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Abstract

Extensive work has demonstrated that equivariant neural networks can significantly im-
prove sample efficiency and generalization by enforcing an inductive bias in the network
architecture. These applications typically assume that the domain symmetry is fully de-
scribed by explicit transformations of the model inputs and outputs. However, many real-
life applications contain only latent or partial symmetries which cannot be easily described
by simple transformations of the input. In these cases, it is necessary to learn symmetry
in the environment instead of imposing it mathematically on the network architecture. We
discover, surprisingly, that imposing equivariance constraints that do not exactly match
the domain symmetry is very helpful in learning the true symmetry in the environment.
We differentiate between extrinsic and incorrect symmetry constraints and show that while
imposing incorrect symmetry can impede the model’s performance, imposing extrinsic sym-
metry can actually improve performance. We demonstrate that an equivariant model can
significantly outperform non-equivariant methods on domains with latent symmetries.
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1. Introduction

Recently, equivariant learning has shown great success in various machine learning domains
like trajectory prediction (Walters et al., 2020), robotics (Simeonov et al., 2022), and rein-
forcement learning (Wang et al., 2022c). Equivariant networks (Cohen and Welling, 2016,
2017) can improve generalization and sample efficiency during learning by encoding task
symmetries directly into the model structure. However, this requires problem symmetries
to be perfectly known and modeled at design time – something that is sometimes problem-
atic. It is often the case that the designer knows that a latent symmetry is present in the
problem but cannot easily express how that symmetry acts in the input space. For example,
Figure 1b is a rotation of Figure 1a. However, this is not a rotation of the image – it is a
rotation of the objects present in the image when they are viewed from an oblique angle. In
this situation, the conventional wisdom would be to discard the model structure altogether
since it is not fully known and to use an unconstrained model. Instead, we explore whether
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Figure 1: Object transform
rotates the object
itself (b), while im-
age transform ro-
tates the image (c).

it is possible to benefit from equivariant models even when
the way a symmetry acts on the problem input is not pre-
cisely known. We show empirically that this is indeed the
case and that an inaccurate equivariant model is often better
than a completely unstructured model.

This paper makes two contributions. First, we de-
fine three different relationships between problem symmetry
and model symmetry: correct equivariance, incorrect equiv-
ariance, and extrinsic equivariance. Correct equivariance
means the model correctly models the problem symmetry;
incorrect equivariance is when the model symmetry inter-
feres with the problem symmetry; and extrinsic equivariance
is when the model symmetry transforms the input data to
out-of-distribution data. Second, we empirically compare
extrinsic and incorrect equivariance in a supervised learn-
ing task and show that a model with extrinsic equivariance
can improve performance compared with an unconstrained
model. Finally, we explore this idea in a reinforcement learn-
ing context and show that an extrinsically constrained model can outperform state-of-the-art
conventional CNN baselines.

2. Learning Symmetry Using Other Symmetries

2.1. Model Symmetry Versus True Symmetry

This paper focuses on tasks where the way in which the symmetry group operates on the
input space is unknown. In this case the ground truth function f : X → Y is equivariant
with respect to a group G which acts on X and Y by ρx and ρy respectively. However, the
action ρx on the input space is not known and may not be a simple or explicit map. Since
ρx is unknown, we cannot pursue the strategy of learning f using an equivariant model
class fϕ constrained by ρx. As an alternative, we propose restricting to a model class fϕ
which satisfies equivariance with respect to a different group action ρ̂x, i.e., fϕ(ρ̂x(g)x) =
ρy(g)fϕ(x). This paper tests the hypothesis that if the model is constrained to a symmetry
class ρ̂x which is related to the true symmetry ρx, then it may help learn a model satisfying
the true symmetry. For example, if x is an image viewed from an oblique angle and ρx is
the rotation of the objects in the image, ρ̂x can be the rotation of the whole image (which
is different from ρx because of the tilted view angle). Section 2.3 will describe this example
in detail.

2.2. Correct, Incorrect, and Extrinsic Equivariance

Our findings show that the success of this strategy depends on how ρ̂x relates to the ground
truth function f and its symmetry. We classify the model symmetry as correct equivariance,
incorrect equivariance, or extrinsic equivariance with respect to f . Correct symmetry means
that the model symmetry correctly reflects a symmetry present in the ground truth function
f . An extrinsic symmetry may still aid learning whereas an incorrect symmetry is necessarily
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detrimental to learning. We illustrate the distinction with a classification example shown
in Figure 2a. Let D ⊆ X be the support of the input distribution for f .

Definition 1 The action ρ̂x has correct equivariance with respect to f if ρ̂x(g)x ∈ D for
all x ∈ D, g ∈ G and f(ρ̂x(g)x) = ρy(g)f(x).

The action ρ̂x has incorrect equivariance with respect to f if there exist x ∈ D and g ∈ G
such that ρ̂x(g)x ∈ D but f(ρ̂x(g)x) ̸= ρy(g)f(x).

