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ABSTRACT

The problem of off-policy evaluation (OPE) in reinforcement learning (RL), which
evaluates a given policy using data collected from a different behavior policy, plays
an important role in many real-world applications. The OPE under the model of
episodic non-stationary finite-horizon Markov decision process (MDP) has been
widely studied. However, the general model-free importance sampling (IS) methods
suffer from the curse of horizon and dimensionality, while the improved marginal
importance sampling (MIS) can only be restrained to the case where the state space
S is sufficiently small. The model-based methods often have limited scope of
application. To find a widely-applicable OPE algorithm when S is continuous
and high-dimensional that avoids the curse of horizon and dimensionality, which
means the error of the estimator grows exponentially with the number of horizon
H and the dimension d of the state space S, we apply the diffusion Schr"odinger
bridge generative model to construct a model-based estimator (CDSB estimator).
Moreover, we established the statistical rate of the estimation error of the value
function with a polynomial rate of O(H2

√
d), which, to the best of our knowledge,

is one of the first theoretical rate results on applying Schr"odinger bridge to rein-
forcement learning. This breaks the restraint of the complexity of the state space
for OPE under MDP with large horizon and can be applied to various real-life
decision problems with continuous setting, which is shown in our simulation using
our method in continuous, high-dimensional and long-horizon RL environments
and its comparison with other existing algorithms.

1 INTRODUCTION

The problem of off-policy evaluation (OPE) in reinforcement learning is evaluating the average
return value of a given unknown policy (referred to as the target policy) leveraging data gathered
from a distinct behavior policy. Given the increasing need for OPE in domains like self-driving and
healthcare, the development of efficient algorithms for off-policy evaluation has emerged as a critical
priority.

Of all the OPE problems, OPE under the setting of Markov decision process (MDP) is of great
importance. For MDP-setting OPE problems, there are various, both model-free and model-based
algorithms in the literature. For model-free algorithms, the method of importance sampling (IS)
is the most representative and serves as an efficient bridge between the target policy and behavior
policy and is widely used for short-horizon OPE problems. (Precup et al., 2000; Hanna et al., 2018;
Robins et al., 2000) However, the traditional IS algorithm as well as many other model-free algorithm
(for example, Kallus & Uehara (2020)) suffers from the curse of horizon, which means the MSE
of IS estimator grows exponentially with the number of horizon H . (Liu et al., 2020; Jiang & Li,
2016; Precup et al., 2000; Thomas et al., 2015; Farajtabar et al., 2018; Guo et al., 2017; Thomas
& Brunskill, 2016) Xie et al. (2019) proposes the Marginal Importance Sampling (MIS) estimator,
reducing the dependence of the number of horizons to polynomial. However, the applicability of the
MIS estimator is limited to the case where the state space S is sufficiently small and discrete. Uehara
et al. (2020) employs minimax optimization to avoid curse of horizon and dimensionality, however
it is generally challenging to compute. It necessitates additional properties, such as the Q-function
of the MDP belonging to a Reproducing Kernel Hilbert Space (RKHS) function class, to ensure the
effectiveness of minimax optimization.
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There are also many model-based methods for MDP-setting OPE problems where the transition
functions of the MDP system are directly estimated. (Liu et al., 2018; Gottesman et al., 2019;
Hallak et al., 2015) Some model-based estimators can efficiently avoid the curse of horizon and work
well in the case that the state space is continuous. However, a common problem with model-based
estimators is that they usually require sharp conditions on the transition and policy functions, which
in turn results in a relatively small coverage of the MDP setting of the OPE problem. For example,
The model-based approach discussed in Uehara & Sun (2021), which focuses on continuous state
spaces, mandates policy functions to belong to a finite function class due to the PAC-learning bound
incorporating the term.

Generally speaking, there hasn’t been a practical algorithm for MDP-setting off-policy evaluation that
can be applied to scenarios where state space S is sufficiently large and avoids the curse of horizon
and dimensionality at the same time, while covers a wide range of MDP settings

In deep learning, a generative model describes how a dataset is generated, which empowers the
generation of a substantial volume of data that conforms to a desired distribution possible, even if the
target distribution is in a very complex space. This intrinsic capability renders generative modeling
highly relevant and applicable in the context of distribution estimation. (Liu et al., 2021; Chen et al.,
2019; Liang, 2021; Li et al., 2019; Abbasnejad et al., 2019; Zhang et al., 2020; Liang, 2018). In recent
studies, the methodology of diffusion and score-matching is widely used in generative modeling to
solve problems in image synthesis and data recovery. (Ho et al., 2020; Hyvärinen, 2005; Song &
Ermon, 2020; Song et al.; Vahdat et al., 2021; Jo et al., 2022; Dockhorn et al.; Wang et al., 2023;
Janner et al., 2022), Moreover, recent studies (Wang et al., 2021; De Bortoli et al., 2021; Winkler
et al., 2023; Shi et al., 2023) view the classical Schrödinger bridge problem (Rüschendorf & Thomsen,
1993) revised under the methodologies of machine learning (Vargas, 2021; Pavon et al., 2021) as a
generative modeling problem and uses score-based diffusion to find solutions for Schrödinger bridge
problem.

To tackle the problem that conventional density estimators cannot handle complex state and action
space, in this paper we implement the methodology of diffusion Schrödinger bridge to directly
estimate the transition functions and construct a model-based estimator (the CDSB estimator). The
idea of using generative model as transition function estimator in RL, to our knowledge, has not been
discovered in the literature. In comparison of Xie et al. (2019), our approach avoids the curse of
horizon, meanwhile it is applicable for OPE problems in continuous and high-dimensional space. In
comparison of Uehara et al. (2020) and Uehara & Sun (2021), our approach covers a wider range of
MDP settings, as it does not impose the requirement for MDP functions to belong to specific function
classes; it solely necessitates boundedness and smoothness of transition and policy functions.

Previous studies have discussed the convergence rate and asymptotic properties of the solution to
Schrödinger bridge, most of which based on the iterative propotional fitting (IPF) method of solving
the Schrödinger bridge. (Deligiannidis et al., 2021; Gibbs & Su, 2002) Instead, our paper apply
the likelihood training method to solve the diffusion Schrödinger bridge as in Chen et al. (2023b)
and Chen et al. (2023c). To derive the convergence rate under this method, we take advantage of
the score-matching error estimation in Chen et al. (2023a) and derive an total-variation error bound
using Girsanov’s theorem, which is the first likelihood training Schrödinger bridge error bound in the
literature. With this error bound, we ultimately derive an O(H2

√
d)-bound of absolute-value error

for the estimation of the value function V π under an assumption of universal score estimation error.

