
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SELECTIVE ATTENTION IMPROVES TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Unneeded elements in the attention’s context degrade performance. We intro-
duce Selective Attention, a simple parameter-free change to the standard attention
mechanism which reduces attention to unneeded elements. Selective attention im-
proves language modeling performance in a variety of model sizes and context
lengths. For example, a range of transformers trained with the language modeling
objective on C4 with selective attention perform equivalently to standard trans-
formers with ∼2X more heads and parameters in their attention modules. Se-
lective attention also allows decreasing the size of the attention’s context buffer,
leading to meaningful reductions in the memory and compute requirements dur-
ing inference. For example, transformers with 100M parameters trained on C4
with context sizes of 512, 1,024, and 2,048 need 16X, 25X, and 47X less memory
for their attention module, respectively, when equipped with selective attention,
as those without selective attention, with the same validation perplexity.

1 INTRODUCTION

Different tasks have different memory requirements. On one extreme, copying an arbitrary sequence
requires retaining all sequence elements in memory. On the other extreme, determining whether a
specific element appeared at least once, only requires persisting a constant amount of memory.

Transformers (Vaswani et al., 2017) keep the entire history in their context buffers, allowing them to
solve tasks such as copying, while famously leading to their squared attention cost. RNNs (Rumel-
hart et al., 1986) and their modern structured state space variants (Gu et al., 2022; Gu & Dao, 2024)
keep only a constant-sized sketch of the history, making inference cost linear, but rendering them
incapable of solving tasks such as arbitrary string copying.

Can we design a model that persists just the right amount of context?

Several works (see Section 8) aim to improve costs by compressing or otherwise reducing the context
size with minimal impact to quality. We take a different approach, focusing instead on quality
improvement, and treating cost reductions as a side benefit. Specifically, it has been demonstrated
(Leviathan, 2022) that for some tasks removing unneeded elements from the context buffer enables
more efficient transformer programs. Indeed, in the attention’s differentiable memory, all memory
cells contribute to the data read, and circuitry is needed to filter out the noise generated by irrelevant
memories. Reducing the amount of circuitry needed should improve performance.

In this work we propose Selective Attention, a simple extension to the standard attention mechanism
which allows a token to decide that another token is no longer needed, reducing the attention that
future tokens will pay to it. Selective attention adds no new parameters and only a negligible amount
of computation, yet yields meaningful improvements in synthetic tasks and natural language mod-
eling for a range of model and context sizes. Additionally, we show that elements that are selected
to be forgotten by selective attention can be safely removed from the attention’s context, leading to
substantial reductions in the memory and computation requirements during inference, without pe-
nalizing quality. We name our method after the related neuroscience concept of selective attention.
Quoting Plebanek & Sloutsky (2017): “Selective attention allows adults to focus on task-relevant
information, while ignoring task-irrelevant information. This in turn leads to superior processing of
task-relevant information.”

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Variable Assignment
Layer 2 out of 3

Parity*
Layer 2 out of 3

Copy
Layer 2 out of 3

Language Modeling
Layer 7 out of 12

Figure 1: A visualization of the masking by selective attention (red strike-through) and attention
strength (averaged across heads, blue highlight) for different tasks (see Section 2).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 MOTIVATING EXAMPLES

Consider a transformer processing an input sequence with three tokens: a, b, c. In a given layer
with the standard attention module, token b can decide how much to read from token a, and token c
can decide how much to read from token a, but token b cannot affect how much token c reads from
token a. Specifically, if token b has determined that token a is irrelevant or even misleading to future
tokens such as c, there is nothing it can do in the given layer to correct for this. Even in subsequent
layers, masking token a is not trivial. Selective attention enables exactly such masking. To illustrate
its usefulness, let’s consider the Variable Assignment problem, as well as natural language
modeling.

In Variable Assignment the input consists of a set of repeated assignments to named vari-
ables, followed by a query for the latest value for one of the variables which the model needs to
output. For example, for the input: y=7; x=1; x=3; z=5; x=? the output is 3. Note that
Variable Assignment can be seen as a generalization of the Search problem (Leviathan,
2022), where repeated occurrences of the query pattern are allowed, and we are tasked with finding
the most recent occurrence. It is well known that the Search problem is easily solvable by standard
transformers, via induction heads (Olsson et al., 2022). Selective attention facilitates a simple reduc-
tion from Variable Assignment to Search, whereby every assignment to a variable masks
out all previous assignments to the same variable. In Figure 1 (top) we see that this is indeed the case
for a transformer trained with selective attention. In Appendix A.1 we show that a transformer with
selective attention easily learns a general solution to Variable Assignment while a standard
transformer does not.

To motivate selective attention for natural language modeling, we first note that Variable
Assignment is a common sub-task, e.g. when persisting a state. For further motivation, con-
sider the common case where a part of the input is ambiguous, and the ambiguity is only resolved at
a later token. For example, in the sequence: Bar, ##ack, Obama, the first token Bar encodes
several competing meanings, but the later tokens ##ack and Obama resolve it to the entity for the
ex-president. For many tasks that are mostly concerned with the semantic meaning, later tokens
might not want to read the ambiguous meaning from the earlier tokens, so masking them, as with
selective attention, might be useful. In Figure 1 (bottom) we see that this is indeed the case for a
transformer trained with selective attention. In the visualized layer, the last token in multi-token
expressions masks out the earlier tokens. For example, ##ack masks out bar; obama masks out
both bar and ##ack; ##bm masks out i; and ##la masks out both u and ##c. We also observe
additional masking, e.g. the token after masks out the tokens a and day, perhaps because the to-
ken after absorbed the meaning from the tokens a and day, or perhaps because the model deems
the extra detail is not helpful at this point.

Figure 1 also shows that for the trivial task of Parity*, where intermediate results are stored every
other token, so that the model’s output is only a function of the last two tokens, everything but the
last two tokens is masked. For the Copy task, selective attention persists the entirety of the string to
be copied until copying starts, and then masks out every element as it is copied. See Appendix A.2.

