
Exploring the Sharpened Cosine Similarity

Skyler Wu1,2,4, Fred Lu1,2,3, Edward Raff1,2,3, James Holt1
1Laboratory for Physical Sciences, 2Booz Allen Hamilton,

3 University of Maryland, Baltimore County, 4Harvard University
skylerwu@college.harvard.edu, lu_fred@bah.com,

raff_edward@bah.com, holt@lps.umd.edu

Abstract

Convolutional layers have long served as the primary workhorse for image classifi-
cation. Recently, an alternative to convolution was proposed using the Sharpened
Cosine Similarity (SCS), which in theory may serve as a better feature detector.
While multiple sources report promising results, there has not been to date a full-
scale empirical analysis of neural network performance using these new layers. In
our work, we explore SCS’s parameter behavior and potential as a drop-in replace-
ment for convolutions in multiple CNN architectures benchmarked on CIFAR-10.
We find that while SCS may not yield significant increases in accuracy, it may learn
more interpretable representations. We also find that, in some circumstances, SCS
may confer a slight increase in adversarial robustness.

1 Introduction

For decades, convolutional layers have served as the workhorses in neural network architectures for
image classification. Mathematically, a convolutional layer slides across an input image and computes
the dot product between a signal s and a kernel k (see [1]). However, initial exploration and discussion
by [2] suggest that convolutional layers, while excellent image filters, may not be very good feature
detectors. In addition, [3] argue that because the dot product operation is unbounded, neural networks
using convolutional layers may be vulnerable to increased model variance, over-sensitivity, and a
lack of generalizability. As such, [3] explored replacing traditional convolutional layers with cosine
similarity. Mathematically, the cosine similarity (“CosSim") between s and k is defined as follows:

CosSim(s, k) =
s · k

∥s∥∥k∥
.

Importantly, cosine similarity is bounded between −1 and 1, potentially reducing the variance
concerns of standard CNNs. Traditionally, cosine similarity has been used extensively in text-analysis
to quantify the “similarity" between two documents (see [4]), among other machine learning tasks (see
[5]). For deep-learning networks, [3] found that incorporating cosine similarity in VGG-type CNNs
outperformed standard convolution-based alternatives using batch, weight, and layer normalization
on CIFAR-10/100 and SVHN.

Building on cosine similarity, [1] proposed that one can “sharpen" the standard cosine similarity to
better discern whether two vectors are similar by raising the standard cosine similarity to a power
p, while preserving the sign of the original cosine value. To prevent numerical instability arising
from the signal s potentially having a near-zero magnitude, [1] presents the following modified
mathematical formulation for Sharpened Cosine Similarity (SCS), with a small positive scalar q
added to ||s||:

SCS(s, k) = sign(s · k)
∣∣∣ s · k
(∥s∥+ q)∥k∥

∣∣∣p
I Can’t Believe It’s Not Better Workshop at NeurIPS 2022.

In February 2020, [2] used a one-dimensional input vector to visually demonstrate that an SCS kernel
was a more accurate feature detector than a standard convolution kernel. Specifically, Rohrer showed
that the SCS kernel more consistently output large values in the presence of a desired feature and
smaller values in the absence of such a feature, than a standard convolution kernel. The math and
examples provided by [2] are convincing that standard convolutions are better filters than detectors,
and the hypothesis that such a change from convolutions to SCS would improve predictive accuracy
is intuitive and logical.

In this study, we more thoroughly investigate the SCS, exploring accuracy, efficiency, interpretability,
and adversarial robustness as hypotheses of what may be improved by SCS. Our experiments are
repeated using multiple different current network architectures to see if any benefits of SCS improve
with smaller network size, as hypothesized by current small-scale results of Rohrer. Our results find
some measurable differences between SCS and convolutional networks, but said differences do not
yet rise to a level that would meaningfully impact current practitioners.

2 Review of Related Work

Since the [2] Twitter thread, many have experimented with various implementations of the SCS layer.
Initial results suggest that SCS is very parameter-efficient, which may be desirable in use-cases with
limited compute or wattage capacities. On MNIST, [6] reported achieving 99% accuracy using an
SCS-based architecture with less than 1.4K parameters. [6] also observed that SCS networks tended
to produce more interpretable weights, work well with unscaled inputs, and require no normalization.
It was also observed that SCS kernels could extract not only exact matches of desired features, but
also their opposites (i.e., with opposite sign). As such, [6] recommended that SCS be paired with
MaxAbsPool2d (taking the maximum of the absolute values of an input), in contrast to the traditional
MaxPool2d, for optimal performance. On CIFAR-10, Rohrer published an SCS-based model in
his scs-gallery (see [7]) that claimed to achieve 80% accuracy with only 25.2K parameters, an
order of magnitude less than existing architectures with comparable accuracy. [8] experimented with
scaling up SCS networks to larger datasets and leveraging TPU computations, but found that SCS
was computationally significantly slower to train than convolutional layers. This is primarily because
the exponentiation to the pth power in SCS does not parallelize well to GPUs and TPUs.

In addition to the properties discussed above, members of the machine learning community have
found that the inclusion of SCS layers does not appear to produce more accurate models than existing
architectures (see [1]). Others have also found that SCS architectures do not require nonlinear
activations (e.g., ReLU, sigmoid), dropout layers, nor normalization layers (e.g., BatchNorm2d) after
SCS layers. Some researchers have also tried incorporating SCS into existing architectures such
as ResNet (see [9]), compact transformers (see [10]), models for ASL classification (see [11]), and
GANs (see [12]), with limited or mixed reported results. However, to the best of our knowledge,
there do not exist any formally published manuscripts on SCS experiments and behavior, especially
in comparison to traditional convolutional layers.

3 Materials and Methods

3.1 Architectures

For initial exploratory experiments, we selected two network architectures to serve as our test
platforms: first, an SCS network with 100K parameters from Rohrer’s scs-gallery, which we will
call “Rohrer100K" (see [7]); second, the ResNet18 network from PyTorch’s torchvision library
with 11.6 million parameters. A ResNet18/20 architecture specially designed for CIFAR-10 was
also briefly used when comparing the weight behaviors of SCS layers versus their convolutional
counterparts (see [13]). For follow-on experiments, we selected four more originally SCS-based
architectures from Rohrer’s scs-gallery that we will call Rohrer25K, Rohrer47K, Rohrer68K, and
Rohrer583K (named after their parameter counts, see [7]). The first two of these were reported to
achieve 80%+ accuracy on CIFAR-10, while the last two were reported to achieve 90%+ accuracy on
standard CIFAR-10. These models were selected to explore SCS behavior across a wide range of
parameter-counts. For the above architectures, our benchmark was the standard 32× 32 CIFAR-10
dataset. To explore the behavior of SCS on higher-resolution images, we also explored SCS-based
ResNet18 variants on CIFAR-10 resized to 224× 224.