Contributions. We conclude our main contributions as follows. First, we introduce the diffusion
Schrödinger bridge generative model for density estimation and design an applicable algorithm to
adapt such estimator in model-based off-policy evaluation, therefore extending solveability of OPE
problems to the setting of high-dimensional and complex state and action space. Second, we prove the
quantitative statistical convergence rate for diffusion Schrödinger bridge solved by likelihood training
in total variance norm. Third, we bound the absolute value (1-norm) error of our model-based value
function estimator , which has a O(H2

√
d) convergence rate. To the best of our knowledge, this is

the first quantitative convergence result employing diffusion Schrödinger bridge into the context of
reinforcement learning.

1.1 RELATED WORK

Off-Policy-Evaluation In reinforcement learning, Off Policy Evaluation refers to accurately eval-
uating a target policy using previously logged feedback data of a behavior policy (Dudík et al.,
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2014). Importance sampling (IS) and marginal importance sampling (MIS) estimators are widely
used for OPE problems. (Precup et al., 2000; Hanna et al., 2018; Robins et al., 2000; Xie et al.,
2019) Kostrikov & Nachum (2020) uses self-normalized step-wise importance sampling for the
problem. Le et al. (2019) trains a neural network to estimate the value of the evaluation policy π by
bootstrapping from Q(s′, π(s′)). Model-based methods are also adopted as in the work of Zhang
et al., Liu et al. (2018), Gottesman et al. (2019) and Hallak et al. (2015). Uehara et al. (2020) uses
minimax optimization to solve the problem which performs well in continuous state space. A more
thorough review of the literature on OPE can be found in Uehara et al. (2022).

Schrödinger Bridge Problem The SB problem is an entropy-regularized Optimal Transport problem
introduced by Schrödinger (1932). Genevay et al. (2018) deals with SB problem in the context of
discrete distribution. Finlay et al. (2020) solves SB problem by approximating the SB solution by
a diffusion whose drift is computed using potentials. Another prevalent method for solving SB is
using Iterative Proportional Fitting which is also adopted in De Bortoli et al. (2021) to formulate a
generative model for faster generation. The convergence results for IPF have been resolved under
classical compactness assumptions as in Chen et al. (2016).

2 PROBLEM FORMULATION

Symbols and notations. We consider the problem of offline policy evaluation for a finite horizon
MDP, which is defined byM = (S,A, T,R,H), where S is a continuous state space, A a continuous
action space, Tt : S×A×S → [0, 1] is the transition function with Tt(s′|s, a) defined by probability
of transitioning into state s′ upon taking action a in state s at time t, and Rt : S × A → R is the
reward function. Rt(s, a) is the deterministic immediate reward associated with taking action a in
state s at time t, and H denotes the finite horizon. Without loss of generality, we study the case where
S = A = [0, 1]d ⊂ Rd, d ≥ 1. We use Pr{E} and E{E} to denote the probability and expectation
of an event E, E{E|F} to denote the conditional expectation of event E given the condition F .
Denote [n] to be the set of natural numbers {1, · · · , n}. Use P(p1, p2) to denote the set of all path
measures on S throughout time interval [0, T ] with p1 and p2 as its marginal densities at t = 0 and
T , n ∈ N. Denote the Kullback-Leibler divergence between p and q to be KL(p|q), and denote the
total-variation norm between p and q to be TV(p, q). For a random variable X with probability
density p, for a map f , we denote f#q the probability density of random variable f(X).

Let µ, π be policies whose output is a distribution of actions given an observed state. Make µ the
behavioral policy and π the target policy. Denote µ(a|s) the probability density function of actions
given state. Moreover, we denote dπt (st) the induced state distribution by π at time t. When t = 1,
the initial distributions are known and identical dπ1 = d0. For t > 1, dπt (st) is defined recursively as
follows:

dπt (st) =

∫
S
Pπ
t (st|st−1)d

π
t−1(st−1),

where Pπ
t (st|st−1) =

∫
A
Tt(st|st−1, at−1)π(at−1|st−1)dat−1.

Problem setup. The key to offline policy evaluation is to find an estimator V̂ π using the data collected
by the behavior policy µ and the known action probabilities to estimate the value function

V π =

H∑
t=1

∫
A

∫
S
dπt (st)π(at|st)Rt(st, at)dstdat,

where we assume π(a|s) and µ(a|s) is known for all (s, a) ∈ S × A, Rt(st, at) is unknown. The
transition distributions Tt(st|st−1, at−1) is unknown and not easy to be observed.

Different from various previous studies in this field such as (Xie et al., 2019), which focus on the case
where S and A is discrete and low-dimensional, we provide an estimator V̂ π under the condition that
S and A is high-dimensional and continuous. In particular, we set S = A = [0, 1]d, d ≥ 1. Our main
strategy is constructing model-based estimators, that is, directly estimating the transition function
Tt(st|st−1, at−1).
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3 MODEL-BASED CONDITIONAL DIFFUSION SCHRÖDINGER BRIDGE
ESTIMATOR

To construct model-based estimators for OPE problem, one has to provide reliable estimation
T̂t(st|st−1, at−1) of the transition function Tt(st|st−1, at−1) for all t = 1, · · · , H . Consequently,
we get an estimator for the value function for any given target policy π:

V̂ π =

H∑
t=1

∫
A

∫
St

R̂t(st, at)π(at|st)P̂π
t (st|st−1) · · · P̂π

2 (s2|s1)d0(s1)ds1 · · · dstdat, (1)

where

P̂π
t (st|st−1) =

∫
A
T̂t(st|st−1, at−1)π(at−1|st−1)dat−1, t = 2, · · · , H, (2)

and R̂t(st, at) being estimation of the reward function.

In our work, we will construct the estimation T̂t(st|st−1, at−1) using conditional diffusion
Schrödinger bridge to get our estimator V̂ π as above.