3 SELECTIVE ATTENTION

Selective attention is a simple modification on top of standard attention. The key idea is that tokens
can mask previous tokens, i.e. the amount of attention a token c pays a previous token a can be
reduced by the tokens located between a and c. For context size N , we produce a real-valued
N ×N masking matrix S where Si,j denotes how much token xi masks token xj (see Section 3.1).
We then constrain S, e.g. to be causal and non-negative (see Section 3.2). We finally accumulate
the information in matrix S into a new matrix F , taking into account masking by all previous tokens
(see Section 3.3). The matrix F = Accumulate(Constrain(S)) is then simply subtracted from the
attention logits before applying the softmax:

SelectiveAttention(Q,K, V ) = softmax(
QKT

√
dk

− F )V (1)

Figure 2 illustrates a sketch implementation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 SELECTION FUNCTION

Computing the selection matrix S is akin to computing a compatibility score, and many functions
can be used, for example, a separate bilinear form. Following an observation from Leviathan (2022)
that a common case for a token wanting to mask another is after absorbing its contents (i.e. after
attending to it), we instead simply reuse the result of one of the existing heads of the attention
module. This means that the selection function adds no new parameters or computation. Note that
the head still contributes to attention as usual. We also experimented with a separate bilinear form,
and in spite of adding additional parameters and computation, this resulted in the same or slightly
worse results (see Appendix A.3).

3.2 CONSTRAINTS

Following observations from Leviathan (2022), we apply the following constraints to S:

1. Zero out negative values (i.e. applying ReLU), only reducing attention, never boosting it.
2. Zero out the first column, so as not to mask the <BOS> token.
3. Zero out the diagonal, so as not to let a token mask itself.

We observe that all three constraints improve performance (see Appendix A.5).

3.3 ACCUMULATION

In this work we focus on transformer decoders, so selective attention cannot influence the atten-
tion operation by past tokens. We chose cumulative summation as our accumulation function. We
observe some improvement by only applying the masking for future tokens (i.e. the masking by a to-
ken would not affect its own attention operation), so Fi,j =

∑
k≤i−1 Sk,j (see ablation in Appendix

A.4).

. . .
attn_logits = einsum("bhnd,bhmd->bhnm", Q, K) / sqrt(dk)
attn_logits = where(causal_mask, attn_logits, float("-inf"))
S = attn_logits[:, 0] # Select head 0.
S = relu(S) # Only positive selection.
S[..., 0] = 0 # Do not mask <BOS>.
S = (1 - eye(n)) * S # Do not mask self.
S = roll(S, 1, -2); S[..., 0, :] = 0 # Mask strictly in the future.
F = np.cumsum(S, axis=-2) # Accumulate.
attn_logits -= F[:, None]
attn_weights = softmax(attn_logits)
. . .

Figure 2: A sketch implementation of selective attention. The colored lines are the additions to
standard attention. Note that selective attention adds a negligible amount of computation, however
care should be taken in practice in order to not interfere with compiler optimizations.

4 CONTEXT PRUNING

As presented in Section 3, while beneficial to model quality, selective attention has negligible impact
on inference efficiency1. However, an additional modification can improve inference efficiency
substantially. Specifically, selective attention can reduce the memory and computation requirements
of the attention module, via pruning elements from the context buffer.

To see how, note that once a token is sufficiently masked by selective attention, it will not contribute
meaningfully to any future attention operations. Such tokens can be safely evicted from the context
buffer. We could pick a fixed threshold, and prune all elements whose soft masking is higher than

1The additional computation of O(hn2) is negligible compared to the O(dn2) of standard attention.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the threshold (i.e. Fi,j > τ ), but that would make the memory savings hard to take advantage of (e.g.
due to fragmentation and a variable number of dropped tokens each iteration). Instead, we observe
that the sparsity (i.e. the magnitude of the masking) per layer is stable across samples (see Section
7). To that effect we set a fixed memory budget for each layer, which directly translates to memory
and compute savings. Since when a token is dropped it remains dropped for all future tokens,
given a memory budget of K = K1, . . . ,KL tokens for each layer, when processing the first Kl

tokens in layer l we drop nothing, and for each following token we drop the single not-yet-dropped
past token with the highest F value. This maintains no more than Kl tokens in layer l. Given an
overall memory budget, we allocate it between the layers, using a greedy iterative approach. For
context size N , we initialize K0

1 = N, . . . ,K0
L = N . In each iteration t, we set Kt

n = Kt−1
n

for all n ̸= m, and Kt
m = Kt−1

m − C for a constant C (we use 8 in our experiments), where
m = argmini L(·|Kt−1−Ci), where Ci = (0, . . . , 0, C, 0, . . . , 0) contains C at the ith position. In
other words, we iteratively reduce the memory budget of the layer that impacts model performance
the least. We stop when model performance reaches a predefined threshold, in our experiments, the
performance of a standard transformer without selective attention.

Note that with a low memory budget there might be some discrepancy between training and infer-
ence. Fine tuning the model after the budgets have been set (or even better, in each iteration) might
be advantageous and lead to larger reductions in memory budgets, but we haven’t experimented with
this setup yet.

As selective attention’s masking is beneficial for the model, we observe significant reductions in
context sizes without any auxiliary losses (see Section 6.2). Nevertheless, we can further encourage
the model to mask out more elements by adding an explicit term to the loss, like so:

Lmem = L+ ϵ ·
∑L

l=1 maxi M
l
i

L · n ̸=pad
(2)

Where L is the standard loss (log-perplexity in the case of language modeling), ϵ is a small weight
factor (in our experiments we set ϵ = 0.1 without further tuning), L is the number of layers, n ̸=pad

is the number of non-pad tokens, and M l
i = i −

∑i
k=1 min(F l

i,k, τ)/τ is our approximation for
the memory requirements at the ith token for layer l (0 ≤ M l

i ≤ i). We clamp F l
i,k from above

by τ so as not to reward increasing it indefinitely (F is already clamped from below to 0). We set
τ = 1 without further tuning. Since the memory required for a given layer is the maximum memory
required for each of the tokens, the loss only considers the maximum among the M l

i s. We observe
further reduction in context sizes with this explicit loss term (see Section 6.2).