2

For each starting architecture, we tested every variant combination of the following settings: convolu-
tional layer vs. SCS; MaxPool2d vs. MaxAbsPool2d; ReLU vs. no activation. For our follow-up
experiments on ResNet18 (224× 224), in addition to the settings specified above, we also explored
variants with or without BatchNorm2d. When replacing one feature with another (e.g., convolutional
with SCS), every attempt was made to carry over as many settings as possible from the original
starting architecture (e.g., kernel size, number of filters, etc.). In addition, for each architecture family,
all model variants using that architecture were trained with the same initial weights. We hope that
such practices allow us to more accurately assess the direct effects of transplanting SCS into existing
architectures. Please see Appendix A for additional experimental details.

For all model variants, train and test accuracies, losses, and compute times (in seconds) were recorded
per epoch. The norms of the weights and gradients in each layer were also recorded per epoch for
all variants. Vanilla gradient saliency maps were generated for each model variant to probe model
interpretability. In addition, projected gradient descent (PGD) adversarial attacks were performed
against all model variants to further assess model interpretability. For variants using SCS layers, we
also recorded the p exponentiation parameter values of each SCS layer per epoch.

4 Initial Exploratory Experiments on Rohrer100K and ResNet18

We begin by exploring the accuracy and training efficiency, the nature and parameter behavior, and
the interpretability and adversarial robustness of SCS when used in the Rohrer100K and ResNet18
architectures on 32×32 CIFAR-10. Initial testing suggested that SCS networks tended to require more
epochs of training to achieve their maximum test accuracy. As such, all models using architectures
originally from scs-gallery were trained for 800 epochs, while all other models were trained
for 200 epochs. Please see subsection A.1 for more experimental setting details. Additional initial
exploratory experiments regarding SCS parameter behavior can be found in Appendix C.

4.1 Accuracy and Efficiency

Table 1: Test accuracies of initial Rohrer100K model variants on 32× 32 CIFAR-10. See Appendix
B for ResNet18 results.

Architecture Layer Activation Pooling Dropout Normalization Image Dim. Val. Acc. Train Time (s) Eval Time (s)
Rohrer100K Conv2d None MaxAbsPool2d None None 32x32 0.4952 22.176 2.113
Rohrer100K Conv2d None MaxPool2d None None 32x32 0.7301 21.997 2.12
Rohrer100K Conv2d ReLU MaxAbsPool2d None None 32x32 0.6496 22.134 2.118
Rohrer100K Conv2d ReLU MaxPool2d None None 32x32 0.8032 22.118 2.126
Rohrer100K SCS None MaxAbsPool2d None None 32x32 0.7761 33.482 1.871
Rohrer100K SCS None MaxPool2d None None 32x32 0.787 33.341 1.791
Rohrer100K SCS ReLU MaxAbsPool2d None None 32x32 0.777 33.523 1.817
Rohrer100K SCS ReLU MaxPool2d None None 32x32 0.8026 33.381 1.776

From Table 1 above and Table 2 (see Appendix B), we see that within the same architecture family, the
use of SCS layers does not yield a significant increase in accuracy (approx. 78% for Rohrer100K and
82% for ResNet18) on CIFAR-10. However, we do confirm that SCS is able to achieve comparable
accuracy performance to standard convolutional layers without the inclusion of ReLU nonlinear
activation functions, while convolutional layers must be paired with such nonlinear activations for
maximum performance. Yet, it appears that the inclusion of ReLU activations in SCS networks may
still provide a small increase in accuracy performance. Interestingly, in Rohrer100K, we also find
that standard convolutional layers paired with MaxAbsPool2d (and ReLU) incur a significant dip in
accuracy performance. But, this dip does not seem to occur with ResNet18.

We found that SCS-based networks require significantly more time (seconds per epoch) to train than
their corresponding convolution-based counterparts. This corroborates best practices and observations
that others have found. However, while all SCS-based ResNet18 variants were slower in evaluation
time than their convolution-based counterparts, all SCS-based Rohrer100K variants were noticeably
faster in evaluation time than their convolution-based counterparts. This suggests that SCS properties
may not unilaterally hold across all architectures.

4.2 Cosine Similarity (Unsharpened)

We hypothesize that SCS does not require nonlinear activations like ReLU to achieve peak perfor-
mance because the exponentiation by p (sharpening) in SCS is effectively an activation function in

3

(a) With
convolution

(b) With SCS (c) Original
image

Figure 1: Saliency maps of best convolutional and SCS initial Rohrer100K variants on CIFAR-10.
The left panel shows the convolutional variant with the highest class-0-specific accuracy (82%):
convolutions, with ReLU and MaxPool2d. The right panel shows the SCS variant with the highest
class-0-specific accuracy (84%): SCS, also with ReLU and MaxPool2d.

and of itself. In other words, we postulate that SCS could be interpreted as a combination of output
normalization (via cosine similarity) and an exponential activation function. To test this hypothesis,
we fix p = 1 in the SCS layers of Rohrer100K to test whether (unsharpened) cosine similarity on its
own would require an activation function. The maximum accuracy of cosine similarity coupled with
ReLU was 76.04%, while the maximum accuracy of cosine similarity without ReLU was 56.58%.

4.3 Weight Norms of SCS Layers

To explore how the normalization and exponentiation components of SCS would affect the weights
used in its convolution component (versus a standard convolutional layer), we compare the weights
of a fully-trained convolution-based network versus those of a fully-trained SCS-based network. To
ensure that the weights of our fully-trained convolution-based network represented the maximum
performance (reasonably) possible, we decided to use a ResNet18 architecture specifically-optimized
for CIFAR-10 by Idelbayev (see [13]), as opposed to the torchvision variant optimized for
ImageNet. We trained two SCS-based variants, each only replacing the convolutional layers for SCS,
and not altering any other model components. However, one variant was trained using randomly-
initialized starting weights, while the other was trained using pre-trained weights specifically designed
for convolution-layers on CIFAR-10. We recorded the L2 norms of each SCS layer’s convolution
weights over each mini-batch.

From Figure 2 in Appendix B, we see that for the variant trained from scratch, the L2 norms of
each SCS layer’s weights did not appear to noticeably change over epoch time. However, for the
variant trained from pre-trained weights originally optimized for standard convolution layers, the L2
norms of the SCS layer weights significantly monotonically increased over mini-batches. As such,
these results suggest that SCS-based architectures prefer larger weights than their convolution-based
counterparts. The L2 norms reported at mini-batch 0 in the pre-trained plot are precisely the norms
found in the fully-trained convolution-based network. It is possible that SCS may tolerate larger
weights because of the output normalization. Perhaps larger weights may also contribute to more
sensitive feature detection and differentiation.

