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ABSTRACT

Neighborhood sampling is an important ingredient in the training of large-scale
graph neural networks. It suppresses the exponential growth of the neighborhood
size across network layers and maintains feasible memory consumption and time
costs. While it becomes a standard implementation in practice, its systemic be-
haviors are less understood. We conduct a theoretical analysis by using the tool of
neural tangent kernels, which characterize the (analogous) training dynamics of
neural networks based on their infinitely wide counterparts—Gaussian processes
(GPs). We study several established neighborhood sampling approaches and the
corresponding posterior GP. With limited samples, the posteriors are all different,
although they converge to the same one as the sample size increases. Moreover,
the posterior covariance, which lower-bounds the mean squared prediction error, is
uncomparable, aligning with observations that no sampling approach dominates.

1 INTRODUCTION

Graph neural networks (GNNs) are widely used models (Zhou et al., [2020; Wu et al., 2021) for
graph-structured data, such as financial transaction networks, power grids, and molecules and crys-
tals. They encode the relational information present in the data through message passing (Gilmer
et al., |2017) on the graph and support a wide array of tasks, including predicting node and graph
properties, generating novel graphs, and forecasting interrelated time series. The training of GNNs
for large-scale graphs poses a unique challenge in that the computation of the loss of a mini-batch
of nodes requires not only their information, but also that of their L-hop neighbors due to message
passing (also called neighborhood aggregation). The exponential increase of the neighborhood size,
especially for power-law graphs, incurs prohibitive memory and time costs and inspires neighbor-
hood sampling, a practical mitigation that reduces the neighborhood size and maintains a feasible
training cost (Hamilton et al.l [2017; [Ying et al.| [2018; [Chen et al.| 2018}; [Zou et al.| [2019; |Chiang
et al., 2019; |Zeng et al.l 2020). While neighborhood sampling becomes a standard nowadays, its
impact on the training behavior remains less understood (Chen & Luss, |[2018]).

In this work, we conduct a theoretical study on neighborhood sampling by leveraging the emergent
tool of neural tangent kernels (NTKs). An NTK (Jacot et al., 2018; [Lee et al., [2019) is the dot
product of the parameter tangents of a neural network evaluated at two inputs. It was derived from
a continuous-time analog of the gradient descent process for network training. This analog—an or-
dinary differential equation (ODE)—governs the evolution of the network over time given an initial
condition. As is well known, an infinitely wide random network is a Gaussian process (GP) (Neal,
1994; Williams| (1996; [Lee et al.| 2018}, de G. Matthews et al.| 2018)). Hence, using this GP as the
initial condition, we obtain its (closed-form) evolution, which is analogous to the training dynam-
ics of the corresponding neural network. For graphs, the NTK becomes a GNTK (Du et al.| 2019;
Huang et al., [2022; Krishnagopal & Ruiz| 2023)) and it governs the evolution of a GNNGP (Niu
et al.,[2023)), which is the infinite-width counterpart of a GNN.

We highlight a few contributions/findings of this work.

1. (Section [3) We first derive the posterior inference for GNNGP under evolution. The posterior
GNNGTP differs from the (prior) GNNGP, even though both evolve to a limit whose mean in-
terpolates the training nodes. The prior was sporadically studied (Lee et al., 2019), and to our
knowledge, its extension to graphs and its posterior are not discussed in the existing literature.
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Figure 1: The training dynamics of GCN (left), the evolution of GCN-GP (middle), and that of
GCN-GP under layer-wise sampling (right). The black dots are training nodes, the red curves are
the GCN-GP means (without or with sampling), and the blue curves are either instances of the GCN
being trained or sample paths of the GCN-GP. The shaded region denotes 2x standard deviation.
Note that neighborhood sampling drives the GCN-GP to evolve faster to the limit; also note that the
sample paths are less smooth. Details of the illustration, including the graph, the training nodes, and
the sampling distribution, are given in Section@

2. (Sectiond) Using GCN (Kipf & Welling| [2017) as a working example of GNNs (in which case
GNNGP is written as GCN-GP and GNTK is written as GCN-NTK), we analyze two of the most
popular neighborhood sampling techniques: layer-wise sampling (Chen et al.| [2018)), including
with and without replacement, and node-wise sampling (Hamilton et al., 2017). We show that
in the sampling limit, the prior and posterior GCN-GPs converge to their counterparts without
sampling. However, under limited samples, the GCN-GPs resulting from different sampling
methods are all different. They appear to be uncomparable and we explain the reasons given
some facts of the corresponding covariance matrices and GCN-NTKs. As a consequence, the
converged GCN-GPs at the time limit are different, agreeing with the varied performance of
trained GNNs observed in practice, when different sampling methods are employed.