5 EXPERIMENTAL SETUP

In all of our experiments we use a decoder-only transformer with multi-head attention, as in Vaswani
et al. (2017), with the following modifications: we use Pre-LN instead of Post-LN (Xiong et al.,
2020), learned position encoding, SwiGLU gates instead of MLPs (Shazeer, 2020), normalize the
Q and K projections (Dehghani et al., 2023)2, remove the biases (Raffel et al., 2023), and replace
the LayerNorms with RMSNorm (Zhang & Sennrich, 2019). Note that we tested other variants,
including a vanilla decoder-only transformer exactly as in (Radford et al., 2019) and observed similar
results. We trained our models with the AdamW optimizer with β1 = 0.9 and β2 = 0.999 for a total
of 524,288 steps. We used cosine decay and 1,000 linear warmup steps and a learning rate of 0.005.
We repeated some of the experiments with different learning rates and obtained similar results. We
used a batch size of 256 and a fixed context size of 512 for all training runs except for the context
size experiments (Figure 3 left) where we used a batch of 128. We follow Esser et al. (2024), and
parameterize a model size by a parameter d such that dmodel = 64d and nheads = nlayers = d (see
Table 8 in Appendix A.13). We trained all of our models on TPUv4s. For the language modeling
experiments, we used the C4 (Raffel et al., 2023) dataset with a vocabulary of size 8K tokens built
with the SentencePiece tokenizer (Kudo & Richardson, 2018). We repeated some of the experiments
with a vocabulary of size 32K and observed similar results. We also ran experiments with WikiText
(Merity et al., 2016), and lm1b (Chelba et al., 2014) and observed similar results.

2For larger models, we observed more cases of divergence when not normalizing the Q and K projections.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

6 RESULTS

6.1 GENERATION QUALITY

Transformers with selective attention perform consistently better, as measured by perplexity on the
validation set, across model and context sizes. We also observe consistent improvements on a set of
downstream tasks.

Figure 3 (left) compares the validation perplexity for causal language modeling on the C4 dataset of
decoder-only d = 12 transformer models with and without selective attention, for varying context
sizes. Likewise Figure 3 (right) compares validation perplexity with and without selective attention,
for varying model sizes with a context length of 512. We observe improvements across model sizes,
and that the improvements grow with the size of the context.

Figure 3: (Left) The validation perplexity of a d = 12 transformer, with (blue) and without (orange)
selective attention, for varying context sizes. (Right) The validation perplexity of transformers of
various sizes, with (blue) and without (orange) selective attention, for a context size of 512.

Figure 4 shows that even when equipped with additional attention heads (and increasing the param-
eters of the attention module proportionally, so that the size of each head remains constant), trans-
formers with standard attention only become comparable to those with selective attention, when they
have about double the number of heads (and parameters) as their selective attention counterparts.

In addition to perplexity on the validation set, we also measure model accuracy on the ARC (Clark
et al., 2018), HellaSwag (Zellers et al., 2019), PiQA (Bisk et al., 2019), CommonSenseQA (Talmor
et al., 2019), and OpenBookQA (Mihaylov et al., 2018) benchmarks, with and without selective
attention, for models of various sizes (Table 1). We observe consistent improvements across all
model sizes with selective attention.

6.2 INFERENCE EFFICIENCY

Efficiency improvements via selective attention stem from a reduction in the attention module’s
context size when using pruning as in Section 4. Specifically, a smaller context translates directly
to more efficient inference in common scenarios. Indeed, note that during inference with a large
context and batch size (bn >> d), loading the KV-cache (linear in the size of the context) dominates
the memory bandwidth (Pope et al., 2022), which is often the bottleneck for generation (Shazeer,
2019). In addition, for very large context sizes (n >> d), taking the dot product of the query and
the keys in the cache and calculating the weighted average of the values in the cache both dominate
compute, i.e., in this setup, a smaller context directly translates to similar gains in FLOPs.

When pruning the context with selective attention, we measure substantial improvements in the
memory requirements for the attention module, at the same or better perplexity than the baseline
without selective attention. Figure 6 in Appendix A.6 illustrates the trade-off between perplexity
and efficiency.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Perplexity on the C4 validation set after 524,288 training steps of transformers with various
sizes (parameterized by d as per Section 5) with and without selective attention. For the cases
without selective attention we add additional attention heads with their respective parameters (i.e.
we increase the sizes of all projection matrices). Transformers with selective attention perform
equivalently to those with standard attention modules with ∼2X as many heads and parameters.

Table 1: Accuracy numbers for baseline transformers with standard attention and transformers with
selective attention for various model sizes and downstream tasks.

ARC (Easy) ARC (Challenge) HellaSwag
Base Selective Base Selective Base Selective

d = 16 38.46% 39.33% 23.24% 23.24% 38.83% 40.01%
d = 18 40.48% 41.10% 24.67% 24.86% 41.77% 42.60%
d = 20 41.33% 41.85% 25.14% 25.52% 43.97% 45.08%
d = 22 42.43% 42.70% 25.83% 26.41% 46.04% 47.71%
d = 24 43.83% 44.47% 26.64% 26.76% 48.70% 50.32%
d = 26 44.70% 45.58% 26.37% 26.95% 51.02% 52.25%
d = 28 45.64% 46.95% 26.76% 27.37% 53.50% 53.76%

CommonSenseQA OpenBookQA PiQA
Base Selective Base Selective Base Selective

d = 16 25.44% 25.82% 34.26% 34.33% 68.07% 68.49%
d = 18 26.45% 26.69% 35.32% 35.42% 69.05% 69.88%
d = 20 26.30% 26.63% 35.42% 35.27% 69.82% 70.49%
d = 22 26.56% 27.10% 35.96% 36.88% 70.55% 71.43%
d = 24 27.49% 27.49% 36.36% 37.13% 71.34% 71.95%
d = 26 27.70% 27.78% 37.64% 37.52% 71.89% 72.47%
d = 28 27.86% 28.51% 37.33% 37.54% 72.32% 72.85%

For example, for d = 12 transformers with context sizes of 512, 1,024, and 2,048, we see that with
selective attention we can maintain the baseline’s perplexity while reducing the memory require-
ments of the attention module by factors of 5X, 7X, and 8X respectively, without any explicit losses
(i.e. using only the standard language modeling objective). When training with the Lmem loss
(Equation 2) and an ϵ value of 0.1, the improvements grow to 16X, 25X, and 47X respectively. We
also measure the memory savings when considering only very long examples by filtering C4 to only
include examples that are at least 90% the size of the context buffer. In that settings we get memory
savings of 12X, 18X, and 24X, while maintaining the perplexity of the baseline without selective
attention. Finally, to maintain the perplexity gains of selective attention, instead of matching the
perplexity of the baseline (i.e. taking the rightmost point on the flat part of the blue graphs of Figure

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6), we need 3X, 4X and 4X less memory, for the context sizes above. In all cases we optimized the
per-layer budgets on a training set, while the reported results are on a separate unseen test set.

