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ABSTRACT

Medical image sequences, generated by both 2D video-based examinations and
3D imaging techniques, consist of sequential frames or slices that capture the
same anatomical entities (e.g., organs or lesions) from multiple perspectives. Ex-
isting segmentation studies typically process medical images using either 2D or
3D methods in isolation, often overlooking the inherent consistencies among these
images. Additionally, interactive segmentation, while highly beneficial in clinical
scenarios, faces the challenge of integrating text prompts effectively across multi-
modalities. To address these issues, we introduce an innovative task, Referring
Medical Image Sequence Segmentation for the first time, which aims to seg-
ment the referred anatomical entities corresponding to medical text prompts. We
develop a strong baseline model, Text-Promptable Propagation (TPP), designed
to exploit the intrinsic relationships among sequential images and their associated
textual descriptions. TPP supports the segmentation of arbitrary objects of inter-
est based on cross-modal prompt fusion. Carefully designed medical prompts are
fused and employed as queries to guide image sequence segmentation through
triple-propagation. We curate a large and comprehensive benchmark covering
4 modalities and 20 different organs and lesions. Experimental results consis-
tently demonstrate the superior performance of our approach compared to previ-
ous methods across these datasets. Code and data are available at TPP.

1 INTRODUCTION

In the realm of medical imaging, both 2D video-based examinations, such as endoscopy and ultra-
sound, and 3D imaging techniques like CT and MRI, produce sequential frames or slices that capture
the same anatomical entities (e.g., organs and lesions). These image sequences are not merely col-
lections of individual snapshots but are deeply interconnected, with each frame or slice providing
a unique view of the same object from different angles and in varying shapes. The consistencies
among these sequential images are crucial for comprehensive medical analysis and diagnosis.

Current studies on medical image segmentation involve advanced machine learning tools designed
to automatically identify and separate different organs, tissues, or pathological regions from medical
images like CT scans, MRIs, and X-rays. These medical segmentation models are essential for tasks
such as disease screening, organ segmentation, and anomaly detection. As depicted in Figure 1
(a-c), these models face two primary drawbacks: 1) Separate network architectures for 2D and 3D
medical images. Researchers often apply distinct methodologies for 2D and 3D medical images,
using 2D approaches for planar images or slices (Ronneberger et al., 2015; Chen et al., 2021) and
3D techniques for volumetric data (Milletari et al., 2016; Zhao et al., 2023). These networks neglect
the consistency across temporal frames from 2D video-based examinations and sequential slices
from 3D volumes when images are interrelated or part of a sequence, leading to discrepancies and
sub-optimal outcomes. 2) Limitation to closed sets of categories and lack of human interactions.
In multi-class segmentation tasks, existing methods (Chen et al., 2021; Zhao et al., 2022) typically
restrict results to predefined classes, reducing flexibility and preventing the specification of particular
classes for referring segmentation. This rigidity limits the adaptation of segmentation processes to
specific clinical needs or emerging requirements in complex medical scenarios.

To address these challenges, we introduce an innovative task, Referring Medical Image Sequence
Segmentation, which aims to identify and segment anatomical entities corresponding to given text
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Model
propagationpropagation

3D Model

2D Model

Multi-class 
Segmentation

"the spleen is an organ that filters blood
and supports the immune system."
"on ct, the spleen appears as a soft
tissue with homogeneous density."
"the spleen typically has an oval or
crescent-shaped structure."

(b) 3D medical image segmentation

(a) 2D medical image segmentation

(c) Class-predefined segmentation
(d) Text-promptable propagation for referring medical image 
sequence segmentation

"an abnormal growth of tissue in the
colon or rectum."
"the color of a colorectal polyp are
often pink, red, or tan."
"colorectal polyps can have flat,
raised, or mushroom-like structures."

…

…

…

Abdominal CT scans Endoscopy frames

Segmentation masks

Figure 1: Medical image segmentation. (a) 2D models are often applied to 2D images or slices from
3D volumes, (b) 3D images typically utilize 3D models, (c) in multi-class segmentation tasks, once
the categories are defined, the prediction results are restricted to those categories, without the ability
to specify a specific category to segment, and (d) our method leverages medical text prompts to refer
to target objects and treats frames from 2D video-based examinations and slices from 3D volumes
as medical image sequences for segmentation. This approach enhances the flexibility and accuracy
by integrating text-based references with a broader range of image data.

prompts within medical image sequences. These sequences involve both temporally related frames
from videos and spatially related slices in volumes. For this task, we present our Text-Promptable
Propagation (TPP) model, a strong baseline designed to leverage the intrinsic relationships among
sequential images and their associated textual descriptions. As shown in Figure 1 (d), TPP unifies
frames from 2D video-based examinations and slices from 3D volumes, and supports the segmenta-
tion of arbitrary objects of interest based on text prompts.

TPP integrates two key components: 1) Cross-modal Prompt Fusion. This component supports
medical text prompts and vision-language fusion. Medical text prompts often provide valuable
knowledge and context by highlighting specific regions of interest and guiding attention. We propose
cross-modal prompt fusion to integrate prompts that describe various characteristics of anatomical
entities, linking medical image sequences with text prompts across vision and language modalities.
This component facilitates a more comprehensive understanding of the data by combining insights
from both textual and visual information. 2) Transformer-based model with Triple Propagation.
To uniformly model the temporal relationships between 2D frames and cross-slice interactions in
3D volumes, we employ a Transformer-based encoder-decoder architecture that incorporates prop-
agation strategies to track the referred objects throughout the sequences.

We curate a large dataset for referring medical image sequence segmentation, Ref-MISS, by prompt-
ing Large Language Models and re-organizing public medical datasets. Ref-MISS is sourced from
18 diverse medical datasets across 4 modalities, including MRI, CT, ultrasound, and endoscopy. It
covers 20 different organs and lesions from various regions of the body, as illustrated in Figure 2.

