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Abstract

This work presents a novel Variational Neu-001
ral Machine Translation (VNMT) architecture002
with enhanced robustness properties, which003
we investigate through a detailed case-study004
addressing noisy French user-generated con-005
tent (UGC) translation to English. We show006
that the proposed model, with results compara-007
ble or superior to state-of-the-art VNMT, im-008
proves performance over UGC translation in009
a zero-shot evaluation scenario while keeping010
optimal translation scores on in-domain test011
sets. We elaborate on such results by visualiz-012
ing and explaining how neural learning repre-013
sentations behave when processing UGC noise.014
In addition, we show that VNMT enforces ro-015
bustness to the learned embeddings, which can016
be later used for robust transfer learning ap-017
proaches.018

1 Introduction019

The specificities of UGC (Foster, 2010; Seddah020

et al., 2012) promote a plethora of vocabulary and021

grammar variations, which account for the large in-022

crease of out-of-vocabulary tokens (OOVs) in UGC023

corpora with respect to canonical parallel training024

data and raises many challenges for MT. In par-025

ticular, UGC productivity (Martínez Alonso et al.,026

2016) limits the pertinence of ‘standard’ domain027

adaptation methods such as fine-tuning, as there028

will always be new forms that will not have been029

seen during training and urges the development030

of robust machine translation models able to cope031

with out-of-distribution (OOD) texts.032

An increasing number of works on Neural Ma-033

chine Translation, explores the use of latent distri-034

butional representations, known as latent-variable035

(LV-NMT). Such methods were shown to pro-036

vide higher performance based on their abilities037

to model unobserved phenomena, such as intrinsic038

underlying structural information and applied to039

several NLP tasks (Kim et al., 2018). In this work,040

we focus on Variational NMT (Zhang et al., 2016) 041

which has been reported to have good performances 042

and interesting adaptability properties compared to 043

other LV-NMT models (Przystupa, 2020). 044

The goal of this work is to evaluate the per- 045

formance of VNMT when translating OOD texts, 046

specifically, French social-media noisy UGC. To 047

address the issue of UGC productivity, we consider 048

a highly challenging zero-shot scenario and assume 049

that only canonical texts are available for training 050

the system. We hypothesize and provide exper- 051

imental evidence supporting that, by leveraging 052

on VNMT, the models can build more robust rep- 053

resentations (embeddings and latent vectors) that 054

map OOD observations to more in-distribution in- 055

stances, which can be thus more easily translated 056

in a zero-shot evaluation setting as shown by our 057

experiments. 058

Our contributions are fourfold: 059

• we introduce VNMT-MDN, a new extension of 060

VNMT models that relies on Mixture Density 061

Networks (MDN) (Bishop, 1994); each mix- 062

ture component extract an independent latent 063

space to represent the source sentence and can 064

model a different UGC specificities; 065

• we study the performance, in a zero- 066

shot UGC translation scenario, of VNMT, 067

VNMT-MDN-NF and the recently proposed 068

VNMT-NF (Setiawan et al., 2020). This 069

study prompt us to add Normalizing Flows 070

(Rezende and Mohamed, 2015) used in 071

VNMT-NF in our model and to introduce a 072

second, better model, VNMT-MDN-NF; 073

• we study the impact of jointly learning source- 074

side reconstruction, which we theorize UGC 075

translation could benefit from, to recover from 076

OOD constructs during evaluation; 077

• by probing the learned latent representations, 078

we show the importance of using several latent 079

distributions to model UGC and provide in- 080

sights on the reasons why VNMT outperforms 081
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the baselines.082

2 Background and related works083

VNMT Variational bayesian methods (Kingma084

and Ba, 2015) are generative architectures capa-085

ble, from a distributional perspective, of model-086

ing underlying structures from data. Under su-087

pervised settings, such as sequence-to-sequence088

MT tasks, where x and y are respectively the089

source and target, VNMT architectures combine090

a variational posterior approximation mechanism,091

qφ(z∣x,y), and a neural decoder generative dis-092

tribution, pθ(y∣x, z), which are jointly trained to093

model the output y by looking for the distribu-094

tion’s parameters (θ,φ) that minimize the ELBO095

for every pair (x,y) in each training minibatch, as096

proposed in Zhang et al. (2016):097

Eqφ(z∣x,y)[log pθ(y∣x, z)]
−DKL(qφ(z∣x,y) ∥ pθ(z∣x))

(1)098

In this framework, the latent sentence-level vec-099

tor z models the implicit structure of data to pro-100

duce the translation prediction, y. More recently,101

Su et al. (2018) proposed token-level latent repre-102

sentations for the paramemeter vector z.103

Normalizing Flows One of the major caveats104

of variational methods is that choosing the prior105

q(z) is a complicated process that requires some106

a priori knowledge of the task. Thus this choice107

is often eased by selecting a Normal distribution108

with µ = 0.0 and σ = 1.0, but such assump-109

tion can be restrictive to learn more complex pro-110

cesses. Regarding this issue, Rezende and Mo-111

hamed (2015) proposed using Normalizing Flows112

(NF) (Tabak and Turner, 2013; Tabak and Vanden-113

Eijnden, 2010) for variational methods by employ-114

ing a prior distribution that undergoes a series of in-115

vertible and smooth transformations f ∶ Rd → Rd116

(called flows). Then, the random latent variables117

z, associated to a prior distribution q(z), are con-118

verted to the random variable z′ = f(z):119

q(z′) = q(z)
»»»»»»»»»
det

∂f
−1

∂z′

»»»»»»»»»
= q(z)

»»»»»»»»»
det

∂f

∂z

»»»»»»»»»