Finally, we compare selective attention to other attention variants and pruning methods (see Ap-
pendix A.10). Selective attention achieves a substantially better quality-cost trade-off than all tested
baselines.

7 SELECTION PATTERNS

It is interesting to question which elements from the context are being masked by selective attention
for language modeling. Figure 5 illustrates the values of the F matrix for a specific example (see
Appendix A.7 for the full example text). We observe that some layers (e.g. 6) are mostly dense (i.e.
low F values), while other layers (e.g. 2) are sparse (i.e. high F values). As expected, all layers
persist some of the most recent elements, but several of the sparse layers (e.g. layers 1, 4, and 9)
also persist elements for long time periods, as can be seen by the vertical lines. This suggests that
simply limiting the attention module to a local window would not result in the same quality gains as
those achieved by selective attention, which we confirm in Appendix A.8.

Figure 9 from Appendix A.12 illustrates the values of the F matrix averaged over 1,000 examples,
and demonstrates that the sparsity patterns are stable across examples. Interestingly, we observe that
these sparsity patterns are sometimes stable across different training runs, hinting at some general
properties of language modeling (see Figure 10 in Appendix A.12).

Figure 11 from Appendix A.12 depicts the items remaining in the context buffer after pruning (see
Section 4), with a budget set to match the perplexity of a standard transformer. We observe that
the per-layer budgets correspond well to the values of the F matrix as seen in Figures 5 and 9. For
example, layer 6 which gets the highest budget also has the lowest F values. This might indicate
that the scales of the F values are consistent across layers.

Figure 12 in Appendix A.12 illustrates the value of the last row of F (i.e. the masking for the 512th
token) for each of the layers. We observe some interesting patterns, for example, layer 4 persists the
end-of-sentence periods (‘.’).

8 RELATED WORKS

Transformer Improvements. Our work aims at improving the transformer architecture. Since its
introduction in Vaswani et al. (2017), a large volume of research proposed architecture modifications
towards an improved model. Some notable works here include Pre-LN instead of Post-LN (Xiong
et al., 2020), gated units instead of MLPs (Shazeer, 2020), removing the biases (Raffel et al., 2023),
using RMSNorm instead of LayerNorm (Zhang & Sennrich, 2019), normalizing the Q and K pro-
jections (Dehghani et al., 2023), and multi-query and group-query attention (Shazeer, 2019; Ainslie
et al., 2023).

Attention Modifications. Our work focuses on modifying the attention module. Most of the ex-
isting research work around modifying attention focuses on a different goal than ours, specifically
on devising more efficient attention variants. Some such variants are based on approximations to
the attention operations and include sparse attention approximations (Child et al., 2019; Ding et al.,
2023), and linear attention approximations (Shen et al., 2024; Katharopoulos et al., 2020; Schlag
et al., 2021). Some works focus on hardware-aware optimizations instead, such as FlashAttention
(Dao et al., 2022) and Ring Attention (Liu et al., 2023a).

Context Pruning. A part of our work (Section 4) consists of removing elements from the context
buffer. Several works employ this mechanism in order to increase inference efficiency. Among those
are compression methods, that aim to learn a compressed representation for tokens in the context
buffer, with or without auxiliary losses, in order to replace several tokens with their compressed
form (Munkhdalai et al., 2024; Ren et al., 2023; Yun et al., 2023; Mu et al., 2024; Rae et al., 2019).
Another line of work tries to simply remove elements from the context buffer without replacing
them with new compressed forms, with minimal negative impact to model quality. The simplest and
most widely adopted of these is using local attention windows in some of the layers (Wang et al.,
2019; Beltagy et al., 2020; Zaheer et al., 2021). More sophisticated variants employ heuristics to

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Visualization of the F matrix (greener is lower, i.e. less masking) for a d = 12 transformer
for the text in Appendix A.7.

evict less useful tokens from the context buffer instead of just the earliest ones (Oren et al., 2024;
Zhang et al., 2023; Liu et al., 2023b; Berchansky et al., 2023; Ge et al., 2024). Dynamic context
pruning (DCP) (Anagnostidis et al., 2024) proposed a mechanism for fine tuning existing models
to make inference more efficient. They learn which tokens to prune from the context buffer via a
mechanism which shares similarities with selective attention. DCP is more involved (e.g. needs
root solving for evaluating the α-sigmoid), introduces new parameters, requires an auxiliary loss,
and produces binary prune decisions. Notably, DCP didn’t observe the perplexity gains we see from
selective attention3.

Inference Efficiency. A part of our work (Section 4) consists of making inference from transformers
more efficient. Many approaches aim to speed up inference from transformers, including distilla-
tion (Hinton et al., 2015), sparsification (Jaszczur et al., 2021), quantization (Hubara et al., 2016),
architecture modification (So et al., 2022; Shazeer, 2019), and algorithmic optimization (Dao et al.,
2022; Leviathan et al., 2022).

Finally, we note that the importance of learning to forget has been shown repeatedly in many works,
more generally beyond transformers. One of many notable examples are the forget-gates in LSTMs
(Hochreiter & Schmidhuber, 1997).

9 DISCUSSION

In this work we introduced Selective Attention, a simple parameter-free change to the standard at-
tention mechanism which consistently improves language modeling performance across model sizes
and context lengths, and can lead to substantial inference efficiency improvements. Given that it adds

3We only became aware of DCP after this work was concluded. It is interesting that both works share some
important similarities, although developed from very different perspectives (see Section 10).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

no new parameters, only a negligible amount of compute, and provides consistent improvements,
selective attention might be a good default for transformer decoders.

