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Abstract

This work presents a novel Variational Neu-
ral Machine Translation (VNMT) architecture
with enhanced robustness properties, which
we investigate through a detailed case-study
addressing noisy French user-generated con-
tent (UGC) translation to English. We show
that the proposed model, with results compara-
ble or superior to state-of-the-art VNMT, im-
proves performance over UGC translation in
a zero-shot evaluation scenario while keeping
optimal translation scores on in-domain test
sets. We elaborate on such results by visualiz-
ing and explaining how neural learning repre-
sentations behave when processing UGC noise.
In addition, we show that VNMT enforces ro-
bustness to the learned embeddings, which can
be later used for robust transfer learning ap-
proaches.

1 Introduction

The specificities of UGC (Foster, 2010; Seddah
et al., 2012) promote a plethora of vocabulary and
grammar variations, which account for the large in-
crease of out-of-vocabulary tokens (OOVs) in UGC
corpora with respect to canonical parallel training
data and raises many challenges for MT. In par-
ticular, UGC productivity (Martinez Alonso et al.,
2016) limits the pertinence of ‘standard’ domain
adaptation methods such as fine-tuning, as there
will always be new forms that will not have been
seen during training and urges the development
of robust machine translation models able to cope
with out-of-distribution (OOD) texts.

An increasing number of works on Neural Ma-
chine Translation, explores the use of latent distri-
butional representations, known as latent-variable
(LV-NMT). Such methods were shown to pro-
vide higher performance based on their abilities
to model unobserved phenomena, such as intrinsic
underlying structural information and applied to
several NLP tasks (Kim et al., 2018). In this work,

we focus on Variational NMT (Zhang et al., 2016)
which has been reported to have good performances
and interesting adaptability properties compared to
other LV-NMT models (Przystupa, 2020).

The goal of this work is to evaluate the per-
formance of VNMT when translating OOD texts,
specifically, French social-media noisy UGC. To
address the issue of UGC productivity, we consider
a highly challenging zero-shot scenario and assume
that only canonical texts are available for training
the system. We hypothesize and provide exper-
imental evidence supporting that, by leveraging
on VNMT, the models can build more robust rep-
resentations (embeddings and latent vectors) that
map OOD observations to more in-distribution in-
stances, which can be thus more easily translated
in a zero-shot evaluation setting as shown by our
experiments.

Our contributions are fourfold:

* we introduce VNMT-MDN, a new extension of
VNMT models that relies on Mixture Density
Networks (MDN) (Bishop, 1994); each mix-
ture component extract an independent latent
space to represent the source sentence and can
model a different UGC specificities;

* we study the performance, in a zero-
shot UGC translation scenario, of VNMT,
VNMT-MDN-NF and the recently proposed
VNMT-NF (Setiawan et al., 2020). This
study prompt us to add Normalizing Flows
(Rezende and Mohamed, 2015) used in
VNMT-NF in our model and to introduce a
second, better model, VNMT-MDN-NF';

* we study the impact of jointly learning source-
side reconstruction, which we theorize UGC
translation could benefit from, to recover from
OOD constructs during evaluation;

* by probing the learned latent representations,
we show the importance of using several latent
distributions to model UGC and provide in-
sights on the reasons why VNMT outperforms



the baselines.

2 Background and related works

VNMT Variational bayesian methods (Kingma
and Ba, 2015) are generative architectures capa-
ble, from a distributional perspective, of model-
ing underlying structures from data. Under su-
pervised settings, such as sequence-to-sequence
MT tasks, where « and y are respectively the
source and target, VNMT architectures combine
a variational posterior approximation mechanism,
q¢(z|x,y), and a neural decoder generative dis-
tribution, pg(y|x, z), which are jointly trained to
model the output y by looking for the distribu-
tion’s parameters (0, ¢) that minimize the ELBO
for every pair (x, y) in each training minibatch, as
proposed in Zhang et al. (2016):
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In this framework, the latent sentence-level vec-
tor z models the implicit structure of data to pro-
duce the translation prediction, y. More recently,
Su et al. (2018) proposed token-level latent repre-
sentations for the paramemeter vector z.

Normalizing Flows One of the major caveats
of variational methods is that choosing the prior
q(z) is a complicated process that requires some
a priori knowledge of the task. Thus this choice
is often eased by selecting a Normal distribution
with ¢ = 0.0 and 0 = 1.0, but such assump-
tion can be restrictive to learn more complex pro-
cesses. Regarding this issue, Rezende and Mo-
hamed (2015) proposed using Normalizing Flows
(NF) (Tabak and Turner, 2013; Tabak and Vanden-
Eijnden, 2010) for variational methods by employ-
ing a prior distribution that undergoes a series of in-
vertible and smooth transformations f : R? - R?
(called flows). Then, the random latent variables
z, associated to a prior distribution ¢(z), are con-
verted to the random variable z' = f(2):
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Finally, we can build an arbitrarily long K chain
of f, transformations to generate the final prior z g,
from the initial random variables (previous z, now

called z() with gaussian prior g :
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This enables higher flexibility of the generative
process p(z|x) and, regarding the MT task, was
recently showed to improve VNMT models in the
order of +0.2 to +1.2 BLEU points on in-domain
evaluation (Setiawan et al., 2020). However, their
effects over noisy test set haven’t not been studied
yet. Hence, we adopt this technique to improve the
latent code modeling in our variational encoder and
evaluate in our noisy ugc scenario.

