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Abstract

Recent studies reveal that deep representation learning models without proper regularization
can suffer from the dimensional collapse issue, i.e., representation vectors span over a lower
dimensional space. In the domain of graph deep representation learning, the phenomenon
that the node representations are indistinguishable and even shrink to a constant vector is
called oversmoothing. Based on the analysis of the rank of node representations, we find
that representation oversmoothing and dimensional collapse are highly related to each other
for deep graph neural networks (GNNs), and the oversmoothing problem can be interpreted
by the dimensional collapse of the representation matrix. Then, to address the dimensional
collapse and the triggered oversmoothing in deep graph neural networks, we first find vanilla
residual connections and contrastive learning producing sub-optimal outcomes by ignoring
the structural information of graph data. Motivated by this, we propose a novel graph
neural network named GearGNN to address the oversmoothing issue from the perspective of
addressing dimensional collapse in two folds. Specifically, in GearGNN, we design a topology-
preserving residual connection for graph neural networks to force the low-rank of hidden
representations close to the full-rank input features. Also, we propose the structure-guided
contrastive loss to ensure only close neighbors who share similar local connections can have
similar representations. Empirical experiments on multiple real-world datasets demonstrate
that GearGNN outperforms state-of-the-art deep graph representation baseline algorithms.

1 Introduction

Representation learning models have achieved outstanding performance for various application domains by
outputting informative hidden representations, such as computer vision and natural language processing.
Recent studies (Hua et al., 2021; Jing et al., 2022; Guo et al., 2023) show that deep representation learning
models without proper regularization tend to produce representations that collapse along certain directions,
known as the dimensional collapse, which can be further interpreted by the visualization of the singularity
ranking of the matrices of representations (Hua et al., 2021). In the era of big data, graph structures recently
received increasing research attention for their ability to encode complex interactions. Similarly, the deep
representation learning models on graphs are also found affected by representation issues, i.e., the node
representation vectors outputted by deeper graph neural networks are not discriminative from each other
and directly hurt the performance of node classification and link prediction tasks and their corresponding
applications. This phenomenon is called oversmoothing in the graph representation learning domain (Li et al.,
2018; Oono & Suzuki, 2020; Rusch et al., 2023).

In this paper, we first find that the oversmoothing in graph deep learning can be interpreted by dimensional
collapse from the low-rank of representation matrix, a detailed theoretical derivation can be found in
Appendix A. To empirically demonstrate that dimensional collapse exists in the graph representation learning
domain, we conduct a toy experiment on the Cora (Lu & Getoor, 2003) benchmark dataset by exploring the
rank of the covariance matrix of the node representations. The analysis is visualized in Figure 1, where the
x-axis is the index of the sorted singular values of the covariance matrix of the representation matrix, and
the y-axis is the logarithm of the singular value. In Figure 1, we can see that the number of non-zero singular
values is much smaller than the number of dimensions for a GCN graph neural network (Kipf & Welling,
2017). It suggests that the representation matrix is low-rank, and the discrimination of node representation
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vectors only relies on a few dimensions, which naturally increases the difficulty of effectively discriminating
node presentations and makes tasks like node classification and link prediction groundless.

(a) (b)

Figure 1: (a). A toy example on the Cora dataset to demonstrate the rank deficiency, where GCN is chosen
as the backbone, the number of layers is set to 64 and the dimension of representation is 100. (b). The
visualization about how vanilla residual connections of neural layers turn the low-rank representation Z into
a full-rank representation Z ′.

To address the dimensional collapse problem in deep neural networks, residual connections (He et al., 2016)
among neural layers can be an effective manner, i.e., it has been discovered that residual connections across
neural network layers force the low-rank of hidden representations close to the full-rank input features (Jing
et al., 2022), as shown in Figure 1 (b). The residual connections pave the way for eliminating the dimensional
collapse for deep neural networks and indicate the de-oversmoothing probability for deep graph neural
networks, but for non-IID graph data, we find the vanilla residual connections can produce sub-optimal
results for possible two reasons. First, the vanilla residual connections ignore the topological assumption of
graph data that closer neighbors are more important during the embedding process, simply adding residual
connection can induce “shading neighbors” effects, i.e., even residually connected, close neighbors becomes
less important during the neural representation process, as we discussed in Section 2.3. Second, targeting this
specific oversmoothing phenomenon in the graph representation learning domain, the direct observation is
that individual representations are indistinguishable. Hence, contrastive learning serves as a viable solution,
but the existing work (Guo et al., 2023) simply introduces vanilla contrastive loss as a regularization while
failing to consider the topological relationship of positive and negative pairs.

Facing the latent dimensional collapse problem (i.e., by computing the singular value of covariance matrix
of representations) and observable oversmoothing problem (i.e., by discriminating node embedding vectors)
in deep graph neural networks, we propose two effective directions, i.e., Weight-Decaying Graph Residual
Connection (WG-ResNet) and Structure-Guided Contrastive Loss (SCL). In brief, WG-ResNet adapts
weighted residual connections to preserve the input graph topology, and SCL weighs different positive and
negative pairs based on their topological relations. The effectiveness of SCL and WG-ResNet in addressing
dimensional collapse is also shown in Figure 1 (a). Moreover, it can be observed that SCL itself can alleviate
the dimensional collapse to some extent, i.e., addressing oversmoothing by contrastive learning addresses the
dimensional collapse, which again proves the unity of dimensional collapse and oversmoothing as we discussed
above.

In the end, we propose an end-to-end graph neural network model GearGNN, which encloses SCL and
WG-ResNet in a GNN-agnostic manner to help arbitrary graph neural networks go deeper effectively compared
with state-of-the-art baselines with theoretical and empirical analysis. Furthermore, we designed extensive
ablation studies to show that SCL and WG-ResNet contribute excursively to alleviate the dimensional collapse
of the deep graph neural networks for the de-oversmoothing, and their combination can reach optimal results.
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Figure 2: An arbitrary GNN with the proposed GearGNN.

2 Proposed Method

In this section, we begin with the overview of GearGNN and then provide the details of the Weight-decaying
Graph Residual Connection (WG-ResNet) and Structure-guided Contrastive Loss (SCL). We formalize the
graph embedding problem in the context of an undirected graph G = (V, E, X), where V consists of n
nodes, E consists of m edges, X ∈ Rn×d denotes the feature matrix and d is the feature dimension. We let
A ∈ Rn×n denote the adjacency matrix and denote Ai ∈ Rn as the adjacency vector for node vi. Hi ∈ Rh is
the hidden representation vector of vi.

2.1 Overview of GearGNN

The overview of our proposed GearGNN is shown in Figure 2 and GearGNN consists of two parts, including
the graph architecture WG-ResNet and contrastive loss SCL. Specifically, the green dash line stands for
WG-ResNet, where H(l) at the l-th layer will be adjusted by its second last layer H(l−2) and the first layer
H(1) with proper weights. The red dash line in Figure 2 stands for SCL, where we first sample positive node
pairs and negative node pairs based on the input graph topology such that the hidden representations of
positive node pairs get closer and negative ones are pushed farther apart. The overall of GearGNN in terms
of loss functions and architectures is expressed as follows.