2 RELATED WORK

Medical Image Segmentation. As mentioned earlier, researchers typically apply distinct meth-
ods for 2D (Ronneberger et al., 2015) and 3D (Çiçek et al., 2016; Milletari et al., 2016) medical
images. 2D models are used for planar images or slices, while 3D models are intended to learn vol-
umetric features. Isensee et al. (2021) introduced a versatile, self-adaptive deep learning framework
specifically designed for medical image segmentation tasks, extending the U-Net architecture and
its 3D version. Chen et al. (2021) pioneered the combination of Transformer-based architecture with
Convolutional Neural Networks (CNNs) for medical image segmentation, applying a slice-by-slice
inference on 3D volumes without considering interrelationships among slices. Some works (Ji et al.,
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a mass or growth of abnormal 
cells in the brain.
brain tumors can be round, oval, 
or irregular in shape. …

an abnormal lump in the 
breast tissue.
breast masses typically 
appear as …

liver tumors can 
have irregular, 
lobulated, or well-
defined shapes. …

kidney tumors are 
often areas of 
varying density with 
contrasting colors …

the color of a 
polyp are often 
pink, red, or 
tan.…

Left ventricle appears as 
a round or long structure.
Myocardium on MR images …
Right ventricle …

Left atria is a 
chamber of …
Myocardium …
Left ventricle …

the color of the left/ 
Right lung is typically 
grey or slightly darker 
compared to …

Aorta, Left Kidney
Liver, Right Kidney
Pancreas, Stomach, 
Spleen, Gallbladder

a gland located 
below the bladder 
and surrounds the 
urethra. …

Prostate {Ultrasound}

Abdomen {CT}

Lung {CT}

Heart {Ultrasound}

Heart {MRI}

Polyp {Endoscopy}

Kidney tumor {CT}

Liver tumor {CT}

Breast mass {MRI}

Brain tumor {MRI}

Figure 2: An illustration of focus areas in Ref-MISS dataset.

2021; Painchaud et al., 2022; Lin et al., 2023) utilize spatial-temporal cues to enhance segmentation
performance; however, these models are limited to specific modalities and tasks.

Medical Vision Language Models. Medical vision language models have achieved success across
multiple downstream tasks, including diagnosis classification (Moon et al., 2022; Wang et al., 2022;
Tiu et al., 2022; Lu et al., 2023), lesion detection (Qin et al., 2023; Huang et al., 2024), image seg-
mentation (Zhao et al., 2023; Li et al., 2023), report generation (Yan & Pei, 2022; Bannur et al.,
2023), and visual question answering (Singhal et al., 2023; Moor et al., 2023). Qin et al. (2023)
designed auto-generation strategies for medical prompts and transferred large vision language mod-
els for medical lesion detection. Zhao et al. (2023) built a model based on Segment Anything
Model (Kirillov et al., 2023) in medical scenarios driven by text prompts, but the model focused
on 3D medical volume segmentation and failed to account for the sequential relationships between
scans. Based on our current understanding, we are the first to treat 2D and 3D medical images as
unified medical image sequences, using medical text prompts to specify segmentation targets.

Referring Video Object Segmentation. Gavrilyuk et al. (2018) were the first to propose inferring
segmentation from a natural language input, extending two popular actor and action datasets with
natural language descriptions. Seo et al. (2020) constructed the first large-scale referring video
object segmentation (RVOS) dataset and proposed a unified referring video object segmentation
network. Wu et al. (2022) and Botach et al. (2022) presented Transformer-based RVOS frameworks,
enabling end-to-end segmentation of the referred object. Wu et al. (2023) designed explicit query
propagation for an online model. Luo et al. (2024) aggregated inter- and intra-frame information via
a semantic integrated module and introduced a visual-linguistic contrastive loss to apply semantic
supervision on video-level object representations. Inspired by these works, we introduce a new task
termed Referring Medical Image Sequence Segmentation. We process both 2D and 3D medical
data into image sequences and perform an in-depth exploration of clip-level consistency within the
sequences under the guidance of linguistic prompts.

3 METHOD

Given T frames or slices {It ∈ R3×H×W }Tt=1 from a medical image sequence clip and Np medical
text prompts {Pi}

Np

i=1, the model aims to predict the segmentation masks {m̂t ∈ RH×W }Tt=1 of
the referred object corresponding to the prompts. We provide an automatic text-promptable schema
for referring medial image sequence segmentation. The overall architecture of our framework is
illustrated in Figure 3 (a). This framework comprises vision-language fusion (Section 3.1), unified
sequential processing (Section 3.2), and the training and inference procedures (Section 3.3).
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"the spleen is an organ that filters blood
and supports the immune system."
"on ct, the spleen appears as a soft
tissue with homogeneous density."
"the spleen typically has an oval or
crescent-shaped structure."
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(a) Overview of TPP (b) Triple propagation
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Figure 3: (a) Overall architecture of our Text-Promptable Propagation for referring medical image
sequence segmentation. Triple Prop. is short for Triple Propagation. (b) Illustration of Triple Prop-
agation in Transformer decoder, consisting of box-level, mask-level, and query-level propagation.
Line from Ev,t−1 to Memory Read block is omitted for simplicity.

3.1 VISION-LANGUAGE FUSION

Prompt Acquisition. We adopt large language models to automatically generate medical text
prompts. The instruction template is as follows: “You are a medical expert. Describe the [at-
tribute 1], [attribute 2], ..., and [attribute Np] of the anatomical entity on {modality} in one sentence
each.” Using this template, we obtain Np prompts for the target object (i.e., anatomical entity) that
is expected to be segmented. Here, Np is set to 3, with [attribute 1]=[profile], [attribute 2]=[shape],
and [attribute 3]=[color]. The attribute [profile] conveys the characterization of organ functions and
the definition of lesions, while attributes [color] and [shape] provide detailed descriptions of the
morphological aspects of the object.

Feature Extraction. Image clips {It}Tt=1 and medical text prompts {Pi}
Np

i=1 are fed into a visual
encoder and a linguistic encoder separately to extract visual features Fv for each image and textual
features Fp for each prompt. Fv is a set of feature maps {f lv ∈ RCl×Hl×W l}4l=1, where Cl, H l and
W l denote the channel dimension, height, and width of the feature map at the lth level, respectively.
Fp is a set of word-level embeddings {f ip ∈ Rleni×C}Np

i=1, where leni and C denote the sentence
length and channel dimension of the ith prompt, respectively.

Cross-modal Prompt Fusion. Having obtained the visual and textual features, we proceed with
Cross-modal Prompt Fusion. This module enhances the focus on target objects within images by
leveraging text prompts and assists in selecting the most relevant and useful prompt for each specific
clip. The process involves three key steps. 1) For features of each image, we first apply Multi-
Head Attention (MHA) mechanisms between the visual feature maps at the last three levels and the
word-level embeddings from the text prompts. Each text prompt leads to corresponding proposals,
denoted as A, B, C, respectively. This allows us to capture intricate relationships between the visual
and textual data. 2) Our goal is to identify the target object, i.e. A ∩ B ∩ C. The attention output is
then flattened and passed through a three-layer Multi-Layer Perceptron (MLP) to compute weights
for each text prompt. These weights reflect the relevance of each prompt to the current clip. Using
the computed weights, we perform a weighted sum of the attention output to obtain the fused visual
features. This step integrates the most pertinent aspects of the text prompts with the visual data. The
process can be formulated as:

Al,i = MHA
(
f lv, f

i
p

)
, (1)

4
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W l,i = Softmax
(
MLP

(
Al,i
))
, (2)

F ′
v =


Np∑
i=1

f lv ·Al,i ·W l,i


4

l=2

. (3)

3) For the textual features, we select the prompt with the highest weight score produced by the
feature maps at the first level (l = {1}). The textual feature of this prompt is then fed into the
Transformer decoder as the query input.