Mixture Density Networks Much related to
variational approaches, MDN, conceived to model
multi-modal bayesian models, are a mixture model
of M-components variational generative distribu-
tions Thus, in MDN, the posterior distribution, is
the result on a linear combination of the gaussian
kernels:

M
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where «,,, are known as the mixing coefficients
and are also jointly trained by applying the ‘soft-
max’ function to the corresponding outputs of the
network, across the z? random variables to each

component m:
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Gumbel-Softmax sampling Regarding the mix-
ing coefficients computation, we also explore em-
ploying a categorical probability distribution, for
which probabilities are calculated by the network,
such as in Ha and Eck (2018). Contrary to them,
our supervised end-to-end training requires back-
propagating the error gradient through the varia-
tional network via reparametrized sampling, which
poses optimization challenges because of the dis-
crete random variables used as latent vector for
categorical distributions. For this reason, we use
the reparametrization of such a distribution via the
Gumbel-softmax sampling (Jang et al., 2017), such
that, the ‘argMax’ function is approximated by
using ‘softmax’ and generate the relaxed one-hot



encoded samples, which correspond to the mixing
coefficients:

_ exp(log(ﬂm) + gm)/T) )

Y exp((log(m;) + g;)/7)

where g,,...g)s are i.i.d samples from the Gum-
bel(0,1) distribution (Gumbel, 1954; Maddison
et al., 2017), m; the probability associated to the
m-th MDN’s gaussian components, jointly gener-
ated by neural networks along with the compu-
tations of the corresponding parameters ( ft,,, o, )
for m...M; and 7 the temperature parameter, which
controls variability of the sampling. When 7 — 0,
the sampling exhibits a perfectly one-hot encoded
output, whereas, conversely, when 7 — inf, the
distribution approaches to an uniform one across
all the MDN’s components.

Why VNMT for noisy UGC? Variational ap-
proaches for NMT have been reported to act as
regularizers introducing the prior distribution noise
and thus increasing robustness and reducing over-
fitting (Zhang et al., 2016; Kumar and Poole, 2020).
On the other hand, McCarthy et al. (2020) reported
higher performance on both low and high resource
scenarios, compared to an standard Transformer,
as well as improvements when training using noisy
data, and notably, using source-side monolingual
corpora via a variational reconstruction loss term.

Recently, transformer-based VNMT models
have also proved helpful for OOD evaluation, by
identifying texts that are out of the training data
distribution (Xiao et al., 2020) and improved NMT
performance under such evaluation conditions (Se-
tiawan et al., 2020).

In this work we address noisy UGC translation
in zero-shot OOD scenarios using VNMT in order
to study whether its distributional-shift robustness
holds for such texts.

3 Our approach: extending variational
methods for robust MT

For this work, we have drawn inspiration from
SketchRNN (Ha and Eck, 2018) and recurrent
World Models (Ha and Schmidhuber, 2018), both
featuring a variational encoder-decoder architec-
ture for modeling the input sequences, while em-
ploying a recurrent MDN decoder to produce a
continuous generative variational posterior. We
have adapted to use Transformer layers as encoder

and generator, while training the distribution in
a end-to-end manner with our usual parallel cor-
pora. To this end, we employ a reparametrized
form of the multiple Gaussian priors for sampling
(Kingma and Welling, 2014). In addition, we study
two mixing coefficient computations, i.e. a vanilla
non-latent version using ‘softmax’ (Equation 5)
and a relaxed categorical variational method by the
means of Gumbel-softmax sampling (Equation 6).

3.1 Model

VNMT-MDN'’s architecture in Figure 1, features a
variational encoder that trains a latent representa-
tion to be fed to the decoder, which in turn, condi-
tions an MDN, that is sampled to obtain the model’s
output. Backpropagation of the gradients is per-
formed in an encoder-decoder end-to-end training
fashion. The models have been integrated to the
OpenNMT-py (Klein et al., 2018) framework h
For all VNMT models, we use a KL annealing
schedule as in Ha and Eck (2018). We use the
posterior’s mean for inference during evaluation.

3.2 Encoder

According to our Transformer Base baseline
architecture from (Vaswani et al., 2017), the en-
coder is composed by a 6-layered Transformer
Base encoder, which output is feed to a 128-
dimensional variational network, that estimates the
final latent hidden encoded vector.

In Figure 5, we show the Transformer and
variational encoding latent state (z) as being es-
timated (p(z|x)) approximating the posterior’s
mean and standard deviation, both learned using
the reparametrization trick.

In order to be comparable to the recently intro-
duced VNMT-NF (Setiawan et al., 2020), we also
report results for our VNMT model extending the
encoder’s variational network with 4-flows Normal-
izing Planar Flows (PF) (Rezende and Mohamed,
2015)2. Other autoregressive normalizing models,
such as Sylvester Flows (van den Berg et al., 2018),
are available and could prove interesting for higher
capacity. However, we decided to only address PF
since they are the most simple solution with com-
parable performance improvement as other more
complex flow models (Setiawan et al., 2020).

