). In this work, we adopt a sequential setup, employing the Stackelberg game framework where
the leader commits to a strategy first, and the follower, informed of this choice, responds accordingly.

4 EXPERIMENTS

In this section, we showcase the effectiveness of FLORAL across various robust classification tasks,
utilizing the following datasets:

• Moon: We employed a synthetic dataset, D = {(xi, yi)}500i=1 where xi ∈ R2 and yi ∈ {±1}.
We generated its adversarial versions by flipping the labels of points farther from the decision
boundary of a linear classifier trained on the clean dataset, considering label poisoning levels (%)
of {5, 10, 25}. Visualizations of the adversarial datasets can be found in Figure 7 in Appendix C.1.

• IMDB: We conducted experiments on the benchmark IMDB sentiment analysis dataset with
D = {(xi, yi)}20000i=1 where xi ∈ R768 and yi ∈ {±1}. For SVM training, we extracted 768-
dimensional embeddings from the fine-tuned RoBERTa (Liu et al., 2019) models. Adversarial
datasets were created by fine-tuning the RoBERTa-base model on the clean dataset to identify
influential training points based on the gradient with respect to the inputs. We then poisoned the
labels of these points at varying poisoning levels (%) of {10, 25, 30, 35, 40}.

Experimental setup. For all SVM-related methods, we use an SVM with an RBF kernel, ex-
ploring various values of C and γ. We conduct five replications with different train/test splits,
including the corresponding adversarial datasets for each dataset. In all FLORAL experiments,
we constrain the attacker’s capability with a limited budget. Specifically, the attacker identifies
the most influential candidate points, with B = 2k, from the training set and randomly selects
k ∈ {1%, 2%, 5%, 10%, 25%} to poison, where k represents the percentage of points relative to the
training set size. Detailed experimental configurations are provided in Appendix C (see Table 3).

Baselines. We benchmark FLORAL against the following baselines:
1. (Vanilla) SVM with an RBF kernel, which serves as a basic benchmark (Hearst et al., 1998).
2. LN-SVM (Biggio et al., 2011) applies a heuristic-based kernel matrix correction to improve the

robustness against adversarial label noise.
3. Curie (Laishram & Phoha, 2016), utilizes the DBSCAN clustering (Ester et al., 1996) to identify

and filter out poisoned data points.
4. LS-SVM (Paudice et al., 2018), which applies label sanitization by relabeling the suspicious data

points based on k-NN (Cover & Hart, 1967).
5. K-LID (Weerasinghe et al., 2021), a weighted SVM based on kernel local intrinsic dimensionality.
6. NN: A DNN trained using the SGD optimizer with momentum and binary cross-entropy loss,

serving as a non-linear baseline model.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

7. NN-PGD: A DNN trained with PGD-AT (Madry et al., 2017). We include this method to assess
whether a robust NN model designed to withstand feature perturbation attacks also performs
well under label poisoning attacks.

8. RoBERTa, a robust variant of BERT (Liu et al., 2019; Devlin et al., 2019), used specifically for
experiments with the IMDB dataset. This baseline assesses how well a fine-tuned state-of-the-art
language model, performs under adversarial label-poisoning conditions.

Performance metrics. We assess our method using two key metrics: robust and clean accuracy,
both tracked over a test set with clean labels during the training process. Unlike traditional settings
involving feature perturbation attacks, where robust accuracy is gauged on adversarially perturbed test
examples and clean accuracy on unaltered test examples (Yang et al., 2020), our study focuses on label
poisoning attacks. Here, robust accuracy reflects the performance of models trained on adversarially
labeled data and tested on clean-label test sets, thereby indicating the models’ resilience and gen-
eralization capabilities under label poisoning. Conversely, clean accuracy measures the performance
of models trained and tested on clean-labeled data, offering a benchmark for comparison under both
adversarial and non-adversarial conditions. We additionally report hinge loss over the test dataset with
clean labels to highlight the performance results of methods in experiments with the IMDB dataset.

4.1 EXPERIMENT RESULTS

In this section, we report the performance of FLORAL against the baseline methods on the Moon
dataset, followed by results of its integration with RoBERTa on the IMDB dataset.

Moon. In our performance comparison on the Moon dataset, as reported in Table 1 and Figure 4
(also in Appendix D.1, Table 4), FLORAL consistently achieves higher robust accuracy across all
settings compared to SVM, NN, and LS-SVM. Notably, in scenarios with a 25% poisoning level,
FLORAL significantly outperforms all baselines, which experience a marked drop in their accuracy.
However, when the kernel hyperparameters are not optimally chosen (as in C = 100, γ = 10 setting),
FLORAL performs on par with LN-SVM and Curie, and the AT defense fails to provide effective
recovery from label attacks. Despite this, FLORAL offers distinct advantages e.g. unlike LN-SVM,
our approach does not rely on the strong assumption that training labels can be independently flipped
with equal probability. Compared to Curie, FLORAL avoids a filter-out system that may inadvertently
discard data containing useful feature representations. Further, in terms of scalability, Curie strongly
relies on the notion of distances and suffers from the curse of dimensionality, reduces the effectiveness
of its clustering process in high-dimensional complex scenarios. Moreover, we leveraged domain
knowledge to carefully set the noise, confidence level, and threshold value parameters of LN-SVM,
Curie, and LS-SVM, respectively— aligning them with the poisoning level of the dataset. This
ensures that our comparisons are made against the strongest versions of these baseline methods.

A key differentiator of FLORAL is its operation under dynamically changing adversarial datasets
during each training round, unlike the baselines, which are trained on fixed adversarially labeled
datasets. This dynamic approach introduces additional adversarial labels, further challenging the
model’s robustness. Finally, regarding clean test accuracy, FLORAL performs comparably to the stan-
dard SVM, indicating that it enhances robust accuracy without significant sacrifices in clean accuracy.
Considering these aspects, FLORAL demonstrates a significant performance advantage over baseline
methods, particularly in maintaining robust accuracy under challenging adversarial conditions.

Additionally, we illustrate the decision boundaries of trained methods on the test dataset in Figure 6,
which highlights that FLORAL generates a relatively smooth decision boundary compared to baseline
methods and promotes generalization (see Figures 21-23 in Appendix D for additional results).

Table 1: Test accuracies of methods trained on the Moon dataset. Each entry shows the average of
five replications with different train/test splits. Bold values highlight the highest performance in both
the "Best" and "Last" columns. See Appendix D.1 (Table 4) for the results of other settings.

Setting

Method

FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last

Clean C = 10, γ = 1 0.968 0.966 0.968 0.968 0.960 0.960 0.966 0.964 0.940 0.940 0.941 0.941 0.881 0.881 0.966 0.966
Dadv = 5% C = 10, γ = 1 0.966 0.966 0.965 0.957 0.926 0.926 0.964 0.937 0.940 0.940 0.903 0.903 0.881 0.881 0.964 0.964
Dadv = 10% C = 10, γ = 1 0.924 0.907 0.912 0.900 0.859 0.855 0.927 0.853 0.869 0.868 0.907 0.907 0.894 0.894 0.908 0.907
Dadv = 25% C = 10, γ = 1 0.903 0.903 0.698 0.671 0.693 0.647 0.740 0.655 0.701 0.663 0.774 0.773 0.694 0.670 0.703 0.663
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Figure 4: Test accuracy of methods on the Moon dataset under varying levels of label poisoning. For
SVM models, C = 10, γ = 1 are used. See Appendix D (Figure 8) for results with other settings. As
label poisoning increases, the accuracy of models trained on adversarial datasets generally declines.
However, FLORAL maintains higher robust accuracy across most settings.
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(a) RoBERTa.
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(c) RoBERTa.
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(d) FLORAL.
RoBERTa_Clean Adv_10% Adv_25% Adv_30% Adv_35% Adv_40%
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Figure 5: Test accuracy & loss of methods on the IMDB dataset. RoBERTa & FLORAL integration
outperforms fine-tuned RoBERTa in maintaining better test accuracy and converging faster to lower
loss, even when trained on extracted embeddings with heavily adversarial labels.

IMDB. To show the adaptability of FLORAL with other model architectures (see Appendix L), we
integrate FLORAL as a robust classifier head for RoBERTa. The resulting test performance against
fine-tuned RoBERTa on the IMDB dataset is given in Figure 5 and Table 2 which show that FLORAL
integration, when trained on adversarial datasets, exhibits significant robustness, outperforming the
fine-tuned RoBERTa. Our approach also converges faster to lower loss values, particularly in harsh ad-
versarial scenarios. The comprehensive comparison against other baselines is given in Appendix D.2
(see Table 5), which further confirms FLORAL’s performance in maintaining higher robust accuracy.

In Appendix D.2, we also provide an additional analysis of how the influential training points,
which most affect model predictions, change when implementing FLORAL on RoBERTa-extracted
embeddings (see Figures 11-10). The results indicate that while some overlap exists between the
identified points, FLORAL selects different critical training points, which contribute to improved
robust accuracy by influencing the model’s decision boundary more effectively.

Table 2: Test accuracy and loss of methods trained on the IMDB dataset. Each entry shows an average
of five replications, with bold entries denoting the best values. FLORAL demonstrates superior robust
accuracy and lower test loss compared to RoBERTa, particularly in more adversarial scenarios. See
Table 5 in Appendix D.2 for the complete comparison with other baselines.