3. (Section [5) For a general GNN, we present a programmable approach to composing the GNTK
based on its building blocks. This approach extends the composability of NTKs (Yang, [2019;
Novak et al., 2020) to the graph case, and more importantly, to neighborhood sampling. We
demonstrate its use to derive the GNTK for GraphSAGE (Hamilton et al., 2017)), both without
and with node-wise sampling (which was the sampling technique proposed in the same paper).
Naturally, the findings previewed above for GCN also apply to GraphSAGE.

Figure [T] illustrates the training dynamics of randomly initialized GCNs, the evolution of their
infinitely wide counterpart (GCN-GP), and the evolution of GCN-GP under layer-wise sampling
(which is the infinitely wide counterpart of FastGCN (Chen et al., 2018)).
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2 BACKGROUND: INFINITELY WIDE GNN AND THE GNTK

As a necessary background for the analysis of neighborhood sampling in GNN training, this section
extends NTK to GNTK. While we are not the first to study GNTKSs, existing work (Du et al., 2019;
Huang et al.|, [2022; Krishnagopal & Ruiz, [2023) focused on a certain GNN architecture that is akin
to GIN (Xu et al.| 2019). In contrast, we embrace more architectures, particularly those tied to the
proposals of neighborhood sampling. Specifically, we use the GCN as a working example in this
section and extend the analysis for other GNNs (e.g., GraphSAGE) in Section 5] by introducing the
“kernel transformation” technique that treats a GNN as a composition of basic building blocks.

2.1 INFINITELY WIDE GCN

Denote by G = (V,€) a graph with N = |V| nodes and M = |£| edges. For notational sim-
plicity, we use A € RV*¥ to mean a normalized graph adjacency matrix, allowing any form of
normalization. Using d; to denote the width of the [-th layer, the layer architecture of GCN reads

GCN: x® — gi)(Z(l)) =¢ (U’“’AX(ll)W(l) + Uble1b(l)> , (1)
Vdi-1

where X (=1 ¢ RN*di-1 and X € RV*4 are layer inputs and outputs, respectively; W) €
R%-1%d and p) € R'*% are the weights and biases; and ¢ is the activation function. Eqn. (0]
differs slightly from the standard GCN by explicitly using the factors o,,/+/d;—1 and o}, to scale the
weights and biases, so that the subsequent formulas for GNTK is neater. We will frequently operate
on a single feature dimension and a single node of the layer. Hence, we write

20(@) = ¢ (@), V@) =Y AP )+, y P (@) = == 3wl (@),

veY \V dl—l j=1
2

o () denotes the i-th feature for the node x in the post-activation X (), while

%

where, for example, x

zz@ (z) is the corresponding pre-activation.

The following theorem establishes the GCN-GP and its recursive computation. It is equivalent to
Niu et al.| (2023, Theorem 1).

Theorem 1. For an L-layer GCN, assume dq, . .. ,dr,_1 to be infinite in succession and let the bias
bgl) and the weight W,(Jl) be independent standard normal, for all i, j, and l. Then, for each i, the

collection {zz-(l) (z)} over all graph nodes x follows the normal distribution N'(0, K(D), where the
covariance matrix KV can be computed recursively by

KO =621y, n +02ACED AT, (3)
CO =E.w_ o) e")e")], )
with C©) = X O (X ONT /qy,

Throughout, we assume that the GCN performs a scalar-output regression for each node. In this
case, dy, = 1 and the final layer does not have an activation. In other words, the GCN output is Z (L)
(rather than X (L)) and it has a single column. The covariance matrix of the GCN-GP is K = K (L),

2.2 GRAPH NEURAL TANGENT KERNEL

A typical gradient descent algorithm reads ' = 6 — nV L, where L, 6, and 7 are the training loss,
the training parameters, and the learning rate, respectively. A continuous-time analog of gradient
descent is thus £60(t) = —nVeL = —n(Vof)T(V L), where recall that the loss is a function of
the network f(0) : R — RY for P parameters and N samples (we denote Vyf € RV*F). This
formula leads to the following ODE

df (t) do(t)

- (Vef)w = —nl(Vo /) (Vo) U (V+L), )]
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by a simple invocation of the chain rule. This equation describes the evolution of the network f(6(t))
over time given an initial condition at ¢ = 0. The NKT ©(6) is defined as

0(0(1)) := (Vof)(Vof)" € RV, (6)
In words, the kernel is the inner product of the gradients of f evaluated at a pair of samples.

