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Although not a recent topic of research, neurosymbolic systems (NSAI) (Hitzler and
Sarker, 2022; Besold et. al, 2022; Lima, 2001; van Harmelen, 2022) may have been one of
the latest frontiers in artificial intelligence to catch the attention of a broader scientific com-
munity. One possibility for such interest could be that NSAT is a fundamental step towards
artificial general intelligence (AGI). Many would argue that a tightly coupled integration
of neural and symbolic paradigms would not be necessary, as the state-of-the-art of both
sides could interact through a common interface. Others, however, may see the benefits of
having a tight integration under the same computational substract. Such combination of
skills comes, however, with a computational price, both in terms of memory and time costs.
When it comes to the point of deploying these hybrid models in silicon, these computational
costs may constitute a serious drawback, especially with respect to online learning. This
work proposes the adoption of a family of weightless neural networks (WNNs)(Aleksander
et al., 2009) to bring neurosymbolic systems to the level of integrated circuits.

WNNs are a distinct class of neural models which derive inspiration from the decoding
process issued by the dendritic trees of biological neurons. Instead of weights and dot
products to determine neural activity, they utilize look up tables (LUTs). An n-input LUT
can hold any one of 22" possible logic functions, resulting in significant learning capacity
(Carneiro et al., 2019) compared to models based on multiply add operations. WNNs are
inherently low-energy and low latency since primarily only table lookup is involved, and can
easily be prototyped/fabricated in hardware. Our initial FPGA prototypes of LUT node
based WNNs (Susskind et al., 2022) with Counting Bloom filters, arithmetic-free hashing,
and with bleaching consume 85-99% fewer cycles and 80-95% less energy compared to deep
neural networks of the same accuracy. We have further improved WNNs by ensembles and
pruning of LUT nodes, and ULEEN (Susskind et. al., 2023) can excel over BNNs (Umuroglu
et al., 2017).
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Our recent research has created Differentiable Weightless Neural Networks (DWNs) (Ba-
cellar et al., 2024) using principles of Extended Finite Differences (EFD). We also employ
Learnable Mapping, Learnable Reduction, and Spectral Regularization to improve the ac-
curacy and reduce the model size and efficiency. On several workloads including Keyword
Spotting and Anomaly Detection from MLPerfTiny, DWN provides 10X throughput and
better accuracy versus AMD/Xilinx FINN implementations. On 11 tabular datasets, DWN
yielded more accuracy and higher throughput, but more notably yielded very tiny classifiers,
smaller than the classifiers yielded by DiffLogicNet (Petersen et al., 2022) and Tiny Clas-
sifiers (Iordanou et. al., 2024). In software implementations, DWN compares favorably to
implementations from AutoGluon XGBoost/CatBoost/Light GBM/TabNN/NNFastAITab
(Erickson et al., 2020) and Google TabNet. The most surprising observation was that on
a few datasets the DWN training/input mapping methodology yielded near-zero hardware
implementations, suggesting that DWNs have some unique ability in extracting symbols.
DWNs can be considered as a symbol extractor, or it can be an ultra-fast ultra-thin neu-
rosymbolic inference engine. The learnable input mapping can be considered similar to
rule-based learning and the Look Up Table contents can be considered as the neural com-
ponent. In DWN, the integration of explicit knowledge with that implicitly acquired, in a
similar fashion to other weightless models (Ludermir et al., 2008), is the subject of ongoing
research.
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