LGearGNN = LGNN + αLSCL (1)

where LGNN denotes the loss of the downstream task (e.g., node classification) using an arbitrary GNN model
(e.g., GCN (Kipf & Welling, 2017)) equipped with WD-ResNet, LSCL is the structure-guided contrastive loss,
and α is a constant hyperparameter. The details of WG-ResNet and SCL are introduced below.

2.2 Weight-Decaying Graph Residual Connection (WG-ResNet)

As shown in Figure 1 (b), the vanilla residual connections (e.g., ResNet (He et al., 2016)) have the potential
to alleviate the dimensional collapse of deep neural networks. But for deep graph neural networks, we
discover that simply adding residual connections leads to the sub-optimal solution. As ResNet stacks layers,
the importance of close neighbors’ features gradually decreases during the GNN information aggregation
process, and the faraway neighbor information becomes dominant. More concretely speaking, taking graph
convolutional neural network (Kipf & Welling, 2017) as an example, the graph residual connection is expressed
as follows.

H(l) = σ(ÂH(l−1)W (l−1)) + H(l−2) (2)
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where l(≥ 2) denotes the index of layers, H(l−1) and H(l−2) are the hidden representations at corresponding
layers, σ(·) is the activation function, W (l−1) is the learnable weight matrix, and Â is the re-normalized
self-looped adjacency matrix with Â = D̃− 1

2 ÃD̃− 1
2 and Ã = A + I, where D̃ is the degree matrix. In ResNet,

the residual connection connects the current layer and its second last layer. Without loss of generality, we
assume the last layer of GNNs is stacked by ResNet, i.e., l is divisible by 2. Then, by extending H(l−2)

iteratively (i.e., substituting it with its previous residual blocks), the above Eq. 2 could be rewritten as
follows.

H(l) = σ(ÂH(l−1)W (l−1)) + σ(ÂH(l−3)W (l−3)) + H(l−4)

= σ(ÂH(l−1)W (l−1)) + σ(ÂH(l−3)W (l−3)) + · · ·︸ ︷︷ ︸
Information aggregated from the faraway neighbors

+ σ(ÂH(i)W (i)) + · · · + σ(ÂH(1)W (1))︸ ︷︷ ︸
Information aggregated from the nearest neighbors

(3)

According to (Xu et al., 2019), stacking l layers and getting H(l) in GNNs can be interpreted as aggregating
l-hop neighbors’ feature information for the node hidden representations. As shown in Eq. 3, when we stack
more layers in GNNs, the information collected from faraway neighbors becomes dominant (as there are
more terms regarding the information from faraway neighbors), and dilutes the information collected from
the nearest neighbors (e.g., 1-hop or 2-hop neighbors). This phenomenon contradicts the general intuition
that the close neighbors of a node carry the most important information, and the importance degrades
with faraway neighbors. Formally, we describe this phenomenon as shading neighbors effect when stacking
graph neural layers, as the importance of the nearest neighbors is diminishing. We empirically show that
shading neighbors effect downgrades the GNNs performance in downstream tasks in Section 3.4. In brief, we
show that (1) vanilla ResNet has the shading neighbors effect on graph representation learning; (2) jumping
knowledge (Xu et al., 2018) can be a viable solution to the shading neighbors effect; (3) our WG-ResNet
achieves the best effectiveness for addressing the shading neighbors effect.

To formally introduce our proposed generic graph architecture, i.e., Weight-Decaying Graph Residual
Connection (WG-ResNet). Here, we first introduce the formulation and then provide insights regarding why
it can address the problem. Specifically, WG-ResNet introduces the layer similarity and weight decaying
factor as follows.

H̃(l) = σ(ÂH(l−1)W (l−1))
H(l) = sim(H(1), H̃(l)) · e−l/λ · H̃(l) + H(l−2)

= ecos(H(1),H̃(l)) − l/λ · H̃(l) + H(l−2)

(4)

where cos(H(1), H̃(l)) = 1
n

∑
i

H
(1)
i

(H̃
(l)
i

)⊤

∥H
(1)
i

∥∥H̃
(l)
i

∥
measures the similarity between the l-th layer and the 1-st layer,

and we use the exponential function to map the cosine similarity ranging from [−1, 1] to [e−1, e1], to avoid
the negative similarity weights. The term e−l/λ is the decaying factor to further adjust the similarity weight
of H̃(l), where λ is a constant hyperparameter.

Different from the vanilla ResNet (He et al., 2016), we add the learnable similarity sim(H(1), H̃(l)) to
essentially expand the hypothesis space of deeper GNNs. As we mentioned earlier, simply adding vanilla
ResNet on GNNs will cause the shading neighbors effect. The introduced decaying factor e−l/λ can alleviate
this negative effect because it brings the layer-wise dependency to stacking operations and preserves the graph
hierarchical information when GNNs go deeper. Since λ is a constant, the value of e−l/λ is decreasing as l
increases. Thus, the later stacked layer is always less important than previously stacked ones by the decaying
weight, which addresses the shading neighbors effect. Without the decaying factor, the layer-wise weights are
independent, and the shading neighbors effect can still exist. Moreover, we visualize the layer-wise weight
distribution of different residual connection methods (including our WG-ResNet) and their effectiveness in
addressing the shading neighbors effect in Appendix B. From another perspective, the hyperparameter λ
of the decaying factor actually controls the number of effective neural layers in deeper GNNs. We find its
optimal value directly related to the diameter of the input graph, the detailed discussion can be found in
Section 3.6.
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2.3 Structure-Guided Contrastive Loss (SCL)

According to (Hua et al., 2021; Jing et al., 2022), contrastive representation learning methods show success in
preventing dimensional collapse for image recognition whereby representation vectors shrink along certain
directions. For graph structure representation learning, the contrastive methods are able to construct the
positive and negative sets, and minimizing the similarity of the negative pairs allows the node representations
to be uniformly distributed in the embedding space (Wang & Isola, 2020), and some nascent of contrastive
learning on graphs have obtained promising alleviation in addressing the dimensional collapse and the
corresponding oversmoothing (Zhao & Akoglu, 2020; Guo et al., 2023). However, simply adopting the idea of
contrastive regularization in deep graph neural networks could not fully alleviate the dimensional collapse
issue due to ignoring the topological relation of non-IID graph data. Thus, how to alleviate dimensional
collapse for deep graph neural networks still remains a great challenge. To address this issue with the geometry
consideration, we propose the Structure-guided Contrastive Loss (SCL) as follows.

LSCL = −Evi∼V [Evj∈Ni
(σij log(f(zi, zj))) + Evk∈N̄i

(γik log(1 − f(zi, zk)))]

σij = n2

m
· 1 − dist(Ai, Aj)/n∑

i,j(1 − dist(Ai, Aj)/n) , γik = n2

n2 − m
· 1 + dist(Ai, Ak)/n∑

i,k(1 + dist(Ai, Ak)/n)
(5)

where zi = g(H(l)
i ), g(·) is an encoder mapping H

(l)
i to another latent space, f(·) is a similarity function

(e.g., f(a, b) = exp( ab⊤

||a||||b|| )), dist(·) is a distance measurement function (e.g., hamming distance (Norouzi
et al., 2012)), Ni is the set containing one-hop neighbors of node vi, N̄i is the complement of the set Ni, m is
the number of edges and n is the number of vertices. In Eq. 5, the directly connected nodes (vi, vj) form the
positive pair, while not directly connected nodes (vi, vk) form the negative pair.