Similarly to VNMT-NF, we mix the last Trans-
former layer output to the latent vectors using a

'Code will be released upon publication

2Using the implementation from https://github.
com/riannevdberg/sylvester—flows
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Figure 1: VNMT-MDN architecture overview.

gating mechanism, and a feedforward network in
order to upscale the latent representation dimen-
sionality and match the Transformer Base de-
coder number of dimensions (i.e, from 128 to 512);
but unlike this model, we do so for both the encoder
and decoder blocks’ outputs since we introduce
variational networks on both sides.

3.3 Decoder

The Transformer decoder’s last layer output is
passed to a 128-component MDN, with learnable
parameters ¢, encoding the mean and standard
deviation of each one of these multivariate gaus-
sian components; and 7, which contains the prob-
abilities of the categorical distribution that gener-
ates the mixing coefficient for each component.
We train the MDN by variational inference using
reparametrized sampling, similarly to our varia-
tional encoder network. As in our VNMT baseline,
VNMT-NF, we dropped the contribution of the tar-
get, ¥, to the posterior ¢4( 2|, y), which has been
reported to result in simpler systems with higher
performance (Eikema and Aziz, 2019).

3.4 Monolingual reconstruction loss

We use the variational autoencoder (VAE) (Kingma
and Welling, 2014; Rezende et al., 2014) as a tool
to explore a semi-supervised approach, as done
in Zhao et al. (2019), and performed experiments
adding a source-side reconstruction loss term, ac-
cording to Equation 7. This model is trained by
sampling the approximated posterior distribution
(po(z|z)) via variational inference, represented as
the blue arrow in Figure 5 in the appendix.

= B~y (zl2)[log(pe(x|2)]
—Drr(g5(z]z) || po(2))

Concerning our monolingual source-side data,
we only use the source sentences contained in the
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training datasets to be able to unequivocally assess
the advantages of this auxiliary task only, ruling
out the impact of supplementary monolingual data,
although the latter could arguably be the main in-
terest of such training configuration.

4 Experiments

Datasets We trained our VNMT models, namely,
VNMT-NF, VNMT-MDN and VNMT-MDN-NF,
and our non-latent backbone architecture,
Transformer Base, on two different Fr-En
canonical parallel corpora: a combination of
WMT training sets, and OpenSubtitles’l8
(Lison et al., 2018). We used BPE tokenization
(Sennrich et al., 2016) with 16K merge operations
for all systems and, as stated in Section 3.4, we
constrained our monolingual data, used in the
semi-supervised training setup, to the French
sources of the parallel training corpora.

We use the PFSMB (Rosales Nuifez et al., 2019)
and MTNT (Michel and Neubig, 2018) UGC test
sets. In addition, as a complementary evaluation
resource employed to probe our neural representa-
tions in Section 7, we use the PMUMT corpus (Ros-
ales Nuiez et al., 2021), which contains 400 anno-
tated and normalized Fr-En UGC sentences. We
have used the 400 original French noisy UGC sam-
ples and their corresponding fully normalized ver-
sion, which we refer to PMUMT Noi sy and PMUMT
Norm, respectively. For detailed information on
training and test corpora, please refer to Section A
in the appendix.

Protocols All the MT results are reported using
BLUE (Papineni et al., 2002), specifically, SACRE-
BLEU (Post, 2018) using the ‘int1’ tokeniza-
tion, after detokenizing the systems’ outputs. We
have conducted an ablation test of our proposed
VNMT-MDN-NF system and show the impact of



our architecture’s design over MT performance
across our different test sets. We also performed ex-
periments by incorporating a reconstruction objec-
tive function, according to Section 3.4, and denoted
in Table 1 with the prefix Mono—. All experiments
were done on a single training run and a beam 5
has been used for evaluation.

We have chosen, as initial experimental configu-
ration, 7 = 1.0 for the Gumbel softmax sampling,
which was selected mainly aiming to avoid artificial
gradient scaling during backpropagation, directly
caused by this coefficient (c.f. Equation 6), while
being relatively larger than O in order to introduce
variability to the sampling process.

Finally, we present a series of visualizations
and metrics to characterize how VNMT-MDN-NF
behaves when processing UGC during evalua-
tion, in order to give further insights of its ro-
bustness capabilities compared to the VNMT-NF
and Transformer baselines, by resorting to the
learned latent neural representations’ space.

5 Results

In this section we present the main MT results to
study MT performance of our methods.