Limitations and future directions. We applied selective attention to decoder-only transformers. It
could be interesting to investigate its applicability to encoders as well (see Appendix A.9 for initial
results in an encoder-decoder setup); Reducing the size of the context as in Section 4 improves
inference efficiency but not training efficiency. It might be interesting to explore iteratively reducing
the size of the context buffer during training; We did not further train the models after removing
elements as per Section 4. It seems conceivable that further improvements could be achieved with
some additional training after context reduction; We only experimented with pre-training models
with selective attention. It is interesting to investigate how it could be applied in a fine-tuning step to
existing models; While we observed similar results with selective attention in several setups (Section
5), there are still important variants we did not test, notably transformers with multi-query (Shazeer,
2019) and grouped-query (Ainslie et al., 2023) attention, as well as models much larger than 1B
parameters; Finally, it would be interesting to implement selective attention in a GPU-aware way,
similar to Flash Attention (Dao et al., 2022).

10 IMPROVING NEURAL ARCHITECTURES

In The Art of Transformer Programming, Leviathan (2022) selected a set of foundational problems
(sorting, searching, addition, etc.) and manually implemented transformers to solve them (i.e. by
manually setting the model’s weights). They showed that several programs become much easier,
especially for small transformers, when equipped with a mechanism allowing to selectively mask
items in the context buffer, similar to selective attention. They further hypothesized that such a
mechanism will have similar positive effects on language modeling, which motivated our work.

Zhou et al. (2023) proposed the RASP-Generalization Conjecture, that “Transformers tend to length
generalize on a task if the task can be solved by a short RASP program which works for all input
lengths”, i.e. that problems that are easily solved by transformers are those that are easily solved by
human programmers using RASP. It follows that problems that are not easily solved by humans us-
ing RASP are hard for transformers as well, and if we made those easier, by changing the transformer
architecture (and respectively the capabilities of RASP) we could meaningfully improve transform-
ers. Similarly, when constructing transformer programs by hand, Leviathan (2022) notes that “. . . the
most interesting cases are those that are hard for us humans and are hard for the optimizer or the
architecture, and understanding these better might be key to creating better AI systems.”

We are very strong advocates for this method, and believe that finding basic problems for which we
cannot program a general solution by hand on a neural model, is an extremely fertile approach for
producing further architecture improvements.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points, 2023. URL https://arxiv.org/abs/2305.13245.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas Hof-
mann. Dynamic context pruning for efficient and interpretable autoregressive transformers, 2024.
URL https://arxiv.org/abs/2305.15805.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL https://arxiv.org/abs/2004.05150.

Moshe Berchansky, Peter Izsak, Avi Caciularu, Ido Dagan, and Moshe Wasserblat. Optimizing
retrieval-augmented reader models via token elimination, 2023. URL https://arxiv.org/
abs/2310.13682.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling,
2014. URL https://arxiv.org/abs/1312.3005.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers, 2019. URL https://arxiv.org/abs/1904.10509.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton,
Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Min-
derer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed,
Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick
Collier, Alexey Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay, Thomas Mensink,
Alexander Kolesnikov, Filip Pavetić, Dustin Tran, Thomas Kipf, Mario Lučić, Xiaohua Zhai,
Daniel Keysers, Jeremiah Harmsen, and Neil Houlsby. Scaling vision transformers to 22 billion
parameters, 2023. URL https://arxiv.org/abs/2302.05442.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens, 2023. URL
https://arxiv.org/abs/2307.02486.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
transformers for high-resolution image synthesis, 2024. URL https://arxiv.org/abs/
2403.03206.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms, 2024. URL https://arxiv.org/
abs/2310.01801.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022.

11

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2305.15805
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2310.13682
https://arxiv.org/abs/2310.13682
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1312.3005
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2302.05442
https://arxiv.org/abs/2307.02486
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2310.01801


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations, 2016. URL
https://arxiv.org/abs/1609.07061.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Łukasz Kaiser, Wojciech Gajewski,
Henryk Michalewski, and Jonni Kanerva. Sparse is enough in scaling transformers, 2021. URL
https://arxiv.org/abs/2111.12763.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention, 2020. URL https://arxiv.
org/abs/2006.16236.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing, 2018. URL https://arxiv.org/abs/
1808.06226.

Yaniv Leviathan. The art of transformer programming, 2022. URL https://yanivle.
github.io/taotp.html.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2022. URL https://arxiv.org/abs/2211.17192.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context, 2023a. URL https://arxiv.org/abs/2310.01889.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time, 2023b. URL https://arxiv.org/
abs/2305.17118.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. URL https://arxiv.org/abs/1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018. URL https://arxiv.
org/abs/1809.02789.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens, 2024.
URL https://arxiv.org/abs/2304.08467.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention, 2024. URL https://arxiv.org/abs/
2404.07143.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns, 2024. URL https://arxiv.org/abs/2401.06104.

Daniel J. Plebanek and Vladimir M. Sloutsky. Costs of selective attention: When children no-
tice what adults miss. Psychological Science, 28:723 – 732, 2017. URL https://api.
semanticscholar.org/CorpusID:30610756.

12

https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/2111.12763
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1808.06226
https://yanivle.github.io/taotp.html
https://yanivle.github.io/taotp.html
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2305.17118
https://arxiv.org/abs/2305.17118
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2304.08467
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2401.06104
https://api.semanticscholar.org/CorpusID:30610756
https://api.semanticscholar.org/CorpusID:30610756


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm Lev-
skaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling trans-
former inference, 2022. URL https://arxiv.org/abs/2211.05102.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners, 2019. URL https://cdn.openai.
com/better-language-models/language_models_are_unsupervised_
multitask_learners.pdf.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. Compressive
transformers for long-range sequence modelling, 2019. URL https://arxiv.org/abs/
1911.05507.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Siyu Ren, Qi Jia, and Kenny Q. Zhu. Context compression for auto-regressive transformers with
sentinel tokens, 2023. URL https://arxiv.org/abs/2310.08152.

Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel
Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor
Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini
Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis Bu-
lian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan Lee,
Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten Bosma,
Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan
Sepassi, Alexander Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling up models and
data with t5x and seqio, 2022. URL https://arxiv.org/abs/2203.17189.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations
by error propagation, 1986. URL https://api.semanticscholar.org/CorpusID:
62245742.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers, 2021. URL https://arxiv.org/abs/2102.11174.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL https:
//arxiv.org/abs/1911.02150.