The intuition of Eq. 5 is to maximize the similarity of the representations of the positive pairs and to
minimize the similarity of the representations of the negative pairs, such that the node representations become
discriminative. In which process, some research works (Perozzi et al., 2014; Grover & Leskovec, 2016; Le,
2021) would first assume that the importance of each edge is identical. However, such an assumption does not
always get satisfied in many applications (Velickovic et al., 2017; Faisal et al., 2015). To address this issue, we
reweight the importance of edges by considering the graph topological structure via σ and γ. Therefore, for a
positive pair, if two nodes have similar topological structures, the weight (i.e., σ) of this node pair should be
large; for a negative pair, if two nodes have similar topological structures, the weight (i.e., γ) of this node
pair should be small.

Next, we show the importance of these topology-aware weights (i.e., σ and γ) in addressing the oversmoothing
issue with the theoretical analysis. For delivering the following analysis clearly, we also consider the node vi as
the anchor node to illustrate, without loss of generality Zhu et al. (2021). Mathematically, some works (Perozzi
et al., 2014; Grover & Leskovec, 2016; Le, 2021) assume the importance of each edge is identical, i.e., the
edge distribution P (e) is uniform. Thus, we aim to first reweight the importance of edges by considering the
graph’s topological information and then deliver the following topology-aware distribution.

To begin with, we denote the probability of sampling a connection eij and it is a positive connection (i.e., the
sampled pair of two nodes vi and vj connect in the input graph) as P̃pos(eij) ∝ P (eij , y = 1). Then, P̃pos(eij)
can be further extended as P̃pos(eij) = σijPpos(eij), where Ppos(eij) = m

n2 is the prior probability of sampling
positive connections, such that σij can be interpreted as the conditional probability for the joint probability
P̃pos(eij). Note that a positive connection (e.g., eij) stands for two connected nodes vi and vj forming a
positive pair. Similarly, for disconnected two nodes vi and vk (i.e., the negative pair or negative connection
eik), we denote P̃neg(eik) = γikPneg(eik), where Pneg(eik) = 1 − m

n2 is the prior probability of sampling a
negative connection, and we interpret γik as the conditional probability for the joint probability P̃neg(eik).

Finally, we denote θ to be the parameters of the multi-layer GNN model Gθ(·), i.e., Z = Gθ(A, X), such that
we can prove that SCL could address the oversmoothing issue from the perspective of generative adversarial
network (GAN) (Goodfellow et al., 2014) as follows.
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Lemma 2.1. LSCL is a generative adversarial network (GAN) based contrastive learning loss, which could
be written as follows.

min
θ

LSCL = max
θ

∫
e

(P̃pos(e) log(D(e)) + P̃neg(e) log(1 − D(e)))de

where D(e) = f(zi, zj) is the discriminator of GAN with edge e = (vi, vj), node representations zi and zj.
P̃pos(e) = σPpos(e) and P̃neg(e) = γPneg(e). (Proof in Appendix C)
Theorem 2.2. LSCL can address the oversmoothing problem, given the optimal discriminator in Lemma 2.1.

Proof. Based on Lemma 2.1 and following Theorem 1 in GAN (Goodfellow et al., 2014), the optimal D∗(e)
is given by D∗(e) = P̃pos(e)

P̃pos(e)+P̃neg(e) . Since P̃pos(eij) = σijPpos(eij) and P̃neg(eik) = γikPneg(eik), we have

D∗(e) = σ ∗ Ppos(e)
σ ∗ Ppos(e) + γ ∗ Pneg(e)

= P (e|y = 1)P (y = 1)
P (e|y = 1)P (y = 1) + P (e|y = 0)P (y = 0)

= P (y = 1|e)

Therefore, D(e) can be interpreted as maximizing the conditional log-likelihood P (y = 1|e), where y indicates
whether edge e (or a node pair) is positive or negative.

Notice that the discriminator D(e) is defined as the similarity measurement of a node pair in Lemma 2.1.
If D(e) is able to distinguish whether a node pair is a negative pair or not, the hidden representations of
these two nodes (negative pair) are distinguishable. Therefore, we can conclude that when LSCL achieves the
optimal solution, the model could successfully discriminate the difference of the embeddings for the negative
pairs, thus addressing the oversmoothing issue. In practice, the optimum is usually approximated by the
model convergence.

3 Experiments

In this section, we comprehensively demonstrate the performance of our proposed GearGNN compared with
state-of-the-art deeper graph neural networks and self-ablations, trying to answer the following research
questions.

• RQ1: When do we need more layers of graph neural networks? (Answered in Section 3.2)

• RQ2: When it is necessary to be deep, can the proposed GearGNN address dimensional collapse and
oversmoothing to outperform? (Answered in Section 3.3)

• RQ3: Is every component of GearGNN helpful and irreplaceable? (Answered in Section 3.4)

• RQ4: In practice, can GearGNN be agnostic to help various off-the-shelf graph neural network
architectures? (Answered in Section 3.5)

3.1 Experiment Setup

Datasets. Cora (Lu & Getoor, 2003) dataset is a citation network consisting of 5,429 edges and 2,708
scientific publications from 7 classes. The edge in the graph represents the citation of one paper by another.
CiteSeer (Lu & Getoor, 2003) dataset consists of 3,327 scientific publications which could be categorized into
6 classes, and this citation network has 9,228 edges. PubMed (Namata et al., 2012) is a citation network
consisting of 88,651 edges and 19,717 scientific publications from 3 classes. Reddit (Hamilton et al., 2017b)
dataset is extracted from Reddit posts, which consists of 4,584 nodes and 19,460 edges. Notice that we
follow the splitting strategy used in (Zhao & Akoglu, 2020) by randomly sampling 3% of the nodes as the
training samples, 10% of the nodes as the validation samples, and the remaining 87% as the test samples.
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OGB-arXiv (Wang et al., 2020) is a citation network, which consists of 1,166,243 edges and 169,343 nodes
from 40 classes.

Baselines. We compare the performance of our method with the following baselines including one vanilla
GNN model and four state-of-the-art deeper GNN models: (1) GCN (Kipf & Welling, 2017): the vanilla
graph convolutional network; (2) GCNII (Chen et al., 2020): an extension of GCN with skip connections and
additional identity matrices; (3) DGN (Zhou et al., 2020): the differentiable group normalization for GNNs
to normalize nodes within the same group and separate nodes among different groups; (4) PairNorm (Zhao
& Akoglu, 2020): a GNN normalization layer designed to prevent node representations from becoming too
similar; (5) DropEdge (Rong et al., 2020): a GNN-agnostic framework that randomly removes a certain
number of edges from the input graph; (6) RevGCN-Deep (Li et al., 2021): equilibrium model based deep
graph neural networks; (7) EGNN (Zhou et al., 2021): dirichlet energy constrained deep graph neural
networks; (8) ContraNrom (Guo et al., 2023): a contrastive learning-based layer normalization method.