Setting

Accuracy Loss

FLORAL RoBERTa FLORAL RoBERTa

Best Last Best Last Best Last Best Last

Clean 0.911 0.911 0.911 0.911 0.196 0.216 0.229 0.282
Dadv = 10% 0.903 0.903 0.904 0.903 0.234 0.259 0.227 0.231
Dadv = 25% 0.889 0.889 0.882 0.861 0.310 0.333 0.337 0.365
Dadv = 30% 0.880 0.880 0.867 0.835 0.353 0.366 0.428 0.428
Dadv = 35% 0.871 0.871 0.827 0.805 0.381 0.395 0.496 0.496
Dadv = 40% 0.863 0.863 0.779 0.771 0.428 0.439 0.551 0.551
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(a) FLORAL (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(b) SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(c) NN (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(d) NN-PGD (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

Figure 6: The decision boundaries on the Moon test dataset under varying label poisoning levels.
SVM models use an RBF kernel with C = 10 and γ = 0.5. FLORAL generates a smooth
decision boundary compared to baseline methods, which show drastic changes due to adversarial
manipulations. For results with other settings, see Appendix D (Figures 21-23).

Sensitivity analysis. We further examined the sensitivity of our approach to the attacker’s budget,
and the results are detailed in Appendix D.3 (see Figure 12).

Generalizability. We additionally demonstrate the effectiveness of our method under alfa,
alfa-tilt (Xiao et al., 2015) and LFA (Paudice et al., 2018) attacks from the literature. Our
experiments on the Moon and MNIST (Deng, 2012) datasets again confirmed that FLORAL achieves
higher robust accuracy against baselines, which we detail in Appendix F, H and I.

Limitations. Defense strategies may not be universally effective against all label poisoning attacks
due to their non-adaptive nature (Papernot et al., 2016). Our defense strategy relies on a white-box
attack, where the attacker can access the model. While we also show the performance of our approach
under various label attacks from literature, its efficacy may vary under different attack scenarios.

5 DISCUSSION AND FUTURE WORK

In this paper, we address the vulnerability of machine learning models to label poisoning attacks by
proposing a defense in the form of adversarial training with kernel SVMs. We formulate the problem
using bilevel optimization and frame the adversarial interaction between the learning model and
the attacker as a non-zero-sum Stackelberg game. To compute the game equilibrium that solves the
optimization problem, we introduce a projected gradient descent-based algorithm and analyze its
local stability and convergence properties. Our approach demonstrates superior empirical robustness
across various classification tasks compared to baseline methods.

Future research includes exploring SVM-based transfer attacks or integrating our approach to robust
fine-tuning of foundation models for supervised downstream tasks. Additionally, a detailed analysis
of how FLORAL alters the most influential training points for model predictions, e.g. when integrated
with foundation models such as RoBERTa could provide interesting insights.
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A THEORETICAL ANALYSIS PROOFS

In this section, we present the proofs for the local asymptotic stability analysis of FLORAL (Algo-
rithm 1). We begin by proving Lemma 1 in Section A.1, which establishes that the distance of the
updates of Algorithm 1 from the equilibrium of the game is bounded. In Section A.2, we prove
Lemma 2, demonstrating that the distance of the non-projected updates from the equilibrium of the
game is also bounded. Lastly, in Section A.3, we provide the proof of Theorem 3.1, which shows the
local asymptotic stability of our algorithm, with a derivation of a global convergence result presented
in Section A.4.

A.1 PROOF OF LEMMA 1

Our objective is to prove that the distance of the iterates of Algorithm 1 from the Stackelberg
equilibrium (λ̂, ŷ(λ̂)), specifically λt− λ̂, is bounded. We begin by recalling the update rule at round
t, λt := PROXS(yt)(zt) = PROXS(yt)(λt−1 − η∇λf(λt−1, yt)), where yt = ŷ(λt−1), S(yt) is the
feasible region defined by constraints (13-14), using the labels at round t. The operator PROX is
defined below.

Definition 1 (PROX operator). The operator PROXS(yt) : Rn → Rn denotes the projection of
zt ∈ Rn onto the convex set S(yt) at round t of Algorithm 1. PROX minimizes the Euclidean distance
and is defined by the following optimization problem:

PROXS(yt) : λt ∈ arg min
λ∈Rn

1

2
∥λ− zt∥2 (18)

subject to yTt λ = 0 (19)
0 ≤ λ ≤ C (20)

Equivalently, PROXS(yt) solves the following optimization problem:

min
λ∈Rn

0≤λ≤C

sup
µ∈R

1

2
∥λ− zt∥2 + µyTt λ. (21)

Lemma 3 (Bounded iterates). The sequence {λ}t generated by the iterative update rule λt :=
PROXS(yt)(zt) = PROXS(yt)(λt−1 − η∇λf(λt−1, yt)) is bounded, i.e., ∥λt∥∞ ≤ C,∀t ≥ 0.

Proof. This follows immediately from the definition of S(yt).

In the following, our aim is to quantify the sensitivity of (21) with respect to its arguments yt and zt.
Let λ⋆ denote the optimal solution to the projection operation. We can express this solution through
the following steps. First, we simplify the expression by omitting the index t in (21). Then, we
exploit the fact that the objective function is convex-concave with convex constraints, which allows
us to interchange the order of the min and the sup. This yields

min
λ∈Rn

0≤λ≤C

sup
µ∈R

1

2
∥λ− z∥2 + µyTλ

= sup
µ∈R

min
λ∈Rn

0≤λ≤C

1

2
∥λ− z + µy∥2 − 1

2
µ2∥y∥2.

At this stage, the optimization problem over λ reduces to the minimization of a quadratic function
over box constraints. We can therefore express λ⋆ based on the optimal choice µ⋆ for µ as follows:

λ⋆ =


0, if z − µ⋆(z, y)y ≤ 0

z − µ⋆(z, y)y, if 0 < z − µ⋆(z, y)y < C

C, if z − µ⋆(z, y)y ≥ C

 and choose µ⋆(z, y) such that yTλ⋆ = 0.

We use the notation µ⋆(z, y) to highlight the dependency of the multiplier µ⋆ on the variable z and
the label y.

We introduce the CLIP[0,C](·) operator which clips the value of the given input to the interval [0, C].
This operator yields the following compact expression for λ⋆:

λ⋆ = CLIP[0,C](z − µ⋆(z, y)y), where µ⋆(z, y) is chosen such that yTλ⋆ = 0. (22)
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By substituting the previous expression for λ⋆ into the equality constraint, we obtain

yTCLIP[0,C](z − µ⋆(z, y)y) = 0, (23)
which provides an equation that implicitly defines µ⋆(z, y). We further simplify (23) by indexing the
components of z − µ⋆(z, y)y with respect to their values, which yields

0 =
∑
i∈IC

Cyi +
∑
i∈Iz

yi(zi − µ⋆(z, y)yi)

=
∑
i∈IC

Cyi +
∑
i∈Iz

ziyi −
∑
i∈Iz

µ⋆(z, y)y2i

=
∑
i∈IC

Cyi +
∑
i∈Iz

ziyi −
∑
i∈Iz

µ⋆(z, y). (from y2i = 1)

where Iz := {i | λi = zi − µ⋆(z, y)yi ∈ (0, C)} with cardinality | Iz | and IC := {i | λi =
zi − µ⋆(z, y)yi ≥ C}. We further solve for µ⋆, which yields

µ⋆(z, y) =
1

| Iz |

(∑
i∈IC

Cyi +
∑
i∈Iz

ziyi

)
.

This equation implicitly defines µ⋆(z, y), which represents the basis for the fixed point iteration
introduced in Algorithm 2.

This equation will also be the basis for computing sensitivities, i.e. quantifying how λ⋆ and µ⋆ change
when altering z or λ. We first compute ∂λ⋆

∂z . For a data point i, the following can be stated:

∂λ⋆
i

∂z
=

{
eTi −

∂µ⋆(z,y)
∂z yi, if zi − µ⋆(z, y)yi ∈ (0, C)

0, else,
(24)

where ei is the ith standard basis vector. Differentiating the constraint (19) yields

0 =
∂(yTλ⋆)

∂z
=

n∑
i=1

∂λ⋆
i

∂z
yi

=
∑
i∈Iz

(
eTi yi −

∂µ⋆(z, y)

∂z
y2i

)
.

Substituting y2i = 1 into the previous equation yields

∂µ⋆(z, y)

∂z
=

∑
i∈Iz

eTi yi

| Iz |
, (25)

where Iz with cardinality | Iz | is defined previously. From (24) and (25), we have

∂λ⋆
i

∂z
=

eTi −
∑

j∈Iz

eTj yj

|Iz| yi, if i ∈ Iz
0, if i /∈ Iz.

Therefore, we conclude that ∥∥∥∥∂λ⋆
i

∂z

∥∥∥∥
∞
≤ 1,∀i ∈ [n], (26)

where we have exploited the fact that yi ∈ {±1}.
We further note that in the situation Iz = ∅, λ⋆ ∈ {0, C}, a change in z or y will not affect λ⋆ unless
z = µ⋆y or z = C + µ⋆y. As a result, we have for Iz = ∅ ∂λ⋆

∂z = ∂λ⋆

∂y = 0 (a.e.).