−1

(2)120

Finally, we can build an arbitrarily long K chain121

of fk transformations to generate the final prior zK ,122

from the initial random variables (previous z, now123

called z0) with gaussian prior q0 : 124

zK = fK ◦ ... ◦ f2 ◦ f1(z0)

ln qK(zK) = ln q0(z0) −
K

∑
k=1

ln
»»»»»»»»»
det

∂fk
∂zk−1

»»»»»»»»»
(3) 125

This enables higher flexibility of the generative 126

process p(z∣x) and, regarding the MT task, was 127

recently showed to improve VNMT models in the 128

order of +0.2 to +1.2 BLEU points on in-domain 129

evaluation (Setiawan et al., 2020). However, their 130

effects over noisy test set haven’t not been studied 131

yet. Hence, we adopt this technique to improve the 132

latent code modeling in our variational encoder and 133

evaluate in our noisy ugc scenario. 134

Mixture Density Networks Much related to 135

variational approaches, MDN, conceived to model 136

multi-modal bayesian models, are a mixture model 137

of M -components variational generative distribu- 138

tions Thus, in MDN, the posterior distribution, is 139

the result on a linear combination of the gaussian 140

kernels: 141

p(z∣x) =
M

∑
m=1

αm(x) ⋅ qm(z∣x) (4) 142

where αm are known as the mixing coefficients 143

and are also jointly trained by applying the ‘soft- 144

max’ function to the corresponding outputs of the 145

network, across the zαj random variables to each 146

component m: 147

αm =
exp(zαm)

∑M
j=1 exp(zαj )

(5) 148

Gumbel-Softmax sampling Regarding the mix- 149

ing coefficients computation, we also explore em- 150

ploying a categorical probability distribution, for 151

which probabilities are calculated by the network, 152

such as in Ha and Eck (2018). Contrary to them, 153

our supervised end-to-end training requires back- 154

propagating the error gradient through the varia- 155

tional network via reparametrized sampling, which 156

poses optimization challenges because of the dis- 157

crete random variables used as latent vector for 158

categorical distributions. For this reason, we use 159

the reparametrization of such a distribution via the 160

Gumbel-softmax sampling (Jang et al., 2017), such 161

that, the ‘argMax’ function is approximated by 162

using ‘softmax’ and generate the relaxed one-hot 163
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encoded samples, which correspond to the mixing164

coefficients:165

αm =
exp(log(πm) + gm)/τ)

∑M
j=1 exp((log(πj) + gj)/τ)