Configurations. For a fair comparison, we set the dropout rate to 0.5, the weight decay rate to 0.0005, and
the total number of iterations to 1500 for all methods; if not specialized, GCN is chosen as the backbone, and
the dimension of each layer is set to 50 for all the graph neural network baseline methods. In Section 3.4, for
GearGNN and GearGNN-S, we sample 10 instances and 5 neighbors for each class from the training set,
dist(·) is the hamming distance, and f(·) is the cosine similarity measurement. The experiments are repeated
10 times if not otherwise specified. All of the real-world datasets are publicly available. The experiments are
performed on a Windows machine with a 16GB RTX 5000 GPU. Detailed reproducibility with released code
can be found in Appendix D.

3.2 When do we need more layers of graph neural networks?

Case 1: Missing Features. We first imagine a scenario where some values of attributes are missing in the
input graph. In this scenario, the shallow GNNs may not work well because GNNs could not collect useful
information from the neighbors due to the massive missing values. However, if we increase the number of
layers, GNNs are able to gather more information from the k-hop neighbors and capture latent knowledge to
compensate for missing features. To verify this, we conduct the following experiment: we randomly mask p%
attributes on Cora and CiteSeer datasets (i.e., setting the masked attributes to be 0), gradually increase the
number of layers, and record the accuracy for each setting following (Zhao & Akoglu, 2020). In this case
study, the number of layers is selected from {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60}, and the backbone
model is GCN. For a fair comparison, we add ResNet (He et al., 2016) if it can boost the baseline model’s
performance. We repeat the experiments five times and record the mean accuracy and standard deviation.

Table 1: Node Classification on Two Datasets by Masking p% of Input Node Attributes (L denotes the
number of layers where a model achieves the best performance).

Node Feature Missing Rate p = 25% p = 50% p = 75%
dataset Method Accuracy L Accuracy L Accuracy L

Cora

GCN + ResNet 0.7503 ± 0.0101 7 0.7435 ± 0.0048 10 0.7226 ± 0.0099 10
PairNorm + ResNet 0.7529 ± 0.0129 10 0.7482 ± 0.0172 20 0.7262 ± 0.0178 40
DropEdge + ResNet 0.7634 ± 0.0112 15 0.7611 ± 0.0102 20 0.7297 ± 0.0168 8

GCNII + ResNet 0.2667 ± 0.0063 25 0.3351 ± 0.0066 25 0.2914 ± 0.0106 40
DGN w/o ResNet 0.6850 ± 0.0184 30 0.6846 ± 0.0147 50 0.6717 ± 0.0156 25

ContraNorm + ResNet 0.7319 ± 0.0099 2 0.7189 ± 0.0091 3 0.6902 ± 0.0107 3
GearGNN 0.7915 ± 0.0060 10 0.7848 ± 0.0043 20 0.7598 ± 0.0081 60

CiteSeer

GCN + ResNet 0.6141 ± 0.0080 4 0.5811 ± 0.0093 10 0.5149 ± 0.0173 9
PairNorm + ResNet 0.6184 ± 0.0087 8 0.5947 ± 0.0083 20 0.5176 ± 0.0075 10
DropEdge + ResNet 0.6348 ± 0.0156 4 0.6083 ± 0.0128 6 0.5240 ± 0.0128 10

GCNII + ResNet 0.2453 ± 0.0045 40 0.2338 ± 0.0028 20 0.2403 ± 0.0046 25
DGN w/o ResNet 0.4560 ± 0.0162 20 0.4593 ± 0.0117 15 0.4498 ± 0.0292 15

ContraNorm + ResNet 0.5893 ± 0.0114 2 0.5621 ± 0.0111 3 0.4646 ± 0.0076 4
GearGNN 0.6524 ± 0.0087 20 0.6169 ± 0.0063 60 0.5576 ± 0.0070 50
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Table 1 shows the performance of GearGNN and various baselines with the optimal number of layers denoted
as #L, i.e., when the model achieves the best performance. By observation, we find that when the missing
rate is 25%, shallow GCN with ResNet has enough capacity to achieve the best performance on both CiteSeer
and Cora datasets. Compared with GCN, our proposed method further improves the performance by more
than 3.83% on the CiterSeer dataset and 4.08% on the Cora dataset by stacking more layers. However,
when we increase the missing rate to 50% and 75%, we observe that most methods tend to achieve the best
performance by stacking more layers. Specifically, PairNorm achieves the best performance at 10 layers when
25% features are missing, while it has the best performance at 40 layers when 75% features are missing. A
similar observation could also be found with GCNII on the Cora dataset, DropEdge on the CiteSeer dataset
as well as our proposed methods in both datasets. Overall, the experimental results verify that the more
features a dataset are missing, the more layers GNNs need to be stacked to achieve better performance. Our
explanation for this observation is that if the number of layers increases, more information will be collected
from the k-hop neighbors to recover the missing information of its 1-hop and 2-hop neighbors.

Case 2: Disalignment of topological and feature distribution. Then, we conduct another case study
with a toy example that near neighbors may not share similar contents in terms of input features. We first
use the existing package (i.e., the draw circle function in the Scikit-learn package) to generate a synthetic
dataset by setting the number of data points to 1,000 and the noise level to 0.01. Then, we measure the
euclidean distance between each pair of data points, and if the distance is less than a threshold, then these
two data points are connected in a graph. In this way, the adjacency matrix is derived after adding the
self-loop. Next, we sample 1% data points as the training set, 9% data points as the validation set, and 90%
data points as the test set. These data points are visualized in Figure 3a and the experimental results are
shown in Figure 3b. In Figure 3a, we observe that the query node (the blue diamond in the dashed circle)
cannot rely on its closest labeled neighbor (the red star in the dashed circle) to correctly predict its label (red
or blue). Only by exploring longer paths consisting of more similar neighbors are we able to predict its label
as blue (i.e., the blue star in the dashed circle). Figure 3b compares the classification accuracy of shallow
GNNs and deeper GNNs. We can see that deeper GNNs significantly outperform shallow ones by more than
11%, due to their ability to explore longer paths on the graph.

(a) (b)

Figure 3: A Toy Example to Demonstrate the Benefit of Deeper GNN Models. (a) Two groups of nodes
in the semi-supervised setting. Stars are labeled, dots are unlabeled, and the diamond is the query node.
Euclidean distance between two nodes indicates the edge connection. (b) Comparison of node classification
accuracy between shallow and deeper GNN models using data on the left. The deeper GNNs are realized by
GearGNN with corresponding backbones.

3.3 Effectiveness Analysis of GearGNN

Here, we evaluate the effectiveness of the proposed method on benchmark datasets by comparing it with
state-of-the-art methods shown in Table 2. The backbone model for all methods we used in these experiments
is GCN (Kipf & Welling, 2017), and for a fair comparison, we set the dimension of the hidden layer to 50 and
vary the number of hidden layers from 2 to 16, 32, and 64 for all methods on the small dataset. We also
examine the node classification performance of GearGNN on a large-scale dataset OGB-arXiv in Table 3. In
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OGB-arXiv, we fix the feature dimension of the hidden layer as 100, the total iteration is set as 3000, and
GCN is also chosen as the backbone model. Due to the memory limitation, we only record the performance
of all methods by setting the number of layers to 2, 10, and 20, respectively. The experiments are repeated 5
times and we record the mean accuracy as well as the standard deviation.