4.4 Saliency Maps

To investigate Pisoni’s observations regarding SCS interpretability, vanilla gradient saliency maps
were generated for convolution and SCS variants of Rohrer100K and ResNet18, presented as Figures
3 and 4 in Appendix B. In Figure 1 below, we provide one representative example of the saliency
maps of a convolution-based and an SCS-based Rohrer100K corresponding to an airplane (class
0). We observe that the convolution-based variant yields a “scattered" saliency map, while the SCS
variant yields a more focused map that corresponds to the triangular-shaped aircraft. Overall, across
Rohrer100K and ResNet18, our initial results suggest that SCS-based model variants tend to learn
representations that are more interpretable and focus on more critical parts of the image than their
convolution-based counterparts.

4

4.5 Robustness to Adversarial Attacks

To further explore the interpretability of SCS-based networks, we performed projected gradient
descent (PGD) adversarial attacks on all Rohrer100K and ResNet18 model variants, varying attack
strength from ϵ = 0.001 to ϵ = 0.030. We posit that architectures with more interpretable repre-
sentations (i.e., focus more on true features and signals, and less noise) should be more robust to
adversarial attacks. From Figures 3 and 4 in Appendix B, we find that SCS-based Rohrer100K and
ResNet18 variants are noticeably more adversarially robust than their convolution-based counterparts,
in terms of experiencing a slower decay in accuracy with increasing attack strength. The one outlier
in the Rohrer100K trials was the convolution-based variant with MaxAbsPool2d and ReLU, which
was also an outlier in terms of achieving only 64.96% accuracy (while other variants achieved high
70%s or 80%s). Notably, for ResNet18, the best SCS-based ResNet18 variant (incidentally, using
the best practices suggested by Rohrer and the ML community) was particularly more adversarially
robust than all convolution-based variants. As such, the initial adversarial experimental evidence
further suggests that the incorporation of SCS layers may produce more interpretable networks.

5 Follow-up Experiments

To investigate the generalizability of our initial SCS findings across different-sized architectures, we
repeated our previous experiments on four additional models from the scs-gallery: Rohrer25K,
Rohrer47K, Rohrer68K, Rohrer100K (with new randomized initial weights), and Rohrer583K. To
further discern which properties of SCS can be attributed to normalization and which to exponentia-
tion, we include a third potential layer option: an ablation of convolutions and SCS that we will call
SharpenedSDP. SharpenedSDP stands for "sharpened strided dot product," and is mathematically
equivalent to a standard convolutional layer raised to a learned p exponent, without the normalization.
From our initial testing, we recalled that using convolutional layers without ReLU would almost
always lead to poor performance. As such, we no longer tested this combination in the following
experiments. To investigate SCS on higher-resolution images, we also repeated these experiments
on ResNet18 with CIFAR-10 resized to 224× 224. In addition to the settings described above, we
included variants with/without BatchNorm2d (present in the original Resnet18 architecture). We also
tried SharpenedSDP with 224× 224 ResNet18, but all of these variants encountered vanishing and/or
exploding gradients, so we omit them from discussion.

5.1 Accuracy and Efficiency

From Tables 3-7 in Appendix D, we find that our initial conclusions regarding SCS accuracy and
efficiency generally hold strong across Rohrer25K through Rohrer583K. We also observe that the
SharpenedSDP variants do not require activation functions, further corroborating our hypothesis that
the exponentiation to the pth power is a substitute for nonlinear activation functions. In addition,
we found that SCS and SharpenedSDP variants appear to consistently perform faster than their
convolution-based counterparts on evaluation time. This is potentially one major advantage of
SCS: while SCS-based networks might be slower to train, they are faster during evaluation. Finally,
across Rohrer 25K through Rohrer583K, we found that model variants containing both ReLU
and MaxAbsPool2d will almost always perform poorly, regardless of whether we are using SCS,
SharpenedSDP, or standard convolutional layers. From Table 8 in Appendix D, we find that our initial
conclusions regarding SCS accuracy and efficiency also generally hold strong on 224×224 ResNet18.
However, in contrast to Rohrer25K through Rohrer583K, we do not see a dip in performance
associated with the inclusion of both MaxAbsPool2d and ReLU. We also observed that the inclusion
of BatchNorm2d, holding everything else constant, appears to grant a 3-4% increase in accuracy.

5.2 Saliency Maps and Interpretability

From the saliency maps for Rohrer25K through 583K, as shown in Figures 9-13 in Appendix D, we see
that our initial findings regarding SCS-based model variants learning sparser and more interpretable
representations appear to hold strong. In addition, we find significant evidence corroborating the
hypothesis that the p exponentiation component in SCS is what creates such “sparse" saliency
maps. We conclude as such because the SharpenedSDP saliency maps much more consistently
resembled the SCS saliency maps than the convolution ones. From Figure 14 in Appendix D, we

5

find that our conclusions regarding SCS versus convolutional variants’ saliency maps also extend to
higher-resolution 224× 224 images.

5.2.1 Adversarial Robustness

Repeating the PGD attack simulations on Rohrer25K - 583K, we found our results differing signifi-
cantly from our initial Rohrer100K results. This was perplexing, because the underlying constructions
of all the scs-gallery models were all very similar. From Figure 15 in Appendix D, we find that the
SharpenedSDP/MaxAbsPool2d/ReLU and convolution/MaxAbsPool2d/ReLU variants consistently
outperformed the top SCS-based variant. However, these two variants also consistently performed sig-
nificantly lower in terms of accuracy, across all four scs-gallery architectures (sometimes only hit-
ting 10% accuracy). To verify our observations, we simulated PGD attacks against Rohrer100K again,
this time using a different set of randomized initial weights (see Figure 16 in Appendix D). Again, we
found that SharpenedSDP/MaxAbsPool2d/ReLU and convolution/MaxAbsPool2d/ReLU were the top
adversarially-robust variants (though their original accuracies were dismal). There did not seem to be
a significant difference between the remaining SCS, SharpenedSDP, and convolution-based variants,
but the top performers with decent accuracy appear to be SharpenedSDP/MaxAbsPool2d/noReLU,
followed by SCS/MaxAbsPool2d/ReLU.

PGD attacks on 224× 224 ResNet18 variants also present a different narrative than the initial PGD
attacks on the 32 × 32 ResNet18 variants. As shown in Figure 17 in Appendix D, for variants
without BatchNorm2d, convolution-based variants were noticeably more robust to adversarial attack.
However, with BatchNorm2d, the best SCS-based variant maintains a small but consistent advantage
over the convolution-based variants. The differences are not nearly as pronounced as in the 32× 32
CIFAR-10 experiments, however. Upon closer inspection, it appears that the inclusion or exclusion
of BatchNorm2d simply does not affect SCS-based variants’ adversarial robustness, but does signifi-
cantly affect convolution-based variants’ robustness. The causes of this behavior are not immediately
obvious, and further exploration is necessary.