We now compute ∂λ⋆

∂y . For a data point i, the following holds:

∂λ⋆
i

∂y
=

{
−∂µ⋆(z,y)

∂y yi − eTi µ
⋆(z, y), if i ∈ Iz

0, if i /∈ Iz.
(27)
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Differentiating the constraint (19) with respect to y yields

0 =
∂(yTλ⋆)

∂y
= λ⋆T

+

n∑
i=1

∂λ⋆
i

∂y
yi

= λ⋆T

+
∑
i∈Iz

(
−∂µ⋆(z, y)

∂y
∥yi∥2 − yiµ

⋆(z, y)eTi

)
.

It follows from ∥yi∥2 = 1 that

∂µ⋆(z, y)

∂y
=

λ⋆T − µ⋆(z, y)
∑
i∈Iz

yie
T
i

| Iz |
. (28)

From (27) and (28), we obtain the following.

∂λ⋆
i

∂y
=

−
yiλ

⋆T

|Iz| + µ⋆(z, y)

(
yi

∑
j∈Iz

eTj yj

|Iz| − ei

)
, if i ∈ Iz

0, if i /∈ Iz.
As a result, we conclude using Lemma 3 that the following bound holds ∀i ∈ [n]∥∥∥∥∂λ⋆

i

∂y

∥∥∥∥
∞
≤ ∥λ∥∞
| Iz |

+ | µ⋆(z, y) |≤ C

| Iz |
+ | µ⋆ |︸ ︷︷ ︸
κy

, (29)

where κy is a constant that only depends on C and the features of the dataset.

From (26) and (29), we can conclude that

∥λt − λ̂∥∞ = ∥λ⋆(zt, yt)− λ⋆(zt, ŷ(λ̂)) + λ⋆(zt, ŷ(λ̂))− λ⋆(ẑ, ŷ(λ̂))∥∞
≤ κy∥yt − ŷ(λ̂)∥∞ + ∥zt − ẑ∥∞.

A.2 PROOF OF LEMMA 2

Our objective is to prove that the distance of the non-projected updates of Algorithm 1 from the
Stackelberg equilibrium (λ̂, ŷ(λ̂)), specifically zt − ẑ, is bounded.

We begin by recalling the update rule at round t, λt := PROXS(yt)(zt) = PROXS(yt)(λt−1 −
η∇λf(λt−1, yt)), where yt = ŷ(λt−1), S(yt) is the feasible set defined by constraints (13-14), using
the labels at round t. We further recall the Stackelberg equilibrium (λ̂, ŷ(λ̂)), i.e.,

λ̂ := PROXS(ŷ(λ̂))(ẑ) = PROXS(ŷ(λ̂))(λ̂− η∇λf(λ̂, ŷ(λ̂)))

ŷ(λ̂) := LFLIP(λ̂),

where the operator LFLIP : X × Y → Y defines the label poisoning attack formulated in (8-10). We
conclude the following:

zt = λt−1 − η∇λf(λt−1, yt)

ẑ = λ̂− η∇λf(λ̂, ŷ(λ̂))

zt − ẑ = λt−1 − λ̂− η
(
∇λf(λt−1, yt)−∇λf(λ̂, ŷ(λ̂))

)
.

We apply the mean value theorem for functions with multiple variables to the previous expression
which allows us to rewrite zt − ẑ as

= λt−1 − λ̂− η
(
∇λf(λt−1, yt)−∇λf(λ̂, yt) +∇λf(λ̂, yt)−∇λf(λ̂, ŷ(λ̂))

)
= λt−1 − λ̂− η

(
∇2

λf(ξλ, yt)(λt−1 − λ̂) +∇2
λyf(λ̂, ξy)(yt − ŷ(λ̂))

)
,

where ξλ ∈ (λ̂, λt−1) and ξy ∈ (ŷ(λ̂), yt). The last equation can be restated as:

zt − ẑ = (I − η∇2
λf(ξλ, yt))(λt−1 − λ̂)− η∇2

λyf(λ̂, ξy)(yt − ŷ(λ̂)), (30)
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where I denotes the identity matrix. We have defined the gradient of the objective in (11) as
∇λf(λ, y) = Aλ − 1, where A is the matrix with entries Aij = yiyjKij ,∀i, j ∈ [n], using the
simplified notation. We express the second-order partial derivatives as:

∇2
λf(λ; y) = K ⊙ yyT, (31)

∇2
λyf(λ; y) = K ⊙ yλT + I ⊙ (K(λ⊙ y)1T), (32)

where K is the Gram matrix, I is the n× n identity matrix, 1 is the all-one vector and ⊙ denotes the
Hadamard product. From (30), (31) and (32), we obtain

zt − ẑ = (1− η
(
(K ⊙ yty

T
t )
)
(λt−1 − λ̂)

− η
(
K ⊙ ξyλ̂

T + I ⊙ (K(λ̂⊙ ξy)1
T)
)
(yt − ŷ(λ̂)).

We take the infinity norm and conclude:

∥zt − ẑ∥∞ = ∥(1− η
(
K ⊙ yty

T
t

)
)(λt−1 − λ̂)

− η
(
K ⊙ ξyλ̂

T + I ⊙ (K(λ̂⊙ ξy)1
T)
)
(yt − ŷ(λ̂))∥∞

≤ ∥(1− η
(
K ⊙ yty

T
t

)
)(λt−1 − λ̂)∥∞

+ ∥ − η
(
K ⊙ ξyλ̂

T + I ⊙ (K(λ̂⊙ ξy)1
T)
)
(yt − ŷ(λ̂))∥∞ (triangle inequality)

= ∥(1− η
(
K ⊙ yty

T
t

)
)(λt−1 − λ̂)∥∞

+ ∥η
(
K ⊙ ξyλ̂

T + I ⊙ (K(λ̂⊙ ξy)1
T)
)
(yt − ŷ(λ̂))∥∞ (homogeneity)

≤ ∥(1− η
(
K ⊙ yty

T
t

)
)∥∞︸ ︷︷ ︸

κλ

∥λt−1 − λ̂∥∞

+ ∥η
(
K ⊙ ξyλ̂

T + I ⊙ (K(λ̂⊙ ξy)1
T)
)
∥∞︸ ︷︷ ︸

κ′
y

∥yt − ŷ(λ̂)∥∞. (homogeneity)

This implies that

∥zt − ẑ∥∞ ≤ κλ∥λt−1 − λ̂∥∞ + κ′
y∥yt − ŷ(λ̂)∥∞.

We note that κλ ≤ 1 if the learning rate η is chosen small enough.

A.3 PROOF OF THEOREM 3.1

Let (λ̂, ŷ(λ̂)) denote the Stackelberg equilibrium, i.e.,

λ̂ := PROXS(ŷ(λ̂))(ẑ) = PROXS(ŷ(λ̂))(λ̂− η∇λf(λ̂, ŷ(λ̂)))

ŷ(λ̂) := LFLIP(λ̂),

where the operator LFLIP : X × Y → Y defines the label poisoning attack formulated in (8-10). We
further assume that the LFLIP operator returns a unique set of adversarial labels at the Stackelberg
equilibrium (λ̂, ŷ(λ̂)), which implies that there are no ties with respect to λ̂ values. As a result, there
exists a small enough constant δ′ > 0 such that for any λ0 with ∥λ0 − λ̂∥∞ < δ′, the corresponding
ŷ(λ0) satisfies ŷ(λ0) = ŷ(λ̂). (Indeed, as long as δ′ is small enough, such that the top-k entries
between λ̂ and λ0 agree, ŷ(λ0) = ŷ(λ̂) will be satisfied.)

By combining Lemma 1 and Lemma 2 we conclude

∥λ1 − λ̂∥∞ ≤ κy∥ŷ(λ0)− ŷ(λ̂)∥∞ + ∥z1 − ẑ∥∞ ≤ ∥z1 − ẑ∥∞ ≤ κλ∥λ0 − λ̂∥∞ < κλδ
′,

where we used the fact that ŷ(λ0) = ŷ(λ̂). The learning rate η is chosen small enough, such that
κλ < 1 and therefore ∥λ1 − λ̂∥∞ < κλδ

′ < δ′. We therefore conclude by induction on t that
∥λt − λ̂∥∞ < κt

λδ
′ for all t > 0. This readily implies λt → λ̂. Moreover, choosing δ = min{ϵ, δ′}

concludes ∥λt − λ̂∥∞ < ϵ and concludes the proof.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.4 GLOBAL CONVERGENCE RESULT

The previous section provides the proof of Theorem 3.1, which provides a local stability and
convergence result. Under additional assumptions on the constants κy and κ′

y that capture the
sensitivity of the iterates λt with respect to changes in the labels, one can derive a global convergence
result, as summarized by the following proposition:

Proposition 1. Let (λ̂, ŷ(λ̂)) denote the Stackelberg equilibrium as before and let δ′ = (λ̂{k} −
λ̂{k+1})/2 > 0, where λ̂{1} denotes the largest entry of λ̂, λ̂{2} the second larges entry of λ̂, etc.
Provided that

2(κy + κ′
y)k

1− κλ
< δ′

holds and that the step-size η is chosen to be small enough, the iterates {λt} of FLORAL are
guaranteed to converge to λ̂ from any initial condition λ0.

Proof. As a result of Lemma 1 and Lemma 2 we conclude that

∥λt − λ̂∥∞ ≤ κy∥ŷ(λt−1)− ŷ(λ̂)∥∞ + ∥zt−1 − ẑ∥∞
≤ (κy + κ′

y)∥ŷ(λt−1)− ŷ(λ̂)∥∞ + κλ∥λt−1 − λ0∥∞.