Table 2: Node Classification on Small Datasets with Varying Layers L (GCN as the Backbone).

Dataset Method L = 2 L = 16 L = 32 L = 64

Cora

GCN 0.7643 ± 0.0040 0.5262 ± 0.0732 0.3284 ± 0.0066 0.3274 ± 0.0189
PairNorm 0.7818 ± 0.0027 0.6080 ± 0.0310 0.5138 ± 0.0299 0.2932 ± 0.0120
DropEdge 0.7828 ± 0.0075 0.7557 ± 0.0072 0.7306 ± 0.0134 0.2685 ± 0.0647

GCNII 0.6778 ± 0.0065 0.7237 ± 0.0055 0.7142 ± 0.0015 0.7107 ± 0.0047
DGN 0.7545 ± 0.0003 0.6785 ± 0.0169 0.7067 ± 0.0190 0.7104 ± 0.0192

ContraNorm 0.7682 ± 0.0044 0.6590 ± 0.0291 0.5128 ± 0.0241 0.4328 ± 0.0320
GearGNN 0.7768 ± 0.0057 0.8002 ± 0.0058 0.7961 ± 0.0055 0.8022 ± 0.0061

CiteSeer

GCN 0.6452 ± 0.0072 0.4514 ± 0.0987 0.2689 ± 0.0099 0.2680 ± 0.0093
PairNorm 0.6030 ± 0.0153 0.2268 ± 0.0398 0.2096 ± 0.0029 0.2076 ± 0.0033
DropEdge 0.6532 ± 0.0068 0.6117 ± 0.0229 0.5101 ± 0.0430 0.2138 ± 0.0198

GCNII 0.5912 ± 0.0106 0.6180 ± 0.0031 0.6159 ± 0.0019 0.6101 ± 0.0017
DGN 0.4872 ± 0.0168 0.4753 ± 0.0591 0.4604 ± 0.0162 0.4417 ± 0.0219

ContraNorm 0.6263 ± 0.0061 0.4621 ± 0.0237 0.3965 ± 0.0196 0.2128 ± 0.0208
GearGNN 0.6577 ± 0.0065 0.6650 ± 0.0059 0.6655 ± 0.0031 0.6685 ± 0.0066

PubMed

GCN 0.7990 ± 0.0017 0.5383 ± 0.0200 0.5463 ± 0.0391 0.5566 ± 0.0086
PairNorm 0.8120 ± 0.0076 0.4408 ± 0.0683 0.3972 ± 0.0094 0.3960 ± 0.0097
DropEdge 0.8035 ± 0.0020 0.7893 ± 0.0042 0.7902 ± 0.0032 0.3951 ± 0.0108

GCNII 0.8070 ± 0.0009 0.8094 ± 0.0010 0.8089 ± 0.0007 0.8097 ± 0.0009
DGN 0.7947 ± 0.0358 0.7553 ± 0.0295 0.7733 ± 0.0143 0.7632 ± 0.0226

ContraNorm 0.8061 ± 0.0020 0.5672 ± 0.0684 0.4348 ± 0.0379 0.3971 ± 0.0057
GearGNN 0.8175 ± 0.0016 0.8097 ± 0.0038 0.8098 ± 0.0025 0.8109 ± 0.0033

Reddit

GCN 0.8757 ± 0.0054 0.8540 ± 0.0451 0.3655 ± 0.0251 0.3410 ± 0.0288
PairNorm 0.7704 ± 0.0052 0.8636 ± 0.0448 0.6468 ± 0.0429 0.1230 ± 0.0299
DropEdge 0.8564 ± 0.0059 0.8526 ± 0.0046 0.5384 ± 0.1049 0.1053 ± 0.0148

GCNII 0.6184 ± 0.0108 0.7157 ± 0.0016 0.6972 ± 0.0039 0.6963 ± 0.0059
DGN 0.7829 ± 0.0137 0.7397 ± 0.0371 0.6806 ± 0.0639 0.5058 ± 0.0754

ContraNorm 0.6576 ± 0.0094 0.2563 ± 0.0091 0.2547 ± 0.0170 0.2664 ± 0.0140
GearGNN 0.8762 ± 0.0060 0.9676 ± 0.0033 0.9693 ± 0.0023 0.9721 ± 0.0011

Table 3: Node Classification on Large Dataset with Varying Layers L (GCN as the Backbone).

Dataset Method L = 2 L = 10 L = 20

OGB-arXiv

GCN 0.7136 ± 0.0044 0.7021 ± 0.0018 0.5377 ± 0.0756
PairNorm 0.7186 ± 0.0008 0.7158 ± 0.0035 0.5796 ± 0.0090
DropEdge 0.7178 ± 0.0012 0.6531 ± 0.0056 0.2198 ± 0.0097

GCNII 0.5966 ± 0.0013 0.6340 ± 0.0017 0.6246 ± 0.0015
DGN 0.6039 ± 0.0037 0.5746 ± 0.0033 0.5027 ± 0.0056

ContraNorm 0.7294 ± 0.0025 0.6941 ± 0.0030 0.5821 ± 0.0324
GearGNN 0.7369 ± 0.0014 0.7386 ± 0.0006 0.7401 ± 0.0009

Based on the observation in Table 2 and Table 3, we find that (1) many existing graph de-oversmoothing
methods (e.g., PairNorm, ContraNorm) achieve the best performance with the shallow layer (i.e., L = 2),
and the performance of these methods begin to decrease as we increase the number of layers; (2) GearGNN
outperforms all baseline methods when we stack the layers of GNN (i.e., L = 16, L = 32 and L = 64); (3)
when we set 64-layer GCN as the reference, DropEdge, DropEdge, and ContraNorm have worse performance
than the vanilla GCN; (4) GCNII, DGN, and GearGNN boost the performance by more than 150% on
average compared with GCN; (5) GCNII and GearGNN perform better with deep graph architecture (e.g.,
L = 32 or L = 64); (6) the performance of GearGNN on OGB-arXiv dataset increases as we stack layers,
which verifies our conjuncture that increasing the number of layers indeed leads to better performance in
large graphs due to more information aggregated from neighbors; (7) when we set the number of layers to
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10 for the OGB-arXiv dataset, the performance of most of these baseline methods start to drop and the
performance of these methods deteriorate rapidly as we further stack layers. Additional comparison with
RevGCN-Deep and EGNN can be found in Appendix E.

In addition to Table 2 and Table 3, we also visualize the corresponding number of the nonzero singular values
on those datasets in Figure 4. In Figure 4, taking Cora and OGB-arXiv as examples, we observe that (1)
PairNorm and ContraNorm begin to suffer from the dimensional collapse issue on both datasets when the
number of layers is greater than 10; (2) Dropedge, DGN, and GCNII perform well on the small dataset but
fail to preserve the full-rank representation on the large dataset; (3) the node representations by GearGNN
are full-rank on both datasets, which indicates that GearGNN could alleviate dimensional collapse.