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/
2002.05202.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities, 2024. URL https://arxiv.org/abs/1812.01243.

David R. So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V. Le. Primer:
Searching for efficient transformers for language modeling, 2022. URL https://arxiv.
org/abs/2109.08668.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge, 2019. URL https://arxiv.org/
abs/1811.00937.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. Multi-passage BERT: A
globally normalized BERT model for open-domain question answering. In Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 5878–5882, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1599. URL
https://aclanthology.org/D19-1599.

13

https://arxiv.org/abs/2211.05102
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2310.08152
https://arxiv.org/abs/2203.17189
https://api.semanticscholar.org/CorpusID:62245742
https://api.semanticscholar.org/CorpusID:62245742
https://arxiv.org/abs/2102.11174
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1812.01243
https://arxiv.org/abs/2109.08668
https://arxiv.org/abs/2109.08668
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://aclanthology.org/D19-1599


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architec-
ture, 2020. URL https://arxiv.org/abs/2002.04745.

Jungmin Yun, Mihyeon Kim, and Youngbin Kim. Focus on the core: Efficient attention via
pruned token compression for document classification. In Findings of the Association for
Computational Linguistics: EMNLP 2023. Association for Computational Linguistics, 2023.
doi: 10.18653/v1/2023.findings-emnlp.909. URL http://dx.doi.org/10.18653/v1/
2023.findings-emnlp.909.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers
for longer sequences, 2021. URL https://arxiv.org/abs/2007.14062.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL https://
arxiv.org/abs/1910.07467.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization,
2023. URL https://arxiv.org/abs/2310.16028.

14

https://arxiv.org/abs/2002.04745
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.909
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.909
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/2310.16028


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 TRANSFORMERS WITH SELECTIVE ATTENTION LEARN A GENERAL SOLUTION TO
VARIABLE ASSIGNMENT

Transformers with selective attention reach close to 0 validation loss and 100% precision extremely
fast when trained on Variable Assignment and they generalize well to out of distribution
cases, unlike transformers without selective attention.

Setup. We train small transformers (d = 3), with and without selective attention, to solve the
Variable Assignment problem with 3 variables, 1,000 possible values, and 128 assignments.
We train with a batch size of 2,048 for 65,536 steps.

In distribution. The transformer with selective attention reaches a validation loss of 0.002 (and
100% accuracy) after less than 1,000 training steps. The transformer without selective attention
only achieves a validation log-perplexity loss of 3.18 and 26% accuracy after 1,000 step. At the end
of training (65,536 steps) the transformer with selective attention obtains a loss of 2.2e-8, whereas
the transformer with standard attention is at 0.01. Both transformers reach 100% accuracy at the end
of training.

Out of distribution. We observe much stronger generalization capabilities for the transformer with
selective attention. When we run on an out of distribution test set with the same 3 variables but only
2 possible values, the transformer with standard attention’s accuracy drops substantially to 70% (loss
of 3.64). Meanwhile the transformer with selective attention maintains 100% accuracy (with a loss
of 2.4e-8).

We observed similar results in other settings (e.g. 10 variables and 10 possible values). We also
repeated the experiments with somewhat larger transformers (d = 8) and observed similar results.

See Appendix A.11 for an example of the attention pattern for the Variable Assignment task.

A.2 ADDITIONAL SYNTHETIC TASKS

We validate selective attention on two additional synthetic tasks, Copy and Parity∗, that are on
the two opposite extremes in terms of memory requirements. See Figure 1.

Setup. We train small transformers (d = 3), with and without selective attention, to solve the Copy
and Parity∗ tasks. We train with a batch size of 2,048 for 65,536 steps.

Copy. Here the transformer gets an arbitrary sequence of varying lengths delimited by a special
token and is tasked with outputting a copy of the sequence. We used lengths that are uniformly
distributed between 1 and 24. The context size for this task is 3 + 2 × Lmax, where Lmax = 24 is
the length of the longest possible input sequence (the 3 extra tokens are for <BOS>, <EOS> and the
special end-of-input-sequence token). To solve this task, the model cannot forget anything before
copying starts, after which point it can mask out tokens that were already copied.

Parity∗. Here the transformer gets a binary sequence where bits in the odd positions are random
and bits in the even positions contain the parity of all bits in the earlier odd positions. Equiva-
lently, bits in the even positions contain the XOR of the bits in the previous two positions, so the
two previous positions are enough for computing the next token. The loss only considers the even
positions.

Unsurprisingly, transformers with selective attention achieve practically 0 loss (and 100% accuracy)
at the end of training, as do standard transformers without selective attention, on both tasks.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 SEPARATE BILINEAR FORM

We experiment with using a separate bilinear form instead of reusing the output of an existing
attention head. We compare transformers (for d = 8 and d = 12) trained with selective attention on
C4 for 524,288 steps, to similarly trained transformers where the selection function is implemented
via a separate bilinear form (adding additional parameters and computation). The transformers with
standard selective attention (i.e. sharing the outputs of an existing attention head) achieve the same
or slightly better log-perplexities at the end of training (see Table 2).

Table 2: The log-perplexity on the validation set after 524,288 training steps for (1) standard atten-
tion, (2) selective attention with a separate bilinear form for the selection module (more parameters
than the baseline), and (3) selective attention.

d = 8 d = 12 Additional parameters

Standard attention 2.96 2.68 No
Selective attention (separate) 2.91 2.63 Yes
Selective attention 2.90 2.63 No

A.4 SELF-IMPACT

Table 3 compares the results of forbidding self-impact (i.e. not allowing a token to affect its own
attention operation, as in Section 3.3) to those when allowing it (i.e. not shifting the matrix S). As
can be seen, the shifting provides a small but consistent improvement.

Table 3: The average log-perplexity on the validation set of 3 training runs after 65,536 training
steps for selective attention vs selective attention without shifting, for various model sizes.

d = 10 d = 12 d = 14 d = 16 d = 18 d = 26

Selective attention (no shift) 2.927 2.832 2.753 2.692 2.641 2.516
Selective attention 2.923 2.831 2.750 2.691 2.639 2.511

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 ABLATING THE CONSTRAINTS

We ablate the 3 constraints selective attention applies to S (see Section 3.2).