6 Discussion and Future Work

In this manuscript, we find strong evidence supporting the following five generalizations about SCS
performance and behavior. First, SCS does not yield significantly higher accuracy than standard
convolution based layers. Second, while SCS-based models are almost always slower to train
(seconds per epoch) than their convolution-based counterparts, they frequently benefit from slightly
faster evaluation times (seconds per epoch). Third, SCS can be interpreted as a combination of
convolution, normalization, and nonlinear exponential activation. As such, they are capable of
performing excellently without additional normalization or nonlinear activations like ReLU. Fourth,
SCS tends to yield more interpretable learned representations than convolutions. Fifth, in certain
environments, SCS also yields potentially more adversarially robust networks.

However, the above properties were not absolute. This suggests that characterizing SCS performance
may be more analytically and computationally-involved than solely swapping out convolutional
layers and associated components for SCS layers. It appears that SCS performance and properties can
vary noticeably, depending on the existing architecture and other components present in the system.
Significant future work will be required to establish accompanying best practices for SCS networks
and potentially construct novel architectures that best leverage SCS’s unique properties. For example,
creating a ResNet bottleneck module optimized for SCS may not be as straightforward as swapping
out convolutional layers for SCS and replacing MaxPool2d with MaxAbsPool2d.

Given (unsharpened) cosine similarity’s established uses in text modeling, a natural applied extension
is to transplant SCS into existing text modeling architectures. SCS’s interpretability properties also
warrant its transplanting to malware classification models that currently use standard convolutions.
Another direction is to explore the use of SCS in convolution-based transformer models. We conclude
that SCS is a promising alternative to convolutional layers, with its own set of unique advantages and
drawbacks.

6

References
[1] B. Rohrer, “Sharpened cosine similarity: An alternative to convolution in neural networks,”

May 2022. [Online]. Available: https://github.com/brohrer/sharpened-cosine-similarity

[2] ——, “The thing that has surprised me the most about convolution is that it’s used
in neural networks as a feature detector, but it’s pretty bad at detecting features.” Feb
2020. [Online]. Available: https://twitter.com/_brohrer_/status/1232063619657093120?ref_
src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1232063619657093120%
7Ctwgr%5E6c3a18acd4c451876f1acf93a5327d080a9cabc0%7Ctwcon%5Es1_&ref_
url=https%3A%2F%2Frpisoni.dev%2Fposts%2Fcossim-convolution%2F

[3] C. Luo, J. Zhan, X. Xue, L. Wang, R. Ren, and Q. Yang, “Cosine normalization: Using cosine
similarity instead of dot product in neural networks,” in International Conference on Artificial
Neural Networks. Springer, 2018, pp. 382–391.

[4] A. Singhal et al., “Modern information retrieval: A brief overview,” IEEE Data Eng. Bull.,
vol. 24, no. 4, pp. 35–43, 2001.

[5] P.-N. Tan, M. Steinbach, and V. Kumar, “Data mining cluster analysis: basic concepts and
algorithms,” Introduction to data mining, vol. 487, p. 533, 2013.

[6] R. Pisoni, “Sharpened cosine distance as an alternative for convolutions,” 2022, https://rpisoni.
dev/posts/cossim-convolution/.

[7] B. Rohrer, “Gallery for sharpened cosine similarity,” May 2022. [Online]. Available:
https://github.com/brohrer/scs-gallery

[8] L. Nestler, “To reproduce scs’ incredible results on large-scale datasets, i implemented
a tpu-compatible version in pytorch.” Feb 2022. [Online]. Available: https://twitter.com/
_clashluke/status/1497092150906941442

[9] O. Batchelor, “Training cifar10 with sharpened cosine similarity,” Feb 2022. [Online].
Available: https://github.com/oliver-batchelor/scs_cifar

[10] S. Walton, “Sharpened cosine similarity for compact transformers,” Apr 2022. [Online].
Available: https://github.com/stevenwalton/SCS-CCT

[11] J. Wagner, “Kaggle notebooks,” Feb 2022. [Online]. Available: https://github.com/
DrJohnWagner/Kaggle-Notebooks

[12] Zimonitrome, “Generative adversarial network using sharpened cosine similarity,” Feb 2022.
[Online]. Available: https://github.com/zimonitrome/scs_gan

[13] Y. Idelbayev, “Proper ResNet implementation for CIFAR10/CIFAR100 in PyTorch,” 2018.
[Online]. Available: https://github.com/akamaster/pytorch_resnet_cifar10

[14] L. N. Smith and N. Topin, “Super-convergence: Very fast training of neural networks using
large learning rates,” 2017. [Online]. Available: https://arxiv.org/abs/1708.07120

[15] E. Raff and A. L. Farris, “A Siren Song of Open Source Reproducibility,” in ML Evaluation
Standards Workshop at ICLR 2022, 2022. [Online]. Available: https://arxiv.org/abs/2204.04372

[16] E. Raff, “Research Reproducibility as a Survival Analysis,” in The Thirty-Fifth AAAI
Conference on Artificial Intelligence, 2021, arXiv: 2012.09932. [Online]. Available:
http://arxiv.org/abs/2012.09932

[17] ——, “A Step Toward Quantifying Independently Reproducible Machine Learning Research,”
in NeurIPS, 2019, arXiv: 1909.06674. [Online]. Available: http://arxiv.org/abs/1909.06674

[18] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-generation hyper-
parameter optimization framework,” in Proceedings of the 25rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2019.