3.1 SCHRÖDINGER BRIDGE PROBLEM FOR DENSITY ESTIMATION

The classical Schrödinger Bridge problem (Föllmer, 1988) in continuous time setting aims to find a
path measure on time interval [0, T ] that achieves a minimum Kullback-Leibler divergence relative to
a reference density under given marginal conditions, that is, to find Q⋆ ∈ P(pdata, pprior) such that

Q⋆ = argmin{KL(Q|P ) : Q ∈ P(pdata, pprior)}, (3)

where P ∈ PN+1 is a reference path measure on S in [0, T ] that can be designed, pdata is the target
distribution we aim to estimate, pprior is a known prior distribution. Suppose that Q⋆ is available,
then the target distribution pdata can be generated by Q⋆ using the known prior distribution pprior
and Q⋆, which means we can achieve density estimation of pdata by solving the Schrödinger bridge
problem 3.

If we set the reference density P as the path measure of the add-noise SDE in score-based generative
modeling, which is

dXr = f(Xr, r)dr + g(r)dWr, X0 ∼ pdata, r ∈ [0, T ], (4)

where f(·, r) : Rn → Rn, g(t) ∈ R are the drift and diffusion, and Wr ∈ Rn is the standard
Brownian process. Then we get the diffusion Schrödinger bridge. We denote f(Xr, r) ≡ f and
g(r) ≡ g for simplicity.

For the diffusion Schrodinger bridge, the optimality condition 3 can be characterized by two PDEs
that are coupled through boundary conditions. The result is summarized as below.

Theorem 3.1.1(Chen et al., 2021; Pavon & Wakolbinger, 1991; Caluya & Halder, 2021) Let Ψ(r,x)

and Ψ̂(r,x) be the solutions to the following PDEs:

{ ∂Ψ
∂x = −▽xΨ

⊤f − 1
2Tr(g

2▽2
xΨ)

∂Ψ̂
∂x = −▽x · (Ψ̂f) + 1

2Tr(g
2▽2

xΨ̂)
s.t.Ψ(0, ·)P̂ si(0, ·) = pdata,Ψ(T, ·)ψ̂(T, ·) = pprior.

(5)
Then, the solution to the optimization 3 can be expressed by the path measure of the forward SDE

dXr = [f + g2▽x logΨ(r,Xr)]dr + gdWr, X0 ∼ pdata (6)

or equivalently the backward SDE

dXr = [f − g2▽x log Ψ̂(r,Xr)]dr + gdWr, XT ∼ pprior, (7)

So finding the solution to the diffusion Schrödinger bridge problem is equivalent to finding solutions
Ψ(r,x) and Ψ̂(r,x) to PDE 5.
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3.2 SOLVING SCHRÖDINGER BRIDGE USING LIKELIHOOD TRAINING

Denote Zr = g▽x logΨ and Ẑr = g▽x log Ψ̂. Then the set (Zr, Ẑr) contains all the information of
the diffusion Schrödinger bridge (DSB) model by the above analysis. Suppose qr is the marginal
distribution at time r ∈ [0, T ] of the solution to the diffusion Schrödinger bridge problem 3, then the
log-likelihood of a data point x0 from pdata generated by the diffusion Schrödinger bridge is, by
definition, log q0(x0). We have the following theorem.

Theorem 3.2.1(Chen et al., 2023b) The log-likelihood of the DSB model (Zr, Ẑr) at data point x0

can be expressed as

log q0(x0) = E[log qT (XT )]−
∫ T

0

E[
1

2
∥Zr∥2 +

1

2

∥∥∥Ẑr

∥∥∥2 + ▽x · (gẐr − f) + Ẑ⊤
r Zr]dt.

Consequently, we can maximize LSB(x0; θ, ϕ), which shares the same expression as log q0(x0)

above with Zr ≈ Z(r,x; θ) and Ẑr ≈ Ẑ(r,x; θ) are approximated by parameterized models, in
order to solve the DSB problem. By Theorem 11 of Chen et al. (2023b), using the symmetric property
of the Schrödinger bridge, we can convert maximizing LSB(x0; θ, ϕ) to maximizing the following
two objectives:

L̃SB(x0;ϕ) = −
∫ T

0

EXr∼6[
1

2

∥∥∥Ẑ(r,Xr;ϕ)
∥∥∥2 + g▽xẐ(r,Xr;ϕ) + Z⊤

r Ẑ(r,Xr;ϕ)]dr, (8)

L̃SB(xT ; θ) = −
∫ T

0

EXr∼7[
1

2
∥Z(r,Xr; θ)∥2 + g▽xZ(r,Xr; θ) + Ẑ⊤

r Z(r,Xr; θ)]dr. (9)

3.3 CONDITIONAL LIKELIHOOD TRAINING

The most straightforward way to apply DSB to our model-based OPE estimator is to construct
a diffusion Schrödinger bridge with target distribution pdata(st) = Tt(st|st−1, at−1) for each
t ∈ {2, · · · , H} and each (st−1, at−1) ∈ S × A, which is not computational achievable when S
and A are continuous. Instead, we view Tt(st|s, a) as a conditional probability density function
conditioned on parameter (t, s, a), which can further be included in the training parameters as
ϕ̃ = (ϕ, t, s, a) and θ̃ = (θ, t, s, a). Chen et al. (2023c) provide a practical algorithm implementation
using a conditional mask (see Section 5.2 of Chen et al. (2023c)) , which is an alternate training of
the following loss with masks,

L̃SB(x0;ϕ) = −
∫ T

0

EXr∼6[
1

2

∥∥∥Ẑ(r,Xr;ϕ) ◦M
∥∥∥2 + g▽x[Ẑ(r,Xr;ϕ) ◦M]

+ [Zr ◦M]⊤[Ẑ(r,Xr;ϕ) ◦M]dr,

(10)

,

where M is the target mask that has element 1 for the target index and 0 otherwise.

Meanwhile, in order to empirically generate data from SDEs, in practice we will make discretization
for the time interval [0, T ]. An N -step discretization is to divide [0, T ] into [kh, (k + 1)h], k =
0, · · · , N − 1, where the step size h := T

N .

Using the conditional maximum likelihood training of the DSB problem, we finally get the es-
timation T̂t(st|st−1, at−1) of the transition function Tt(st|st−1, at−1) for all t = 2, · · · , H and
(st, st−1, at−1) ∈ S × S × A, which we use to construct our OPE estimator by Equation 1 and
Equation 2. We call our estimator the Conditional Diffusion Schrödinger Bridge (CDSB) estimator.