While the NTK has a time dependence, for infinitely many random parameters, the inner product
is a constant independent of ¢. For graphs, we derive in the following theorem that computes the
constant GCN-NTK © = ©%) through layer-by-layer recursion.

Theorem 2. Under the condition and notations of Theorem the neural tangent kernel ©") can be
computed recursively by

0 = g21ny 4+ 02 AVI—D AT, (7)
V(l*l) _ 6(171) ® C(l*l) + C(l*l), (8)
CO =B yv(0 sy [0 ©)

with C(0) = Onxn and 00 = On N, where édenotes the derivative of the activation function ¢.

All proofs of this paper are given in Section [B] Theorems [T] and [2] involve the second raw moment

of the post-activation qﬁ(zf”) and that of its derivative q'b(z(l)

;). The formulas are given in Section
for some activation functions.

3 EVOLUTION OF INFINITELY WIDE GNN

The constant kernel © leads to a closed-form solution f(¢), which is analogous to the training
dynamics of a GNN. When the initial condition f(0) is a GP that follows N (0, K (0)) for K(0) =

K1) defined in Theorem we can obtain the GP at time ¢ as N (u(t), K (t)). The discussions here
apply to any GNN, although they reference K () and ©%) from Theorems andfor GCNs.

Specifically, let subscripts b and ¢ denote the training set and the remaining set (e.g., the prediction
set), respectively. Then, the GCN output f is split in two parts, f, and f.. When we use the squared
loss £ = 53| f5(t) — ys |3 for regression, the ODE becomes

ad (flt)) _ _ 1 (O Oue\ (folt) —w
at (fc(t) = OViL= 5 (00 O o) (10)
Following this ODE, we obtain the joint distribution of f},(¢) and f.(t).

Theorem 3. Under the conditions and notations of Theorems[I|and[2} the infinitely wide GCN f is
a GP that evolves over time t > 0 as

(560) ~~ (69) (B9 22))
where

(t) = By, pe(t) = OO Bys,
Ky (t) = aKy(0)a, Kop(t) = Kep(0)a — 040, B (0)ar = Kpe(t)T, (11)
K(;c(t) = K('('(O> - @cb@[;}ﬂKbc(o) - ch(o)ﬂeb_bl@bc + ®cb®b_blBKbb(O)ﬂ®b_bl@bca
with o = exp(—tn©w /Ny) and B =1 — c.
The above result indicates that the converged GCN-GP has mean and covariance, respectively,
,[L(-(OO) = @cbeb_blyb7
KCC(OO) = KCC(O) — @cb(—)&)lec(O) - ch(O)@gbl@bc + @cb@;bleb(O)nglebo

Note that the mean p.(co) reads like the posterior mean of a GP with © being the covariance
matrix, but the covariance K.(o0) differs from the posterior covariance of such a GP (which is
Occ — @cb@b_bl@bc). Hence, the NTK © does not admit a covariance kernel interpretation.

12)
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Posterior inference. What Theorem offers is a prior characterization of the GCN-GP f(¢). One
may use this prior to perform posterior inference by assuming observation y; at all times:

E[fe(O)|fo(t) = yp] = pe(t) + Kep (6) Kun ()~ (s — (1))

However, this formula is evaluated to a constant K., (0) Ky (0) ~'y,, which means that the posterior
GP (at least the mean, but could also be shown for the covariance) never evolves. The theoretical
pitfall originates from performing GP posterior inference without assuming noise for the observa-
tion. To fix the pitfall, we assume that the observations have iid Gaussian noise with variance € > 0.
A benefit of this assumption is that it can rescue the degenerate case when the covariance matrix
Kyp,(0) is rank-deficient. In this case, the corrected posterior mean is

E[fe(t)[£5() = yp] = pe(t) + Kep () [Kun(t) + eI (yp — pun(t))
= 0Oy, By + Ko ()[Kip (t) + I] ™ ayp,
and the posterior covariance becomes
Cov[fe()|fo(t) = yp]) = Kee(t) — Kop(£)[Kpp(t) + eI] Ky (t). (14)

Interestingly, at the time limit ¢ = oo, the posterior mean coincides with the prior mean p.(c0) =
661,@;{,1 yp, Which interpolates the training data y;, and the posterior covariance coincides with the
prior covariance K..(00), too. Additionally, at any time ¢, the posterior covariance is always no
greater than the prior one in the Loewner order.