We further take advantage of the fact that ∥ŷ(λ) − ŷ(λ̂)∥∞ ≤ 2k for any λ (at most k labels are
flipped), which implies

∥λt − λ̂∥∞ ≤ κλ∥λt−1 − λ0∥∞ + 2(κy + κ′
y)k.

The previous inequality is satisfied for all t, and can be used to conclude that

∥λt − λ̂∥∞ ≤ κt
λ∥λ0 − λ̂∥∞ +

2(κy + κ′
y)k

1− κλ
(33)

holds for all t (this can be verified by an induction argument). As a result, there exists an integer
t′ > 0 such that ∥λt−λ̂∥∞ < δ′ for all t > t′. This implies, due to the choice of δ′, that ŷ(λt) = ŷ(λ̂)
for all t > t′. We therefore conclude that for all t > t′ + 1

∥λt − λ̂∥∞ ≤ κλ∥λt−1 − λ̂∥∞.

This readily implies λt → λ̂, due to the fact that κλ < 1, and implies the desired result.

B THE GRADIENT OF THE OBJECTIVE (5)

We begin by recalling the kernel SVM dual formulation (Boser et al., 1992; Hearst et al., 1998):

D(fλ;D) : min
λ∈Rn

1

2

n∑
i=1

n∑
j=1

λiλjyiyjKij −
n∑

i=1

λi

subject to
n∑

i=1

λiyi = 0

0 ≤ λi ≤ C, ∀i ∈ [n],

where K represents the Gram matrix with entries Kij = k(xi, xj),∀i, j ∈ [n] := {1, . . . , n},
derived from a kernel function k. We consider the pth data point and apply differentiation of a double
summation to the objective, which yields

∂ (D(fλ;D))
∂λp

=
1

2

 n∑
i=1

λiyiypKip +

n∑
j=1

λjypyjKpj

− 1

= yp

n∑
i=1

λiyiKip − 1. (from the symmetry of the kernel function)

In compact form, we obtain the following.
∇λD(fλ;D) = Aλ− 1,

where A is the matrix with entries Aij = yiyjKij ,∀i, j ∈ [n] and 1 is the vector of all ones.
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C EXPERIMENT DETAILS

For our experiments, we set the hyperparameter values as given in Table 3. We provide the experiment
details as follows.

• We initialize the model fλ0
with parameters set to 0. In FLORAL, however, the attacker uses a

randomized top-k rule to identify the B most influential support vectors based on the λ values.
Due to the 0 initialization of λ, a warm-up period is required, which we set to 1 round for all
SVM-related methods.

• To train kernel SVM classifiers for all SVM-related methods other than FLORAL, we use our PGD-
based Algorithm 1 with a dummy attack, that is, we eliminate the adversarial dataset generation
step and employ vanilla PGD training.

• For large datasets such as IMDB, we implement projection via fixed point iteration as given in
Algorithm 2 instead of constructing a quadratic program as defined in (12-14).

Table 3: (Hyper)parameter values.

(Hyper) parameter Explanation Value

T The number of training rounds For Moon: 500, for IMDB: 1000
Tproj The number of projection via fixed point iteration rounds 1000
B The attacker budget For Moon: {10, 20, 50, 100, 250}, for IMDB: {500, 2500, 5000, 12500}
k The number of labels to poison For Moon: {5, 10, 25, 50, 125}, for IMDB {250, 1250, 2500, 6250}
C Regularization parameter for soft-margin SVM For Moon: {10, 100}, for IMDB: 10
γ RBF kernel parameter For Moon: {0.5, 1, 10}, for IMDB: 0.005
ϵ Error rate for projection via fixed point iteration 1e− 21
η Learning rate For Moon, all SVM-methods: 0.0005 and at every 100 rounds, decaying by 0.1,

For IMDB, all SVM-methods: 0.0001 and at every 100 rounds, decaying by 0.1,
for RoBERTa: 2e− 05 with linear scheduler

The model architecture for NN and NN-PGD Fully connected MLP with 2 hidden layers with 32 units each
Batch size 32
NN-PGD perturbation amount 8/255
NN-PGD step size 2/255
SGD optimizer momentum value 0.9

C.1 DATASETS

We provide the example illustrations for the Moon training dataset with clean and poisoned labels in
Figure 7.

(a) Clean. (b) Dadv = 5%. (c) Dadv = 10%. (d) Dadv = 25%.

Figure 7: Illustrations of the Moon training sets from an example replication, using clean and
adversarial labels with poisoning levels: 5%, 10%, 25%.

C.2 BASELINES

In our experiments, we compared FLORAL against the strongest versions of the baseline methods, i.e.
we carefully selected hyperparameters for the baselines, which we detail below.

• LN-SVM (Biggio et al., 2011) applies a heuristic-based kernel matrix correction by assuming
that every label in the training set is independently flipped with the same probability. It requires a
predefined noise parameter µ, which we set to µ ∈ {0.05, 0.1, 0.25} by leveraging the domain
knowledge, i.e. using the poisoning levels of the adversarial datasets.

• For Curie (Laishram & Phoha, 2016), we set the confidence parameter to {0.95, 0.90, 0.75}. To
compute the average distance, we considered k = 20 neighbors in the same cluster for the Moon
dataset and k = 1000 neighbors for the IMDB dataset experiments.
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• For LS-SVM (Paudice et al., 2018), we use the relabeling confidence threshold from
{0.95, 0.90, 0.75}, again aligning with the poisoning level of the adversarial datasets. For its
k-NN step, we considered k = 20 and k = 1000 neighbors for the Moon and IMDB datasets,
respectively.

C.3 ROBERTA EXPERIMENT DETAILS

We fine-tune the RoBERTa-base model (https://huggingface.co/FacebookAI/roberta-
base) on the IMDB sentiment analysis task, using the dataset from
https://huggingface.co/datasets/stanfordnlp/imdb. We fine-tune the model for 3 epochs with
0 warm-up steps, using the AdamW optimizer, weight decay 0.01, batch size 16, and learning rate
2e−05 with a linear scheduler.

For all RoBERTa experiments, we use a single NVIDIA A100 40GB GPU. For the motivation plot
presented in Figure 1, we fine-tune the base model for 10 epochs, using the same hyperparameters as
above, on an NVIDIA A100 80GB GPU.

D ADDITIONAL EXPERIMENT RESULTS

We provide additional experiment results under various hyperparameter settings for the Moon dataset
in Section D.1. In Section D.2, we first report a comprehensive comparison of FLORAL against other
baselines on the IMDB dataset, followed by an analysis of how FLORAL shifts the most influential
training points for RoBERTa’s predictions on the IMDB dataset. Finally, we present a sensitivity
analysis with respect to the attacker’s budget in Section D.3.

D.1 MOON

We report the clean and robust test accuracy performance of methods under different kernel hyperpa-
rameter choices in Figure 8 and Table 4. As shown in Figure 8, FLORAL particularly shows a superior
performance by maintaining a higher robust accuracy in more adversarial settings. Additionally, we
present the resulting decision boundaries of the classifiers on the Moon test dataset in Figures 21-23,
which highlight that FLORAL outputs a smooth decision boundary compared to baseline methods.

Table 4: Test accuracies of methods trained on the Moon dataset. Each entry shows the average of
five replications with different train/test splits. Bold values highlight the highest performance in
both the "Best" and "Last" columns where "Best" denotes the highest test accuracy identified during
training and "Last" represents the final accuracy achieved at the end of training.

Setting

Method

FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last

Clean C = 10, γ = 0.5 0.954 0.950 0.952 0.952 0.960 0.960 0.966 0.964 0.933 0.933 0.924 0.924 0.952 0.952 0.947 0.947
Dadv = 5% C = 10, γ = 0.5 0.941 0.941 0.938 0.938 0.926 0.926 0.964 0.937 0.933 0.933 0.892 0.892 0.938 0.938 0.933 0.933
Dadv = 10% C = 10, γ = 0.5 0.915 0.874 0.878 0.878 0.859 0.855 0.927 0.853 0.868 0.868 0.889 0.889 0.874 0.874 0.868 0.868
Dadv = 25% C = 10, γ = 0.5 0.887 0.884 0.717 0.651 0.693 0.647 0.740 0.655 0.717 0.653 0.731 0.661 0.696 0.656 0.717 0.653

Clean C = 10, γ = 1 0.968 0.966 0.968 0.968 0.960 0.960 0.966 0.964 0.940 0.940 0.941 0.941 0.881 0.881 0.966 0.966
Dadv = 5% C = 10, γ = 1 0.966 0.966 0.965 0.957 0.926 0.926 0.964 0.937 0.940 0.940 0.903 0.903 0.881 0.881 0.964 0.964
Dadv = 10% C = 10, γ = 1 0.924 0.907 0.912 0.900 0.859 0.855 0.927 0.853 0.869 0.868 0.907 0.907 0.894 0.894 0.908 0.907
Dadv = 25% C = 10, γ = 1 0.903 0.903 0.698 0.671 0.693 0.647 0.740 0.655 0.701 0.663 0.774 0.773 0.694 0.670 0.703 0.663

Clean C = 100, γ = 10 0.965 0.964 0.966 0.964 0.960 0.960 0.966 0.964 0.950 0.949 0.932 0.931 0.964 0.964 0.966 0.964
Dadv = 5% C = 100, γ = 10 0.955 0.940 0.951 0.937 0.926 0.926 0.964 0.937 0.951 0.940 0.888 0.888 0.947 0.945 0.951 0.940
Dadv = 10% C = 100, γ = 10 0.910 0.877 0.895 0.874 0.859 0.855 0.927 0.853 0.894 0.888 0.889 0.881 0.896 0.875 0.895 0.876
Dadv = 25% C = 100, γ = 10 0.740 0.720 0.697 0.693 0.693 0.647 0.740 0.655 0.697 0.694 0.760 0.744 0.701 0.687 0.697 0.693

D.2 IMDB
Comparison with other baselines. We report the complete performance comparison for test
accuracy of methods on the IMDB dataset in Table 5 and Figure 9. As demonstrated, FLORAL
consistently exhibits strong performance in more adversarial problem instances, outperforming other
baseline methods. This shows the effectiveness of FLORAL in maintaining higher robust accuracy
when combined with foundation models such as RoBERTa.
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FLORAL Vanilla SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Figure 8: Comparison of clean and robust test accuracy of methods trained on the Moon dataset
under different levels of label poisoning attacks. "Clean" refers to the dataset with clean labels, while
the adversarial datasets contain {5%, 10%, 25%} poisoned labels. For all SVM-related models, the
first row corresponds to the setting (C = 10, γ = 0.5), whereas the second row shows the setting
(C = 100, γ = 10). As the level of label poisoning increases, the accuracy of models trained on
adversarial datasets generally declines. However, FLORAL demonstrates superior performance by
maintaining robust accuracy across most settings, even as the attack intensity escalates to 25%.