5.1 MT scores

In Table 1, we display the MT BLEU metric
scores of our VNMT-MDN~-NF systems compared
to the baselines and to ablated versions of our pro-
posed architecture. We can notice that our com-
plete VNMT-MDN-NF system consistently outper-
forms both VNMT-NF and Transformer base-
lines on UGC test sets PFSMB and MTNT. We
obtained mitigated results overall for canonical
OOQOD tests: when training on OpenSubtitles,
the newstest’14, both VNMT systems,
VNMT-MDN-NF and VNMT-NF underperform the
Transformer baseline; whereas we report a sub-
tle improvement on the OpenSubTest canoni-
cal OOD in the WMT training setup. Regarding
in-domain MT performance, we noticed a sys-
tematic improvement of VNMT, where our ap-
proach, VNMT-MDN-NF, seems to perform best,
except for newstest’ 14 when training on WMT,
for which VNMT-NF achieves +0.1 BLEU more
than the full VNMT-MDN-NF architecture. We
also studied the impact of the latent vector dimen-
sionality, by comparing 512 and 128, for which
the former showed higher scores when translating
the MTNT and OpenSubTest when training on

OpenSubtitles, and unchanged performance
for the WMT training data conditions.

In order to keep number of parameters and latent
dimensions comparable across models, we have
chosen VNMT-MDN -128-128 as a backbone for
the final architecture, VNMT-MDN-NF. Thus, we
kept 128 dimensions as selected by Setiawan et al.
(2020).

By looking at the results of the ablated versions
of VNMT-MDN-NF (indicated in the table by an
indentation with respect to the corresponding com-
plete architecture), we can notice that, overall, we
obtain the best BLEU scores across all test sets
for the full VNMT-MDN-NF version. As interest-
ing mixed results, we can highlight the cases for
static latent representation (z static), where instead
of sampling from the learned distributions, we re-
trieve their mean as output, and which showed
slightly better BLEU scores when translating the
MTNT and newstest’ 14 test sets, with +1.2 and
+0.1 BLEU improvement, respectively. This might
be explained by a more stable training when using
the mean of the distribution.

Finally, we can notice the overall highest per-
formance of VNMT-MDN-NF, which employs our
VNMT-MDN architecture and adds 4 normalizing
PF, and that we compare to its corresponding
VNMT-NF version, matching both in latent dimen-
sions number, and number and type of flows. Re-
garding this BLEU comparison, it is interesting to
note that using a categorical variational version of
the mixing coefficients, proved to be generally a
better design option than the default MDN ‘soft-
max’ way of determining such coefficients (7 non-
latent, in the table), only performing better for
the newstest’ 14 test set when training on the
OpenSubtitles corpus. Following the same
trend, the WMT training data configuration also
showed improvements when using the Gumbel-
softmax version, for which +0.8 and +0.3 BLEU
score improvement were obtained for both the
PFSMB and MTNT UGC test sets, respectively.

We have also obtained a consistent loss of perfor-
mance compared to Transformer Base on the
OpenSubtitles training configuration when
translating the canonical OOD newstest’ 14,
which could be explained by the considerable
longer sentences of the latter compared to the train-
ing data (3.5 times on average, c.f. Table 4 in the
appendix). These results suggest that the VNMT
models used in this work could make bigger the dif-



WMT

OpenSubtitles

PFSMB' MINT' News® OpenSubTest PFSMB' MINT' News OpenSubTest ® # params.

Transformer Base 15.4 21.2 27.4 16.4 27.6 28.9 26.8 31.4 69M
VNMT-MDN -512-128 15.3 21.6 28.0 16.5 28.2 28.6 26.0 31.5 140M
VNMT-MDN -128-128 153 21.6 28.0 16.5 28.3 28.8 26.1 31.2 7IM
7 static 16.5 20.9 28.0 16.4 28.1 29.3 26.2 31.1 T7IM
-MDN 16.5 20.9 27.8 16.6 27.7 28.7 26.2 31.2 73M
VNMT-MDN-NF 16.6 21.3 27.8 16.5 284 29.2 26.4 31.5 7IM
7 non-latent 15.8 21.0 27.8 16.4 28.1 28.5 26.6 31.3 7IM
-MDN 13.6 21.5 27.7 16.6 279 28.7 26.2 31.2 T74M
Mono-VNMT-MDN-NF 15.8 21.8 28.0 16.5 29.3 28.7 26.2 31.6 7IM
VNMT-NF (Setiawan et al., 2020) 15.5 214 279 16.4 28.0 29.0 26.4 31.4 73M

Table 1: BLEU test scores for our models and ablation variants. The 1 symbol indicates the UGC test sets, and ¢ in-domain test
sets. VNMT—-MDN —512-128 stands for the model with a 512-dimensional latent space and 128 MDN components, VNMT—-MDN

-128-128 to its 128-dimensional latent space version.

ficulty of translating sentences substantially longer
than those of the training data.

As limitations for our models and experimental
setup, we cannot generalize our findings for other
language pair nor backbone MT architectures.

On the contrary, we achieved slightly better re-
sults for the same scenario, when training on WMT
and evaluating OpenSubTest, where training
sentences are 4 times longer that those of the test.

Posterior collapse Comparing VNMT-MDN—-NF
and its ablated version system removing the MDN
module, both trained on OpenSubtitles and
when evaluating the corresponding in-domain test
set (OpenSubTest), we have calculated the av-
erage KL divergence of the variational decoder’s
MDN, which resulted in 0.21 and 0.15, respec-
tively. Performing the same analysis for the WMT
training and evaluation configuration, the KL diver-
gence resulted in 0.38 for the full VNMT-MDN-NF
and 0.33 for its version removing the MDN block.
These results suggest that our proposed architecture
is less prone to suffer from the posterior collapse
phenomenon, and this could be explained by the
use of several independent posterior distributions
when including MDN in our model. This could
also explain why, in Table 1, our systems employ-
ing MDN have an overall higher BLEU results than
the aforementioned ablated system where we re-
move this component.