(6)166

where gm...gM are i.i.d samples from the Gum-167

bel(0,1) distribution (Gumbel, 1954; Maddison168

et al., 2017), πi the probability associated to the169

m-th MDN’s gaussian components, jointly gener-170

ated by neural networks along with the compu-171

tations of the corresponding parameters (µm, σm)172

form...M ; and τ the temperature parameter, which173

controls variability of the sampling. When τ → 0,174

the sampling exhibits a perfectly one-hot encoded175

output, whereas, conversely, when τ → inf , the176

distribution approaches to an uniform one across177

all the MDN’s components.178

Why VNMT for noisy UGC? Variational ap-179

proaches for NMT have been reported to act as180

regularizers introducing the prior distribution noise181

and thus increasing robustness and reducing over-182

fitting (Zhang et al., 2016; Kumar and Poole, 2020).183

On the other hand, McCarthy et al. (2020) reported184

higher performance on both low and high resource185

scenarios, compared to an standard Transformer,186

as well as improvements when training using noisy187

data, and notably, using source-side monolingual188

corpora via a variational reconstruction loss term.189

Recently, transformer-based VNMT models190

have also proved helpful for OOD evaluation, by191

identifying texts that are out of the training data192

distribution (Xiao et al., 2020) and improved NMT193

performance under such evaluation conditions (Se-194

tiawan et al., 2020).195

In this work we address noisy UGC translation196

in zero-shot OOD scenarios using VNMT in order197

to study whether its distributional-shift robustness198

holds for such texts.199

3 Our approach: extending variational200

methods for robust MT201

For this work, we have drawn inspiration from202

SketchRNN (Ha and Eck, 2018) and recurrent203

World Models (Ha and Schmidhuber, 2018), both204

featuring a variational encoder-decoder architec-205

ture for modeling the input sequences, while em-206

ploying a recurrent MDN decoder to produce a207

continuous generative variational posterior. We208

have adapted to use Transformer layers as encoder209

and generator, while training the distribution in 210

a end-to-end manner with our usual parallel cor- 211

pora. To this end, we employ a reparametrized 212

form of the multiple Gaussian priors for sampling 213

(Kingma and Welling, 2014). In addition, we study 214

two mixing coefficient computations, i.e. a vanilla 215

non-latent version using ‘softmax’ (Equation 5) 216

and a relaxed categorical variational method by the 217

means of Gumbel-softmax sampling (Equation 6). 218

3.1 Model 219

VNMT-MDN’s architecture in Figure 1, features a 220

variational encoder that trains a latent representa- 221

tion to be fed to the decoder, which in turn, condi- 222

tions an MDN, that is sampled to obtain the model’s 223

output. Backpropagation of the gradients is per- 224

formed in an encoder-decoder end-to-end training 225

fashion. The models have been integrated to the 226

OpenNMT-py (Klein et al., 2018) framework 1. 227

For all VNMT models, we use a KL annealing 228

schedule as in Ha and Eck (2018). We use the 229

posterior’s mean for inference during evaluation. 230

3.2 Encoder 231

According to our Transformer Base baseline 232

architecture from (Vaswani et al., 2017), the en- 233

coder is composed by a 6-layered Transformer 234

Base encoder, which output is feed to a 128- 235

dimensional variational network, that estimates the 236

final latent hidden encoded vector. 237

In Figure 5, we show the Transformer and 238

variational encoding latent state (z) as being es- 239

timated (p(z∣x)) approximating the posterior’s 240

mean and standard deviation, both learned using 241

the reparametrization trick. 242

In order to be comparable to the recently intro- 243

duced VNMT-NF (Setiawan et al., 2020), we also 244

report results for our VNMT model extending the 245

encoder’s variational network with 4-flows Normal- 246

izing Planar Flows (PF) (Rezende and Mohamed, 247

2015)2. Other autoregressive normalizing models, 248

such as Sylvester Flows (van den Berg et al., 2018), 249

are available and could prove interesting for higher 250

capacity. However, we decided to only address PF 251

since they are the most simple solution with com- 252

parable performance improvement as other more 253

complex flow models (Setiawan et al., 2020). 254

Similarly to VNMT-NF, we mix the last Trans- 255

former layer output to the latent vectors using a 256

1Code will be released upon publication
2Using the implementation from https://github.

com/riannevdberg/sylvester-flows
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Figure 1: VNMT-MDN architecture overview.

gating mechanism, and a feedforward network in257

order to upscale the latent representation dimen-258

sionality and match the Transformer Base de-259

coder number of dimensions (i.e, from 128 to 512);260

but unlike this model, we do so for both the encoder261

and decoder blocks’ outputs since we introduce262

variational networks on both sides.263

3.3 Decoder264

The Transformer decoder’s last layer output is265

passed to a 128-component MDN, with learnable266

parameters φ, encoding the mean and standard267

deviation of each one of these multivariate gaus-268

sian components; and π, which contains the prob-269

abilities of the categorical distribution that gener-270

ates the mixing coefficient for each component.271

We train the MDN by variational inference using272

reparametrized sampling, similarly to our varia-273

tional encoder network. As in our VNMT baseline,274

VNMT-NF, we dropped the contribution of the tar-275

get, y, to the posterior qφ(z∣x,y), which has been276

reported to result in simpler systems with higher277

performance (Eikema and Aziz, 2019).278

3.4 Monolingual reconstruction loss279

We use the variational autoencoder (VAE) (Kingma280

and Welling, 2014; Rezende et al., 2014) as a tool281

to explore a semi-supervised approach, as done282

in Zhao et al. (2019), and performed experiments283

adding a source-side reconstruction loss term, ac-284

cording to Equation 7. This model is trained by285

sampling the approximated posterior distribution286

(pθ(z∣x)) via variational inference, represented as287

the blue arrow in Figure 5 in the appendix.288

Lmono = Ez∼qφ(z∣x)[log(pθ(x∣z)]
−DKL(qφ(z∣x) ∥ pθ(z))

(7)289

Concerning our monolingual source-side data,290

we only use the source sentences contained in the291

training datasets to be able to unequivocally assess 292

the advantages of this auxiliary task only, ruling 293

out the impact of supplementary monolingual data, 294

although the latter could arguably be the main in- 295

terest of such training configuration. 296

4 Experiments 297

Datasets We trained our VNMT models, namely, 298

VNMT-NF, VNMT-MDN and VNMT-MDN-NF, 299

and our non-latent backbone architecture, 300

Transformer Base, on two different Fr-En 301

canonical parallel corpora: a combination of 302

WMT training sets, and OpenSubtitles’18 303

(Lison et al., 2018). We used BPE tokenization 304

(Sennrich et al., 2016) with 16K merge operations 305

for all systems and, as stated in Section 3.4, we 306

constrained our monolingual data, used in the 307

semi-supervised training setup, to the French 308

sources of the parallel training corpora. 309

We use the PFSMB (Rosales Núñez et al., 2019) 310

and MTNT (Michel and Neubig, 2018) UGC test 311

sets. In addition, as a complementary evaluation 312

resource employed to probe our neural representa- 313

tions in Section 7, we use the PMUMT corpus (Ros- 314

ales Núñez et al., 2021), which contains 400 anno- 315

tated and normalized Fr-En UGC sentences. We 316

have used the 400 original French noisy UGC sam- 317

ples and their corresponding fully normalized ver- 318

sion, which we refer to PMUMT Noisy and PMUMT 319

Norm, respectively. For detailed information on 320

training and test corpora, please refer to Section A 321

in the appendix. 322

Protocols All the MT results are reported using 323

BLUE (Papineni et al., 2002), specifically, SACRE- 324

BLEU (Post, 2018) using the ‘intl’ tokeniza- 325

tion, after detokenizing the systems’ outputs. We 326

have conducted an ablation test of our proposed 327

VNMT-MDN-NF system and show the impact of 328
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our architecture’s design over MT performance329