Table 5: Test accuracies of methods trained on the IMDB dataset. Each entry shows the average
of five replications, with bold entries highlighting the highest performance in both the "Best" and
"Last" columns, where "Best" denotes the highest test accuracy identified during training and "Last"
represents the final accuracy achieved at the end of training. The results showcase FLORAL’s
effectiveness, particularly in more adversarial problem instances.

Setting

Method

FLORAL RoBERTa SVM LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last

Clean 0.9113 0.9113 0.9119 0.9110 0.9113 0.9113 0.9113 0.9113 0.9116 0.9113 0.9108 0.9108 0.9116 0.9115
Dadv = 10% 0.9038 0.9038 0.9048 0.9031 0.9039 0.9039 0.9029 0.9028 0.9039 0.9039 0.9010 0.9010 0.9039 0.9039
Dadv = 25% 0.8896 0.8896 0.8827 0.8612 0.8887 0.8886 0.8860 0.8860 0.8889 0.8888 0.8771 0.8769 0.8885 0.8883
Dadv = 30% 0.8801 0.8801 0.8675 0.8357 0.8792 0.8792 0.8771 0.8771 0.8797 0.8797 0.8325 0.8324 0.8795 0.8795
Dadv = 35% 0.8713 0.8713 0.8270 0.8053 0.8660 0.8660 0.8646 0.8646 0.8695 0.8695 0.7667 0.7667 0.8700 0.8700
Dadv = 40% 0.8636 0.8636 0.7792 0.7717 0.8574 0.8584 0.8515 0.8515 0.8589 0.8589 0.7060 0.7060 0.8594 0.8594

Analysis on influential training points. We further analyze how the influential training points
(affecting the model’s predictions) identified by FLORAL and RoBERTa change.

To illustrate, Figure 11 shows an example from a replication where both models are trained on a
dataset with 40% adversarially labeled examples. We also provide the result for RoBERTa fine-tuned
on the clean dataset. For FLORAL, the most influential points are selected from the most important
support vectors, while for RoBERTa, they are the points yielding the largest gradient of loss with
respect to the input. The example clearly demonstrates that FLORAL, implemented on RoBERTa-
extracted embeddings, shifts the most important training point for the model’s decision boundary.
FLORAL identified a more descriptive point compared to others as given in Figure 11, however,
further analysis is required to determine whether FLORAL consistently identifies such training points
across all cases.
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FLORAL Vanilla SVM LN-SVM Curie LS-SVM K-LID

Figure 9: Clean and robust test accuracy of methods on the IMDB dataset under varying levels of
label poisoning: "Clean" refers to the dataset with clean labels, while adversarial datasets contain
{10%, 25%, 30%, 35%, 40%} poisoned labels. We use hyperparameter setting: C = 10, γ = 0.005.
Although in clean setting FLORAL is outperformed by other baselines, it converges to higher test
accuracy values in more adversarial settings.

Additionally, we investigate the overlap in influential training points between the two methods. To this
end, for each method, we extract the 25% most influential training points (for the model predictions)
among the training dataset, and measure how much overlap between these two sets. In Figure 10, we
report the percentage of "common" influential points identified from the IMDB dataset, averaged over
replications, with error bars denoting the standard deviation. The left figure shows the percentage
overlap between FLORAL trained on the IMDB dataset with different poison levels and RoBERTa
fine-tuned on clean labels. Whereas, the right plot shows the overlap between both models trained on
the dataset with different poison levels. On the clean dataset, although there are some differences,
both methods almost identify the same set of influential points. However, as adversarial labels
increase, the overlap decreases. This shows that FLORAL extracts more critical points that enhance
the model’s robustness in adversarial settings, as supported by its superior robust accuracy, already
shown in Figure 5 in Section 4.1.
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Figure 10: The percentage of "common" influential points identified by FLORAL and RoBERTa from
the IMDB dataset, averaged over replications, with error bars denoting the standard deviation. "Clean"
shows the dataset with clean labels, whereas adversarial datasets contain 10%, 25%, 30%, 35%, 40%
poisoned labels. Even when both methods are fine-tuned on the clean dataset, slight differences
emerge in the identified influential training points. As the dataset becomes more adversarial, the
discrepancy increases, highlighting that FLORAL adjusts the influential training points affecting the
model’s predictions.

Sitting down to watch the 14th season of the Bachelor ("On the Wings of Love"), I knew I would be in for an "interesting" time. I had watched some of the
previous seasons of the Bachelor in passing; watching an episode or two and missing the next three or so. I find that the Bachelor is often appealing and
intriguing, though its quality and morality are often lacking.<br /><br />"On the Wings of Love" details the journey taken by Jake, a 31 year old
commercial pilot from Dallas, Texas, to find true love, as true a love as one can find in a season-long reality-drama dating show. Jake meets 25
beautiful girls from all over the country. He begins to get to know them a bit, but it is mostly superficial; how well can you get to know someone in a
few 5 minute conversations? Jake tries to make his true intentions known from the very beginning, at least to the audience. He noted that he doesn't just
want love or a good time, but he wants a fiancé or wife. We can only assume that he has made this clear to the women in the competition as well. If that
is the case, it might explain, to a degree, some of the women's actions. The women are super competitive. While they don't even know Jake at all yet,
they are still in it to win it no matter what the cost.<br /><br />Not only were the women competitive, but they were also confident and catty. Threats,
backstabbing, and warnings of "Watch out!" all show that these women weren't there for a good time either. Jake noted that he was not just looking for
sex appeal, but looking for "a connection." However, the girls pulled out all the stops to try to impress Jake with said sex appeal. They arrived at the
mansion in skimpy dresses – either low-cut or short.<br /><br />While some girls seemed to maintain their sense of decorum, others missed that memo
altogether. One girl, Channy, noted that Jake was a "good guy" to whom she could be a "naughty girl." She went on to say that Jake could land on her
"runway anytime." She got flack from the other girls for her provocative statement which showed their take on these situations.<br /><br />So, a reality
dating show couldn't be that bad, could it? Besides the obvious issue of sex-driven attraction, there are other issues that mar this seemingly harmless
show. Is this the right way to find a future mate; vying for someone's attention by flaunting oneself to extreme proportions? Unfortunately, however,
that is what America has reduced dating to these days: pleasure and sex without commitment and a little happiness on the side.<br /><br />Another problem
is the premature emotional attachment by which many of the girls bound themselves to Jake. A few girls in particular seemed to be overly attached. One
girl said "If I don't get that first impression rose it will kill me!" As mentioned before, they don't even know him yet and she was talking about a
specific rose, not just one of the 15 roses to keep from being eliminated.<br /><br />Michelle, in particular, seemed to have some issues with attachment
to Jake. The other girls noticed it too. After one particular Michelle outburst, Vienna asserted that Michelle had a "mental breakdown and we've only
been here an hour." Michelle got the last rose of the evening on the first show –narrowly missing elimination –and was extremely emotional about it. The
other girls thought it was simply ridiculous. Another girl also cried, but because she was eliminated.<br /><br />It began with Survivor, and from there
it just took off –reality TV. It shows our entertainment interests as a country; if we weren't watching the shows and giving them good ratings, the
networks would not continue to run them. The only logical conclusion that can be drawn is that enough of America is hooked. One thing is clear: America
(in general) loves reality TV and its ensuing trappings.<br /><br />This begs me to question: why is it that we even like reality TV? What is it about it
that draws us to it? Is it because we see the similarities to our own lives, or is it because we want to be sure that we are more stable and less
pathetic than others? Whatever it is that draws us to it, we should be careful of the media and entertainment that we allow to fill our minds. I'm not
saying that all reality TV shows are bad; however, I am saying that we need to evaluate each one.<br /><br />Episodes used for critique: Season Premier
and Episode 2.