In implementation, X0 is (st−1, at−1, st). We stack them to be a longer vector. And the conditional
masks will take element 1 on the index of st. Besides, we will also train a neural network for reward
function R̂t(st, at) which takes state and action as input to predict the reward. The detailed algorithm
for training and OPE evaluation are summarised in algorithm 1
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Algorithm 1: CDSB Estimator Training and OPE
Training:
Input: Sampler pprior and pobs, fixed condition-

target masks M
Output: Trained backward policy Ẑ(r, ϕ̃)
for k in 1:K do

Repeat:
Sample Xr∈[0,T ] following 6 where x0 ∼
pobs.
Compute L̃SB(x0;ϕ)10 using masks M.
Take gradient and update parameter ϕ.
Sample Xr∈[0,T ] following 7 where XT ∼
pprior.
Compute L̃SB(xT ; θ).
Take gradient and update parameter θ.

end
# Use output Ẑ(r, ϕ̃) and masks M to form a
conditional sampler T̂ (st|st−1, at−1, t) where
(st−1, at−1) is condition and st is target. Condi-
tional generation is done following equation 7.

Model-based OPE:
Input: Target policy π, sampled initial states

{s(i)0 }ni=1, trained conditional sam-
pler T̂ (st|st−1, at−1, t), trained re-
ward network R̂

Output: V̂ π

for t in 1:H do
# Sample {a(i)t }ni=1 from π

Sample {s(i)t }ni=1 from T̂ .
Predict {r(i)t }ni=1 using reward network
R̂.

end
# Compute V̂ π = 1

n

∑n
i=1

∑H
t=1 r

(i)
t

4 THEORETICAL ANALYSIS OF THE CDSB ESTIMATOR

In this section, we provide the approximation property of the CDSB estimator. To get a convergent re-
sult, the Schrödinger bridge model derived from the MDP model, the parameterized model estimation
error and target policies π require the following assumptions:

1. Ψ(r,x) and Ψ̂(r,x) in Section 3.1 satisfies that ▽x logΨ(r,x) and ▽x log Ψ̂(r,x) are
L-Lipschitz with respect to variable x for all r ∈ [0, T ].

2. For all t ∈ {2, · · · , H} and all (s, a) ∈ S ×A, EX∼Tt(·|s,a) ∥X∥2 ≤ m2 <∞.

3. The drift f and the diffusion g in Equation 4 satisfies: f has a finite upper bound M < +∞,
g(r) ≡ c is a constant function with 0 < c ≤M .

4. The unknown reward function Rt(st, at) has a uniform upper bound Rmax =
supst,at,tRt(st, at) with respect to all t = 1, · · · , H .

5. For target policy π, τ := sups∈S,a∈A |π(a|s)| <∞.

6. for all k = 1, · · · , N , all t = 1, · · · , H , all (s, a) ∈ S ×A,

Eqkh,t,s,a
[∥Z(kh,Xkh, (θ, t, s, a))− Zkh∥2] ≤ ϵ2,

Eqkh,t,s,a
[
∥∥∥Ẑ(kh,Xkh, (ϕ, t, s, a))− Ẑkh

∥∥∥2] ≤ ϵ2, |R̂t(s, a)−Rt(s, a)|2 ≤ ϵ2,

where qkh,t,s,a is the marginal density at time kh ∈ [0, T ] of the solution to the DSB 3 with
pdata = Tt(·|s, a).

Assumption (4) is easily achievable, since an upper bound for reward function is guaranteed in almost
every reinforcement learning problem. Assumption (5) (boundedness of the target policy π) also
covers most off-policy evaluation problems. Assumption (2) requires a second moment bound of
the transition function. Since in our setting, S = [0, 1]d is bounded and supp{Tt(·|s, a)} ∈ S for all
t = 2, · · · , H and (s, a) ∈ S × A, this assumption naturally holds in our setting. Assumption (3)
is also easily achievable since both drift and diffusion can be designed. In practice, we can apply
the standard denoising diffusion probabilistic modeling (DDPM) setting f(t,Xt) = −Xt (bounded
since Xt is bounded) and g(t) =

√
2. Assumption (1) requires lipschitzness of ▽x logΨ(r,x) and

▽x log Ψ̂(r,x), which could be derived from the lipschitzness and lower-boundedness of pdata =
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Tt(·|s, a) by analysis of the parabolic PDE 5. Meanwhile, the lipschitzness and lower-boundedness of
the transition function is a conventional setting in continuous MDP system. The final assumption (6)
is an score estimation error assumption, which is similar to the assumption in Lee et al. (2022). Notice
that our assumption requires the learning error ϵ uniformly on all t = 2, · · · , H and (s, a) ∈ S ×A,
which is still an realistic assumption under the algorithm of conditional likelihood training.

Theorem 4.1 Under Assumptions (1)-(6), let V̂ π be the output of CDSB estimator, and suppose that
the step size h := T

N satisfies h ≲ 1
L , where L ≥ 1. Suppose the diffusion time T ≥ max{1, 1

τ2 },
then it holds that

|V̂ π − V π| ≲ Rmaxτ
2H2(ϵ+M3L3/2T

√
dh+ LMmh)

√
T . (11)

We make a few remarks about the above theorem. Firstly, the error bound |V̂ π − V π| only has a
2-order polynomial dependence on the number of horizon H , which shows that the CDSB estimator
avoids the exponential curse of horizon in comparison with traditional IS estimators (Liu et al., 2020).
On the other hand, the bound of error requires only a

√
d-dependence on the dimension d of the state

space S, which indicates that our algorithm also avoids the curse of dimensionality, which means it
has excellent performance on continuous and high-dimensional state and action space. Finally, The
error bound can be easily controlled by narrowing the estimation error ϵ and the diffusion step size h,
which are both easy to achieve during practical empirical computation.

To prove the above theorem, we need to compare the structure of V π and V̂ π . Noticing that

V π =

H∑
t=1

∫
A

∫
St

Rt(st, at)π(at|st)Pπ
t (st|st−1) · · ·Pπ

2 (s2|s1)d0(s1)ds1 · · · dstdat,

and

V̂ π =

H∑
t=1

∫
A

∫
St

R̂t(st, at)π(at|st)P̂π
t (st|st−1) · · · P̂π

2 (s2|s1)d0(s1)ds1 · · · dstdat.