13)

4 GCN-NTK UNDER NEIGHBORHOOD SAMPLING

Neighborhood sampling is an important training ingredient unique to GNNs. Different from the
training of usual networks, where a mini-batch of size B involves only B data points, a GNN train-
ing step involves in the worst case O(Bd") graph nodes for a degree-d graph and an L-layer GNN,
because in every layer, the node feature is updated by aggregating the features of its O(d) neigh-
bors. Such an exponential growth of the neighborhood size renders prohibitive memory and time
costs for even shallow GNNs. Neighborhood sampling is a collection of techniques that reduce the
neighborhood size and maintain feasible training costs. In this section, we analyze the impact of
neighborhood sampling on the (analogous) training dynamics of GCN. In particular, we consider
layer-wise sampling and node-wise sampling, which are amenable to an analysis of K (%) and ©(%).

4.1 LAYER-WISE SAMPLING WITH REPLACEMENT

FastGCN (Chen et al., [2018) proposes layer-wise sampling, which admits variants such as
LADIES (Zou et al 2019). In such a technique, a set of nodes, V; C V), is sampled and only
nodes in V; will participate in the neighborhood aggregation in the /-th layer. Because fewer nodes
are aggregated, their contributions requires rescaling. The total number of involved nodes is at most
B + Zlel [Vi], suppressing the exponential growth of the neighborhood size without sampling.
Formally, the procedure is defined in the following.

Definition 1 (Layer-wise sampling with replacement). Given a probability distribution p; over the
node set V (thatis, » .y, pi(v) = 1) foreachlayer! = 1,..., L, sample N; nodes with replacement

and scale each sample v with 1/p;(v) when performing the neighborhood aggregation AY (V).

Definition [1] is essentially a form of importance sampling by using the proposal distribution p;.
FastGCN suggests setting p;(v) to be proportional to the squared 2-norm of A(:, v). Sampling with
replacement allows one to express the neighborhood aggregation AY ) as an expectation involving
N categorical variables. Specifically, if we use w’ to denote a random one-hot vector following
w? ~ Cat(p;) for j = 1,..., N; and let each Dlj be the probability-scaled diagonal matrix Dlj =
diag(w? /p;), then

AYO =B, ox [N% >N, AD]Y O] (15)
This linear expectation is key to the analysis of K (/) and ©(%), while the computation formulas for

C=1 and V=1 resulting from the handling of nonlinear activation functions remain unchanged,
as the following result states.
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Theorem 4. Under layer-wise sampling with replacement, the covariance matrix and the neural
tangent kernel become, respectively,

KO =21y n + 02 AMP © 0D AT, (16)
60U = 621 nun + o2 AMD © VD) AT, (17)

where the matrix MZSZ) € RV*N has elements

IS 210)) o
MO@,v) = e V= (18)
-5, vF#EV

and C'=Y and VU= follow Eqn. @), @), and @), recursively computed by using the K"~ and
OU=Y in this theorem.

Theorem suggests that the initial GCN-GP has a covariance matrix K (%), which, when computed

recursively layer-by-layer, is modified by using a masking matrix Mé” applied to the second raw
moment matrix C ‘=1 of (a column of) the layer input X “~1) = ¢(Z(~1)). This modification leads
to a change of the posterior inference, including the mean K c(f) (K ISbL) +eI)~ 1y, and the covariance
Kc(f) — Kc(lf) (Klglf) +eI)’1KIECL). Nevertheless, as the number of samples, [V;, increases, M,E“ tends
to the matrix of all ones for a fixed sampling distribution p;. Then, by continuity, K (“) converges to

the covariance matrix without sampling. In other words, in the sampling limit, the initial GCN-GP
under layer-wise sampling with replacement converges to the initial GCN-GP without sampling.

The initial GCN-GP evolves according to the training dynamics laid out by the ODE (10). At
any time ¢, the GCN-GP has a prior mean p.(t) and a prior covariance K. (t) following (LI)), as
well as a posterior mean E[f.(¢)|f»(t) = us] and a posterior covariance Cov[f.(t)|fs(t) = ys)
following and (T4), respectively. All these quantities involve not only K (L) but also the GCN-
NTK O, Similar to K (&), the modification of ©(X) is recursively layer-by-layer, by using the
same masking matrix M,El) for each layer. As sample size increases, all the modified quantities tend
to the counterpart without sampling.