across our different test sets. We also performed ex-330

periments by incorporating a reconstruction objec-331

tive function, according to Section 3.4, and denoted332

in Table 1 with the prefix Mono-. All experiments333

were done on a single training run and a beam 5334

has been used for evaluation.335

We have chosen, as initial experimental configu-336

ration, τ = 1.0 for the Gumbel softmax sampling,337

which was selected mainly aiming to avoid artificial338

gradient scaling during backpropagation, directly339

caused by this coefficient (c.f. Equation 6), while340

being relatively larger than 0 in order to introduce341

variability to the sampling process.342

Finally, we present a series of visualizations343

and metrics to characterize how VNMT-MDN-NF344

behaves when processing UGC during evalua-345

tion, in order to give further insights of its ro-346

bustness capabilities compared to the VNMT-NF347

and Transformer baselines, by resorting to the348

learned latent neural representations’ space.349

5 Results350

In this section we present the main MT results to351

study MT performance of our methods.352

5.1 MT scores353

In Table 1, we display the MT BLEU metric354

scores of our VNMT-MDN-NF systems compared355

to the baselines and to ablated versions of our pro-356

posed architecture. We can notice that our com-357

plete VNMT-MDN-NF system consistently outper-358

forms both VNMT-NF and Transformer base-359

lines on UGC test sets PFSMB and MTNT. We360

obtained mitigated results overall for canonical361

OOD tests: when training on OpenSubtitles,362

the newstest’14, both VNMT systems,363

VNMT-MDN-NF and VNMT-NF underperform the364

Transformer baseline; whereas we report a sub-365

tle improvement on the OpenSubTest canoni-366

cal OOD in the WMT training setup. Regarding367

in-domain MT performance, we noticed a sys-368

tematic improvement of VNMT, where our ap-369

proach, VNMT-MDN-NF, seems to perform best,370

except for newstest’14 when training on WMT,371

for which VNMT-NF achieves +0.1 BLEU more372

than the full VNMT-MDN-NF architecture. We373

also studied the impact of the latent vector dimen-374

sionality, by comparing 512 and 128, for which375

the former showed higher scores when translating376

the MTNT and OpenSubTest when training on377

OpenSubtitles, and unchanged performance 378

for the WMT training data conditions. 379

In order to keep number of parameters and latent 380

dimensions comparable across models, we have 381

chosen VNMT-MDN -128-128 as a backbone for 382

the final architecture, VNMT-MDN-NF. Thus, we 383

kept 128 dimensions as selected by Setiawan et al. 384

(2020). 385

By looking at the results of the ablated versions 386

of VNMT-MDN-NF (indicated in the table by an 387

indentation with respect to the corresponding com- 388

plete architecture), we can notice that, overall, we 389

obtain the best BLEU scores across all test sets 390

for the full VNMT-MDN-NF version. As interest- 391

ing mixed results, we can highlight the cases for 392

static latent representation (z static), where instead 393

of sampling from the learned distributions, we re- 394

trieve their mean as output, and which showed 395

slightly better BLEU scores when translating the 396

MTNT and newstest’14 test sets, with +1.2 and 397

+0.1 BLEU improvement, respectively. This might 398

be explained by a more stable training when using 399

the mean of the distribution. 400

Finally, we can notice the overall highest per- 401

formance of VNMT-MDN-NF, which employs our 402

VNMT-MDN architecture and adds 4 normalizing 403

PF, and that we compare to its corresponding 404

VNMT-NF version, matching both in latent dimen- 405

sions number, and number and type of flows. Re- 406

garding this BLEU comparison, it is interesting to 407

note that using a categorical variational version of 408

the mixing coefficients, proved to be generally a 409

better design option than the default MDN ‘soft- 410

max’ way of determining such coefficients (π non- 411

latent, in the table), only performing better for 412

the newstest’14 test set when training on the 413

OpenSubtitles corpus. Following the same 414

trend, the WMT training data configuration also 415

showed improvements when using the Gumbel- 416

softmax version, for which +0.8 and +0.3 BLEU 417

score improvement were obtained for both the 418

PFSMB and MTNT UGC test sets, respectively. 419

We have also obtained a consistent loss of perfor- 420

mance compared to Transformer Base on the 421

OpenSubtitles training configuration when 422

translating the canonical OOD newstest’14, 423

which could be explained by the considerable 424

longer sentences of the latter compared to the train- 425

ing data (3.5 times on average, c.f. Table 4 in the 426

appendix). These results suggest that the VNMT 427

models used in this work could make bigger the dif- 428
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WMT OpenSubtitles

PFSMB † MTNT † News⋄ OpenSubTest PFSMB † MTNT † News OpenSubTest ⋄ # params.

Transformer Base 15.4 21.2 27.4 16.4 27.6 28.9 26.8 31.4 69M

VNMT-MDN -512-128 15.3 21.6 28.0 16.5 28.2 28.6 26.0 31.5 140M

VNMT-MDN -128-128 15.3 21.6 28.0 16.5 28.3 28.8 26.1 31.2 77M
z static 16.5 20.9 28.0 16.4 28.1 29.3 26.2 31.1 77M
-MDN 16.5 20.9 27.8 16.6 27.7 28.7 26.2 31.2 73M

VNMT-MDN-NF 16.6 21.3 27.8 16.5 28.4 29.2 26.4 31.5 77M
π non-latent 15.8 21.0 27.8 16.4 28.1 28.5 26.6 31.3 77M
-MDN 13.6 21.5 27.7 16.6 27.9 28.7 26.2 31.2 74M

Mono-VNMT-MDN-NF 15.8 21.8 28.0 16.5 29.3 28.7 26.2 31.6 77M

VNMT-NF (Setiawan et al., 2020) 15.5 21.4 27.9 16.4 28.0 29.0 26.4 31.4 73M

Table 1: BLEU test scores for our models and ablation variants. The † symbol indicates the UGC test sets, and ⋄ in-domain test
sets. VNMT-MDN -512-128 stands for the model with a 512-dimensional latent space and 128 MDN components, VNMT-MDN
-128-128 to its 128-dimensional latent space version.