ŵ = argmax
i∈{1,...,Np}

(
W l=1,i

)
, (4)

F ′
p = f ŵp . (5)

3.2 UNIFIED SEQUENTIAL PROCESSING

Transformer. Our Transformer architecture is adapted from Deformable DETR (Zhu et al., 2021).
For each image It, the Transformer encoder takes the flattened visual features F ′

v,t and 2D positional
encoding as input, producing encoded output Ev,t through multi-scale deformable attention and
several feed forward layers. The output of the Transformer encoderEv,t and the textual feature of the
selected prompt F ′

p,t are then fed into the Transformer decoder. We repeat F ′
p,t Nq times to introduce

Nq queries, denoted as qt. Meanwhile, each image receives sequential cues from the previous
frame (except for the first image) in temporal order. The Transformer decoder thus generates Nq

embeddings for each image, denoted as qembed
t .

Prediction Heads. Three prediction heads are constructed following the Transformer decoder. The
output embeddings from the Transformer decoder, qembed

t , are then processed by these prediction
heads. 1) The box head consists of a three-layer feed-forward network (FFN) with ReLU activa-
tion, except for the last layer, which predicts the box offset. The offset is added to the base box
coordinates to determine the location of the referred object, denoted as bt. 2) The mask head is im-
plemented by dynamic convolution (Tian et al., 2020). It takes multi-scale features from the feature
pyramid network (FPN) fm, concatenates them with relative coordinates, and uses a controller to
generate convolutional parameters θt. Conditional convolution is then applied to the visual features
to generate Nq segmentation masks mt.

θt = Controller
(
qembed
t

)
, (6){

mi
t

}Nq

i=1
=
{
ϕi
(
fm; θit

)}Nq

i=1
. (7)

Here, the controller is also a three-layer FFN with ReLU activation, except for the last layer, and ϕi
represents three 1× 1 convolutional layers with 8 channels per query, using parameters θit generated
by the controller. 3) Since our text prompts contain class information, the class head indicates
whether the object is referred by the text prompt.

Triple Propagation. Frames or slices in temporal order across a sequence of medical images often
exhibit consistency in appearance or spatial relationships. To take advantage of this temporal coher-
ence, we propagate the box, mask, and query embeddings derived from the previous image to assist
in the prediction for the current image, as depicted in Figure 3 (b). This triple propagation leverages
the temporal consistency within the sequence, enhancing the robustness and precision of medical
image sequence analysis and ultimately contributing to more reliable outcomes.

Given the outputs of the previous image yt−1 = {bit−1,m
i
t−1, c

i
t−1}

Nq

i=1, we first choose the predic-
tion with highest class score as the best prediction: {bn̂t−1,m

n̂
t−1, c

n̂
t−1}. Consequently, except for

the first image, which hasNq queries, subsequent images will contain only one query, as it is always
propagated from the best prediction of the previous image.

Box-level Propagation. The box coordinates from the previous image bn̂t−1 provide a valuable refer-
ence for estimating the location of the target object in the current image. We use these coordinates as
the initial box for the current image, i.e. bbaset , leveraging the spatial continuity between images to
more accurately predict the object’s position. Box-level propagation allows us to refine the object’s
localization by starting from a well-informed estimate.

5
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Mask-level Propagation. Similarly, the visual features encoded by the Transformer encoder Ev,t−1

and the segmentation mask mn̂
t−1 from the previous image contains essential semantic information

that can significantly aid in analyzing the current image. To effectively utilize this prior knowledge,
we employ a memory-read mechanism inspired by Space-Time Memory (Oh et al., 2019). The
difference is that we only generate key and value maps for the memory. The memory map Mt−1 is
a concatenation of mn̂

t−1 and the first level of Ev−1,t, and the memory read operation is defined as:

Mt−1 = Concat
(
mn̂

t−1, E
l=2
v,t−1

)
, (8)

K = ψ (Mt−1) , V = φ (Mt−1) , (9)

El=2
v,t = Softmax

(
El=2

v,t K√
Cl=2

)
V, (10)

where ψ and φ are two parallel 3× 3 convolutional layers. The first level of Ev,t is now a memory-
read map. It is concatenated with feature maps of other levels and then fed into the deformable
attention module in the Transformer decoder after flattening.

Query-level Propagation. Having confirmed the query index n̂, we propagate the corresponding
output query embedding qembed

t−1 to the current image. Here, we use a three-layer FFN to transform
the embedding to qt, following (Wu et al., 2023). The propagation of the query allows for the
transmission of embedded context for the same target.

3.3 TRAINING AND INFERENCE

Training. For each image, we have Nq predictions yt = {bit,mi
t, c

i
t}

Nq

i=1, where bit ∈ R4, mi
t ∈

RH
4 ×W

4 , and cit ∈ R1 represent the box location, segmentation mask, and probability of the referred
object, respectively. The ground-truth, in the same format, is denoted as Yt = {Bt,Mt, Ct}. We
then compute the matching loss Lmatch to find the best prediction:

Lmatch,t (yt, Yt) = λboxLbox (yt, Yt) + λmaskLmask (yt, Yt) + λclsLcls (yt, Yt) , (11)

n̂q,t = argmin
i∈{1,...,Nq}

(Lmatch,t) , (12)

where λbox, λmask, and λcls are loss coefficients. Lbox is implemented as a sum of L1 loss and GIoU
loss, Lmask combines Dice loss and binary mask focal loss, and Lcls is focal loss. n̂q,t represents
the query index of the best prediction. The network is optimized by minimizing the summation of
Lmatch,t for the best predictions across T images.