The action ρ̂x has extrinsic equivariance with respect to f if for x ∈ D, ρ̂x(g)x ̸∈ D.

Figure 2: An example for correct, in-
correct, and extrinsic equiv-
ariance. Grey is the input
distribution. Circles are the
data in distribution where
the color shows the ground
truth label. Crosses show the
group transformed data.

When ρ̂x has correct equivariance, the model
symmetry preserves the input space D and f is
equivariant with respect to it. For example, con-
sider the action ρ̂x of the group G1 = C2 acting
on R2 by reflection across the horizontal axis and
ρy = 1, the trivial action fixing labels. Figure 2b
shows the untransformed data x ∈ D as circles
along the unit circle. The transformed data ρ̂x(g)x
(shown as crosses) also lie on the unit circle, and
hence the support D is reflection invariant. More-
over, the ground truth labels f(x) (shown as or-
ange or blue) are preserved by this action.

When ρ̂x has incorrect equivariance, the model
symmetry partially preserves the input distribu-
tion, but does not correctly preserve labels. In
Figure 2c, the rotation group G2 = ⟨Rotπ⟩ maps
the unit circle to itself, but the transformed data
does not have the correct label. Thus, constrain-
ing the model fϕ by fϕ(ρ̂x(g)x) = fϕ(x) will force
fϕ to mislabel data. In this example, for a =√
2/2, f(a, a) = orange and f(−a,−a) = blue,

however, fϕ(a, a) = fϕ(Rotπ(a, a)) = fϕ(−a,−a).
Extrinsic equivariance is when the equivariant

constraint in the equivariant network fϕ enforces equivariance to out-of-distribution data.
Since ρ̂x(g)x ̸∈ D, the ground truth f(ρ̂x(g)x) is undefined. An example of extrinsic equiv-
ariance is given by the scaling group G3 shown in Figure 2d. For the data x ∈ D, enforcing
scaling invariance fϕ(ρ̂x(g)x) = fϕ(x) where g ∈ G3 will not increase error, because the
group transformed data (in crosses) are out of the distribution D of the input data shown
in the grey ring. In fact, we hypothesize that such extrinsic equivariance may even be
helpful for the network to learn the ground truth function.

2.3. Object Transformation and Image Transformation

In tasks with visual inputs (X = Rc×h×w), incorrect or extrinsic equivariance will exist
when the transformation of the image does not match the transformation of the latent state
of the task. In such case, we call ρx the object transform and ρ̂x the image transform. For
an image input x ∈ X, the image transform ρ̂x(g)x is defined as a simple transformation
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(a) Block Pulling (b) Block Pushing (c) Block Picking (d) Drawer Opening (e) Block in Bowl

Figure 3: The manipulation environments from BulletArm benchmark Wang et al. (2022b)
implemented in PyBullet. The top-left shows the goal for each task.

Figure 4: Comparison of Equivariant SAC (blue) with baselines in evaluation. The evalu-
ation is performed every 200 training steps.

of pixel locations (e.g., Figure 1a-c), while the object transform ρx(g)x is an implicit map
transforming the objects in the image (e.g., Figure 1a-b).

3. Extrinsic Equivariance in Robotic Reinforcement Learning

In this section, we demonstrate that extrinsic equivariance can significantly improve sample
efficiency in reinforcement learning.

We experiment in five robotic manipulation environments shown in Figure 3. The state
space S = R4×h×w is a 4-channel RGBD image captured from a fixed camera pointed at
the workspace. The action space A = R5 is the change in gripper pose (x, y, z, θ), where θ
is the rotation along the z-axis, and the gripper open width λ. The task has latent O(2)
symmetry: when a rotation or reflection is applied to the poses of the gripper and the
objects, the action should rotate and reflect accordingly. However, such symmetry does
not exist in image space because the image perspective is skewed instead of top-down. We
enforce such extrinsic symmetry (group D4) using Equivariant SAC (Wang et al., 2022c,a)
equipped with random crop augmentation using RAD (Laskin et al., 2020) (Equi SAC +
RAD) and compare it with a number of sample-efficient baselines using unconstrained CNN.
All methods use Prioritized Experience Replay (PER) (Schaul et al., 2015) with pre-loaded
expert demonstrations. We also add an L2 loss towards the expert action in the actor to
encourage expert actions.

Figure 4 shows that Equivariant SAC (blue) outperforms all baselines, suggesting that
an equivariant model is still powerful when the symmetry is extrinsic.
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4. Conclusion

This paper defines correct equivariance, incorrect equivariance, and extrinsic equivariance,
and demonstrates experimentally that extrinsic equivariance can provide significant perfor-
mance improvements in reinforcement learning. A limitation of this paper is that we focus
on planar equivariant networks. In future work, we are interested in evaluating extrinsic
equivariance in network architectures that process different types of data.
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