(negative)

FLORAL(Dadv=40%):

This documentary on schlockmeister William Castle takes a few cheap shots at the naive '50s-'60s environment in which he did his most characteristic
work--look at the funny, silly people with the ghost-glasses--but it's also affectionate and lively, with particularly bright commentary from John
Waters, who was absolutely the target audience for such things at the time, and from Castle's daughter, who adored her dad and also is pretty perceptive
about how he plied his craft. (We never find out what became of the other Castle offspring.) The movies were not very good, it makes clear, but his
marketing of them was brilliant, and he appears to have been a sweet, hardworking family man. Fun people keep popping up, like "Straight Jacket"'s Diane
Baker, who looks great, and Anne Helm, whom she replaced at the instigation of star Joan Crawford. Darryl Hickman all but explodes into giggles at the
happy memory of working with Castle on "The Tingler," and there's enough footage to give us an idea of the level of Castle's talent--not very high, but
very energetic. A pleasant look at a time when audiences were more easily pleased, and it does make you nostalgic for simpler movie-going days.

(positive)

Someone actually gave this movie 2 stars. There's a very high chance they need immediate professional help as anyone who doesn't spend 30 seconds to see
if you can award no stars is quite literally scary.<br /><br />This film is ... well ... I guess it's pretty much some kind of attempt at a horrible porn
/ snuff movie with no porn or no real horrible bits (apart from the acting, plot, story, sets, dialogue and sound). I wrongly assumed it was about
zombies. <br /><br />Watching it is actually quite scary in fairness; you're terrified someone will come over and you'll never be able to describe what
it is and they'll go away thinking you're a freak that watches home-made amateur torture videos or something along those lines. <br /><br />I'm so taken
aback I'm writing this review on my mobile so I don't forget to attempt to bring the rating down further than the current 1.6 to save others from the
same horrible fate that I just suffered. <br /><br />I worst film I've ever seen and I can say (with hand on heart) it will never, never be topped.

(negative)

RoBERTa(fine-tuned on clean):

RoBERTa(fine-tuned on Dadv=40%):

Figure 11: Note: Figure might contain offensive content. The most influential training point for
the model’s predictions, identified by FLORAL and RoBERTa from the IMDB dataset. FLORAL
implemented on RoBERTa extracted-embeddings changes the most important training point for the
model’s decision boundary.
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D.3 SENSITIVITY ANALYSIS

In our experiments with the Moon dataset under varying label poisoning levels, we consider attacker
budgets B = 2k under varying k values, and report the best performing setting in Figure 4 in
Section 4.1.

However, we further investigate the sensitivity of FLORAL to the attacker’s budget B, by considering
levels B ∈ {5, 10, 25, 50, 125}, with results presented in Figure 12. As demonstrated, FLORAL
shows superior performance under a constrained attacker budget in the clean label scenario, as
expected, since an increasing number of adversarially labeled examples during training degrades
clean test accuracy. In contrast, baseline methods operate on a fixed dataset. However, as the dataset
gets more adversarial, FLORAL outperforms under higher attacker budgets.
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Figure 12: The sensitivity of FLORAL to the attacker’s budget B. "Clean" refers to the dataset
with clean labels, while the adversarial datasets contain {5%, 10%, 25%} poisoned labels. The
performance under setting (C = 10, γ = 1) is presented. As the level of label poisoning increases,
FLORAL performs better under higher attacker budget settings.

E EXTENSION TO MULTI-CLASS CLASSIFICATION

We extend our algorithm to multi-class classification tasks, as detailed in Algorithm 3. The primary
modification involves adopting a one-vs-all approach (Hsu & Lin, 2002) by employing kernel
SVM model fm

λ0
for each class m ∈ M and associating multiple attackers am,m ∈ M for the

corresponding classifiers. In each round t, the attackers identify the Bm most influential data points
with respect to λm

t values of the corresponding models under their constrained budgets Bm, and
gather them into a set Bt. Among the points in Bt, the labels of top-k influential data points are
poisoned according to a predefined label poisoning distribution q. The dataset with adversarial labels
is then shared with each kernel SVM model and local training is applied via PGD training step.

F EXPERIMENTS WITH THE ALFA ATTACK

To show the generalizability of our approach in the presence of other types of label poisoning attacks,
we further compare FLORAL against baselines on adversarial datasets generated using the alfa
attack (Xiao et al., 2015). The alfa attack is generated under the assumption that the attacker can
maliciously alter the training labels to maximize the empirical loss of the original classifier on the
tainted dataset. From this, the attacker’s objective is formulated as maximizing the difference between
the empirical risk for classifiers under tainted and untainted label sets.

We experimented on the Moon dataset and considered label poisoning levels (%) of {5, 10, 25}. The
illustrations of the Moon dataset with clean and alfa-attacked adversarial labels are given Figure 13.

We report the results under alfa attack in Figure 14 and Table 6. As shown, FLORAL is especially
effective against vanilla SVM in maintaining higher robust accuracy in adversarial settings. Further-
more, FLORAL demonstrates superior performance compared to all baselines in the most adversarial
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Algorithm 3 FLORAL-MultiClass

1: Input: Initial kernel SVM models fm
λ0

for each class m ∈ M, training dataset
D0 = {(xi, yi)}ni=1, xi ∈ Rd, yi ∈ {±1}, attackers’ budgets Bm, parameter k, where
k ≪ min{Bm}m∈M, learning rate η, a pre-defined label flip distribution q.

2: for round t = 1, . . . , T do
3: Initialize Bt ← ∅.
4: for m ∈M do
5: Bmt ← Identify top-Bm support vectors w.r.t. λm

t−1 values by solving (8-10).
6: end for
7: Bt ←

⋃
m∈M Bmt .

8: ỹt ← Randomly select k points among Bt and poison their labels w.r.t. q. */ Label poisoning
9: Dt ← {(xi, ỹ

t
i)}ni=1 */ Adversarial dataset

10: for m ∈M do
11: Compute gradient of the objective (5),∇λD(fm

λ ;D), based on λm
t−1,Dt as given in (11).

12: Take a PGD step λm
t ← PROXS(ỹt)(λ

m
t−1 − η∇λD(fλm

t−1
;Dt)). */ Adversarial training

13: end for
14: end for
15: return {fm

λT
}m∈M

setting (with 25% poisoned labels), as also supported by the resulting decision boundary plots in
Figure 24, in which FLORAL achieves smooth boundary compared to the baselines.

(a) Clean. (b) Dadv = 5%. (c) Dadv = 10%. (d) Dadv = 25%.

Figure 13: Illustrations of the Moon training sets from an example replication, using clean and
alfa-attacked adversarial labels with poisoning levels: 5%, 10%, 25%.

Table 6: Test accuracies of methods trained over the Moon dataset with adversarial labels generated
by the alfa attack. Each entry shows the average of five replications with different train/test splits.

Setting

Method

FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last

Clean C = 10, γ = 0.5 0.954 0.950 0.952 0.952 0.960 0.960 0.966 0.964 0.933 0.933 0.924 0.924 0.952 0.952 0.947 0.947
Dadv = 5% C = 10, γ = 0.5 0.940 0.934 0.938 0.937 0.875 0.875 0.964 0.958 0.908 0.908 0.912 0.912 0.946 0.946 0.908 0.908
Dadv = 10% C = 10, γ = 0.5 0.912 0.896 0.898 0.883 0.836 0.816 0.918 0.895 0.897 0.893 0.897 0.897 0.938 0.938 0.897 0.893
Dadv = 25% C = 10, γ = 0.5 0.770 0.747 0.735 0.734 0.693 0.658 0.693 0.645 0.704 0.704 0.719 0.719 0.728 0.728 0.704 0.704

Clean C = 10, γ = 1 0.968 0.966 0.968 0.968 0.960 0.960 0.966 0.964 0.940 0.940 0.941 0.941 0.881 0.881 0.966 0.966
Dadv = 5% C = 10, γ = 1 0.963 0.950 0.954 0.946 0.875 0.875 0.963 0.958 0.942 0.942 0.934 0.933 0.964 0.964 0.942 0.942
Dadv = 10% C = 10, γ = 1 0.954 0.902 0.914 0.893 0.836 0.816 0.918 0.895 0.914 0.907 0.915 0.914 0.955 0.954 0.914 0.907
Dadv = 25% C = 10, γ = 1 0.776 0.763 0.750 0.750 0.693 0.658 0.693 0.645 0.729 0.729 0.741 0.741 0.740 0.740 0.729 0.729

Clean C = 100, γ = 10 0.965 0.964 0.966 0.964 0.960 0.960 0.966 0.964 0.950 0.949 0.932 0.931 0.964 0.964 0.966 0.964
Dadv = 5% C = 100, γ = 10 0.950 0.932 0.939 0.920 0.875 0.875 0.964 0.958 0.939 0.937 0.895 0.895 0.963 0.963 0.939 0.937
Dadv = 10% C = 100, γ = 10 0.900 0.895 0.885 0.872 0.836 0.816 0.918 0.895 0.885 0.884 0.910 0.906 0.952 0.951 0.885 0.884
Dadv = 25% C = 100, γ = 10 0.755 0.755 0.742 0.741 0.693 0.658 0.693 0.645 0.689 0.689 0.712 0.712 0.728 0.728 0.689 0.689
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FLORAL Vanilla SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Figure 14: Clean and robust test accuracy of methods trained on the Moon dataset under alfa
poisoning attack. "Clean" refers to the dataset with clean labels, while the adversarial datasets contain
{5%, 10%, 25%} poisoned labels. For all SVM-related models, the first row corresponds to the
setting (C = 10, γ = 0.5), the second row shows the setting (C = 10, γ = 1) and the last row
shows the setting (C = 100, γ = 10). As the level of label poisoning increases, models trained on
adversarial datasets generally demonstrate a decline in accuracy. However, FLORAL demonstrates a
gradually improving robust accuracy performance, particularly when the attack intensity increases to
25%.
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G EXPERIMENTS ON THE MNIST-1VS7 DATASET

To demonstrate the generalizability of FLORAL across diverse datasets, we provide additional
experiments on the MNIST dataset (Deng, 2012). Similar to (Rosenfeld et al., 2020), we consider
classes 1 and 7 which leads to a dataset of D = {(xi, yi)}13007i=1 where xi ∈ R784 and yi ∈ {±1},
with 784 pixel values for each image.