L =
1

T

T∑
t=1

Ln̂q,t

match,t. (13)

Inference. During inference, we select the query with the highest class score as the best prediction,
which can be formulated as:

n̂′q,t = argmax
i∈{1,...,Nq}

(
cit
)
. (14)

The final segmentation masks for each image {m̂t}Tt=1 are selected using the query index n̂′q,t from
the Nq predictions {mi

t}
Nq

i=1. Due to our propagation strategy, the best prediction of the first image
is propagated to the subsequent images, leading to only one query for the rest images. Therefore,
for those images with only one query, m̂t = mt (t > 1).

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Datasets and Metrics. We have collected and processed 18 medical image sequence datasets,
including 20 anatomical entities across 4 different imaging modalities, as shown in Figure 2 and
Table 1. The datasets are categorized by the 4 modalities as follows: 1) MRI datasets. 2018
Atria Segmentation Data (Xiong et al., 2021), RVSC (Petitjean et al., 2015), ACDC (Bernard et al.,

6
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Table 1: Medical image sequence datasets across 4 modalities and 20 anatomical entities.

Dataset Class Type Modality Training cases Testing cases
(images) (images)

Xiong et al. (2021) Left atrium Organ MRI 100 (5817) 54 (3202)
RVSC Right ventricle Organ MRI 16 (243) 32 (514)

ACDC
Left ventricle

Organ MRI
100 (1808) 50 (977)

Myocardium 100 (1828) 50 (989)
Right ventricle 100 (1558) 50 (881)

CAMUS
Left ventricle

Organ Ultrasound 450 (8393) 50 (875)Myocardium
Left atrium

Kiser et al. (2020) Left lung Organ CT 300 (23858) 98 (7931)
Right lung 300 (24026) 98 (7962)

Simpson et al. (2015) Spleen Organ CT 30 (832) 11 (219)
Pancreas-CT Pancreas Organ CT 60 (5158) 20 (1724)

BTCV

Aorta

Organ CT

18 (1215) 12 (827)
Left kidney 18 (543) 12 (362)

Right kidney 18 (547) 12 (350)
Liver 18 (911) 12 (631)

Spleen 18 (532) 12 (332)
Stomach 18 (594) 12 (421)
Pancreas 18 (430) 12 (316)

Gallbladder 17 (228) 11 (131)
Jiang et al. (2024) Prostate Organ Ultrasound 55 (1931) 20 (690)

BraTS 2019 Brain tumor Lesion MRI 250 (16535) 85 (5613)
Zhang et al. (2023) Breast mass Lesion MRI 80 (2913) 20 (565)

RIDER 3 (39) 1 (32)
LiTS Liver tumor Lesion CT 20 (703) 12 (1110)

KiTS 2023 Kidney tumor Lesion CT 285 (4659) 40 (1110)
CVC-ClinicDB

Polyp Lesion Endoscopy

18 (367) 11 (245)
CVC-ColonDB 6 (180) 6 (120)

ETIS 20 (152) 6 (44)
ASU-Mayo 8 (2701) 2 (1155)

2018), BraTS 2019 (Menze et al., 2014; Bakas et al., 2017; Baid et al., 2021), Breast Cancer DCE-
MRI Data (Zhang et al., 2023), and RIDER (Meyer et al., 2015). 2) CT datasets. Thoracic cavity
segmentation dataset introduced by (Aerts et al., 2019), spleen segmentation dataset introduced
by (Simpson et al., 2015), Pancreas-CT (Roth et al., 2015), the abdomen part of BTCV (Land-
man et al., 2015), LiTS (Bilic et al., 2023), and KiTS 2023 (Heller et al., 2021; 2023), 3) Ultra-
sound datasets. CAMUS (Leclerc et al., 2019), which is also known as echocardiography, and
Micro-Ultrasound Prostate Segmentation Dataset (Jiang et al., 2024). 4) Endoscopy datasets. CVC-
ClinicDB (Bernal et al., 2015), CVC-ColonDB (Bernal et al., 2012), ETIS (Silva et al., 2014), and
ASU-Mayo (Tajbakhsh et al., 2015). We maintain the original training and testing splits, and ensure
that each sequence is only used in one split. Segmentation performance is evaluated using the Dice
coefficient and Hausdorff distance as metrics.

4.2 IMPLEMENTATION DETAILS

For all datasets, we convert videos into frames and 3D volumes into 2D slices. Images without
a valid object are filtered out. In total, 3,644 sequences are used in training and 1,061 sequences
for testing. Data augmentation techniques include random horizontal flip, random resize, random
crop, and photometric distortion. All images are resized to a maximum length of 640 pixels. The
coefficients for the losses are set as λL1 = 5, λgiou = 2, λdice = 5, λfocal = 2, and λcls = 2. We
adopt 4 encoder layers and 4 decoder layers in the Transformer, and the initial query number Nq is
set to 5. Both the hidden dimension of the Transformer and the channel dimension of text prompts
are C = 256. During training, 3 temporal images from a sequence are randomly sampled and fed
into the model at each iteration. Our model is trained on 2 RTX 3090 24GB GPUs with a batch
size of 1 per GPU, using AdamW optimizer with an initial learning rate of 10−5 for 5 epochs. The
learning rate decays by 0.1 at the 3rd epoch.
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Table 2: Comparison results with state-of-the-art methods on organs. ↑ denotes higher is better and
↓ denotes lower is better. Numbers in bold represent the best and underlined ones are the second
best. 1Average of ACDC and CAMUS, 2Average of left lung and right lung, 3Average of BTCV,
Pancreas-CT, and Spleen segmentation dataset (Simpson et al., 2015).

Method Backbone Heart1 Lung2 Abdomen3 Prostate Overall
Dice↑ HD↓ Dice↑ HD↓ Dice↑ HD↓ Dice↑ HD↓ Dice↑ HD↓

URVOS ResNet-50 83.92 3.87 84.61 5.64 60.19 4.64 91.92 10.48 73.07 4.72
ReferFormer ResNet-50 86.29 3.92 84.19 5.03 72.12 4.21 89.79 11.30 79.51 4.51
OnlineRefer ResNet-50 83.93 3.94 85.27 4.89 63.48 4.59 91.69 10.98 74.69 4.68

Ours ResNet-50 87.19 3.79 88.77 4.04 72.80 4.07 93.13 10.75 80.77 4.28
ReferFormer Swin-L 84.12 3.99 82.56 5.12 66.05 4.31 90.58 11.26 75.67 4.60
OnlineRefer Swin-L 84.37 3.90 83.59 4.99 60.39 4.62 90.72 10.80 73.30 4.68

Ours Swin-L 84.47 3.87 84.96 4.99 66.41 4.52 91.54 10.93 76.25 4.62
SOC V-Swin-T 81.76 4.22 84.84 4.94 62.55 4.82 86.42 12.73 73.12 4.98

MTTR V-Swin-T 84.80 3.98 84.92 4.94 64.23 4.39 89.96 11.95 75.26 4.65
Ours V-Swin-T 84.98 3.85 85.19 4.93 65.57 4.31 92.34 10.70 76.11 4.50

Table 3: Comparison results with state-of-the-art methods on lesions. 1Average of Breast Cancer
DCE-MRI Data and RIDER. 2Average of CVC-ClinicDB, CVC-ColonDB, ETIS, and ASU-Mayo.