Semi-supervised monolingual joint training
In Table 1 we report results with our proposed
Mono—-VNMT-MDN-NF system, by using source-
side monolingual corpora reconstruction loss terms,
as discussed in Section 3.4. Both WMT and
OpenSubtitles training configurations shown
an improvement of +0.2 and +0.1, respectively,
when translating their corresponding in-domain test

sets. However, for the canonical OOD tests, the lat-
ter lost performance on the newstest’ 14 (from
26.4 to 26.2 BLEU), aggravating this phenomenon
reported previously; whereas the former benefited
of a slight improvement on OpenSubTest. The
results are rather inconsistent across the UGC test
sets, which do not show a clear trend of the most
performing choice across the two training datasets
MT systems. Specifically, when adding the re-
construction loss term, WMT showed a gap of -1.2
and +0.5 BLEU, for PFSMB and MTNT, respec-
tively, whereas OpenSubtitles’s performance
changed +0.9 and -0.5 BLEU correspondingly.

6 Qualitative analysis

In Table 5 in the appendix, we display some UGC
translation examples. We notice a general trend
of VNMT-MDN-NF (MTX in the table), outper-
forming the baselines and producing overall longer
predictions when rare tokens or letter repetition
are present in the input. Such are the cases for
®, with inconsistent-cased tokens, @ contains re-
peated characters and words, @ with a out-of-
vocabulary (OOV) character (‘*’), and @ presents
User mentions and hashtags with the OOD charac-
ters ‘@’ and ‘#’.

7 Learning representations analysis

7.1 Latent space

Next, we present supplementary visualization and
metrics to assess how VNMT builds more robust
learning representations compared to the baseline.
In this regard, McCarthy et al. (2020) showed
that the learned variational embeddings are not
able to separate UGC from canonical texts. This
observation follows the reported ability of Deep
Learning architectures to implicitly learn to clus-



(a) VNMT-NF (b) VNMT-MDN-NF

Figure 2: T-SNE representation of the latent space for noisy
and normalized versions of PMUMT sentences at evaluation.

ter when training specific tasks (Carbonnelle and
Vleeschouwer, 2021). We propose another ap-
proach to this problem: we report the cosine simi-
larity histogram between FR noisy sentences and
their normalized version, taking advantage of the
PMUMT presented in Section 4. To obtain these
embeddings, we fed its 400 original noisy UGC
sentences and their corresponding 400 fully normal-
ized versions to our VNMT baseline, VNMT—-NF,
and to VNMT-MDN-NF.

Overview The average cosine similarity between
both corpus’ versions favors VNMT-MDN-NF with
0.36 compared to VNMT-NF, with 0.26, suggesting
that the former provides more robustness for the
inner learning representations of UGC.

In Figure 2, we show the t-SNE (van der Maaten
and Hinton, 2008) 2-dimensional visualization of
both VNMT systems, showing the latent encoding
of noisy and normalized PMUMT sentences. We
can notice that the VNMT-NF latent representa-
tions present a series of outliers when noisy sen-
tences abound, contrary to the VNMT-MDN-NF rep-
resentations. In this set of 43 outlier observations
(roughly 5% of the 800 plotted sentences’ repre-
sentation), 88% (37) are the original -noisy- UGC
samples of PMUMT.

Latent space recovering from noise Since it
seems hard to draw conclusions from translation
performance distribution in the latent space, in Fig-
ure 3 we plot the same dimensional reduced la-
tent space and we encode color for their bins of
cosine similarity of the hereby shown noisy sen-
tences to their corresponding normalized version.
The bins for both plots were chosen using parti-
tions’ delimiters [0.30,0.44,0.57]. This was done
to compare both latent spaces with the same simi-
larity values’ bins, however, VNMT-MDN-NF has
overall higher metric quantiles ([0.24, 0.36,0.45])
compared to VNMT-NF ([0.19, 0.30, 0.40]), which
suggests that the VNMT-MDN-NF latent represen-

(2) VNMT-NF

(b) VNMT-MDN-NF

Figure 3: T-SNE representation of the latent space for noisy
PMUMT sentences during evaluation. Color portrays the bins
of cosine similarity between noisy and normalized versions.
Bin 1 contains the samples with the least similarity value.

tations are more robust to UGC.

7.2 More robust embeddings for UGC

We also studied the source embeddings of our mod-
els to explore how VNMT can contribute to more
robust embeddings that could prove valuable for
transfer learning methods. We compare noisy and
normalized versions of the FR PMUMT source side
to assess whether they have a closer representation.