(a) Cora Dataset (b) CiteSeer Dataset (c) PubMed Dataset

(d) Reddit Dataset (e) OGB-arXiv Dataset

Figure 4: The x-axis is the number of layers and the y-axis is the number of the non-zero singular values of
the covariance matrix of the node representations by different methods.

Combined with the observation in Figure 4, Table 2 and Table 3, most of the baseline methods suffer from
the dimensional collapse issue and not fully address the oversmoothing problem when we stack graph neural
network layers, while our proposed GearGNN could largely alleviate the dimensional collapse issue in terms
of both node classification performance and the singularity ranking.

3.4 Ablation Study of GearGNN

Here, we conduct the ablation study to show the effectiveness and irreplaceability of WG-ResNet and SCL
in Table 4. In this experiment, we fix the total iteration set as 3000, and GCN is chosen as the backbone
model. For the Cora dataset, the feature dimension of the hidden layer is 50 and the number of layers is 64;
for the OGB-arXiv dataset the feature dimension of the hidden layer is 100 and the number of layers is 20.
In Table 4, GearGNN-T removes SCL, GearGNN-D removes the weight decaying factor in WG-ResNet and
GearGNN-JK replaces the WG-ResNet by Jumping Knowledge (Xu et al., 2018).

Table 4: Ablation Study w.r.t. Node Classification Accuracy.

Method Cora (L = 64) CiteSeer (L = 64) PubMed (L = 64) Reddit (L = 64) OGB-arXiv (L = 20)
GCN+RseNet 0.7252 ± 0.0176 0.6213 ± 0.0056 0.7985 ± 0.0068 0.9432 ± 0.0037 0.7144 ± 0.0013
GearGNN-D 0.7498 ± 0.0139 0.6567 ± 0.0052 0.8050 ± 0.0031 0.9654 ± 0.0028 0.7363 ± 0.0011
GearGNN-T 0.7875 ± 0.0092 0.5750 ± 0.0244 0.8078 ± 0.0047 0.9397 ± 0.0042 0.7335 ± 0.0024

GearGNN-JK 0.7955 ± 0.0078 0.6600 ± 0.0085 0.8061 ± 0.0038 0.9659 ± 0.0046 0.7368 ± 0.0012
GearGNN 0.8022 ± 0.0061 0.6685 ± 0.0066 0.8109 ± 0.0033 0.9721 ± 0.0011 0.7401 ± 0.0009
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In Table 4, we have the following observations (1) comparing GearGNN with GearGNN-T, we find that
GearGNN boosts the performance by 1.84% on the Cora dataset after adding SCL, which demonstrates the
effectiveness of SCL to address the oversmoothing issue; (2) GearGNN outperforms GearGNN-D on Cora
dataset by 5.61%, which shows that GearGNN could address the shading neighbors effect by adding the
weight decaying factor; (3) comparing GearGNN with GearGNN-JK, we verify that our proposed WG-ResNet
is more effective than GearGNN-JK. Besides, one drawback of jumping knowledge is its high memory required
as the number of layers increases, while our proposed WG-ResNet doesn’t; (4) GearGNN outperforms
GCN+ResNet by more than 7.7% on the Cora dataset and 2.6% on the OGB-arXiv dataset, which indicates
that WG-ResNet could alleviate the shading neighbors effect.

3.5 Different Backbones of GearGNN

Here, we show the performance of our proposed GearGNN cooperating with different backbone models (e.g.,
GAT (Velickovic et al., 2018) and GraphSage (Hamilton et al., 2017a)). In Figure 5, we set the numbers of
the hidden layers as 60 for all methods and the dimension of the hidden layer as 50. The total number of
training iterations is 1500.

Figure 5: Accuracy of Different Backbone Models with 64 Hidden Layers on Four Datasets.

By observation, we find that both GAT and GraphSage suffer from oversmoothing when the architecture
becomes deeper, and our proposed method GearGNN greatly alleviates it and boosts the performance by
40%-60% on average over four datasets. Specifically, compared with the vanilla GraphSage, our GearGNN
boosts its performance by 43% on the CiteSeer dataset and more than 67% on the Reddit dataset.

3.6 Number of Effective Layers in Deep Graph Neural Networks

We conduct the hyperparameter analysis of GearGNN, regarding λ in the weight decaying function of Eq. 4.
For example, when λ = 10, the decaying factor for the 10-th layer is 0.3679 (i.e., e−1); but for the 30-th layer,
it is 0.0049 (i.e., e−3). This decay limits the effective information aggregation scope of deeper GNNs because
the later stacked layers will become significantly less important. Based on this controlling property of λ, a
natural follow-up question is whether its value depends on the property of input graphs.

Interestingly, through our experiments, we find that the optimal λ is very close to the diameter of input
graphs (if it is connected) or the largest component (if it does not have many separate components). This
observation verifies our conjecture regarding the property of λ (i.e., it controls the number of effective layers
or the number of hops during the message passing aggregation schema of GNNs). Hence, the value of λ can
be searched around the diameter of the input graph.

To analyze the hyperparameter λ, we fix the feature dimension of the hidden layer to be 50, the total iteration
is set to be 3000, the number of layers is set to be 60, the sampling batch size for GearGNN is 10, and GCN
is chosen as the backbone model. The experiment is repeated five times for each configuration. In each
sub-figure of Figure 6, the x-axis is the value of λ, and the y-axis is the accuracy of 60-layer GCN in the
above setting.
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(a) Cora (b) CiteSeer (c) PubMed (d) Reddit

Figure 6: Hyperparameter Analysis, i.e., λ vs Node Classification Accuracy on Four Datasets.

First, we can observe that it’s not true that GearGNN achieves the best performance with a larger λ.
Specifically, we find that the optimal λ = 20 on the Cora dataset, the optimal λ = 10 on the CiteSeer dataset,
the optimal λ = 18 on the PubMed dataset, and the optimal λ = 20 on the Reddit dataset. Then, natural
questions to ask are (1) what determines the optimal value of λ in different datasets? (2) can we gather some
heuristics to narrow down the hyperparameter search space to efficiently establish effective GNNs?

Thus, we provide our discovery. In Eq. 4, we have analyzed that the decaying factor λ controls the number of
effective layers in deeper GNNs by introducing the layer-wise dependency. It means that larger λ slows down
the weight decay and gives considerably large weights to more layers such that they can be effective, and
the information aggregation scope of GNN extends as more multi-hop neighbor features are collected and
aggregated. In graph theory, diameter represents the scope of the graph, which is the largest value of the
shortest path between any node pairs in the graph. Therefore, the optimal λ should be restricted by the
input graph, i.e., being close to the input graph diameter.

Table 5: Graph Statistics of Each Dataset.

Metric Cora Citeseer PubMed Reddit
Number of Nodes 2,708 3,327 19,717 4,854
Connected Graph No No Yes Yes
Number of Components 78 438 1 1
Diameter of the Graph (or the Largest Component) 19 28 18 17

Interestingly, our experiments reflect this observation. Combining the optimal λ in Figure 6 and the diameter
in Table 5, for connected graphs PubMed and Reddit, the optimal λ is very close to the graph diameter. This
also happens to Cora (even though Cora is not connected), because the number of components is not large.
As for CiteSeer, the optimal λ is less than the diameter of its largest component. A possible reason is that
CiteSeer has many (i.e., 438) small components, which shrinks the information propagation scope, such that
we do not need to stack many layers and we do not need to enlarge λ to the largest diameter (i.e., 28). In
general, based on the above analysis, we find the optimal value of λ can be searched around the diameter of
the input graph.