Method Backbone Brain tumor Breast mass1 Liver tumor Kidney tumor Polyp2

Dice↑ HD↓ Dice↑ HD↓ Dice↑ HD↓ Dice↑ HD↓ Dice↑ HD↓
URVOS ResNet-50 74.59 4.73 55.91 5.20 27.43 8.51 72.24 5.63 66.17 7.79

ReferFormer ResNet-50 76.60 3.16 60.70 4.93 47.43 8.97 61.75 6.83 62.75 8.19
OnlineRefer ResNet-50 77.55 3.00 64.81 4.48 39.70 8.85 74.75 5.58 72.77 7.31

Ours ResNet-50 78.24 2.96 65.40 4.66 65.27 6.82 77.73 5.56 75.56 7.07
ReferFormer Swin-L 76.89 3.06 61.53 4.78 57.43 7.48 78.31 5.46 67.35 7.81
OnlineRefer Swin-L 77.46 2.97 57.22 4.62 54.50 7.57 69.91 6.04 78.47 6.80

Ours Swin-L 77.96 3.03 65.90 4.49 59.32 7.45 79.27 5.26 77.56 7.25
SOC V-Swin-T 75.55 3.05 61.57 4.75 35.30 8.42 70.01 6.08 60.04 8.73

MTTR V-Swin-T 76.21 3.00 57.74 4.95 53.68 7.28 67.31 6.33 71.12 7.72
Ours V-Swin-T 77.37 2.98 59.17 4.52 54.26 8.55 76.07 5.61 77.11 6.93

4.3 RESULTS

Comparison to the State-of-the-art. We compare our method with state-of-the-art approaches on
referring video object segmentation, including URVOS (Seo et al., 2020), ReferFormer (Wu et al.,
2022), OnlineRefer (Wu et al., 2023), MTTR (Botach et al., 2022), and SOC (Luo et al., 2024). The
comparison results for organs and lesions are shown in Table 2 and Table 3, respectively. To better
organize and present the datasets, we categorize the organ datasets into four distinct groups: heart,
lung, abdomen, and prostate. We then compute the average metrics for each group, allowing us to
identify strengths and weaknesses specific to different anatomical regions. Detailed experimental
results for each category can be found in Appendix A.2.

For feature extraction, we implement various visual backbones, including ResNet (He et al., 2016),
Swin Transformer (Liu et al., 2021), and Video Swin Transformer (Liu et al., 2022). Notably, the
performance for organ detection is superior to that for lesion detection. This discrepancy can be
attributed to the smaller size and more homogeneous appearance of lesions, which makes them in-
herently more challenging to identify. Our approach consistently outperforms previous methods
across all three backbones, especially on lesion datasets. For the segmentation of liver tumors and
kidney tumors, our model with a ResNet-50 backbone achieves average Dice scores of 65.27% and
77.73%, which are 17.84 and 15.98 points higher than the previous state-of-the-art work, Refer-
Former. Figure 5 shows the visualization results of our TPP.

Comparison to SAM 2. The Segment Anything Model 2 (Ravi et al., 2024) serves as a foundational
model for promptable visual segmentation in images and videos. As it currently lacks support for
text prompts, we utilize a community-developed version, Grounded SAM 2 (Liu et al., 2023), which
enables video object tracking with text inputs. This model uses box outputs from Grounding DINO
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Table 4: Comparison with SAM 2 series.

Prompter
+ Segmenter Metric Organ Lesion

Grounding DINO Dice↑ 12.46 10.10
+ SAM 2 HD↓ 17.08 21.05

TPP Dice↑ 53.45 54.55
+ SAM 2 HD↓ 6.03 6.79

TPP Dice↑ 80.77 72.69
+ TPP HD↓ 4.28 5.88

Table 5: Few-shot performance.

Method Metric Right
ventricle

Breast
mass Polyp

Full data Dice↑ 81.97 61.96 82.19
HD↓ 3.45 4.57 6.65

One-shot Dice↑ 75.63 59.88 81.55
HD↓ 3.93 4.56 6.65

Zero-shot Dice↑ 71.13 57.18 80.97
HD↓ 4.29 4.60 6.70

Heart Lung
Abdomen

Prostate
Brain tumor

Breast mass
Liver tumor

Kidney tumor Polyp
0

20

40

60

80

Di
ce

Full model w/o prompt w/o propagation

Figure 4: Ablation studies on text prompts and propagation strategies. Dice scores are provided for
full model, without prompt, and without propagation, respectively.

as prompts for SAM 2’s video predictor. Despite this integration, it achieves average Dice scores of
only 12.46% for organs and 10.10% for lesions, indicating its limited understanding of medical text
prompts. To address this, we utilize the mask predictions of the first image in the sequences gener-
ated by our TPP as mask prompts for SAM 2, which leads to substantial improvements, with average
Dice scores of 53.45% (+40.99) for organs and 54.55% (+44.45) for lesions. As shown in Table 4,
our TPP demonstrates superiority over Grounding DINO in text grounding ability, and surpasses
SAM 2 in object tracking capabilities due to the triple propagation strategy (See Appendix A.3 for
visualization results).

Zero-/Few-shot Performance. To validate the zero-shot performance of our approach on unseen
datasets, we exclude RVSC (right ventricle), RIDER (breast mass), and CVC-ColonDB (polyp)
from the training datasets and evaluate the trained model on these datasets directly. As shown in
Table 5, the Dice scores for breast mass and polyp decrease by only 4.78 and 1.22 points compared
to full-data training. In the one-shot setting, we use a single sequence from each of the three datasets
mentioned above for training. The results show that one-shot performance is comparable to full-data
training, highlighting the model’s robust generalization ability.

4.4 ABLATION STUDY

Cross-modal prompt fusion and the propagation strategy are critical components of our approach
to referring medical image sequence segmentation. Figure 4 illustrates that medical text prompts
are particularly essential for accurately identifying organs located in the heart, lungs, and abdomen.
Moreover, for extremely small lesions, such as breast masses and liver tumors, our propagation strat-
egy significantly reduces the occurrence of false negatives, resulting in significant enhancements.