Negative selection. While with selective attention a token can decide to reduce attention to another
token by all future attention operations, allowing a token to strengthen another token’s contribu-
tion to all future attention operations does not make sense. Indeed, when removing this constraint
(dropping the ReLU, so that S can contain negative values) the training does not converge.

Masking the <BOS> token. Since several algorithms can benefit from the existence of the sentinel
<BOS> token (Leviathan, 2022), it is plausible that masking it is detrimental. When we allow
selective attention to mask the <BOS> token, we observe neutral to slightly worse results compared
to standard selective attention where the <BOS> token is forced to never be selected, see Table 4.

Self-masking. Since selective attention reuses an existing attention head as the selection function,
motivated by the absorption observation (see Section 3.1), it seems plausible that a token should
never mask itself. Indeed, when we allow tokens to mask themselves (i.e. we stop zeroing out the
diagonal of S) we observe worse results, see Table 5.

Table 4: The log-perplexity on the validation set after 524,288 training steps for (1) selective atten-
tion without the <BOS> constraint and (2) selective attention.

d Selective Attention (w/o <BOS> constraint) Selective Attention

12 2.6409 2.6373
14 2.5486 2.5483
16 2.4750 2.4741
18 2.4153 2.4156
20 2.3674 2.3673
24 2.2909 2.2865

Table 5: The log-perplexity on the validation set after 524,288 training steps for (1) selective atten-
tion without the self-masking constraint and (2) selective attention.

d Selective Attention (w/o self-masking constraint) Selective Attention

12 2.7348 2.7251
14 2.6510 2.6423
18 2.5261 2.5209

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.6 PERPLEXITY-EFFICIENCY TRADE-OFF

Figure 6 illustrates the trade-off between perplexity gains and efficiency gains when pruning as in
Section 4. See Section 6 for details.

Figure 6: The trade-off between perplexity and KV-cache size for d = 12 transformers with context
sizes of 512, 1,024, and 2,048. Note that in all cases the perplexity with selective attention is better
or equal to that of the baseline without selective attention (the dotted lines). Selective attention trans-
formers trained with the Lmem loss and ϵ = 0.1 (Equation 2) match the perplexity of the baseline
with 16X, 25X, and 47X less memory, while those with the standard loss match the perplexity of
the baseline with 5X, 7X, and 8X less memory, respectively.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.7 EXAMPLE DETAILS

The following text from the C4 validation set was used in Figures 5, 11, and 12:

the real problem with traditional dental veneers has little to do
with how they function or their performance . who determines what
a normal , aesthetically pleasing smile looks like is the real
issue . america struggled for decades with defining “ image ”
as a marketplace bent on exploiting peoples ’ flaws for economic
gain . the danger of this national obsession has become systemic
since the days of twiggy . fashion magazines offer photoshopped
perfection as the standard to which we should aspire . the
effects of this insidious marketing made their way into breast
implants and the definition of a hollywood smile . carving their
bodies and their teeth , people use their resources to chase a
false picture of their “ perfect ” self . people make investments
in the tens of thousands of dollars at their dentist office to get
the “ perfect ” smile . this message has become so endemic that
people with nice smiles are convinced only a “ perfect ” hollywood
smile is acceptable . one particularly relevant example of this
is highlighted in a june 2015 article entitled “ saving jane ’
s smile . ” gary nankin , dds discusses how he “ saved ” the
smile of a patient who was not content with her first set of #
porcelain veneers . 1 . endodontic referral for treatment of
tooth number 15 , followed by a composite core build - up . 2
. periodontal therapy in both the anterior region and upper left
to achieve optimal tissue health . 4 . preparation of maxillary
teeth and placement of permanent restorations . 5 . placement
of dental implant by the periodontist followed by preparation of
mandibular teeth and placement of permanent restorations . 6 .
restore the now fully - healed and osseointegrated implant in the
position of tooth number 30 . regarding a person ’ s smile , the
strong link to self - esteem and self - worth make an imperfect
set of teeth a concern . however , the picture in the article
clearly illustrates what appears to be a well - constructed and
healthy - looking smile . the entire premise is puzzling . how
does a dentist promote “ saving ” a smile that 97 % of the people
in america would love to show off ? .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.8 COMPARISON WITH LOCAL ATTENTION

Table 6 compares the validation perplexity of d = 12 transformers with various local attention
patterns (all-local and alternating), to that of a standard transformer and to that of a transformer with
selective attention. For the all-local attention transformers we set all layers to be sliding window
attention layers with a fixed sized window. For example, “All-local 32” denotes a transformer where
all tokens can only attend up to 32 tokens back. We also include transformers with alternating local
and global layers, where we have 3 local attention layers followed by 1 global attention layer, in
a repeated fashion. For example, “Local-global 32” denotes a transformer with 3 local attention
layers where tokens can only attend up to 32 tokens back, followed by a global layer where tokens
can attend to all past tokens, and this 4-layer structure is repeated for the 12 layers of the d = 12
transformer. We report the perplexity numbers after 524,288 training steps. We observe that all
local attention patterns perform worse than the dense baseline, which in turn performs worse than a
transformer with selective attention.

Table 6: Validation log-perplexity of transformers with different local attention patterns.

Model Type Validation Log-Perplexity

All-local 32 2.7860
All-local 64 2.7386
All-local 128 2.7154
All-local 256 2.6981
All-local 384 2.6873
All-local 448 2.6849
All-local 480 2.6834

Local-global 32 2.7046
Local-global 64 2.7105
Local-global 128 2.7154
Local-global 256 2.6993
Local-global 384 2.6895
Local-global 448 2.6870
Local-global 480 2.6861

Baseline (standard attention) 2.6815

Selective attention 2.6372

A.9 RESULTS ON T5

We experimented with applying selective attention while pre-training T5 (Raffel et al., 2023). Here
we use the standard T5 pre-training recipe and code from T5X (Roberts et al., 2022). Specifically,
in this setup, the model is an encoder-decoder, and we apply selective attention to the decoder only,
leaving the encoder as-is. The standard T5 span-corruption pre-training objective is used, as in
Raffel et al. (2023), both for training and the reported metrics. See Table 7 for the results.