Noisy vs normalized data We now study the
embeddings learned by VNMT-MDN-NF and as-
sess how noise affects them compared to those
of the baselines. We computed the cosine sim-
ilarity between corresponding PMUMT noisy and
normalized samples for the embedding space
learned by Transformer Base, VNMT-NF and
VNMT-MDN-NF, which resulted in 0.706, 0.744
and 0.750, respectively. This quantifies how
VNMT can enforce learning more robust source
representations since noisy UGC sentences are
more related to their normalized version than for
the baseline. We display the source embeddings
for the three NMT systems in Figure 4 and we
mark the noisy and normalized corpus’s versions in
red and blue, respectively. Each observation in the
graph corresponds to the embedding of each sen-
tence, computed by taking the average of the token-
level embeddings. We can notice how both VNMT
systems have a tendency to separate noisy and nor-
malized sentences compared to Transformer
Base, while having, higher cosine similarity.

Transfering learning representations As dis-
cussed above, in Figure 4 we noticed that VNMT
seems to enforce noisy morphology modeling to
the Transformer’s embeddings in an implicit way.
This motivated us to study whether the information
in such learning representations can be used by
the Transformer Base backbone model and



(a) Transformer
Base (0.706)

(b) VNMT-NF
(0.744)

(c) VNMT-MDN-NF
(0.750)

Figure 4: T-SNE representation of the encoder embeddings for
noisy and corresponding normalized PMUMT sentences during
evaluation. Average cosine similarity between corresponding
noisy and normalized version of the PMUMT evaluation frame-
work are reported between parentheses for each NMT system.

PFSMB' MINT' News OpenSubTest ®
Transtormer g6 289 268 314
Pretrained init. 29.0 28.2 26.2 313
Frozen embs. 28.4 28.9 26.8 31.3
Fine-tuned 28.4 28.9 26.5 314

Table 2: Using VNMT-learned embeddings for transfer robust
learned representations to the Transformer Base model.

benefit from improved robustness while removing
the direct latent space contribution, and notably,
with the same number of parameters and archi-
tecture as Transformer Base. Thus, in Ta-
ble 2, we report scores for the Transformer
Base model trained on OpenSubtitles, by ei-
ther initializing the VNMT-pretrained embeddings
and fine-tuning (FT) the system. We have per-
formed FT using the same data configuration as
in OpenSubtitles and continued training for 3
epochs from the Transformer Base model in
Table 1 while replacing the embeddings by their
VNMT-learned version’s weights.

Results in Table 2 provide evidence that VNMT
enforces more robust embeddings, which per-
form significantly better over the PFSMB UGC
test set compared to the baseline, the system
Frozen embs. giving the most consistent re-
sults over UGC. This system also results in keep-
ing goof perfroamnce over the newstest’ 14
canonical OOD test set, while taking advantage
of an increased robustness to UGC. Such an im-
provement alleviates the loss of performance over
newstest’ 14 in our previous results, which was
the only test set for which VNMT-MDN-NF un-
derperformed the non-VNMT baseline in Table 1.
These results indicate that VNMT promotes robust-
ness to the NMT backbone and could be useful for
conceiving more robust pretrained embeddings.

PFSMB ' f

MTNT 4Square
(Blind)  (Blind) e
Transformer Base 19.7 25.0 21.9
+FT emb. 19.4 25.3 22.0
VNMT-NF 20.0 25.3 22.0
VNMT-MDN-NF 20.0 26.4 22.5

Table 3: Using VNMT FR source embeddings for transfer
robust learned representations.

8 Blind test sets scores

We now evaluate our best performing model
(VNMT-MDN-NF trained on OpenSubtitles)
on the blind test sets described in Section 4, trans-
lating another set of tests to assess whether our
approach proves useful for generalization over
different types of UGC. We have also included
the 4Square corpus (Berard et al., 2019) to
validate our VNMT system on other domain of
UGC (restaurant reviews). We also display the
results when using the VNMT-NF baseline and
the Transformer Base model to assess im-
provement of our proposed architecture. We re-
port such results in Table 3, where we can see that
VNMT-MDN-NF consistently outperforms the base-
lines for our blind UGC test sets. It is interesting to
notice that, although the in-domain performances
for these 3 systems are very similar (between 31.4
and 31.5 BLEU in Table 1), the performance gap of
blind UGC test sets is considerably larger, i.e. +0.8
BLEU in average to the non-latent baseline.

9 Discussion and perspectives

We introduced a novel VNMT architecture that
provides improved performance and robustness
over an state-of-the-art VNMT model, specifically
when translating French UGC. An ablation study
and blind test sets evaluation validate our architec-
ture choice in regards of robustness capabilities for
such texts. In addition, by exploring the learning
representations trained by our VNMT model, and
through conducting transfer learning experiments
with such, we investigate the robustness brought to
UGC, and show VNMT enforces such property to
the backbone model, bringing a promising avenue
for more robust pretrained neural learning repre-
sentations. We report promising results when using
an accessory source reconstruction loss to improve
robustness, which we plan to study in the future by
using other sorts of monolingual data and training
protocols, such as denoising autoencoders.
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Appendix
A Data

Training Data Because of the lack of a large par-
allel data set of noisy sentences, we train our sys-
tems on ‘standard’ parallel data sets: WMT (Bojar
et al., 2016) and OpenSubtitles (Lison et al.,
2018). A subset of the latter has been randomly
sampled to match the former in number of tokens in
order to keep the training data quantity conditions
comparable for both setups. WMT contains canon-
ical texts (2.2M sent.) and OpenSubtitles
(9.2M sent.) is made of informal dialogues found
in popular sitcoms. While OpenSubtitles is,
intuitively, closer to the kind of content generated
by users online, it must be noted that UGC dif-
fers significantly from subtitles in many aspects: in
UGC emotion are often denoted with repetitions,
there are many typographical and spelling errors,
and sentences may contain emojis that can even
replace some words (e.g. ® can stands for the verb
‘love’ in sentences such as ‘1 ® you’).