Table 6: Ablation studies on prompts.

Prompt Organ Lesion
Dice↑ HD↓ Dice↑ HD↓

w/o prompt 41.45 8.14 63.69 6.55
w/ [profile] 76.17 4.71 66.07 6.18
w/ [color]
&[shape] 78.31 4.70 67.50 6.34

Full model 80.77 4.28 72.69 5.88

Table 7: Ablation studies on propagation.

Propagation Organ Lesion
Dice↑ HD↓ Dice↑ HD↓

w/o prop. 74.53 4.75 63.97 6.51
w/o query 77.86 4.66 64.03 6.42
w/o mask 77.93 4.61 67.10 6.40
w/o box 79.57 4.48 71.43 6.05
Full model 80.77 4.28 72.69 5.88
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(b) Myocardium is a thick, continuous layer surrounding 
the heart chambers.

(a) The chamber of the heart responsible for pumping 
oxygenated blood.

(c) Spleen is an organ that filters blood and supports 
the immune system.

(d) Liver is a large organ that processes nutrients and 
detoxifies the blood.

(e) A mass or growth of abnormal cells in the brain. (f) An abnormal mass of tissue in the liver.

(g) An abnormal growth of tissue in the colon or rectum. (h) Prostate is a gland located below the bladder and 
surrounds the urethra.

Figure 5: Visualization of segmentation results for different entities and modalities. (a) and (b)
display the results of left atrium and myocardium in the same MRIs, respectively. (c) and (d) show
spleen and liver in the same CT slices, respectively. From (e) to (h), visualizations are brain tumor
in MRI, liver tumor in CT, polyp in endoscopy, and prostate in ultrasound.

Medical Text Prompts. We utilize large language models to generate three attributes for each
anatomical entity: [profile], [color], and [shape]. Among these, [profile] is a more abstract concept,
whereas [color] and [shape] are more specific. These different attributes serve as varied prompt
messages, resulting in distinct enhancements in segmentation performance, as shown in Table 6.

Propagation Strategy. To investigate the effects of box propagation, mask propagation, and query
propagation, we conduct ablation experiments by removing the corresponding propagation methods,
as demonstrated in Table 7. The absence of mask propagation and query propagation results in
decreases of 2.84 and 2.91 points in Dice score, and increases of 0.33 and 0.38 in Hausdorff distance
for organs. More details on ablation studies for propagation can be found in Appendix A.4.

5 CONCLUSION

In this paper, we introduce a new task, termed Referring Medical Image Sequence Segmentation, ac-
companied by a large and comprehensive benchmark. The benchmark includes 20 different anatom-
ical entities across 4 modalities from various regions of the body. We present an innovative text-
promptable approach that effectively leverages the inherent sequential relationships and textual cues
within medical image sequences to segment referred objects, serving as a strong baseline for this
task. By integrating both 2D and 3D medical images through a triple-propagation strategy, we
demonstrate significant improvements across a broad spectrum of medical datasets, emphasizing
the potential for rapid response in segmenting referred objects and enabling accurate diagnosis in
clinical practice. Future work should delve deeper into optimizing prompts and exploring additional
modalities to further enhance the efficacy of medical image analysis.
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A APPENDIX

A.1 MEDICAL TEXT PROMPTS

We employ GPT-4 to automatically generate medical text prompts for each anatomical entity.

Instruction

You are a medical expert. Describe the [profile], [color], and [shape] of the

left atrium / right ventricle / myocardium / ... on { MRI / CT / Ultrasound /

Endoscopy } in one sentence each.

Output

Left atrium:
"the left atrium is a chamber of the heart."
"it typically appears as a lighter region."
"it is always surrounded by its walls."

Right ventricle:
"the chamber of the heart responsible for pumping deoxygenated blood."
"the right ventricle typically appears as a brighter or lighter region adjacent to
the right atrium."
"it appears as a distinct, usually crescent-shaped structure."

Myocardium:
"the myocardium is the muscular tissue of the heart."
"it typically appears as a darker or medium gray region."
"it is a thick, continuous layer surrounding the heart chambers."

Left ventricle:
"the chamber of the heart responsible for pumping oxygenated blood."
"the left ventricle typically appears as a darker or medium gray region adjacent
to the left atrium."
"the left ventricle appears as a round or long structure."

Prostate:
"the prostate is a gland located below the bladder and surrounds the urethra."
"on ultrasound, it typically appears as a gray or medium gray structure."
"the prostate usually has a somewhat rounded or oval shape."

Brain tumor:
"a mass or growth of abnormal cells in the brain."
"brain tumors can be benign or malignant."
"exp": "brain tumors can be round, oval, or irregular in shape."

Liver tumor:
"a liver tumor is an abnormal mass of tissue in the liver, potentially cancerous
or benign."
"on ct, liver tumors typically appear as areas of varying density, often with
contrasting colors compared to the surrounding liver tissue."
"liver tumors can have irregular, lobulated, or well-defined shapes."

Kidney tumor:
"a kidney tumor is an abnormal growth of cells within the kidney."
"kidney tumors often appear as areas of varying density, typically with
contrasting colors compared to the surrounding kidney tissue."
"kidney tumors can have irregular, nodular, or well-defined shapes."

Polyp:
"an abnormal growth of tissue in the colon or rectum."
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"the color of a colorectal polyp are often pink, red, or tan."
"colorectal polyps can have flat, raised, or mushroom-like structures."

Breast mass:
"a breast mass is an abnormal growth or lump in the breast tissue."
"breast masses typically appear as areas of variable signal intensity."
"breast masses can have irregular, lobulated, or well-defined shapes."

Aorta:
"the aorta is a large artery that carries blood from the heart to the rest of the
body."
"on ct, the aorta appears as a tubular structure with varying density, often
highlighted with contrast."
"the aorta typically has a cylindrical or slightly curved shape."

Gallbladder:
"the gallbladder is a small organ that stores bile."
"the gallbladder usually appears as a dark, fluid-filled sac."
"the gallbladder typically has a pear-shaped or oval shape."

Left kidney:
"the left kidney is an organ that filters blood and produces urine."
"on ct, the left kidney appears as a bean-shaped structure with variable density."
"the left kidney typically has a slightly curved or oval shape."

Right kidney:
"the right kidney is an organ that filters blood and produces urine."
"on ct, the right kidney appears as a bean-shaped structure with variable
density."
"the right kidney typically has a slightly curved or oval shape."