ficulty of translating sentences substantially longer429

than those of the training data.430

As limitations for our models and experimental431

setup, we cannot generalize our findings for other432

language pair nor backbone MT architectures.433

On the contrary, we achieved slightly better re-434

sults for the same scenario, when training on WMT435

and evaluating OpenSubTest, where training436

sentences are 4 times longer that those of the test.437

Posterior collapse Comparing VNMT-MDN-NF438

and its ablated version system removing the MDN439

module, both trained on OpenSubtitles and440

when evaluating the corresponding in-domain test441

set (OpenSubTest), we have calculated the av-442

erage KL divergence of the variational decoder’s443

MDN, which resulted in 0.21 and 0.15, respec-444

tively. Performing the same analysis for the WMT445

training and evaluation configuration, the KL diver-446

gence resulted in 0.38 for the full VNMT-MDN-NF447

and 0.33 for its version removing the MDN block.448

These results suggest that our proposed architecture449

is less prone to suffer from the posterior collapse450

phenomenon, and this could be explained by the451

use of several independent posterior distributions452

when including MDN in our model. This could453

also explain why, in Table 1, our systems employ-454

ing MDN have an overall higher BLEU results than455

the aforementioned ablated system where we re-456

move this component.457

Semi-supervised monolingual joint training458

In Table 1 we report results with our proposed459

Mono-VNMT-MDN-NF system, by using source-460

side monolingual corpora reconstruction loss terms,461

as discussed in Section 3.4. Both WMT and462

OpenSubtitles training configurations shown463

an improvement of +0.2 and +0.1, respectively,464

when translating their corresponding in-domain test465

sets. However, for the canonical OOD tests, the lat- 466

ter lost performance on the newstest’14 (from 467

26.4 to 26.2 BLEU), aggravating this phenomenon 468

reported previously; whereas the former benefited 469

of a slight improvement on OpenSubTest. The 470

results are rather inconsistent across the UGC test 471

sets, which do not show a clear trend of the most 472

performing choice across the two training datasets 473

MT systems. Specifically, when adding the re- 474

construction loss term, WMT showed a gap of -1.2 475

and +0.5 BLEU, for PFSMB and MTNT, respec- 476

tively, whereas OpenSubtitles’s performance 477

changed +0.9 and -0.5 BLEU correspondingly. 478

6 Qualitative analysis 479

In Table 5 in the appendix, we display some UGC 480

translation examples. We notice a general trend 481

of VNMT-MDN-NF (MTX in the table), outper- 482

forming the baselines and producing overall longer 483

predictions when rare tokens or letter repetition 484

are present in the input. Such are the cases for 485

À, with inconsistent-cased tokens, Á contains re- 486

peated characters and words, Â with a out-of- 487

vocabulary (OOV) character (‘•’), and Ã presents 488

User mentions and hashtags with the OOD charac- 489

ters ‘@’ and ‘#’. 490

7 Learning representations analysis 491

7.1 Latent space 492

Next, we present supplementary visualization and 493

metrics to assess how VNMT builds more robust 494

learning representations compared to the baseline. 495

In this regard, McCarthy et al. (2020) showed 496

that the learned variational embeddings are not 497

able to separate UGC from canonical texts. This 498

observation follows the reported ability of Deep 499

Learning architectures to implicitly learn to clus- 500
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(a) VNMT-NF (b) VNMT-MDN-NF

Figure 2: T-SNE representation of the latent space for noisy
and normalized versions of PMUMT sentences at evaluation.

ter when training specific tasks (Carbonnelle and501

Vleeschouwer, 2021). We propose another ap-502

proach to this problem: we report the cosine simi-503

larity histogram between FR noisy sentences and504

their normalized version, taking advantage of the505

PMUMT presented in Section 4. To obtain these506

embeddings, we fed its 400 original noisy UGC507

sentences and their corresponding 400 fully normal-508

ized versions to our VNMT baseline, VNMT-NF,509

and to VNMT-MDN-NF.510

Overview The average cosine similarity between511

both corpus’ versions favors VNMT-MDN-NF with512

0.36 compared to VNMT-NF, with 0.26, suggesting513

that the former provides more robustness for the514

inner learning representations of UGC.515

In Figure 2, we show the t-SNE (van der Maaten516

and Hinton, 2008) 2-dimensional visualization of517

both VNMT systems, showing the latent encoding518

of noisy and normalized PMUMT sentences. We519

can notice that the VNMT-NF latent representa-520

tions present a series of outliers when noisy sen-521

tences abound, contrary to the VNMT-MDN-NF rep-522

resentations. In this set of 43 outlier observations523

(roughly 5% of the 800 plotted sentences’ repre-524

sentation), 88% (37) are the original -noisy- UGC525

samples of PMUMT.526

Latent space recovering from noise Since it527

seems hard to draw conclusions from translation528

performance distribution in the latent space, in Fig-529

ure 3 we plot the same dimensional reduced la-530

tent space and we encode color for their bins of531

cosine similarity of the hereby shown noisy sen-532

tences to their corresponding normalized version.533

The bins for both plots were chosen using parti-534

tions’ delimiters [0.30, 0.44, 0.57]. This was done535

to compare both latent spaces with the same simi-536

larity values’ bins, however, VNMT-MDN-NF has537

overall higher metric quantiles ([0.24, 0.36, 0.45])538

compared to VNMT-NF ([0.19, 0.30, 0.40]), which539

suggests that the VNMT-MDN-NF latent represen-540

(a) VNMT-NF (b) VNMT-MDN-NF

Figure 3: T-SNE representation of the latent space for noisy
PMUMT sentences during evaluation. Color portrays the bins
of cosine similarity between noisy and normalized versions.
Bin 1 contains the samples with the least similarity value.