UGC Test Sets To evaluate the different NMT
models, we consider two data sets of manually
translated UGC: MTNT (Michel and Neubig, 2018)
and the Parallel French Social Media Bank corpus
(PFSMB) (Rosales Niuiiez et al., 2019)3 which ex-
tends the French Social Media Bank (Seddah et al.,
2012) with English translations. These two data
sets raise many challenges for MT systems: they
notably contain characters that have not been seen
in the training data (e.g. emojis), rare character
sequences (e.g. inconsistent casing or usernames)
as well as many OOVs denoting URL, mentions,
hashtags or more generally named entities (NE).
Most of the time, OOVs are exactly the same in the
source and target sentences.

We certify that we use all data collections in the
way they are intended to, following their licence
and in aggreement with our Institutional Review
Board.

Detailed statistics on our used corpora can be
found in Table 4.

B Training models

All systems are trained using a batch size of
4096 tokens, using the Adam optimizer (Kingma
and Ba, 2015) and the Noam learning rate sched-
ule (Vaswani et al., 2017). Training for, at

3https ://gitlab.inria.fr/seddah/
parallel-french-social-mediabank
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https://doi.org/10.1609/aaai.v33i01.33015885
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https://gitlab.inria.fr/seddah/parallel-french-social-mediabank

Corpus #sentences #tokens ASL TTR  #chars Corpus #sents #tokens ASL TTR  #chars
train set UGC test
WMT 2.2M 64.2M 29.7  0.20 335 PFSMB 771 13,680 17.60 0.32 116
OpenSubtitles 92M  577M 6.73  0.18 428 MTNT 1,022 20,169 19.70 0.34 122
test set UGC blind
OpenSubTest 11,000 66,148 6.01 023 111 PFSMB 777 12,808 16.48 037 119
newstest’ 14 3,003 68,155 2270 0.23 111 MTNT 599 8,176  13.62 038 127

Table 4: Statistics on the French side of the corpora used in our experiments. TTR stands for Type-to-Token Ratio, ASL for

average sentence length.

Q

Encoder Decoder

Figure 5: Directed graph of our encoder-decoder model vari-
ational inference. Dashed lines represent the variational ap-
proximation for the posterior distribution, and solid lines stand
for the generative models. The blue arrow depicts the gen-
erative networks for source-side monolingual reconstruction
distribution p(x|z).

most, 300K training iterations on a single Nvidia
V100 took roughly 60 hours to converge for the
VNMT-MDN-NF models.

C Effects of the Gumbel-softmax
sampling temperature

In addition, we evaluate the impact of tempera-
ture 7, presented in Equation 6, in order to assess
whether the sparsity of mixing coefficients favors
a given type of texts among out test sets. As we
noticed in Figure 7, a main MDN component is
consistently the most important for the translations.
This can be explained for the temperature we chose
by default (1.0) and its desired effect of having less
variance in the gradients that are propagated for
each components’ distribution. In this section we
explore the impact of several temperature values
to enforce more dense samples from the relaxed
categorical mixture distribution. In Table 6, on
one hand, we can see that smaller values to tem-
perature 7 seem to improve the model for canon-
ical test sets, achieving the best performances for
OpenSubTest and newstest’ 14, at the cost
of negatively impacting performance over UGC
test corpora. On the other hand, These results show
that correctly setting the temperature parameter can
be useful to translate different types of test sets and,

12

for future work in this research track, temperature
annealing schedules during training (Jang et al.,
2017) or choosing a different value of temperature
for evaluation phase, could be promising ideas to
work with in order to develop more robust and all-
purposed NMT systems.

D How do MDN’s components react to
UGC?

We now proceed to analyze and visualize how the
MDN mixture coefficients react when translating
our different test sets. In order to do so, in Figure 6
we report results for the canonical test sets, the
normalized PMUMT corpus, and its noisy original
UGC version. Each bar of the Wind Rose diagram
represents one of the 128 independent trained dis-
tributions’ mixture weights, which have been nor-
malized and scaled across the four graphics, and
where the 7th MDN component seems to be con-
sistently the one that drives most of the decoding
for the presented experiments. Furthermore, we
can notice that most mixing coefficients are, for
the most part, have around 50% probability of con-
tributing to the final inference mixture, despite not
enforcing this behavior with any specific method
(e.g. dropout). On the other hand, the visualiza-
tion suggests that both yellow (50-60%) and blue
components (30-40% of activation) are variable
across test sets, being very similar between PMUMT
Norm and OpenSubTest, which could indicate
that the mixture components are learning to en-
code different types of texts, potentially working
as an implicit topic modeling module. Regarding
the visualization when translating PMUMT Noisy,
the main MDN component identified above, seems
less important even when compared to the out-of-
domain newstest’ 14 set, which suggests that
the MDN uses more dense representations when
processing noisy texts.