7

https://github.com/brohrer/sharpened-cosine-similarity
https://twitter.com/_brohrer_/status/1232063619657093120?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1232063619657093120%7Ctwgr%5E6c3a18acd4c451876f1acf93a5327d080a9cabc0%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Frpisoni.dev%2Fposts%2Fcossim-convolution%2F
https://twitter.com/_brohrer_/status/1232063619657093120?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1232063619657093120%7Ctwgr%5E6c3a18acd4c451876f1acf93a5327d080a9cabc0%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Frpisoni.dev%2Fposts%2Fcossim-convolution%2F
https://twitter.com/_brohrer_/status/1232063619657093120?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1232063619657093120%7Ctwgr%5E6c3a18acd4c451876f1acf93a5327d080a9cabc0%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Frpisoni.dev%2Fposts%2Fcossim-convolution%2F
https://twitter.com/_brohrer_/status/1232063619657093120?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1232063619657093120%7Ctwgr%5E6c3a18acd4c451876f1acf93a5327d080a9cabc0%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Frpisoni.dev%2Fposts%2Fcossim-convolution%2F
https://rpisoni.dev/posts/cossim-convolution/
https://rpisoni.dev/posts/cossim-convolution/
https://github.com/brohrer/scs-gallery
https://twitter.com/_clashluke/status/1497092150906941442
https://twitter.com/_clashluke/status/1497092150906941442
https://github.com/oliver-batchelor/scs_cifar
https://github.com/stevenwalton/SCS-CCT
https://github.com/DrJohnWagner/Kaggle-Notebooks
https://github.com/DrJohnWagner/Kaggle-Notebooks
https://github.com/zimonitrome/scs_gan
https://github.com/akamaster/pytorch_resnet_cifar10
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/2204.04372
http://arxiv.org/abs/2012.09932
http://arxiv.org/abs/1909.06674

A Additional Experimental Details

To standardize model training, unless otherwise specified, we used an Adam optimizer, coupled with
a maximum learning rate of 0.01 and a OneCycleLR learning rate scheduler (see [14]). Random-
Crop and RandomHorizontalFlip data augmentations were also applied to the training set. Such
settings were directly borrowed from training scripts in Rohrer’s scs-gallery. Initial experiments
on Rohrer100K suggested that weight decay did not noticeably affect SCS-based architectures’
performance, so for all results presented, weight decay was set to 0. For reproducibility [15–17] and
to rule out the effects of different weight initializations on model performance, we ensured that all
variants of the same base architecture (e.g., ResNet18 on 32× 32) were trained with the same set of
randomly-initialized weights.

All experiments were performed using PyTorch 1.11/1.12 on Linux. The hardware available were
8 NVIDIA Tesla P100 GPUs with 16 GB of RAM each, and 8 NVIDIA Tesla V100 GPUs with
32 GB of RAM each. We gratefully acknowledge the use of the Sharpened Cosine Similarity and
MaxAbsPool2d PyTorch implementations borrowed from Rohrer’s public repository (see [1]).

A.1 Additional Details on Initial Exploratory Experiments

We only tested combinations of convolution or SCS, ReLU or no activation, and MaxPool2d or
MaxAbsPool2d. We retained the BatchNorm2d and AdaptiveAvgPool layers in all tested ResNet18
variants in this section.

The accuracy results for ResNet18 in section 4 were obtained using a torchvision ResNet18
originally designed for ImageNet, but we replaced the final fully-connected layer to account for
the 10 classes in CIFAR-10. During initial experimentation, we also tried transfer learning with
SCS networks by starting ResNet18 training using pre-trained ResNet18 weights for ImageNet. We
found that there was no significant difference between model variants trained from scratch or using
pre-trained weights. As such, we only report results using randomly-initialized starting weights.

B Tables and Additional Figures from Initial Exploratory Experiments

Table 2: Test accuracies of initial ResNet18 model variants on 32× 32 CIFAR-10.

Architecture Layer Activation Pooling Dropout Normalization Image Dim. Val. Acc. Train Time (s) Eval Time (s)
ResNet18 Conv2d None MaxAbsPool2d None BatchNorm2d 32x32 0.6027 28.816 2.217
ResNet18 Conv2d None MaxPool2d None BatchNorm2d 32x32 0.7146 26.872 2.113
ResNet18 Conv2d ReLU MaxAbsPool2d None BatchNorm2d 32x32 0.8225 28.067 2.245
ResNet18 Conv2d ReLU MaxPool2d None BatchNorm2d 32x32 0.8219 26.478 2.141
ResNet18 SCS None MaxAbsPool2d None BatchNorm2d 32x32 0.8134 86.227 3.176
ResNet18 SCS None MaxPool2d None BatchNorm2d 32x32 0.8258 83.794 3.089
ResNet18 SCS ReLU MaxAbsPool2d None BatchNorm2d 32x32 0.8306 85.369 3.075
ResNet18 SCS ReLU MaxPool2d None BatchNorm2d 32x32 0.8241 83.711 2.908

8

B.1 Weight Norms of SCS Layers

0 20000 40000 60000 80000 100000 120000
Mini-Batch

20

40

60

80

100

L2
 N

or
m

 o
f L

ay
er

 W
ei

gh
ts

L2 Norms of Layer Weights Per Mini-Batch
conv0
conv1
conv2
conv3
conv4
conv5
conv6

conv7
conv8
conv9
conv10
conv11
conv12

conv13
conv14
conv15
conv16
conv17
conv18

(a) From scratch

0 20000 40000 60000 80000 100000 120000
Mini-Batch

10

20

30

40

50

60

L2
 N

or
m

 o
f L

ay
er

 W
ei

gh
ts

L2 Norms of Layer Weights Per Mini-Batch
conv0
conv1
conv2
conv3
conv4
conv5
conv6

conv7
conv8
conv9
conv10
conv11
conv12

conv13
conv14
conv15
conv16
conv17
conv18

(b) From pre-trained weights for nn.Conv2d

Figure 2: Magnitudes of Idelbayev ResNet18 weights over mini-batches.

9

B.2 Saliency Maps and Interpretability

Conv2d + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.642

Conv2d + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.741

Conv2d + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.698

Conv2d + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.822

SCS + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.828

SCS + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.834

SCS + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.818

SCS + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.842

Rohrer100K CIFAR-10 Vanilla Gradient Saliency Maps for Class 0: Airplane (Set 3)

(a) Saliency Maps

(b) Original Image

Figure 3: Saliency maps of initial Rohrer100K variants on CIFAR-10.

Conv2d + NoActivation
 MaxAbsPool2d, scratch
 BatchNorm2d, NoResize

 Class Acc. = 0.568

Conv2d + NoActivation
 MaxPool2d, scratch

 BatchNorm2d, NoResize
 Class Acc. = 0.744

Conv2d + relu
 MaxAbsPool2d, scratch
 BatchNorm2d, NoResize

 Class Acc. = 0.827

Conv2d + relu
 MaxPool2d, scratch

 BatchNorm2d, NoResize
 Class Acc. = 0.836

SCS + NoActivation
 MaxAbsPool2d, scratch
 BatchNorm2d, NoResize

 Class Acc. = 0.835

SCS + NoActivation
 MaxPool2d, scratch

 BatchNorm2d, NoResize
 Class Acc. = 0.865

SCS + relu
 MaxAbsPool2d, scratch
 BatchNorm2d, NoResize

 Class Acc. = 0.873

SCS + relu
 MaxPool2d, scratch

 BatchNorm2d, NoResize
 Class Acc. = 0.86

ResNet18 CIFAR-10 Vanilla Gradient Saliency Maps for Class 0: Airplane (Set 6)

(a) Saliency Maps

(b) Original Image

Figure 4: Saliency maps of initial ResNet18 variants on CIFAR-10.