Liver:
"the liver is a large organ that processes nutrients and detoxifies the blood."
"on ct, the liver appears as a dense, homogeneous structure with contrast-enhanced
areas."
"the liver typically has a roughly triangular or irregular shape."

Pancreas:
"the pancreas is an organ that produces digestive enzymes and hormones."
"on ct, the pancreas appears as a soft tissue structure with variable density,
often with contrast enhancement."
"the pancreas typically has an elongated, somewhat irregular shape."

Spleen:
"the spleen is an organ that filters blood and supports the immune system."
"on ct, the spleen appears as a soft tissue structure with homogeneous density."
"the spleen typically has an oval or crescent-shaped structure."

Stomach:
"the stomach is an organ that digests food and stores it before it moves to the
intestines."
"on ct, the stomach appears as a variable density structure with contrast-enhanced
areas."
"the stomach typically has a j-shaped or irregular shape."

Left lung:
"the left lung is an organ that facilitates breathing and gas exchange."
"the color of the left lung typically appears as a grey or slightly darker
compared to the surrounding tissues."
"the shape of the left lung is generally asymmetrical, often appearing somewhat
triangular or wedge-shaped."

Right lung:
"the right lung is an organ that facilitates breathing and gas exchange."
"the color of the right lung typically appears as a grey or slightly darker
compared to the surrounding tissues."
"the shape of the right lung is generally asymmetrical, often appearing somewhat
triangular or wedge-shaped."
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Table 8: Detailed comparison results with state-of-the-art methods. ↑ denotes higher is better, and ↓
denotes lower is better. Numbers in bold represent the best and underlined ones are the second best.
1ACDC, 2CAMUS, 3BTCV, 4RIDER, 5CVC-ClinicDB, 6CVC-ColonDB, 7ETIS, 8ASU-Mayo.

Class Method URVOS ReferFormer OnlineRefer MTTR SOC Ours
Backbone R-50 R-50 Swin-L R-50 Swin-L V-Swin-T V-Swin-T R-50 Swin-L V-Swin-T

Left Dice↑ 77.84 82.27 80.87 80.02 80.12 81.81 81.40 83.05 74.68 79.17
atrium HD↓ 3.00 3.76 3.92 3.96 3.99 3.90 3.99 3.72 4.02 3.94
Right Dice↑ 76.34 77.93 81.39 73.88 80.83 77.21 76.25 81.97 83.63 79.72

ventricle HD↓ 4.51 3.84 3.39 3.76 3.37 3.73 4.06 3.45 3.29 3.44
Left Dice↑ 87.12 90.57 88.36 87.26 85.92 89.58 89.57 90.14 86.45 87.54

ventricle1 HD↓ 3.48 2.02 2.03 2.13 2.13 2.04 2.08 2.04 2.10 2.08
Myo- Dice↑ 78.55 82.92 76.49 80.98 79.98 78.62 57.27 84.34 78.19 79.76

cardium1 HD↓ 3.53 2.74 2.88 2.84 2.82 2.82 4.29 2.68 2.89 2.81
Right Dice↑ 81.06 85.47 82.08 79.08 79.68 83.97 81.63 85.77 83.77 83.22

ventricle1 HD↓ 3.55 2.72 2.76 2.94 2.90 2.73 2.94 2.68 2.80 2.75
Left Dice↑ 93.23 92.69 91.98 93.11 92.70 92.97 92.40 93.50 92.24 92.93

ventricle2 HD↓ 4.19 4.74 5.04 4.72 4.77 4.63 4.72 4.63 4.76 4.71
Myo- Dice↑ 88.57 88.17 85.53 88.39 88.17 87.07 87.05 89.03 86.39 88.10

cardium2 HD↓ 4.87 6.36 6.45 6.09 6.12 6.47 6.39 6.07 6.20 6.06
Left Dice↑ 88.69 90.28 86.30 88.70 89.94 87.20 88.48 89.73 90.45 89.43

atrium2 HD↓ 3.81 5.13 5.44 5.09 5.13 5.53 5.26 5.02 4.92 5.04
Left Dice↑ 85.23 85.14 83.92 86.10 84.60 85.02 85.97 89.88 87.38 86.65
lung HD↓ 5.67 5.01 5.15 4.96 5.00 4.95 4.95 4.06 4.95 4.96
Right Dice↑ 84.00 83.23 81.20 84.43 82.58 84.83 83.72 87.65 82.54 83.72
lung HD↓ 5.61 5.04 5.08 4.82 4.98 4.93 4.92 4.01 5.03 4.91

Spleen Dice↑ 80.33 84.63 87.06 87.37 87.17 84.48 81.66 90.20 86.54 84.56
HD↓ 4.64 4.29 3.69 4.04 3.84 3.88 4.51 3.69 3.98 3.79

Pancreas Dice↑ 10.77 23.36 10.71 26.75 23.29 27.98 31.41 26.02 18.58 22.36
HD↓ 5.01 5.64 5.26 5.17 5.39 4.99 5.06 5.05 5.91 5.02

Aorta Dice↑ 60.81 88.12 80.84 82.12 75.16 83.64 80.22 86.14 73.63 75.42
HD↓ 3.41 2.23 2.45 2.56 2.73 2.58 2.62 2.40 2.64 2.48

Left Dice↑ 79.16 89.71 61.06 77.01 51.57 68.11 79.75 87.53 84.23 81.60
kidney HD↓ 4.02 3.20 4.42 3.92 4.68 3.81 4.08 3.26 3.44 3.40
Right Dice↑ 75.82 84.72 84.00 68.88 62.53 65.05 79.05 84.16 81.36 80.94
kidney HD↓ 4.42 3.62 3.78 4.29 4.49 4.11 4.24 3.59 3.85 3.71

Liver Dice↑ 85.55 89.18 88.00 86.75 87.81 87.54 85.09 90.32 88.62 88.89
HD↓ 5.26 5.23 5.13 5.34 5.25 5.17 5.71 5.06 5.16 5.11

Spleen3 Dice↑ 79.58 88.19 84.45 84.08 84.68 85.37 76.36 88.41 85.34 82.98
HD↓ 4.48 3.85 4.00 4.16 4.07 4.02 4.48 3.72 3.93 3.92

Stomach Dice↑ 63.61 64.52 61.40 59.97 54.93 56.41 46.53 67.35 63.66 55.83
HD↓ 5.54 5.44 5.70 5.97 6.19 6.22 7.10 5.39 5.96 6.20