It comes naturally that a uniform bound of
∫
S
|P̂π

t (st|st−1)− Pπ
t (st|st−1)|dst on all t = 2, ...,H

and all st−1 ∈ S can be used to bound |V̂ π − V π|.

Since P̂π
t (st|st−1) =

∫
A T̂t(st|st−1, at−1)π(at−1|st−1)dat−1 and Pπ

t (st|st−1) =∫
A Tt(st|st−1, at−1)π(at−1|st−1)dat−1 and π is upper-bounded with τ , we only require a

uniform bound of
∫
S
|T̂t(st|st−1, at−1) − Tt(st|st−1, at−1)|dst on all t = 2, · · · , H and all

(st−1, at−1) ∈ S ×A, which is guaranteed in the following theorem:

Theorem 4.2 For any t = 2, · · · , H and any (st−1, at−1) ∈ S × A, suppose the diffusion time
T ≥ max{1, 1

τ2 }, we have

TV(T̂t(·|s, a), Tt(·|s, a)) ≲ (ϵ+M3L3/2T
√
dh+ LMmh)

√
T .

This theorem is proved mainly using the Girsanov’s theorem. The method is similar to Chen et al.
(2023a), with some alternations under the diffusion Schrödinger bridge setting. With Theorem 4.2
proved, we are able to prove Theorem 4.1 using some iterations on t.

5 EXPERIMENTS

5.1 SETTING AND RESULT

We conduct our experiments on the DeepMind control suite (Tassa et al., 2018), a set of control tasks
implemented in MuJoCo (Todorov et al.). We use a subset of the offline datasets from RL Unplugged
(Gulcehre et al., 2020), the details of which are provided in table 1. These environments capture
a wide range of complexity, from 40K transitions in a 5-dimensional cartpole environment to 1.5
million transitions on complex manipulation tasks. We follow part of the evaluation protocol in the
Deep OPE benchmark(Fu et al., 2020).

As for the policies, we adopt the policy trained by Kostrikov & Nachum (2020) for each task as
behavior policies. Offline datasets are generated following such policies. Four different level of noise

7
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Figure 1: Mean Abosolute Error with Error Bar

Table 1: Summary of the offline datasets used
Reacher Hopper HalfCheetah Walker

State dim. 11 11 17 17
Action dim. 2 3 6 6
Number of episodes 1M 1M 1M 1M
Infinite horizon yes yes yes yes

is added to the behavior policies to form target policies. The evaluation is done by performing OPE
on different behavior-target policy pairs for each task. After that, absolute error is measured for each
OPE problem, and median absolute error is used to evaluate the performance of an OPE algorithm on
a task. We compare our method(CDBS) with the following baseline: Fitted Q-Evaluation(FQE),
Model-Based, DICE. These baselines include model-based and model-free method. We follow the
implementation of these baselines in Kostrikov & Nachum (2020).

The summary statistic is displayed in table 2. Our method achieves state-of-the-art performance
on two among four OPE tasks measured by median absolute error. We also provide the result of the
mean absolute error with error bar in figure 1 to show robustness of each method.

5.2 CONDITIONAL GENERATION DETAILS

In this section, we briefly describe the pipeline of the conditional diffusion schrodinger bridge
network. More details about the neural networks, training procedure, inference, baseline models, and
evaluation can be found in Appendix.

As described in section 3.3, we use two separate neural networks to model the forward or backward
policy. The backward network needs to handle partially observed input and conduct conditional
inference. More specifically, the backward policy has format Ẑ(r,Xr,M, ϕ) which takes in diffusion
time, condition masks, and outputs the policy of the whole time window (its outputs at condition
positions are usually ignored). While the forward network, as an assistant for training the back-
ward policy, does not need to process partial input, and we use a modified U-Net as the neural
network(Ronneberger et al., 2015). In both networks, the diffusion time is incorporated through
embedding. Similar to the design Tashiro et al. (2021), the backward policy handles the input with
irregular conditions based on the transformer, where the condition information is encoded through
channel concatenation, feature index embedding, and time index embeddings .

8
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Table 2: OPE Evaluation Result
Median Absolute Error Reacher Hopper HalfCheetah Walker

FQE 0.374 0.096 0.218 0.232
MB 0.336 0.064 0.286 0.781
Dual Dice 0.417 2.595 1.032 0.201

CDSB(ours) 0.318 1.0405 1.276 0.080

6 CONCLUSIONS

In this paper, we propose the CDSB estimator to solve off-policy evaluation under finite-horizon MDP
with continuous and high-dimensional state space S. In comparison with traditional model-based
approaches and classic model-free approaches such as importance sampling, our approach avoids the
curse of horizon and dimensionality with only polinomial dependence on horizon H and dimension d,
making it possible to solve OPE problem efficiently under the complex state space S . Meanwhile, our
estimator proves efficient under a wide range of MDP settings since it solely requires boundedness
and smoothness of transition and policy functions.
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A APPENDIX

A.1 PROOF OF THEOREM 4.2

The key to proving Theorem 4.2 is the use of Girsanov’s theorem.

Lemma 1(Girsanov’s theorem) For t ∈ [0, T ], let Lt =
∫ t

0
bsdBs where B is a Q-Brownian motion.

Assume EQ

∫ T

0
∥bs∥2 ds <∞. Then, L is a Q-martingale in L2(Q). Moreover, if

EQE(L)T = 1, whereE(L)t := exp

(∫ t

0

bsdBs −
1

2

∫ t

0

∥bs∥2 ds
)
,

then E(L) is also a Q-martingale and the process

t 7→ Bt −
∫ t

0

bsds

is a Brownian motion under P := ETQ, the probability distribution with density E(L)T w.r.t. Q.

In the proof below, for any fixed t ∈ {2, · · · , H} and (s, a) ∈ S × A, let pdata = Tt(·|s, a), we
denote the path measure of the backward SDE 7 and forward SDE 6 (they share the same solution) to
be QT := QT (·|t, s, a). Denote the path measure generated from the conditional likelihood training
to be PT := PT (·|t, s, a, ϕ, θ). Denote Ẑ(·, ·, θ̃) := Ẑ and Z := Z(·, ·, ϕ̃). By Assumption (1)∼(6),
the following analysis holds for any given t = 2, · · · , H and (st−1, at−1) ∈ S ×A.