B.3 Adversarial Robustness

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

PGD Attacks on Rohrer100K Networks: (0.001, 0.030)
SCS
Conv2d
No Activation

ReLU
MaxAbsPool2d
MaxPool2d

Figure 5: PGD robustness of Rohrer100K variants on CIFAR-10 (32× 32, initial testing).

10

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

PGD Attacks on ResNet18 Networks: (0.001, 0.030)
SCS
Conv2d
no_activation

relu
MaxAbsPool2d
MaxPool2d

Figure 6: PGD robustness of ResNet18 variants on CIFAR-10 (32× 32, initial testing).

C Additional Initial Experiments

C.1 P-values of SCS Layers

We also explored the behavior of the p values in a SCS layer over epoch time. Using a fixed learning
rate of 1.0× 10−3, coupled with a weight decay of 1.0× 10−5, we plotted the learned values of p for
the kernels in the first SCS layer of Rohrer100K (with MaxAbsPool2d, without ReLU). From Figure
7 below, we find that there are not many dynamics of note. Monotonicity does not appear to hold.

Figure 7: Learned values of p in first SCS layer for Rohrer100K on CIFAR-10 (32 × 32, Initial
Testing).

11

C.2 Optuna Hyperparameter Tuning of Fixed-p Hyperparameter

We also wished to investigate whether certain values of p were more amenable to SCS performance
than others. As a proxy, we used a custom SCS layer with p fixed to a certain specified value. We
swapped out the original layers in both Rohrer100K and torchvision’s ResNet18 for these fixed-p
SCS layers, and preserved all other existing components. For simplicity, we forced all SCS layers
in each network to share the same initialized and fixed value of p. We used the Optuna Bayesian
hyperparameter tuning utility to find the most optimal values of p (see [18]). Since multiple initial
values of p needed to be tested, we restricted each Rohrer100K trial to 600 epochs (versus the standard
800 epochs) and each ResNet18 trial to 100 epochs (versus the standard 200 epochs). We also enabled
pruning to terminate non-promising p-value trials early.

(a) Rohrer100K

(b) ResNet18

Figure 8: Optuna parallel coordinate plots of p value and accuracy.

Optuna results across both Rohrer100K and ResNet18 suggest that all tested values of p above or
near 1.0 appear to yield good performance. This suggests that the specific value of p may not be
the most important – rather, it is the mere presence of the (increasing) exponentiation operation that
enables successful SCS performance.

12

D Tables and Figures From Follow-up Experiments

D.1 Accuracy and Efficiency

Table 3: Test accuracies of Rohrer25K model variants on 32× 32 CIFAR-10.

Architecture Layer Activation Pooling Dropout Normalization Image Dim. Val. Acc. Train Time (s) Eval Time (s)
Rohrer25K Conv2d ReLU MaxAbsPool2d None None 32x32 0.1301 94.09 9.456
Rohrer25K Conv2d ReLU MaxPool2d None None 32x32 0.7609 92.674 9.379
Rohrer25K SCS None MaxAbsPool2d None None 32x32 0.7745 132.628 8.104
Rohrer25K SCS None MaxPool2d None None 32x32 0.7705 131.594 8.092
Rohrer25K SCS ReLU MaxAbsPool2d None None 32x32 0.2867 131.643 8.2
Rohrer25K SCS ReLU MaxPool2d None None 32x32 0.7682 131.877 8.132
Rohrer25K SharpenedSDP None MaxAbsPool2d None None 32x32 0.7719 127.797 8.038
Rohrer25K SharpenedSDP None MaxPool2d None None 32x32 0.7818 126.883 7.882
Rohrer25K SharpenedSDP ReLU MaxAbsPool2d None None 32x32 0.1 128.575 8.056
Rohrer25K SharpenedSDP ReLU MaxPool2d None None 32x32 0.7774 127.716 8.008

Table 4: Test accuracies of Rohrer47K model variants on 32× 32 CIFAR-10.

Architecture Layer Activation Pooling Dropout Normalization Image Dim. Val. Acc. Train Time (s) Eval Time (s)
Rohrer47K Conv2d ReLU MaxAbsPool2d None None 32x32 0.1 92.919 9.233
Rohrer47K Conv2d ReLU MaxPool2d None None 32x32 0.7978 92.469 9.274
Rohrer47K SCS None MaxAbsPool2d None None 32x32 0.7671 123.82 8.564
Rohrer47K SCS None MaxPool2d None None 32x32 0.7893 123.125 8.425
Rohrer47K SCS ReLU MaxAbsPool2d None None 32x32 0.2513 125.136 8.643
Rohrer47K SCS ReLU MaxPool2d None None 32x32 0.7816 124.303 8.554
Rohrer47K SharpenedSDP None MaxAbsPool2d None None 32x32 0.7866 121.93 8.155
Rohrer47K SharpenedSDP None MaxPool2d None None 32x32 0.7919 121.683 8.017
Rohrer47K SharpenedSDP ReLU MaxAbsPool2d None None 32x32 0.652 123.186 8.252
Rohrer47K SharpenedSDP ReLU MaxPool2d None None 32x32 0.7972 121.878 8.154

Table 5: Test accuracies of Rohrer68K model variants on 32× 32 CIFAR-10.

Architecture Layer Activation Pooling Dropout Normalization Image Dim. Val. Acc. Train Time (s) Eval Time (s)
Rohrer68K Conv2d ReLU MaxAbsPool2d None None 32x32 0.6762 92.487 9.3
Rohrer68K Conv2d ReLU MaxPool2d None None 32x32 0.836 93.161 9.424
Rohrer68K SCS None MaxAbsPool2d None None 32x32 0.8032 129.316 8.253
Rohrer68K SCS None MaxPool2d None None 32x32 0.8103 128.442 7.998
Rohrer68K SCS ReLU MaxAbsPool2d None None 32x32 0.7594 128.578 8.031
Rohrer68K SCS ReLU MaxPool2d None None 32x32 0.8258 129.175 8.093
Rohrer68K SharpenedSDP None MaxAbsPool2d None None 32x32 0.8088 127.146 7.745
Rohrer68K SharpenedSDP None MaxPool2d None None 32x32 0.8261 127.014 7.747
Rohrer68K SharpenedSDP ReLU MaxAbsPool2d None None 32x32 0.7503 127.479 7.763
Rohrer68K SharpenedSDP ReLU MaxPool2d None None 32x32 0.8303 128.185 7.667

Table 6: Test accuracies of Rohrer100K model variants on 32 × 32 CIFAR-10 (new set of initial
weights).