Pancreas3 Dice↑ 27.28 50.50 41.53 33.66 38.40 40.13 35.59 47.61 42.36 39.37
HD↓ 4.99 4.51 4.72 5.12 4.90 4.88 5.11 4.69 5.34 4.89

Gall- Dice↑ 39.00 58.23 61.42 28.17 38.44 43.59 29.88 60.29 39.78 43.79
bladder HD↓ 4.60 4.03 3.98 5.36 4.65 4.28 5.26 3.94 4.95 4.55

Prostate Dice↑ 91.92 89.79 90.58 91.69 90.72 89.96 86.42 93.13 91.54 92.34
HD↓ 10.48 11.30 11.26 10.98 10.79 11.95 12.73 10.75 10.93 10.70

Brain Dice↑ 74.59 76.60 76.89 77.55 77.46 76.21 75.55 78.24 77.96 77.37
tumor HD↓ 4.72 3.16 3.06 3.00 2.97 3.00 3.05 2.96 3.03 2.98
Breast Dice↑ 60.85 63.12 66.06 67.91 65.39 70.04 63.92 68.83 67.00 61.02
mass HD↓ 5.15 5.19 5.16 4.92 4.90 4.91 4.82 4.75 4.75 5.02

Breast Dice↑ 50.97 58.28 57.00 61.71 49.05 45.44 59.22 61.96 64.80 57.32
mass4 HD↓ 5.26 4.66 4.41 4.05 4.33 4.99 4.68 4.57 4.23 4.02
Liver Dice↑ 27.43 47.43 57.43 39.70 54.50 53.68 35.30 65.27 59.32 54.26
tumor HD↓ 8.51 8.97 7.48 8.85 7.57 7.28 8.42 6.82 7.45 8.55

Kidney Dice↑ 72.24 61.75 78.31 74.75 69.91 67.31 70.01 77.73 79.27 76.07
tumor HD↓ 5.63 6.83 5.46 5.58 6.04 6.33 6.08 5.56 5.26 5.61

Polyp5 Dice↑ 80.90 75.65 80.74 81.81 85.19 78.85 70.28 81.24 85.46 82.13
HD↓ 8.01 5.59 5.12 5.36 5.03 6.03 6.73 5.28 5.12 5.33

Polyp6 Dice↑ 77.98 79.94 80.02 69.75 84.41 77.49 75.16 82.19 84.02 79.83
HD↓ 8.19 6.53 6.54 7.39 6.24 7.11 7.32 6.66 6.30 6.69

Polyp7 Dice↑ 51.48 60.16 63.64 67.65 67.27 57.70 54.38 65.58 72.35 68.83
HD↓ 8.29 10.37 10.07 9.54 9.36 10.55 10.97 9.45 9.36 9.19

Polyp8 Dice↑ 54.30 35.27 44.98 71.89 77.04 70.46 40.33 73.22 68.41 77.63
HD↓ 6.65 10.29 9.50 6.95 6.58 7.19 9.88 6.88 8.21 6.50
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Figure 6: Qualitative comparison results with SAM 2. Zoom in for details.

A.2 DETAILED EXPERIMENTAL RESULTS

We use two metrics for medical image sequence segmentation. LetM and Y be the predicted masks
and ground truth masks, respectively, and let m and y be the corresponding contours delineating the
object. The following two standard similarity measurements are computed:

• Dice: It measures the overlap or similarity between two masks and is defined as:

D(M,Y ) = 2
M ∩ Y
M + Y

(15)

• Hausdorff distance: It is a symmetric measure of distance between two contours and is defined as:

H(m, y) = max

(
max
i∈m

(
min
j∈y

d(i, j)

)
,max

j∈y

(
min
i∈m

d(i, j)

))
(16)

For clarity and due to page limitations, we only report the average metrics for datasets of human
body parts in the main text. Here, we present the detailed metrics for each category in Table 8. Our
TPP demonstrates superior performance, particularly in the segmentation of heart structures, lungs,
masses, and tumors. On the BTCV dataset, ReferFormer exhibits excellent results. Among the three
backbone architectures, ResNet-50 proves to be the most robust across the majority of tasks, while
Swin Transformer (Large) excels specifically in polyp segmentation.

A.3 MORE VISUALIZATION RESULTS

Figure 6 provides a qualitative comparison between our TPP and SAM 2. Although we provide mask
prompts as a strong initialization for SAM 2, it incorrectly identifies the cavity inside the tumor and
loses track of the target in the later stages of the sequence due to the absence of text prompts.

As shown in Figure 7, both (a) and (b) fail to locate the entire liver tumor. In poorly performing cases,
the segmentation either misses critical portions of the tumor or incorrectly identifies surrounding
tissue as part of the lesion. This highlights the challenges in detecting complex or irregularly shaped
tumors, especially in low-contrast CT scans.

A.4 PROPAGATION STRATEGY ANALYSIS

Table 9 presents a detailed comparison of the performance improvements driven by box propaga-
tion, mask propagation, and query propagation. The results indicate that box propagation yields the

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Image

Ground
truth

Ours

(a) (b) (c) (d) (e) (f)

Figure 7: Poorly performing samples. Best viewed in color.

smallest enhancements, with increases of 1.16 points for organs and 2.80 points for lesions in Dice
scores. In contrast, mask and query propagation demonstrate a more significant impact, highlighting
their critical roles in improving overall segmentation performance. This underscores the impor-
tance of designing appropriate propagation methods to optimize results in medical image sequence
segmentation.

Table 9: Ablation studies on triple propagation.

Box
propagation

Mask
propagation

Query
propagation

Organ Lesion
Dice↑ HD↓ Dice↑↑ HD↓
74.53 4.75 63.97 6.51

✓ 76.69 4.78 66.77 6.29
✓ 77.10 4.73 70.03 5.94

✓ 77.28 4.44 69.37 6.25
✓ ✓ 77.86 4.66 64.03 6.42
✓ ✓ 77.93 4.61 67.10 6.40

✓ ✓ 79.57 4.48 71.43 6.05
✓ ✓ ✓ 80.77 4.28 72.69 5.88

Table 10: Analysis on query selection.

The number of queries for Organ Lesion
Slice 1 Slice 2 Slice 3 Dice↑ HD↓ Dice↑ HD↓

5 5 5 79.47 4.39 70.98 6.11
5 3 1 78.47 4.44 71.67 6.01
5 1 1 80.77 4.28 72.69 5.88

Table 10 analyses the query selection strategy. The first row represents the absence of a selection
process. In the second row, the model selects the top-3 queries for Slice 2, and consequently selects
the top-1 query for Slice 3. However, neither strategy outperforms the baseline.
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