We observe some improvements for T5 with selective attention for the 3 tested model sizes.

Table 7: The span corruption loss per non-padding token on the validation set of 3 training runs
after 524,288 training steps for a baseline T5 encoder-decoder vs a T5 encoder-decoder where the
decoder is equipped with selective attention, for various model sizes.

T5-small T5-base T5-large

T5 1.962 1.693 1.528
T5 with selective attention 1.952 1.691 1.522

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.10 COMPARISON WITH EFFICIENT ATTENTION METHODS

Figure 7 compares selective attention to other efficient attention and attention pruning methods,
including H2O (Zhang et al., 2023), TOVA (Oren et al., 2024), and sparse attention (Child et al.,
2019). We also include Window + 4 following Oren et al. (2024). Note that H2O, TOVA, and
Window + 4 can be applied post-training, whereas selective attention and sparse attention require
training the model4.

We observe that in the tested setting of language modeling on C4, selective attention substantially
outperforms all of the tested efficient attention baselines.

Figure 7: The trade-off between validation perplexity and KV-cache size for d = 12 transformers
with context sizes of 512, 1,024, and 2,048 for selective attention and other efficient attention mech-
anisms.

4Also see Appendix A.8 for a comparison with models trained with various local attention patterns.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.11 EXAMPLE ATTENTION PATTERNS FOR VARIABLE ASSIGNMENT

Figure 8 shows an example of the attention patterns for all 3 layers of transformers with and without
selective attention, for the Variable Assignment task. The part of the example sequence
shown starts with the tokens: Z=, 177, Y=, 661, Z=, 114, Z=, 468.

For the first layer of the transformer with selective attention we observe that tokens of type “<value>”
(e.g. 177, 661, etc., i.e., those at the even positions) attend to themselves and to the immediately
preceding token (of type “<variable>=”, e.g. Z=, Y=, etc.). A potential explanation is that this allows
the value tokens to absorb the information of the variable they are assigned to, so that from this point
onwards, the token would contain a representation of the pair (variable, value), and the preceding
variable-only token would no longer be relevant for future tokens. E.g., the token 177 might contain
a combined representation of Z and 177. In this same layer, tokens of type “<variable>=” attend to
themselves.

We further observe that for the transformer with selective attention, the attention patterns in the
second and third layers are almost identical. In these layers, tokens in the even positions (according
to the postulate above those now containing a combined (variable, value) representation) attend
to themselves. Tokens in the odd positions (according to the hypothesis above those still contain
a representation of the assigned variable) attend to the value of the last assignment to the same
variable. This allows masking the previous assignment (see Figure 1).

In contrast, the baseline transformer without selective attention (which doesn’t solve the Variable
Assignment task for out of distribution problems, see Appendix A.1), exhibits attention patterns
that are much harder to interpret.

Figure 8: The attention patterns (attention strength averaged across heads) for all layers of trans-
formers with selective attention (left) and with vanilla attention (right).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.12 ADDITIONAL FIGURES FOR CONTEXT PRUNING

Figure 9 illustrates the values of the F matrix averaged across 1,000 examples of length at least 512
from the C4 dataset.

Figure 10 compares the values from Figure 9 to those obtained from a different training run (different
random initialization and different data shuffle). While this isn’t always the case, we sometimes
observe stable sparsity patterns like those in this example, hinting at some general properties of
language modeling on C4.

Figure 11 illustrates the tokens that remain in the context buffer after pruning (as in Section 4) for
the example text (see Appendix A.7), for a d = 12 model with selective attention, trained with the
Lmem loss (Equation 2, ϵ = 0.1), for a memory budget where the validation perplexity matches a
transformer without selective attention. The per-layer memory budgets chosen by the pruning algo-
rithm for this model are: [8, 48, 8, 8, 24, 8, 168, 16, 8, 64, 8, 8], leading to
a memory saving factor of 16X.

Figure 12 shows which tokens are pruned for the example text from Appendix A.7.

Figure 9: Visualization of the F matrix (greener is lower, i.e. less masking) for a d = 12 transformer
averaged across 1,000 examples.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 10: Visualization of the F matrix (greener/bluer is lower, i.e. less masking) for a d = 12
transformer averaged across 1,000 examples for two training runs (different random initialization,
and different shuffle of the training data). While we only have anecdotal evidence, it is interesting
that we sometimes observe these stable sparsity patterns across training runs.

Figure 11: Visualization of the persisted elements for a d = 12 transformer for the text in Appendix
A.7. The white pixels denote tokens removed from the context buffer as per Section 4.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 12: A visualizing of the elements that are masked for the last (512th) token, for a d = 12
transformer for the text in Appendix A.7. We observe some interesting patterns, for example, layer
4 persists the end-of-sentence periods (“.”).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

A.13 PARAMETER COUNTS

Table 8 shows the actual parameter counts for models with different ds (see Section 5). Note that
selective attention does not add any extra parameters.

Table 8: The number of model parameters for different values of d as in Section 5.

d nlayers nheads dmodel Number of parameters

8 8 8 512 33,603,584
10 10 10 640 59,699,200
12 12 12 768 97,615,872
14 14 14 896 149,666,048
16 16 16 1024 218,226,688
18 18 18 1152 305,717,760
20 20 20 1280 414,387,200
22 22 22 1408 546,641,920
24 24 24 1536 704,950,272
26 26 26 1664 891,468,032
28 28 28 1792 1,108,645,888

26


	Introduction
	Motivating Examples
	Selective Attention
	Selection Function
	Constraints
	Accumulation

	Context Pruning
	Experimental Setup
	Results
	Generation Quality
	Inference Efficiency

	Selection Patterns
	Related Works
	Discussion
	Improving Neural Architectures
	Appendix
	Transformers with Selective Attention Learn a General Solution to Variable Assignment
	Additional Synthetic Tasks
	Separate Bilinear Form
	Self-Impact
	Ablating the Constraints
	Perplexity-Efficiency Trade-Off
	Example Details
	Comparison with Local Attention
	Results on T5
	Comparison with Efficient Attention Methods
	Example Attention Patterns for Variable Assignment
	Additional Figures for Context Pruning
	Parameter Counts