Architecture Layer Activation Pooling Dropout Normalization Image Dim. Val. Acc. Train Time (s) Eval Time (s)
Rohrer100K Conv2d ReLU MaxAbsPool2d None None 32x32 0.7307 93.024 9.34
Rohrer100K Conv2d ReLU MaxPool2d None None 32x32 0.8347 91.761 9.243
Rohrer100K SCS None MaxAbsPool2d None None 32x32 0.818 135.934 7.738
Rohrer100K SCS None MaxPool2d None None 32x32 0.8178 134.931 7.655
Rohrer100K SCS ReLU MaxAbsPool2d None None 32x32 0.7848 134.43 7.803
Rohrer100K SCS ReLU MaxPool2d None None 32x32 0.8252 132.427 7.702
Rohrer100K SharpenedSDP None MaxAbsPool2d None None 32x32 0.8206 130.617 7.374
Rohrer100K SharpenedSDP None MaxPool2d None None 32x32 0.8376 132.427 7.503
Rohrer100K SharpenedSDP ReLU MaxAbsPool2d None None 32x32 0.7605 132.941 7.481
Rohrer100K SharpenedSDP ReLU MaxPool2d None None 32x32 0.8243 132.174 7.342

13

Table 7: Test accuracies of Rohrer583K model variants on 32× 32 CIFAR-10.

Architecture Layer Activation Pooling Dropout Normalization Image Dim. Val. Acc. Train Time (s) Eval Time (s)
Rohrer583K Conv2d ReLU MaxAbsPool2d None None 32x32 0.731 95.824 9.544
Rohrer583K Conv2d ReLU MaxPool2d None None 32x32 0.8587 94.684 9.404
Rohrer583K SCS None MaxAbsPool2d None None 32x32 0.8543 133.319 6.823
Rohrer583K SCS None MaxPool2d None None 32x32 0.8634 132.682 6.559
Rohrer583K SCS ReLU MaxAbsPool2d None None 32x32 0.8227 130.912 6.631
Rohrer583K SCS ReLU MaxPool2d None None 32x32 0.8611 133.041 6.69
Rohrer583K SharpenedSDP None MaxAbsPool2d None None 32x32 0.8319 131.443 6.271
Rohrer583K SharpenedSDP None MaxPool2d None None 32x32 0.8585 131.557 6.16
Rohrer583K SharpenedSDP ReLU MaxAbsPool2d None None 32x32 0.7679 131.32 6.32
Rohrer583K SharpenedSDP ReLU MaxPool2d None None 32x32 0.8471 131.278 6.297

Table 8: Test accuracies of ResNet18 model variants on 224× 224 CIFAR-10.

Architecture Layer Activation Pooling Dropout Normalization Image Dim. Val. Acc. Train Time (s) Eval Time (s)
ResNet18 Conv2d ReLU MaxAbsPool2d None BatchNorm2d 224x224 0.9287 156.556 26.798
ResNet18 Conv2d ReLU MaxAbsPool2d None None 224x224 0.8835 160.957 23.954
ResNet18 Conv2d ReLU MaxPool2d None BatchNorm2d 224x224 0.9255 153.939 26.491
ResNet18 Conv2d ReLU MaxPool2d None None 224x224 0.8928 162.47 24.621
ResNet18 SCS None MaxAbsPool2d None BatchNorm2d 224x224 0.9164 192.729 27.624
ResNet18 SCS None MaxAbsPool2d None None 224x224 0.9006 191.534 27.098
ResNet18 SCS None MaxPool2d None BatchNorm2d 224x224 0.905 192.184 25.025
ResNet18 SCS None MaxPool2d None None 224x224 0.8972 188.621 26.262
ResNet18 SCS ReLU MaxAbsPool2d None BatchNorm2d 224x224 0.9219 193.221 27.219
ResNet18 SCS ReLU MaxAbsPool2d None None 224x224 0.8934 193.492 25.573
ResNet18 SCS ReLU MaxPool2d None BatchNorm2d 224x224 0.9191 192.479 24.804
ResNet18 SCS ReLU MaxPool2d None None 224x224 0.8853 193.119 22.343

D.2 Saliency Maps and Interpretability

In this section, we only display saliency maps for model variants that achieved an overall accuracy of
60% or greater. Models achieving lower accuracy than 60% may not be representative of their layers’
overall behaviors.

Conv2d + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.795

SCS + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.82

SCS + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.725

SCS + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.78

SharpenedSDP + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.815

SharpenedSDP + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.745

SharpenedSDP + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.803

Rohrer25K CIFAR-10 Vanilla Gradient Saliency Maps for Class 0: Airplane (Set 1)

(a) Saliency Maps

(b) Original Image

Figure 9: Saliency maps of Rohrer25K variants on CIFAR-10. Note how both the SCS and Sharp-
enedSDP saliency maps tend to be significantly more “sparse" compared to the noisy convolutional
map. This suggests that the p exponentiation is what decisively determines saliency map “sparsity."

14

Conv2d + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.855

SCS + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.94

SCS + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.855

SCS + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.851

SharpenedSDP + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.855

SharpenedSDP + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.796

SharpenedSDP + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.805

SharpenedSDP + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.879

Rohrer47K CIFAR-10 Vanilla Gradient Saliency Maps for Class 8: Ship (Set 0)

(a) Saliency Maps

(b) Original Image

Figure 10: Saliency maps of Rohrer47K variants on CIFAR-10. We find that SharpenedSDP may
produce saliency maps that are noticeably sparser than SCS, but not immediately interpretable. More
thorough investigation is needed to determine what causes the SharpenedSDP variants to focus on the
bottom left of the image of the ship presented. Regardless, it appears that the sharpening process is
the decisive component here.

Conv2d + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.628

Conv2d + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.829

SCS + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.832

SCS + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.833

SCS + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.759

SCS + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.826

SharpenedSDP + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.835

SharpenedSDP + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.8

SharpenedSDP + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.761

SharpenedSDP + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.811

Rohrer68K CIFAR-10 Vanilla Gradient Saliency Maps for Class 4: Deer (Set 7)

(a) Saliency Maps

(b) Original Image

Figure 11: Saliency maps of Rohrer68K variants on CIFAR-10. It appears that all of the model
variants with sharpening (SCS and SharpenedSDP) seem to capture the posterior of the deer and
arguably some antlers (specifically, SCS). The convolutional variant does not appear to capture any
human-interpretable features in the deer image. We note how some of the SCS and SharpenedSDP
saliency maps are almost indistinguishable. It is possible that exponentiation by p serves to emphasize
the signal.