Theorem 4.2 For any t = 2, · · · , H and any (st−1, at−1) ∈ S × A, suppose the diffusion time
T ≥ max{1, 1

τ2 }, we have

TV(T̂t(·|s, a), Tt(·|s, a)) ≲ (ϵ+M3L3/2T
√
dh+ LMmh)

√
T .

Proof. We start by proving

N−1∑
k=0

EQT

∫ (k+1)h

kh

∥∥∥Ẑ(kh,Xkh)− c▽x log Ψ̂(r,Xr)
∥∥∥2 dr ≲ (ϵ2 +M6L3dh+M2h2m2)T.

For r ∈ [kh, (k + 1)h], we can decompose

EQT
[
∥∥∥Ẑ(kh,Xkh)− c▽x log Ψ̂(r,Xr)

∥∥∥2]
≲EQT

[
∥∥∥Ẑ(kh,Xkh)− c▽x log Ψ̂(kh,Xkh)

∥∥∥2]
+ EQT

[
∥∥∥g▽x log Ψ̂(kh,Xkh)− g▽x log Ψ̂(r,Xkh)

∥∥∥2]
+ EQT

[
∥∥∥g▽x log P̂ si(r,Xkh)− g▽x log P̂ si(r,Xr)

∥∥∥2]
≲ϵ2 + EQT

∥∥∥∥∥g▽x log

(
Ψ̂(kh,Xkh)

Ψ̂(r,Xkh)

)∥∥∥∥∥
2

+M2L2EQT
∥Xkh −Xr∥2

Notice that if S : Rd → Rd is the mapping S(x) = exp(−(r − kh))x, then Ψ̂(T − kh, ·) =

S(Ψ̂(T−r, ·)∗N (0, 1−exp(−2(r−kh)))). We can use Lemma 2 with α = exp(r−kh) = 1+O(h)
and σ2 = 1− exp(−2(r − kh)) = O(h) and obtain

EQT

∥∥∥∥∥g▽x log

(
Ψ̂(kh,Xkh)

Ψ̂(r,Xkh)

)∥∥∥∥∥
2

≲M2(L2dh+ L2h2 ∥Xkh∥2 + L2h2
∥∥∥▽x log Ψ̂(r,Xkh)

∥∥∥2).
14
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Also we have∥∥∥▽xP̂ si(r,Xkh)
∥∥∥2 ≤

∥∥∥▽x log Ψ̂(r,Xr)
∥∥∥2 + ∥∥∥▽x log P̂ si(r,Xkh)− ▽x log Ψ̂(r,Xr)

∥∥∥2
≤
∥∥∥▽x log Ψ̂(r,Xr)

∥∥∥2 + L2 ∥Xkh −Xr∥2 .

So

EQT
[
∥∥∥Ẑ(kh,Xkh)− c▽x log Ψ̂(r,Xr)

∥∥∥2]
≲ϵ2 +M2(L2dh+ L2h2EQT

∥Xkh∥2 + L2h2EQT

∥∥∥▽x log Ψ̂(T − r,Xr)
∥∥∥2 + L2EQT

∥Xkh −Xr∥2).

Using L-smoothness of ▽x log Ψ̂ and ▽x logΨ, by (Vempala & Wibisono (2019), Lemma 9) and
(Chen et al. (2023a), Lemma 10) , we have

E
∥∥∥▽x log Ψ̂(r,Xr)

∥∥∥2 ≤ Ld,

and
E ∥▽x logΨ(r,Xr)∥2 ≤ Ld.

On the other hand, for 0 ≤ s < r, by the forward process 6, we have

EQT
∥Xr −Xs∥2 =EQT

[

∥∥∥∥∫ r

s

(f + c2▽x logΨ(r,Xr))dr + c(Br −Bs)

∥∥∥∥2]
≲(r − s)

∫ r

s

E
∥∥f + c2▽x logΨ(r,Xr)

∥∥2 dr +M(r − s)d

≲(r − s)2M2 + (r − s)2M4Ld+M(r − s)d

As a result, we get

E ∥Xkh∥2 ≤E ∥X0∥2 + T 2M2 + T 2M4Ld+MTd

≤m2 + T 2M2 + T 2M4Ld+MTd

and

E ∥Xkh −Xr∥2 ≤ h2M2 + h2M4Ld+Mhd.

Combining the results above, we get that

EQT
[
∥∥∥Ẑ(kh,Xkh)− c▽x log Ψ̂(r,Xr)

∥∥∥2]
≲ϵ2 +M2[L2dh+ L2h2(m2 + T 2M2 + T 2M4Ld+MTd) + L2h2Ld+ L2(h2M2 + h2M4Ld+Mhd)]

≲ϵ2 +M6L3T 2dh+M2L2h2m2.

(Suppose T ≥ 1 and h ≲ 1
L ) So we have

N−1∑
k=0

EQT

∫ (k+1)h

kh

∥∥∥Ẑ(kh,Xkh)− c▽x log Ψ̂(r,Xr)
∥∥∥2 dr ≲ (ϵ2 +M6L3T 2dh+M2L2h2m2)T.

Now we apply an approximation argument to use Girsanov’s theorem and prove Theorem 4.2.

For r ∈ [0, T ], let Lr =
∫ r

0
bsdBs whereB is aQT -Brownian motion. For r ∈ [kh, (k+1)h], define

br = −c▽x log Ψ̂(r,Xr) + Ẑ(kh,Xkh).

From above,

EQT

∫ T

0

∥bs∥2 ds ≲ (ϵ2 +M6L3T 2dh+M2L2h2m2)T <∞,

using (Le Gall (2016), Proposition 5.11), (E(L)r)r∈[0,T ] (see the definition in Lemma 1) is a
local martingale (see Definition 1). Therefore, there exists a non-decreasing sequence of stopping

15
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time Tn ↑ T such that (E(L)r∧Tn
)r∈[0,T ] is a martingale. Notice that E(L)r∧Tn

= E(Ln
r ) where

Ln
r = Lr∧Tn

. Since E(Ln
r )r∈[0,T ] is a martingale, we have

EQT
E(Ln)T = EQT

E(Ln)0 = 1,

so that EQT
E(L)Tn

= 1.