tations are more robust to UGC. 541

7.2 More robust embeddings for UGC 542

We also studied the source embeddings of our mod- 543

els to explore how VNMT can contribute to more 544

robust embeddings that could prove valuable for 545

transfer learning methods. We compare noisy and 546

normalized versions of the FR PMUMT source side 547

to assess whether they have a closer representation. 548

Noisy vs normalized data We now study the 549

embeddings learned by VNMT-MDN-NF and as- 550

sess how noise affects them compared to those 551

of the baselines. We computed the cosine sim- 552

ilarity between corresponding PMUMT noisy and 553

normalized samples for the embedding space 554

learned by Transformer Base, VNMT-NF and 555

VNMT-MDN-NF, which resulted in 0.706, 0.744 556

and 0.750, respectively. This quantifies how 557

VNMT can enforce learning more robust source 558

representations since noisy UGC sentences are 559

more related to their normalized version than for 560

the baseline. We display the source embeddings 561

for the three NMT systems in Figure 4 and we 562

mark the noisy and normalized corpus’s versions in 563

red and blue, respectively. Each observation in the 564

graph corresponds to the embedding of each sen- 565

tence, computed by taking the average of the token- 566

level embeddings. We can notice how both VNMT 567

systems have a tendency to separate noisy and nor- 568

malized sentences compared to Transformer 569

Base, while having, higher cosine similarity. 570

Transfering learning representations As dis- 571

cussed above, in Figure 4 we noticed that VNMT 572

seems to enforce noisy morphology modeling to 573

the Transformer’s embeddings in an implicit way. 574

This motivated us to study whether the information 575

in such learning representations can be used by 576

the Transformer Base backbone model and 577

7



(a) Transformer
Base (0.706)

(b) VNMT-NF
(0.744)

(c) VNMT-MDN-NF
(0.750)

Figure 4: T-SNE representation of the encoder embeddings for
noisy and corresponding normalized PMUMT sentences during
evaluation. Average cosine similarity between corresponding
noisy and normalized version of the PMUMT evaluation frame-
work are reported between parentheses for each NMT system.

PFSMB † MTNT † News OpenSubTest ⋄

Transformer
Base 27.6 28.9 26.8 31.4

Pretrained init. 29.0 28.2 26.2 31.3

Frozen embs. 28.4 28.9 26.8 31.3

Fine-tuned 28.4 28.9 26.5 31.4

Table 2: Using VNMT-learned embeddings for transfer robust
learned representations to the Transformer Base model.

benefit from improved robustness while removing578

the direct latent space contribution, and notably,579

with the same number of parameters and archi-580

tecture as Transformer Base. Thus, in Ta-581

ble 2, we report scores for the Transformer582

Base model trained on OpenSubtitles, by ei-583

ther initializing the VNMT-pretrained embeddings584

and fine-tuning (FT) the system. We have per-585

formed FT using the same data configuration as586

in OpenSubtitles and continued training for 3587

epochs from the Transformer Base model in588

Table 1 while replacing the embeddings by their589

VNMT-learned version’s weights.590

Results in Table 2 provide evidence that VNMT591

enforces more robust embeddings, which per-592

form significantly better over the PFSMB UGC593

test set compared to the baseline, the system594

Frozen embs. giving the most consistent re-595

sults over UGC. This system also results in keep-596

ing goof perfroamnce over the newstest’14597

canonical OOD test set, while taking advantage598

of an increased robustness to UGC. Such an im-599

provement alleviates the loss of performance over600

newstest’14 in our previous results, which was601

the only test set for which VNMT-MDN-NF un-602

derperformed the non-VNMT baseline in Table 1.603

These results indicate that VNMT promotes robust-604

ness to the NMT backbone and could be useful for605

conceiving more robust pretrained embeddings.606

PFSMB †

(Blind)
MTNT †

(Blind) 4Square

Transformer Base 19.7 25.0 21.9
+FT emb. 19.4 25.3 22.0

VNMT-NF 20.0 25.3 22.0

VNMT-MDN-NF 20.0 26.4 22.5

Table 3: Using VNMT FR source embeddings for transfer
robust learned representations.

8 Blind test sets scores 607

We now evaluate our best performing model 608

(VNMT-MDN-NF trained on OpenSubtitles) 609

on the blind test sets described in Section 4, trans- 610

lating another set of tests to assess whether our 611

approach proves useful for generalization over 612

different types of UGC. We have also included 613

the 4Square corpus (Berard et al., 2019) to 614

validate our VNMT system on other domain of 615

UGC (restaurant reviews). We also display the 616

results when using the VNMT-NF baseline and 617

the Transformer Base model to assess im- 618

provement of our proposed architecture. We re- 619

port such results in Table 3, where we can see that 620

VNMT-MDN-NF consistently outperforms the base- 621

lines for our blind UGC test sets. It is interesting to 622

notice that, although the in-domain performances 623

for these 3 systems are very similar (between 31.4 624

and 31.5 BLEU in Table 1), the performance gap of 625

blind UGC test sets is considerably larger, i.e. +0.8 626

BLEU in average to the non-latent baseline. 627

9 Discussion and perspectives 628

We introduced a novel VNMT architecture that 629

provides improved performance and robustness 630

over an state-of-the-art VNMT model, specifically 631

when translating French UGC. An ablation study 632

and blind test sets evaluation validate our architec- 633

ture choice in regards of robustness capabilities for 634

such texts. In addition, by exploring the learning 635

representations trained by our VNMT model, and 636

through conducting transfer learning experiments 637

with such, we investigate the robustness brought to 638

UGC, and show VNMT enforces such property to 639

the backbone model, bringing a promising avenue 640

for more robust pretrained neural learning repre- 641

sentations. We report promising results when using 642

an accessory source reconstruction loss to improve 643

robustness, which we plan to study in the future by 644

using other sorts of monolingual data and training 645

protocols, such as denoising autoencoders. 646
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Appendix 885