In parallel, in Table 7 we display the covariance
of these coefficients’ distributions between the com-



Src

000000OUUUUUUUIIIIIII ZLATAN IBRAHIMOVIC SIGNE UN DOUBLE A LA 90eme MINUTE ET

ENVOI LE #PSG EN FINALE!!!!
ref YYYYYYYEEEEEEESSSSSSSS ZLATAN IBRAHIMOVIC PERFORMS A DOUBLE AT THE 90th
MINUTE AND SENDS THE #PSG TO FINAL!!!! 1-2!1!!
TX O0O00O00000O0O0OUUULL ZLATAN IBRAHIMOVYSIG A DOUBLED IN THE 90th MINUTE
NF O0O00O00O0O0O0OOUUUHIZLATANIBRAHIMOVIC SIGNS A DOUBL AT THE 90th MINUTE
MTX OOOOOOOOOUUUUII ZLATAN IBRAIMOV SIGNS A DOUBLED ON THE 90th MINUTE!
@ src ne spooooooooilez pas teen wolf non non non et non je dis non
ref don’t spo0000000il teen wolf no no no and no I say no
X Don’t spoil it.
NF No, no, no, no, no, no, no, no.
MTX  Don’t spoooooooil. Don’t. Don’t.
® src Roman Godfrey a regardé Teen Wolf (2011) « SO3E17 Silverfinger et retourne dessiner des ronds sur son gitan
préféré.
ref Roman Godfrey watched Teen Wolf (2011) » SO3E17 Silverfinger and is back drawing circles on his favorite
gypsy-
TX Roman Godfrey looked at Teen Wolf.
NF Roman Godfrey looked at Teen Wolf.
MTX Roman Godfrey watched Teen Wolf (2011), this is SO3E17 Silverfinger and goes back to drawing a round
about his favorite gypsy.
@ src Vient de perdre une grosse heure a #flappybird cc @JohnDoe533 @JohnDoe534 @JohnDoe535
ref Just lost a big hour on #flappybird cc @JohnDoe533 @JohnDoe534 @JohnDoe535
TX #Flappybird cc #JohnDoe53 #JohnDoe53 #53 #1
NF #Flappybird c@JohnDoe5333)@JohnDoe53 @JohnDoe53
MTX  Just lost a huge hour at #flappybird cc at John Doe53 #John John Doe

Table 5: b Examples from the PFSMB UGC corpus showing the Transformer, VNMT-NF and our model, VNMT-MDN-NF,
predictions. NF and MTX stand for the VNMT-NF (Setiawan et al., 2020) and VNMT-MDN-NF VNMT systems, respectively.

B OpenSubtitles
PFSMB' MTNT' News OpenSubTest °
VNMT-MDN-NF (7 = 1.0) 28.4 29.2 26.4 31.5
(7=0.2) 26.6 28.7 25.9 31.4
(7=0.5) 28.0 28.7 26.5 31.7
(7=2.0) 28.1 28.7 26.0 31.4
(7=5.0) 27.3 28.3 26.0 31.4
(7=10.0) 27.4 279 26.4 31.4

Table 6: Bleu test scores for our models and ablation variants.
The T symbol indicates the UGC test sets, and ¢ in-domain
test sets.

binations of their values when translating different
kind of texts, along with the standard deviation and
sparsity to describe how the MDN’s components
behave.

Comparing the visualization in Figure 7, we
can notice how the noisy UGC PMUMT and the
out-of-domain newstest’ 14, diverge from the
in-domain OpenSubTest and normalized UGC
PMUMT corpus. This correlation is evidenced in
the results in Table 7, where PMUMT noisy has
the lowest score when compared to every other
corpus, even if its normalized version seems to
be the most correlated to the in-domain evalua-
tion. Specifically, PMUMT Noisy is the least cor-
related to in-domain OpenSubTest and out-of-
domain newstest’ 14 corpora, which points to
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the MDN reacting differently to content domain
and UGC specificities in the noise; this observa-
tion is also supported by the associated figure. It
is also interesting to notice that, according to the
standard deviation and sparsity values, the active
MDN components are more dense and variable for
out-of-domain evaluation conditions, for the same
Gumbel sampling temperature value.
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Figure 6: Average MDN mixture weights for test sets of different natures.

PMUMT Noisy News OpenSubTest  std.  sparsity
PMUMT Norm 8.16 9.71 13.05 1.2e-3  0.387
PMUMT Noisy — 7.72 7.86 1.0e-3  0.382
News — — 9.42 1.1e-:3  0.384
OpenSubTest — — — 1.1e-3 0.387

Table 7: Covariance between MDN mixture coefficients during inference for different types of test sets and sparsity for each set.

std. stands for the standard deviation.
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