Apply Girsanov’s theorem to Ln
r =

∫ r

0
bs1[0,Tn](s)dBs where B is a QT -Brownian motion and get

that under Pn := E(L)TQT , there exists a Brownian motion βn such that for r ∈ [0, T ],

dBr =
[
−c▽x log Ψ̂(r,Xr) + Ẑ(kh,Xkh)

]
1[0,Tn](r)dr + dβn

r .

By the backward SDE 7, under QT we have

dXr = −[f − c2▽x log Ψ̂(r,Xr)]dr + cdBr, X0 ∼ pprior.

The equation still holds Pn-a.s. since Pn ≪ QT . Combining the two equations above then we obtain
that Pn-a.s.,

dXr =
[
−f + cẐ(kh,Xkh)

]
1[0,Tn](r)dr+

[
−f + c2▽x log Ψ̂(T − r,Xr)

]
1[Tn,T ](r)dr+cdβ

n
r , X0 ∼ pprior.

i.e. path measure Pn is the solution to the above SDE. So we have

KL(QT |Pn) =EQT
log E(L)−1

Tn
= EQT

[−LTn +
1

2

∫ Tn

0

∥bs∥2 ds] = EQT

1

2

∫ Tn

0

∥bs∥2 ds

≤EQT

1

2

∫ T

0

∥bs∥2 ds ≲ (ϵ2 +M6L3T 2dh+M2L2h2m2)T

where we used that EQT
LTn

= 0 because L is a QT -martingale and Tn is a bounded stopping
time.(Le Gall (2016), Corollary 3.23)

Consider a coupling of (Pn)n∈N, PT : a sequence of stochastic process (Xn)n∈N over the same
proability space, a stochastic process X and a single Brownian motion W over the same space s.t.

dXn
r =

[
−f + cẐ(kh,Xn

kh)
]
1[0,Tn](r)dr +

[
−f + c2▽x log Ψ̂(T − r,Xn

r )
]
1[Tn,T ](r)dr + cdWr,

dXr =
[
−f + cẐ(kh,Xkh)

]
dr + cdWr,

X0 = Xn
0 ∼ pprior.

By definition of Pn and PT , the distribution of Xn (X) is Pn (PT ).

Let δ > 0 and consider the map πδ : C([0, T ];Rd) → C([0, T ];Rd) defined by

πδ(ω)(r) := ω(r ∧ (T − δ)).

Notice that Xn
r = Xr for every r ∈ [0, Tn], using Lemma 3, we have πδ(Xn) → πδ(X) a.s.,

uniformly over [0, T ]. Therefore, πδ#Pn → πδ#PT weakly. Using the lower semicontinuity of the
KL divergence and the data-processing inequality (Amb (2005), Lemma 9.4.3 and Lemma 9.4.5), we
get

KL((πδ)#QT |(πδ)#PT ) ≤ lim inf
n→∞

KL((πδ)#QT |(πδ)#Pn)

≤ lim inf
n→∞

KL(QT |Pn)

≲(ϵ2 +M6L3T 2dh+M2L2h2m2)T.

Finally, using Lemma 4, πδ(ω) → ω as δ → 0 uniformly over [0, T ]. Therefore, using (Amb
(2005), Corollary 9.4.6), KL((πδ)#QT |(πδ)#PT ) → KL(QT |PT ) as δ → 0. Since the marginal
distribution at T = 0 of QT is Tt(·|s, a) and the marginal distribution at T = 0 of PT is T̂t(·|s, a),
by data processing inequality we ultimately have

KL(Tt(·|s, a)|T̂t(·|s, a)) ≲ (ϵ2 +M6L3T 2dh+M2L2h2m2)T.

We conclude the proof using Pinsker’s inequality (TV2 ≤ KL).
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A.2 PROOF OF THEOREM 4.1

In this section, we give the proof of Theorem 4.1, which is our main theorem.

Theorem 4.1 Under Assumptions (1)-(6), let V̂ π be the output of CDSB estimator, and suppose that
the step size h := T

N satisfies h ≲ 1
L , where L ≥ 1. Suppose the diffusion time T ≥ max{1, 1

τ2 },
then it holds that

|V̂ π − V π| ≲ Rmaxτ
2H2(ϵ+M3L3/2T

√
dh+ LMmh)

√
T . (12)

Proof. We have

V π =

H∑
t=1

∫
A

∫
St

Rt(st, at)π(at|st)Pπ
t (st|st−1) · · · P̂π

2 (s2|s1)d0(s1)ds1 · · · dstdat,

and

V̂ π =
H∑
t=1

∫
A

∫
St

R̂t(st, at)π(at|st)P̂π
t (st|st−1) · · · P̂π

2 (s2|s1)d0(s1)ds1 · · · dstdat.

By Theorem 4.2, assumption (6) and the definition of total-variation norm, for all s ∈ S and all
t ∈ {2, · · · , T}, we have∫

S
|Pπ

t (s
′|s)− P̂π

t (s
′|s)|ds′ =

∫
S
|
∫
A
π(a|s)(Tt(s′|s, a)− T̂t(s

′|s, a))da|ds

≲τ(ϵ+M3L3/2T
√
dh+ LMmh)

√
T =: δ0,∫

A
|R̂t(s, a)−Rt(s, a)|da ≤ ϵ ≲ δ0,

since T ≥ max{1, 1
τ2 }.