A Data 886

Training Data Because of the lack of a large par- 887

allel data set of noisy sentences, we train our sys- 888

tems on ‘standard’ parallel data sets: WMT (Bojar 889

et al., 2016) and OpenSubtitles (Lison et al., 890

2018). A subset of the latter has been randomly 891

sampled to match the former in number of tokens in 892

order to keep the training data quantity conditions 893

comparable for both setups. WMT contains canon- 894

ical texts (2.2M sent.) and OpenSubtitles 895

(9.2M sent.) is made of informal dialogues found 896

in popular sitcoms. While OpenSubtitles is, 897

intuitively, closer to the kind of content generated 898

by users online, it must be noted that UGC dif- 899

fers significantly from subtitles in many aspects: in 900

UGC emotion are often denoted with repetitions, 901

there are many typographical and spelling errors, 902

and sentences may contain emojis that can even 903

replace some words (e.g. ♥ can stands for the verb 904

‘love’ in sentences such as ‘I ♥ you’). 905

UGC Test Sets To evaluate the different NMT 906

models, we consider two data sets of manually 907

translated UGC: MTNT (Michel and Neubig, 2018) 908

and the Parallel French Social Media Bank corpus 909

(PFSMB) (Rosales Núñez et al., 2019)3 which ex- 910

tends the French Social Media Bank (Seddah et al., 911

2012) with English translations. These two data 912

sets raise many challenges for MT systems: they 913

notably contain characters that have not been seen 914

in the training data (e.g. emojis), rare character 915

sequences (e.g. inconsistent casing or usernames) 916

as well as many OOVs denoting URL, mentions, 917

hashtags or more generally named entities (NE). 918

Most of the time, OOVs are exactly the same in the 919

source and target sentences. 920

We certify that we use all data collections in the 921

way they are intended to, following their licence 922

and in aggreement with our Institutional Review 923

Board. 924

Detailed statistics on our used corpora can be 925

found in Table 4. 926

B Training models 927

All systems are trained using a batch size of 928

4096 tokens, using the Adam optimizer (Kingma 929

and Ba, 2015) and the Noam learning rate sched- 930

ule (Vaswani et al., 2017). Training for, at 931

3https://gitlab.inria.fr/seddah/
parallel-french-social-mediabank
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Corpus #sentences #tokens ASL TTR #chars

train set
WMT 2.2M 64.2M 29.7 0.20 335
OpenSubtitles 9.2M 57.7M 6.73 0.18 428

test set
OpenSubTest 11,000 66,148 6.01 0.23 111
newstest’14 3,003 68,155 22.70 0.23 111

Corpus #sents #tokens ASL TTR #chars

UGC test
PFSMB 777 13,680 17.60 0.32 116
MTNT 1,022 20,169 19.70 0.34 122

UGC blind
PFSMB 777 12,808 16.48 0.37 119
MTNT 599 8,176 13.62 0.38 127

Table 4: Statistics on the French side of the corpora used in our experiments. TTR stands for Type-to-Token Ratio, ASL for
average sentence length.

x

z

θ

z
′

y φ

π

Encoder Decoder

Figure 5: Directed graph of our encoder-decoder model vari-
ational inference. Dashed lines represent the variational ap-
proximation for the posterior distribution, and solid lines stand
for the generative models. The blue arrow depicts the gen-
erative networks for source-side monolingual reconstruction
distribution p(x∣z).