15

Conv2d + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.745

Conv2d + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.862

SCS + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.753

SCS + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.858

SCS + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.832

SCS + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.835

SharpenedSDP + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.882

SharpenedSDP + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.861

SharpenedSDP + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.741

SharpenedSDP + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.821

Rohrer100K CIFAR-10 Vanilla Gradient Saliency Maps for Class 0: Airplane (Set 0)

(a) Saliency Maps

(b) Original Image

Figure 12: Saliency maps of Rohrer100K variants on CIFAR-10. We see that 3 out of the 5
SharpenedSDP model variants clearly captured the right wing and stabilizer in the fighter jet image.
All convolutional and SCS variants did not appear to capture any meaningful, human-interpretable
features in the image. Such a result (and many similar results encountered) suggest that SharpenedSDP
itself may be a promising area of future exploration. Across examples, it appears that SharpenedSDP
coupled with no activation tends to be a very promising combination.

Conv2d + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.654

Conv2d + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.803

SCS + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.767

SCS + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.789

SCS + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.779

SCS + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.789

SharpenedSDP + NoActivation
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.838

SharpenedSDP + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.814

SharpenedSDP + relu
 MaxAbsPool2d, NoDropout
 NoBatchNorm2d, NoResize

 Class Acc. = 0.697

SharpenedSDP + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, NoResize
 Class Acc. = 0.791

Rohrer583K CIFAR-10 Vanilla Gradient Saliency Maps for Class 2: Bird (Set 1)

(a) Saliency Maps

(b) Original Image

Figure 13: Saliency maps of Rohrer583K variants on CIFAR-10. The purpose of this set of saliency
maps is to show a case where all three layer-types produce saliency maps that look very similar to
each other. This suggests that, at least theoretically, it is possible for various layer types to converge
on the same identifying features. It is clear that all model variants (except the first) captured the
silhouette of the bird.

16

Conv2d + relu
 MaxAbsPool2d, NoDropout
 BatchNorm2d, Resize224

 Class Acc. = 0.931

Conv2d + relu
 MaxAbsPool2d, NoDropout

 NoBatchNorm2d, Resize224
 Class Acc. = 0.858

Conv2d + relu
 MaxPool2d, NoDropout

 BatchNorm2d, Resize224
 Class Acc. = 0.93

Conv2d + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, Resize224
 Class Acc. = 0.92

SCS + NoActivation
 MaxAbsPool2d, NoDropout
 BatchNorm2d, Resize224

 Class Acc. = 0.905

SCS + NoActivation
 MaxAbsPool2d, NoDropout

 NoBatchNorm2d, Resize224
 Class Acc. = 0.923

SCS + NoActivation
 MaxPool2d, NoDropout

 BatchNorm2d, Resize224
 Class Acc. = 0.884

SCS + NoActivation
 MaxPool2d, NoDropout

 NoBatchNorm2d, Resize224
 Class Acc. = 0.891

SCS + relu
 MaxAbsPool2d, NoDropout
 BatchNorm2d, Resize224

 Class Acc. = 0.93

SCS + relu
 MaxAbsPool2d, NoDropout

 NoBatchNorm2d, Resize224
 Class Acc. = 0.918

SCS + relu
 MaxPool2d, NoDropout

 BatchNorm2d, Resize224
 Class Acc. = 0.936

SCS + relu
 MaxPool2d, NoDropout

 NoBatchNorm2d, Resize224
 Class Acc. = 0.911

Resnet18 224x224 CIFAR-10 Vanilla Gradient Saliency Maps for Class 0: Airplane (Set 6)

(a) Saliency Maps

(b) Original Image

Figure 14: Saliency maps of ResNet18 variants on 224×224 CIFAR-10 detecting a B-2 Spirit aircraft.
Observe how the 4 convolution-based variants do not seem to produce human-interpretable saliency
maps for the B-2 stealth bomber. However, all 8 SCS variants produced saliency maps that were
extremely similar to each other, all capturing the jagged bottom edge of the aircraft. The SCS-based
variants’ saliency maps were also significantly sparser than that of the convolution-based variants.

17

D.3 Adversarial Robustness

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy
PGD Attacks on Rohrer25K Networks: (0.001, 0.030)

SCS
Conv2d
SharpenedSDP
No Activation

ReLU
MaxAbsPool2d
MaxPool2d

(a) Rohrer25K

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

PGD Attacks on Rohrer47K Networks: (0.001, 0.030)
SCS
Conv2d
SharpenedSDP
No Activation

ReLU
MaxAbsPool2d
MaxPool2d

(b) Rohrer47K

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

PGD Attacks on Rohrer68K Networks: (0.001, 0.030)
SCS
Conv2d
SharpenedSDP
No Activation

ReLU
MaxAbsPool2d
MaxPool2d

(c) Rohrer68K

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

PGD Attacks on Rohrer583K Networks: (0.001, 0.030)
SCS
Conv2d
SharpenedSDP
No Activation

ReLU
MaxAbsPool2d
MaxPool2d

(d) Rohrer583K

Figure 15: PGD robustness of scs-gallery architecture variants on CIFAR-10 (32× 32).

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

PGD Attacks on Rohrer100K Networks: (0.001, 0.030)
SCS
Conv2d
SharpenedSDP
No Activation

ReLU
MaxAbsPool2d
MaxPool2d

Figure 16: PGD robustness of Rohrer100K variants on CIFAR-10 (32× 32, additional testing).

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

PGD Attacks on ResNet18 Networks
 No Dropout, No BatchNorm2d, 224x224

SCS
Conv2d
no_activation

relu
MaxAbsPool2d
MaxPool2d

(a) Without BatchNorm2d

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

PGD Attacks on ResNet18 Networks
 No Dropout, Yes BatchNorm2d, 224x224

SCS
Conv2d
no_activation

relu
MaxAbsPool2d
MaxPool2d

(b) With BatchNorm2d

Figure 17: PGD robustness of ResNet18 variants on 224× 224 CIFAR-10.

18

	Introduction
	Review of Related Work
	Materials and Methods
	Architectures

	Initial Exploratory Experiments on Rohrer100K and ResNet18
	Accuracy and Efficiency
	Cosine Similarity (Unsharpened)
	Weight Norms of SCS Layers
	Saliency Maps
	Robustness to Adversarial Attacks

	Follow-up Experiments
	Accuracy and Efficiency
	Saliency Maps and Interpretability
	Adversarial Robustness

	Discussion and Future Work
	Additional Experimental Details
	Additional Details on Initial Exploratory Experiments

	Tables and Additional Figures from Initial Exploratory Experiments
	Weight Norms of SCS Layers
	Saliency Maps and Interpretability
	Adversarial Robustness

	Additional Initial Experiments
	P-values of SCS Layers
	Optuna Hyperparameter Tuning of Fixed-p Hyperparameter

	Tables and Figures From Follow-up Experiments
	Accuracy and Efficiency
	Saliency Maps and Interpretability
	Adversarial Robustness