4 Conclusion

In this paper, we focus on building deeper graph neural networks to effectively model graph data and illustrate
the oversmoothing cause from the perspective of dimensional collapse. To address this, we first provide
insights regarding why ResNet is not best suited for many deeper graph neural network solutions, i.e., the
shading neighbors effect. Then we propose a new residual architecture, Weight-decaying Graph Residual
Connection (WG-ResNet) to address this effect. In addition, we propose a Structure-guided Contrastive Loss
(SCL) to address the problem from another viewpoint, where we utilize graph topological information, pull
the representations of connected node pairs closer, and push remote node pairs farther apart via contrastive
learning regularization. Combining WG-ResNet with SCL, an end-to-end model GearGNN is proposed for
deep graph neural networks. We provide the theoretical analysis of our proposed method and demonstrate
the effectiveness of GearGNN by extensive experiment comparing with state-of-the-art methods.
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A Similarity between Oversmoothing and Dimensional Collapse

In (Rusch et al., 2023), the authors describe oversmoothing as a phenomenon that the node representation
vectors are indistinguishable from each other and thus deteriorate the performance of downstream tasks.
Inspired by this, we could measure the magnitude of graph oversmoothing by the metric of covariance mean
as follows:

covariance(h) = 1
n

∑
i

(hi − h̄)(hi − h̄)

h̄ = 1
n

∑
i

hi

where hi is the node representation for node i and covariance(h) = 0 indicates that the learned representation
is indistinguishable and the deep model suffers from an oversmoothing issue. Notice that the dimensional
collapse is observed when the covariance matrix of the node representations is not full-rank (i.e., the number
of non-zero singular values is less than the dimension of the node representation in Figure 1). When
covariance(h) = 0, it also indicates that hi = hj = h̄ for all i and j, and the rank of the covariance matrix of
the node representation matrix is 0 (While a large value of covariance(h) does not mean that the performance
is ). In other words, the graph model suffers from complete collapse, where all node representations shrink to
a single point. Thus, we could see that the oversmoothing issue is highly related to dimensional collapse.

B Visualization of the Weight of Each Layer With Different Weighting Functions

Figure 7: Weight Visualization. The y-axis represents the weight of each layer, and the x-axis represents the
index of each layer, in deeper models.

Here, we visualize the weight of each layer with different weighting functions on the Cora dataset. In this
experiment, we fix the feature dimension of the hidden layer to be 50; the total iteration is set to be 3000; the
number of layers is set to be 60; the sampling batch size for GearGNN is 10; GCN is chosen as the backbone
model; λ is set to be 20. In Figure 7, The x-axis is the index of each layer, and the y-axis is the weight
for each layer. GearGNN-S removes the similarity measurement ecos(H(1),H̃(l)) in Eq. 5 and GearGNN-D
removes the decaying weight factor and only keeps the exponential cosine similarity ecos(H(1),H̃(l)) to measure
the weight for each layer. GearGNN-S achieves the simplified WG-ResNet in GearGNN, which removes
the exponential cosine similarity ecos(H(1),H̃(l)) in GearGNN. By observation, we find that (1) ResNet sets
the weight of each layer to be 1, which easily leads to shading neighbors effect when stacking more layers,
because the faraway neighbor information becomes more dominant in the GCN information aggregation; (2)
without weight decaying factor, the weight for each layer in GearGNN-D fluctuates because they are randomly
independent. More specially, the weights for the last several layers (e.g., L=58 or L=60) are larger than the
weights for the first several layers, which contradicts the intuition that the first several layers should be more
important than the last several layers; (3) the weights for each layer in both GearGNN and GearGNN-S
reduce as the number of layers increase, which suggests that both of them could address the shading neighbors
effect to some extents; (4) combining the results from Table 4, GearGNN achieves better performance than
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GearGNN-S, as it imposes larger weights to the first several layers, which verifies that the learnable similarity
sim(H(1), H̃(l)) achieves better performance with the enlarged hypothesis space for neural networks.

C Proof for Lemma 2.1

Lemma 2.1: LSCL is a generative adversarial network (GAN) based contrastive learning loss, which could
be written as follows:

min
θ

LSCL = max
θ

∫
e

(p̃p(e) log(D(e)) + p̃n(e) log(1 − D(e)))de

where D(e) = f(zi, zj) is the discriminator of GAN with e = (vi, vj), p̃p(e) = σpp(e) and p̃n(e) = γpn(e).

Proof. Since D(e) = f(zi, zj), we have

min
θ

LSCL = −Evi∼V [Evj∈Ni
(σij log(f(zi, zj))) + Evk∈N̄i

(γik log(1 − f(zi, zk)))]

= − min
θ

∫
e

(pp(e)σ) log(D(e)) + (pn(e)γ) log(1 − D(e))de

= max
θ

∫
e

(p̃p(e) log(D(e)) + p̃n(e) log(1 − D(e)))de

D Reproducibility

All of the real-world datasets are publicly available. The experiments are performed on a Windows machine
with a 16GB RTX 5000 GPU. The code of our algorithm is in an anonymous link 1. We provide the detailed
experimental setting for each experiment shown in Table 6.

Table 6: Hyperparameters for GearGNN shown in Table 2.

Method GearGNN
Cora λ = 20, α = 0.03

CiteSeer λ = 10, α = 0.02
PubMed λ = 18, α = 0.1
Reddit λ = 20, α = 0.02

Moreover, we set the learning rate to be 0.001 and the optimizer is RMSProp, which is one variant of
ADAGRAD (Duchi et al., 2011).

E Additional Effectiveness Analysis

We conduct the additional experiments by comparing our proposed method with RevGCN-Deep (Li et al.,
2021) and EGNN (Zhou et al., 2021). We set the number of layers for all baseline methods to 60 for Cora,
Citeseer, PubMed, and Reddit. For the OGB-arXiv dataset, we set the number of layers to 10 for all methods.

Table 7: Additional Node Classification Comparison.

Method Cora (L=60) CiteSeer (L=60) PubMed (L=60) Reddit (L=60) OGB-arXiv (L=10)
RevGCN-Deep 0.7458 ± 0.0084 0.5137 ± 0.0099 0.8139 ± 0.0015 0.8853 ± 0.0383 0.7354 ± 0.0009

EGNN 0.7961 ± 0.0036 0.6566 ± 0.0060 0.8138 ± 0.0026 0.8772 ± 0.0040 0.7247 ± 0.0015
GearGNN 0.8059 ± 0.0028 0.6655 ± 0.0117 0.8185 ± 0.0016 0.9721 ± 0.0011 0.7401 ± 0.0009

1https://drive.google.com/file/d/1cbNI74lhTb3LsOKhgVHT1btNz20ZLb60/view?usp=sharing
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F Additional Hyperarameter Analysis

Here, we conduct additional hyperparameter analysis of GearGNN, i.e., α in the overall loss function of Eq 1.