most, 300K training iterations on a single Nvidia932

V100 took roughly 60 hours to converge for the933

VNMT-MDN-NF models.934

C Effects of the Gumbel-softmax935

sampling temperature936

In addition, we evaluate the impact of tempera-937

ture τ , presented in Equation 6, in order to assess938

whether the sparsity of mixing coefficients favors939

a given type of texts among out test sets. As we940

noticed in Figure 7, a main MDN component is941

consistently the most important for the translations.942

This can be explained for the temperature we chose943

by default (1.0) and its desired effect of having less944

variance in the gradients that are propagated for945

each components’ distribution. In this section we946

explore the impact of several temperature values947

to enforce more dense samples from the relaxed948

categorical mixture distribution. In Table 6, on949

one hand, we can see that smaller values to tem-950

perature τ seem to improve the model for canon-951

ical test sets, achieving the best performances for952

OpenSubTest and newstest’14, at the cost953

of negatively impacting performance over UGC954

test corpora. On the other hand, These results show955

that correctly setting the temperature parameter can956

be useful to translate different types of test sets and,957

for future work in this research track, temperature 958

annealing schedules during training (Jang et al., 959

2017) or choosing a different value of temperature 960

for evaluation phase, could be promising ideas to 961

work with in order to develop more robust and all- 962

purposed NMT systems. 963

D How do MDN’s components react to 964

UGC? 965

We now proceed to analyze and visualize how the 966

MDN mixture coefficients react when translating 967

our different test sets. In order to do so, in Figure 6 968

we report results for the canonical test sets, the 969

normalized PMUMT corpus, and its noisy original 970

UGC version. Each bar of the Wind Rose diagram 971

represents one of the 128 independent trained dis- 972

tributions’ mixture weights, which have been nor- 973

malized and scaled across the four graphics, and 974

where the 7th MDN component seems to be con- 975

sistently the one that drives most of the decoding 976

for the presented experiments. Furthermore, we 977

can notice that most mixing coefficients are, for 978

the most part, have around 50% probability of con- 979

tributing to the final inference mixture, despite not 980

enforcing this behavior with any specific method 981

(e.g. dropout). On the other hand, the visualiza- 982

tion suggests that both yellow (50-60%) and blue 983

components (30-40% of activation) are variable 984

across test sets, being very similar between PMUMT 985

Norm and OpenSubTest, which could indicate 986

that the mixture components are learning to en- 987

code different types of texts, potentially working 988

as an implicit topic modeling module. Regarding 989

the visualization when translating PMUMT Noisy, 990

the main MDN component identified above, seems 991

less important even when compared to the out-of- 992

domain newstest’14 set, which suggests that 993

the MDN uses more dense representations when 994

processing noisy texts. 995

In parallel, in Table 7 we display the covariance 996

of these coefficients’ distributions between the com- 997
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À src OOOOOOOUUUUUUUIIIIIIII ZLATAN IBRAHIMOVIC SIGNE UN DOUBLÉ À LA 90eme MINUTE ET
ENVOI LE #PSG EN FINALE!!!!

ref YYYYYYYEEEEEEESSSSSSSS ZLATAN IBRAHIMOVIC PERFORMS A DOUBLE AT THE 90th
MINUTE AND SENDS THE #PSG TO FINAL!!!! 1-2!!!!

TX OOOOOOOOOOOUUULL ZLATAN IBRAHIMOVYSIG A DOUBLED IN THE 90th MINUTE
NF OOOOOOOOOOUUUIIIZLATANIBRAHIMOVIC SIGNS A DOUBL AT THE 90th MINUTE
MTX OOOOOOOOOUUUUIII ZLATAN IBRAIMOV SIGNS A DOUBLED ON THE 90th MINUTE!

Á src ne spooooooooilez pas teen wolf non non non et non je dis non
ref don’t spooooooooil teen wolf no no no and no I say no
TX Don’t spoil it.
NF No, no, no, no, no, no, no, no.
MTX Don’t spoooooooil. Don’t. Don’t.

Â src Roman Godfrey a regardé Teen Wolf (2011) • S03E17 Silverfinger et retourne dessiner des ronds sur son gitan
préféré.

ref Roman Godfrey watched Teen Wolf (2011) • S03E17 Silverfinger and is back drawing circles on his favorite
gypsy.

TX Roman Godfrey looked at Teen Wolf.
NF Roman Godfrey looked at Teen Wolf.
MTX Roman Godfrey watched Teen Wolf (2011), this is S03E17 Silverfinger and goes back to drawing a round

about his favorite gypsy.

Ã src Vient de perdre une grosse heure a #flappybird cc @JohnDoe533 @JohnDoe534 @JohnDoe535
ref Just lost a big hour on #flappybird cc @JohnDoe533 @JohnDoe534 @JohnDoe535
TX #Flappybird cc #JohnDoe53 #JohnDoe53 #53 #1
NF #Flappybird c@JohnDoe5333)@JohnDoe53@JohnDoe53
MTX Just lost a huge hour at #flappybird cc at John Doe53 #John John Doe

Table 5: b Examples from the PFSMB UGC corpus showing the Transformer, VNMT-NF and our model, VNMT-MDN-NF,
predictions. NF and MTX stand for the VNMT-NF (Setiawan et al., 2020) and VNMT-MDN-NF VNMT systems, respectively.

OpenSubtitles
PFSMB † MTNT † News OpenSubTest ⋄

VNMT-MDN-NF (τ = 1.0) 28.4 29.2 26.4 31.5

(τ=0.2) 26.6 28.7 25.9 31.4

(τ=0.5) 28.0 28.7 26.5 31.7

(τ=2.0) 28.1 28.7 26.0 31.4

(τ=5.0) 27.3 28.3 26.0 31.4

(τ=10.0) 27.4 27.9 26.4 31.4

Table 6: Bleu test scores for our models and ablation variants.
The † symbol indicates the UGC test sets, and ⋄ in-domain
test sets.

binations of their values when translating different998

kind of texts, along with the standard deviation and999

sparsity to describe how the MDN’s components1000

behave.1001

Comparing the visualization in Figure 7, we1002

can notice how the noisy UGC PMUMT and the1003

out-of-domain newstest’14, diverge from the1004

in-domain OpenSubTest and normalized UGC1005

PMUMT corpus. This correlation is evidenced in1006

the results in Table 7, where PMUMT noisy has1007

the lowest score when compared to every other1008

corpus, even if its normalized version seems to1009

be the most correlated to the in-domain evalua-1010

tion. Specifically, PMUMT Noisy is the least cor-1011

related to in-domain OpenSubTest and out-of-1012

domain newstest’14 corpora, which points to1013

the MDN reacting differently to content domain 1014

and UGC specificities in the noise; this observa- 1015

tion is also supported by the associated figure. It 1016

is also interesting to notice that, according to the 1017

standard deviation and sparsity values, the active 1018

MDN components are more dense and variable for 1019

out-of-domain evaluation conditions, for the same 1020

Gumbel sampling temperature value. 1021
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(a) PMUMT norm (b) PMUMT noisy

(c) OpenSubTest (d) newstest’14

Figure 6: Average MDN mixture weights for test sets of different natures.

PMUMT Noisy News OpenSubTest std. sparsity

PMUMT Norm 8.16 9.71 13.05 1.2e-3 0.387

PMUMT Noisy — 7.72 7.86 1.0e-3 0.382

News — — 9.42 1.1e-3 0.384

OpenSubTest — — — 1.1e-3 0.387

Table 7: Covariance between MDN mixture coefficients during inference for different types of test sets and sparsity for each set.
std. stands for the standard deviation.
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