We perform the randomized top-k label poisoning attack described in Section 3 and report the clean
and robust test accuracy performance of methods in Figure 15 and Table 7. The results show that FLO-
RAL maintains a higher robust accuracy compared to most of the baselines, and behaves almost on par
with the Curie method. Although NN baselines perform better on clean and 5% adversarially labeled
datasets, they show a significant accuracy decrease when the training dataset gets more adversarial.
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Figure 15: Clean and robust test accuracy of methods trained on the MNIST-1vs7 dataset. "Clean"
refers to the dataset with clean labels, while the adversarial datasets contain {5%, 10%, 25%} poi-
soned labels. For all SVM-related models, the setting C = 5, γ = 0.005 is used. As the level of
label poisoning increases, models trained on adversarial datasets generally demonstrate a decline
in accuracy. However, FLORAL maintains a higher robust accuracy level compared to most of the
baselines and behaving on par with the Curie method.

Table 7: Test accuracies of methods trained over the MNIST-1vs7 dataset. Each entry shows the
average of five replications with different train/test splits. Bold entries show the best values for the
"Best" and "Last" columns.

Setting

Method

FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last

Clean C = 5, γ = 0.005 0.992 0.991 0.992 0.992 0.993 0.993 0.995 0.994 0.987 0.987 0.990 0.990 0.978 0.977 0.987 0.987
Dadv = 5% C = 5, γ = 0.005 0.988 0.984 0.980 0.974 0.989 0.982 0.989 0.949 0.979 0.979 0.984 0.979 0.978 0.977 0.979 0.979
Dadv = 10% C = 5, γ = 0.005 0.984 0.978 0.964 0.920 0.982 0.930 0.982 0.894 0.965 0.940 0.974 0.974 0.978 0.977 0.966 0.945
Dadv = 25% C = 5, γ = 0.005 0.853 0.830 0.741 0.741 0.738 0.738 0.763 0.750 0.712 0.712 0.887 0.822 0.796 0.795 0.712 0.712

H EXPERIMENTS WITH THE LFA ATTACK

We further evaluate FLORAL’s effectiveness compared to baselines in the presence of LFA attack
(Paudice et al., 2018) on the Moon dataset. As results are shown in Figure 16 and Table 8, FLORAL
demonstrates significant performance when the label poisoning attack level is high, i.e. 10% or 25%.
However, under those settings, LS-SVM (Paudice et al., 2018) baseline shows faster convergence,
which is expected as the LS-SVM (Paudice et al., 2018) method is specifically crafted against the
LFA attack.
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Figure 16: Clean and robust test accuracy of methods trained on the Moon dataset under LFA
poisoning attack (Paudice et al., 2018). "Clean" refers to the dataset with clean labels, while the
adversarial datasets contain {5%, 10%, 25%} poisoned labels. For all SVM-related models, the
setting C = 1, γ = 1.0 is used. As the level of label poisoning increases, models trained on
adversarial datasets generally demonstrate a decline in accuracy. However, FLORAL demonstrates a
gradually improving robust accuracy performance, particularly when the attack level is 10% or 25%.

Table 8: Test accuracies of methods trained over the Moon dataset with adversarial labels generated
by the LFA (Paudice et al., 2018) attack. Each entry shows the average of five replications with
different train/test splits.

Setting

Method

FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last

Clean C = 10, γ = 1 0.968 0.966 0.968 0.968 0.960 0.960 0.966 0.964 0.940 0.940 0.941 0.941 0.881 0.881 0.966 0.966
Dadv = 5% C = 10, γ = 1 0.957 0.954 0.967 0.967 0.906 0.906 0.955 0.930 0.948 0.948 0.940 0.940 0.880 0.880 0.943 0.943
Dadv = 10% C = 10, γ = 1 0.943 0.937 0.919 0.918 0.903 0.903 0.917 0.872 0.938 0.938 0.931 0.931 0.933 0.932 0.900 0.900
Dadv = 25% C = 10, γ = 1 0.922 0.903 0.822 0.822 0.695 0.695 0.757 0.753 0.853 0.853 0.892 0.846 0.907 0.906 0.900 0.900

I EXPERIMENTS WITH THE ALFA-TILT ATTACK

To provide a thorough analysis concerning different types of label poisoning attacks, we further
evaluate FLORAL’s performance in the presence of alfa-tilt attack (Xiao et al., 2015) on the
Moon and MNIST-1vs7 datasets. We report the results on the Moon datasets in Figure 17 and Table 9,
whereas we present the results for MNIST-1vs7 dataset in Figure 18 and Table 10.

As shown with the results on the Moon dataset, FLORAL is able to achieve a higher "Best" ro-
bust accuracy level throughout the training process. Furthermore, FLORAL’s effectiveness under
alfa-tilt attack is best shown on the MNIST dataset. As illustrated in Figure 18 and reported in
Table 10, FLORAL achieves an outperforming robust accuracy level compared to baseline methods
on all adversarial settings. This demonstrates the potential of FLORAL defense against other label
poisoning attacks.

Table 9: Test accuracies of methods trained over the Moon dataset with adversarial labels generated
by the alfa-tilt (Xiao et al., 2015) attack. Each entry shows the average of five replications with
different train/test splits.

Setting

Method

FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last

Clean C = 10, γ = 1 0.968 0.966 0.968 0.968 0.960 0.960 0.966 0.964 0.940 0.940 0.941 0.941 0.881 0.881 0.966 0.966
Dadv = 5% C = 10, γ = 1 0.972 0.957 0.944 0.939 0.948 0.948 0.962 0.943 0.956 0.956 0.940 0.939 0.898 0.896 0.937 0.936
Dadv = 10% C = 10, γ = 1 0.971 0.928 0.910 0.886 0.915 0.914 0.940 0.906 0.930 0.930 0.920 0.902 0.898 0.896 0.926 0.926
Dadv = 25% C = 10, γ = 1 0.893 0.824 0.787 0.722 0.837 0.750 0.837 0.720 0.786 0.723 0.792 0.759 0.792 0.791 0.770 0.708
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Table 10: Test accuracies of methods trained on the MNIST-1vs7 dataset under alfa-tilt poi-
soning attack (Xiao et al., 2015). Each entry shows the average of five replications with different
train/test splits.

Setting

Method

FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last

Clean C = 5, γ = 0.005 0.992 0.991 0.992 0.992 0.993 0.993 0.995 0.994 0.987 0.987 0.990 0.990 0.978 0.977 0.987 0.987
Dadv = 5% C = 5, γ = 0.005 0.991 0.990 0.980 0.980 0.991 0.958 0.988 0.955 0.979 0.979 0.987 0.987 0.980 0.979 0.978 0.978
Dadv = 10% C = 5, γ = 0.005 0.984 0.982 0.970 0.970 0.986 0.917 0.988 0.909 0.966 0.966 0.974 0.974 0.979 0.978 0.965 0.965
Dadv = 25% C = 5, γ = 0.005 0.811 0.788 0.713 0.713 0.795 0.739 0.824 0.754 0.703 0.701 0.734 0.734 0.526 0.526 0.707 0.705
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Figure 17: Clean and robust test accuracy of methods trained on the Moon dataset under alfa-tilt
poisoning attack (Xiao et al., 2015). "Clean" refers to the dataset with clean labels, while the
adversarial datasets contain {5%, 10%, 25%} poisoned labels. For all SVM-related models, the
setting C = 1, γ = 1.0 is used. As the level of label poisoning increases, models trained on
adversarial datasets generally demonstrate a decline in accuracy. FLORAL is able to discover a higher
"Best" accuracy level throughout the training process.
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Figure 18: Clean and robust test accuracy of methods trained on the MNIST-1vs7 dataset under
alfa-tilt poisoning attack (Xiao et al., 2015). "Clean" refers to the dataset with clean labels,
while the adversarial datasets contain {5%, 10%, 25%} poisoned labels. For all SVM-related models,
the setting C = 5, γ = 0.005 is used. FLORAL achieves outperforming robust accuracy level
compared to baseline methods on all adversarial settings, clearly demonstrating the potential of
FLORAL as a defense against other types of label poisoning attacks.
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J COMPARISON AGAINST ADDITIONAL BASELINES

We compare FLORAL against randomized smoothing (RS) (Rosenfeld et al., 2020), and regularized
synthetic reduced nearest neighbor (RSRNN) (Tavallali et al., 2022) methods on the Moon and
MNIST-1vs7 datasets, as results presented below. We evaluated the performance under different noise
(q) and l2 regularization (λ) hyperparameter values for the RS baseline suggested in (Rosenfeld et al.,
2020), whereas we considered varying number of centroids K, penalty coefficient λ, cost complexity
coefficient α, for the RSRNN baseline, using referenced values in the study (Tavallali et al., 2022) for
the MNIST dataset.