Figure 8: Hyperparameter Analysis, i.e., α vs Node Classification Accuracy.

To analyze the hyperparameter α in GearGNN, we fix the feature dimension of the hidden layer to be 50, the
total iteration is set to be 3000, the number of layers is set to be 60, the sampling batch size for GearGNN
is 10, GCN is chosen as the backbone model, and the dataset is Cora. We gradually increase the value of
α and record the accuracy. The experiment is repeated five times in each setting. In Figure 8, the x-axis
is α and the y-axis is the accuracy score. By observation, when α = 1, the performance is worst and the
performance begins to increase by decreasing the value of α. It achieves the best accuracy when α = 0.03.
The performance starts to decrease again if we further decrease the value of α. Our conjecture is that when
α is large, it will dominate the overall objective function, thus jeopardizing the classification performance.
Besides, if we set the value of α to be a small number (i.e., α = 0.001), the performance also decreases.
In addition, comparing with the performance without using SCL regularization (i.e., α = 0), our proposed
method with α = 0.03 can boost the performance by more than 1.8%, which demonstrates that our proposed
SCL alleviates the issue of oversmoothing to some extent.

G Efficiency Analysis

Here, we conduct an efficiency analysis regarding our proposed method in the Cora dataset. We fix the
feature dimension of the hidden layer to be 50, the total iteration is set to be 1500, the sampling batch size
for GearGNN and GearGNN-S is 10, and GCN is chosen as the backbone model. We gradually increase the
number of layers and record the running time.

Figure 9: The Number of Layers vs Running Time (in seconds) on Cora.
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In Figure 9, the x-axis is the number of layers and the y-axis is the running time in seconds. We observe
that the running time of both GearGNN and GearGNN-S is linearly proportional to the number of layers.
Comparing the running time of GearGNN, the running time of GearGNN-S is further reduced after the
weighting function in GearGNN (e.g., sim(·)) is replaced by a constant.

H Sampling Method for SCL

To realize SCL expressed in Eq. 5, we need to get the positive nodes vj and negative nodes vk towards the
selected central node vi. To avoid iterating over all existing nodes or randomly sampling several nodes, we
propose to sample positive nodes vj and negative nodes vk from the star subgraph Si of the central node vi.
Moreover, to make the sampling scalable and to reduce the search space of negative nodes, we propose a
batch sampling method.

Figure 10: Batch Sampling. Each star node in the figure corresponds to node vi in Eq. 5.

As shown in Figure 10, the batch size is controlled by the number of central nodes (i.e., star nodes in the
figure). For each central node, the positive nodes are those 1-hop neighbors, and the negative nodes consist
of unreachable nodes. In our batch sampling, we strictly constrain that the positive nodes are only from
the 1-hop neighborhood for the following three reasons: (1) they are efficient to be accessed; (2) considering
all k-hop neighbors as positive will enlarge the scope of positive nodes and further decrease the intimacy
of the directly connected nodes; (3) 1-hop positive nodes in the star subgraph can preserve enough useful
information, compared with the positive nodes from the whole graph. For the third point, we prove it
through the graph influence loss (Huang & Zitnik, 2020) in Proposition H.1, and the formal definition of
graph influence loss is given in the following paragraph after Proposition H.1.

Proposition H.1 (Bounded Graph Influence Loss for Sampling Positive Pairs Locally). Taking GCN as
an example of GNN, the graph influence loss R(vc) on node vc w.r.t positive nodes from the whole
graph against positive nodes from the 1-hop neighborhood star subgraph is bounded by R(vc) ≤
(n − dc) µ

(DP̄∗
GM

)|P̄∗|
, where n is the number of nodes, dc is the degree of node vc including the self-loop, µ is a

constant, P̄∗ is the path from center node vc to a 1-hop outside node vs which has the maximal node influence
Ivc,vs

, and |P̄∗| denotes the number of nodes in path P̄∗.

Proof. According to the assumption of (Wang & Leskovec, 2020), σ(·) can be identity function and W (·)

can be identity matrix. Then, the hidden node representation (of node vc) in the last layer of GCN can be
written as follows.

h(∞)
c = 1

Dc,c

∑
vi∈Nc

Ac,ih
(∞)
i
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Then, based on the above equation, we can iteratively replace h
(∞)
i with its neighbors until the representation

h
(∞)
s of node vs is included. The extension procedure is written as follows.

h(∞)
c = 1

Dc,c

∑
vi∈Nc

Ac,i
1

Di,i

∑
vj∈Ni

Ai,j . . .

1
Dk,k

∑
vs∈Nk

Ak,sh(∞)
s

The above equation suggests that the influence from the positive node vs to the center node vc is through the
path P = (vc, vi, vj , . . . , vk, vs).

Following the above path formation and assuming the edge weight A(i, j) as the positive constant, according
to (Huang & Zitnik, 2020), we can obtain the node influence Ivc,vs

of vs on vc as follows.

Ivc,vs
= ∥∂h(∞)

c /∂h(∞)
s ∥ ≤ µ

(DP̄
GM )|P̄|

where µ is a constant, DP̄
GM is the geometric mean of the degree of nodes sitting in path P̄ , and P̄ is the path

from the positive node vs to the center node vc that could generate the maximal multiplication of normalized
edge weight, |P̄| denotes the number of nodes in path P̄.

The above analysis suggests that the node influence of positive long-distance nodes is decaying.

Hence, the graph influence loss about learning node vc from the whole graph positive nodes versus from
the 1-hop localized positive nodes can be expressed as follows.

IG(vc) − IL(vc) = Ivc,v1 + Ivc,v2 + . . . + Ivc,vn−dc

≤
n−dc∑
i=1

µi

(DP̄i

GM )|P̄i|

≤ (n − dc) µ∗

(DP̄∗
GM )|P̄∗|

where IG(vc) denotes global influence, IL(vc) is the influence for star subgraph, dc is the degree of node vc

(including self-loop), and µ∗

(DP̄∗
GM

)|P̄∗|
is the maximal among all µi

(D
P̄i
GM

)|P̄i|
.

Specifically, the graph influence loss (Huang & Zitnik, 2020) R(vc) can be expressed as R(vc) = IG(vc)−IL(vc),
which is determined by the global graph influence on vc (i.e., IG(vc)) and the star subgraph influence on vc

(i.e., IL(vc)). Then, to compute the graph influence IG(vc), we need to compute the node influence of each
node vj to node vc, where node vj is reachable from node vc. Based on the final output node representation
vectors, the node influence is expressed as Ivc,vj

= ∥∂h
(∞)
c /∂h

(∞)
j ∥, and the norm can be any subordinate

norm (Wang & Leskovec, 2020). Then, IG(vc) is computed by the L1-norm of the following vector, i.e.,
IG(vc) = ∥[Ivc,v1 , Ivc,v2 , . . . , Ivc,vn

]∥1. Similarly, we can compute the star subgraph influence IL(vc) on node
vc. The only difference is that we collect each reachable node vj in the star subgraph L (i.e., 1-hop neighbors
of vc). Overall, in Proposition H.1, we show why positive pairs can be locally sampled with the support from
graph influence loss of a node representation vector output by the GCN final layer.
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