So

|V̂ π − V π|

≤τ
H∑
t=1

∣∣∣∣∫
A

∫
St

R̂t(st, at)P̂
π
t (st|st−1) · · · P̂π

2 (s2|s1)d0(s1)ds1 · · · dstdat−∫
A

∫
St

Rt(st, at)P
π
t (st|st−1) · · ·Pπ

2 (s2|s1)d0(s1)ds1 · · · dstdat
∣∣∣∣

≤τ
H∑
t=1

∫
A

∫
St

∣∣∣R̂t(st, at)P̂
π
t (st|st−1) · · · P̂π

2 (s2|s1)d0(s1)−Rt(st, at)P
π
t (st|st−1) · · ·Pπ

2 (s2|s1)d0(s1)
∣∣∣ds1 · · · dstdat

≤τ
H∑
t=1

∫
A

∫
St

(∣∣∣(R̂t(st, at)−Rt(st, at)
)
P̂π
t (st|st−1) · · · P̂π

2 (s2|s1)d0(s1)
∣∣∣

+
∣∣∣Rt(st, at)

(
P̂π
t (st|st−1) · · · P̂π

2 (s2|s1)− Pπ
t (st|st−1) · · ·Pπ

2 (s2|s1)
)
d0(s1)

∣∣∣)ds1 · · · dstdat
· · ·

≤τ
H∑
t=1

(∫
A

∫
St

∣∣∣R̂t(st, at)−Rt(st, at)
∣∣∣ |Pπ

t (st|st−1)|
∣∣Pπ

t−1(st−1|st−2)
∣∣ · · · |Pπ

2 (s2|s1)d0(s1)|ds1 · · · dstdat

+ · · ·+
∫
A

∫
St

∣∣∣R̂t(st, at)−Rt(st, at)
∣∣∣ ∣∣∣P̂π

t (st|st−1)− Pπ
t (st|st−1)

∣∣∣ · · · ∣∣∣P̂π
2 (s2|s1)− Pπ

2 (s2|s1)
∣∣∣ d0(s1)ds1 · · · dstdat)

The summation above contains 2t−1 − 1 items, each term | · | in the integration of each item is
either |P̂π

j (sj |sj−1) − Pπ
j (sj |sj−1)| (|R̂t(st, at) − Rt(st, at)|) or |Pπ

j (sj |sj−1)| (|Rt(st, at)|) for
j = 2, · · · , t, but not all |Pπ

t (sj |sj−1)|. Relax all the |P̂π
j (sj |sj−1)−Pπ

j (sj |sj−1)| and |R̂t(st, at)−
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Rt(st, at)| to their uniform upper bound (with respect to sj−1 and st) δ0. Since Pπ
j are non-negative

for t = 1, · · · , t− 1, the terms of each item in the summation are then relaxed to

δt−1−k
0

∫
A

∫
S×···×S

Rt(st, at)P
π
jk
(sjk |sjk−1) · · ·Pπ

j1(sj1 |sj1−1)d0(s1)dst · · · ds1dat,

or
δt−k
0

∫
S×···×S

Rt(st, at)P
π
jk
(sjk |sjk−1) · · ·Pπ

j1(sj1 |sj1−1)d0(s1)dst · · · ds1,

where 1 ≤ k ≤ t − 1, j1 < · · · < jk and {j1, · · · , jk} ∈ {2, · · · , t}. By the definition of Pπ
j , it’s

easy to verify that ∫
St

Pπ
jk
(sjk |sjk−1) · · ·Pπ

j1(sj1 |sj1−1)d0(s1)dst · · · ds1 = 1

and ∫
A

∫
St

Rt(st, at)P
π
jk
(sjk |sjk−1) · · ·Pπ

j1(sj1 |sj1−1)d0(s1)dst · · · ds1dat ≤ Rmax

for any 1 ≤ k ≤ t− 1, j1 < · · · < jk and {j1, · · · , jk} ∈ {2, · · · , t}. So that the summation∫
A

∫
St

∣∣∣R̂t(st, at)−Rt(st, at)
∣∣∣ |Pπ

t (st|st−1)|
∣∣Pπ

t−1(st−1|st−2)
∣∣ · · · |Pπ

2 (s2|s1)d0(s1)|ds1 · · · dstdat

+ · · ·+
∫
A

∫
St

∣∣∣R̂t(st, at)−Rt(st, at)
∣∣∣ ∣∣∣P̂π

t (st|st−1)− Pπ
t (st|st−1)

∣∣∣ · · · ∣∣∣P̂π
2 (s2|s1)− Pπ

2 (s2|s1)
∣∣∣ d0(s1)ds1 · · · dstdat

≤Rmax

(
δt0 + tδt−1

0 + · · ·+ tδ0
)

=Rmax

(
(δ0 + 1)t − 1

)
≤Rmax

(
(δ0 + 1)H − 1

)
.

Noting that δ0 = τ(ϵ+M3L3/2T
√
dh+LMmh)

√
T , so for ϵ and h that is sufficiently small, there

exists a universal constant η, such that

|V̂ π − V π| ≤ HτHRmaxηδ0 ≲ Rmaxτ
2H2(ϵ+M3L3/2T

√
dh+ LMmh)

√
T ,

which finishes the proof of Theorem 4.1.

A.3 AUXILIARY LEMMAS

In this section, we presents the definitions and auxiliary lemmas which are used to prove Theorem
4.2.

Definition 1 A local martingale (Lt)t∈[0,T ] is a stochastic process such that there exists a sequence
of non-decreasing stopping times Tn → T such that Ln = (Lt∧Tn

)t∈[0,T ] is a martingale.

Lemma 2(Chen et al. (2023a), Lemma 16) Let 0 < ζ < 1. Suppose that M0,M1 ∈ R2d×2d are two
matrices, where M1 is symmetric. Also, assume that ∥M0 − I2d∥op ≤ ζ, so that M0 is invertible.
Let q = exp(−H) be a probability density on R2d such that ▽H is L-lipschitz with L ≤ 1

4∥M1∥op
,

it holds that∥∥∥∥▽ log
(M0)#q ∗ N (0,M1)

q
(θ)

∥∥∥∥ ≲ L
√

∥M1∥op d+ Lζ ∥θ∥+ (ζ + L ∥M1∥op) ∥▽H(θ)∥ .

The following lemmas are very straightforward, so the proof is omitted.

Lemma 3 Consider fn, f : [0, T ] → Rd s.t. there exists an increasing sequence (Tn)n∈N ⊆ [0, T ]
satisfying Tn → T as n → ∞ and fn(t) = f(t) for every t ≤ Tn. Then for every ϵ > 0, fn → f
uniformly over [0, T − ϵ]. In particular, fn(· ∧ T − ϵ) → f(· ∧ T − ϵ) uniformly over [0, T ].

Lemma 4 Consider f : [0, T ] → Rd continuous, and fϵ : [0, T ] → Rd s.t. fϵ(r) = f(r ∧ (T − ϵ))
for ϵ > 0. Then fϵ → f uniformly over [0, T ] as ϵ→ 0.
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A.4 EXPERIMENTS

We have made our code publicly available1.

1https://anonymous.4open.science/r/bridge_OPE-302D/
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