The results presented in Tables 11-14 demonstrate that FLORAL consistently outperforms both RS
and RSRNN across all datasets and experimental settings. While RSRNN achieves comparable
performance on the MNIST dataset, it still falls short of FLORAL. The performance of the RS method,
which employs a linear classifier with a pointwise robustness certificate, aligns with expectations, as
its simpler classifier limits its ability to capture complex patterns. In contrast, FLORAL utilizes kernel
SVMs, enabling it to effectively model intricate patterns within the data and achieve superior results.

Table 11: Test accuracies of FLORAL against randomized smoothing (RS) baseline (Rosenfeld et al.,
2020) trained on the Moon dataset. Each entry shows the average of five replications with different
train/test splits. We evaluated the performance under different noise (q) values for the RS baseline.

Setting
Method

FLORAL RS (q = 0.1, λ = 0.01) RS (q = 0.3, λ = 0.01) RS (q = 0.4, λ = 0.01)

Clean C = 10, γ = 1 0.968 0.557 0.509 0.509
Dadv = 5% C = 10, γ = 1 0.963 0.552 0.509 0.509
Dadv = 10% C = 10, γ = 1 0.954 0.540 0.509 0.509
Dadv = 25% C = 10, γ = 1 0.776 0.520 0.505 0.505

Table 12: Test accuracies of FLORAL against randomized smoothing (RS) baseline (Rosenfeld et al.,
2020) trained on the MNIST-1vs7 dataset. Each entry shows the average of five replications with
different train/test splits. For FLORAL, we set hyperparameters as C = 5, γ = 0.005. We evaluated
the performance under different noise (q) and l2 regularization (λ) hyperparameter values for the RS
baseline suggested in (Rosenfeld et al., 2020).

Setting
Method

FLORAL RS (q = 0.1, λ = 0.01) RS (q = 0.3, λ = 0.01) RS (q = 0.4, λ = 0.01) RS (q = 0.1, λ = 12291) RS (q = 0.3, λ = 12291) RS (q = 0.4, λ = 13237)

Clean C = 5, γ = 0.005 0.991 0.973 0.921 0.836 0.940 0.846 0.732
Dadv = 5% C = 5, γ = 0.005 0.984 0.921 0.876 0.800 0.895 0.802 0.701
Dadv = 10% C = 5, γ = 0.005 0.978 0.868 0.831 0.768 0.830 0.745 0.673
Dadv = 25% C = 5, γ = 0.005 0.830 0.706 0.693 0.669 0.548 0.594 0.595

Table 13: Test accuracies of FLORAL against regularized synthetic reduced nearest neighbor (RSRNN)
(Tavallali et al., 2022) trained on the Moon dataset. Each entry shows the average of five replications
with different train/test splits. We evaluated the performance under different hyperparameter values
(number of centroids K, penalty coefficient λ, cost complexity coefficient α) for the RSRNN baseline.

Setting
Method

FLORAL RSRNN (K = 2, α = 0.01, λ = 0.1) RSRNN (K = 10, α = 0.01, λ = 0.1) RSRNN (K = 10, α = 0.1, λ = 1) RSRNN (K = 20, α = 0.01, λ = 0.1)

Clean C = 10, γ = 1 0.968 0.505 0.629 0.688 0.617
Dadv = 5% C = 10, γ = 1 0.963 0.502 0.547 0.603 0.512
Dadv = 10% C = 10, γ = 1 0.954 0.502 0.532 0.566 0.482
Dadv = 25% C = 10, γ = 1 0.776 0.494 0.434 0.476 0.439
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Table 14: Test accuracies of FLORAL against regularized synthetic reduced nearest neighbor (RSRNN)
(Tavallali et al., 2022) trained on the MNIST-1vs7 dataset. Each entry shows the average of five
replications with different train/test splits. For FLORAL, we set hyperparameters as C = 5, γ = 0.005.
We evaluated the performance under different cost complexity coefficient (α) values for the RSRNN
baseline.

Setting
Method

FLORAL RSRNN (K = 10, α = 0.1, λ = 1.0) RSRNN (K = 10, α = 1.0, λ = 1.0)

Clean C = 5, γ = 0.005 0.991 0.619 0.692
Dadv = 5% C = 5, γ = 0.005 0.984 0.599 0.441
Dadv = 10% C = 5, γ = 0.005 0.978 0.432 0.408
Dadv = 25% C = 5, γ = 0.005 0.830 0.403 0.408

C=10, gamma=1 C=10, gamma=0.5 C=100, gamma=10
Setting
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(b) A trace for recovered points on Dadv = 5%.
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(c) A trace for recovered points on Dadv = 10%.
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(d) A trace for recovered points on Dadv = 25%.

Figure 19: The average percentage of "recovered" poisoned labels by FLORAL over the adversarial
Moon datasets containing {5%, 10%, 25%} poisoned labels. The plot (a) clearly shows that FLORAL
is able to recover, on average, 25− 35% of the poisoned labels. The plots (b)− (d) illustrate example
traces, showing which poisoned data points are recovered by FLORAL.

K EFFECTIVENESS ANALYSIS OF FLORAL DEFENSE

To demonstrate how FLORAL defenses under already poisoned training datasets, we further analyze
the efficacy of FLORAL by measuring its "recovery" rate of poisoned labels. That is, we quantify
FLORAL’s rate of disrupting the initial attack (%) on the adversarially labeled training sets, averaged
over replications.

As reported in Figure 19-(a) on the adversarial Moon datasets, FLORAL is able to disrupt the initial
label attack (already inherited in the training set), on average, 25 − 35% rate. This contributes to
the success of the FLORAL in achieving higher robust accuracy in training with adversarial datasets.
Moreover, we provide example illustrations (Figure 19 (b) − (d)) that show which poisoned data
points are recovered by FLORAL under randomized top-k attack.
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L INTEGRATION WITH NEURAL NETWORKS

As demonstrated in IMDB experiments in Section 4.1, FLORAL can be integrated with complex model
architectures such as RoBERTa, serving as a robust classifier head that enhances model robustness on
classification tasks.

Similarly, FLORAL can be directly incorporated into neural networks by utilizing the last-layer
embeddings (the xi’s in Algorithm 1) as inputs. These extracted representations can then be trained
using FLORAL, resulting in more robust feature representations. Notably, our theoretical analysis
remains valid under this integration, ensuring the approach’s soundness.

To demonstrate this further, we performed additional experiments on the Moon and MNIST-1vs7
(Deng, 2012) datasets, by integrating FLORAL with a neural network.

From Figure 20, we can conclude that FLORAL integration achieves a higher robust accuracy level
compared to plain neural network training.
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(f) Dadv = 5%.
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(g) Dadv = 10%.
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(h) Dadv = 25%.

FLORAL Vanilla SVM NN NN-PGD LN-SVM Curie LS-SVM K-LIDFLORAL Vanilla SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Figure 20: Clean and robust test accuracy performance of neural network vs FLORAL-integrated
neural network trained on the Moon and MNIST-1vs7 datasets. The first row plots ((a)− (d)) show
the results on the Moon dataset, whereas the plots on the second row ((e)− (h)) are the results on
the MNIST-1vs7 dataset. The results demonstrate that FLORAL integration helps to achieve a higher
robust accuracy level.
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(a) FLORAL (Clean). (b) Dadv = 5%. (c) Dadv = 10%. (d) Dadv = 25%.

(e) SVM (Clean). (f) Dadv = 5%. (g) Dadv = 10%. (h) Dadv = 25%.

(i) NN (Clean). (j) Dadv = 5%. (k) Dadv = 10%. (l) Dadv = 25%.

(m) NN-PGD (Clean). (n) Dadv = 5%. (o) Dadv = 10%. (p) Dadv = 25%.

(q) LN-SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(r) Curie (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(s) LS-SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(t) K-LID (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

Figure 21: The decision boundaries on the Moon test dataset with various label poisoning levels. SVM-
related models use an RBF kernel with C = 10 and γ = 0.5. FLORAL generates a relatively smooth
decision boundary compared to baseline methods, particularly in 25% adversarial setting, where
baselines show drastic changes in their decision boundaries as a result of adversarial manipulations.
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(a) FLORAL (CLEAN). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(b) SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(c) NN (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(d) NN-PGD (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(e) LN-SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(f) Curie (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(g) LS-SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(h) K-LID (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

Figure 22: The decision boundaries on the Moon test dataset with various label poisoning levels.
SVM-related models use an RBF kernel with C = 10 and γ = 1. FLORAL generates a relatively
smooth decision boundary compared to baseline methods, especially in 25% adversarial setting, where
baselines show drastic changes in their decision boundaries as a result of adversarial manipulations.
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(a) FLORAL (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(b) SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(c) NN (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(d) NN-PGD (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(e) LN-SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(f) Curie (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(g) LS-SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(h) K-LID (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

Figure 23: The decision boundaries on the Moon test dataset. Methods are trained under different
levels of label poisoning attacks: First plots on each row correspond to the training set with clean
labels, while the adversarial datasets contain {5%, 10%, 25%} poisoned labels. SVM-related models
use an RBF kernel with C = 100 and γ = 10.
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(a) FLORAL (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(b) SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(c) NN (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(d) NN-PGD (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(e) LN-SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(f) Curie (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(g) LS-SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(h) K-LID (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

Figure 24: The decision boundaries on the Moon test dataset with alfa-attacked labels, under
various label poisoning levels. SVM-related models use an RBF kernel with C = 10 and γ = 1.
FLORAL particularly demonstrates smooth decision boundary when the attack level is 25%.
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