To put the value of Theorem []in context, we compare it with the analysis of FastGCN by [Chen &
Luss| (2018)). The referenced work studies the training of FastGCN from the angle of the gradient. It
points out that the stochastic gradient under layer-wise sampling is biased (which is not surprising
because expectation cannot be exchanged with nonlinear activation functions), but it is consistent
because the stochastic gradient converges to the true gradient in probability as N; — oo for all [.
Consistent gradient can drive gradient-descent training to convergence in the sense that the stochastic
gradient can have an arbitrarily small norm. It is, however, unclear what the converged GCN is and
how it is connected with the one without layer-wise sampling. In contrast, our analysis points out
that for infinitely wide GCN (which becomes a GP), the converged GCN-GP has a posterior mean
@CbG;bl yp and posterior covariance K..(co). Sampling and no sampling are connected in that the
posterior for the former converges to that for the latter in the sampling limit.

4.2 LAYER-WISE SAMPLING WITHOUT REPLACEMENT

A consequence of sampling with replacement is that neighborhood aggregation will aggregate neigh-
bors with multiplicity. An alternative is to perform sampling without replacement, which admits an
implementation convenience. However, when the nodes have nonuniform sampling probabilities,
the analysis is challenging. Hence, we analyze a variant where each node is sampled independently.
This variant also results in non-repetitive samples, but one cannot pre-specify the desired number of
samples, IV;. Instead, one controls its expected number through the sampling probabilities.

Definition 2 (Layer-wise sampling without replacement). Foreachlayer! = 1,..., L, given ¢;(v) €
(0, 1] for each node v, sample v with probability ¢;(v) independently and scale each sample with
1/¢;(v) when performing neighborhood aggregation.

In this case, KX) and ©X) follow a similar modification to that in the preceding subsection, but
using a different masking matrix.
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Theorem 5. Under layer-wise sampling without replacement, the covariance matrix and the neural
tangent kernel become, respectively,

KW =6l1nyn + 02 AMP @ V=) AT, (19)
00 = 621 ywn + o2 AMP © VD) AT, (20)

where the matrix Mél) € RY*N has elements

MO (0, ') = {i/qz(v), Z;Z: 1)

and C=Y and V=1 follow Eqn. @, @), and ), recursively computed by using the KD and
OU=1) in this theorem.

4.3 NODE-WISE SAMPLING

Another popular neighborhood sampling approach is node-wise sampling, advocated by the Graph-
SAGE authors (Hamilton et al., 2017). Here, we apply it to GCN so that discussions are more
coherent. Its application to GraphSAGE will be discussed in Section[5} In this approach, only sam-
pling without replacement makes sense. With a budget & in mind, at most k£ neighbors are sampled
from a node x. Similar to the reasoning in the preceding subsection, we analyze a variant where
each neighbor is independently sampled. Moreover, the sampling probabilities are uniform, which
agree with practice. The procedure is formally defined in the following.
Definition 3 (Node-wise sampling). Let A/(z) denote x’s neighborhood, which may include x itself
if A(z,x) # 0. Given a positive integer k (called the “fanout”), define a probability distribution ¢,
where

m, IV(z)| > kand v € N (x)

¢z (v) = q 1, IN(z)| < kand v € N (x)

0, v ¢ N(z).

For each node x, sample v with probability ¢, (v) independently and scale each sample with 1/¢,.(v)

when performing neighborhood aggregation. Here, we have dropped the layer index [ in ¢, and k to
avoid notation cluttering.

Theorem 6. Under node-wise sampling, the covariance matrix and the neural tangent kernel be-
come, respectively,

KO (z,2") = 0f + 02 Az, ) (ML), © CCD) A/, )7, (22)
0 (z,2) = 0f + 02 A(w, (ML), © VD) A, ), (23)
where the matrix M, Sm)/ € RVNXN nas elements

1/q:(v), v,0" € N(x)andv =0’
whenz =a2': MUY (v,0") =41, v,v" € N(z) and v # v (24)

0, otherwise

1, veN(z)andv' € N(z')

25
0, otherwise 25)

when x # x': Ma(clx),(v,v’) = {
and C=Y and V=1 follow Eqn. @), (8), and ©), recursively computed by using the K~1) and
O©U=Y) in this theorem.

4.4 DISCUSSIONS

All three neighborhood sampling approaches analyzed so far use masking matrices to modify K ()
and O layer by layer. Despite their differences, all masking matrices admit a notion of convergence

in the sampling limit. For layer-wise sampling with replacement, Mél) — 1nxn when the sample

)

size N; — oo. For layer-wise sampling without replacement, Mcgl — 1xxn when the sampling
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probability ¢;(v) — 1 for all nodes v. For node-wise sampling, in expectation more and more
neighbors are sampled when the fanout & — max,, |A/(z)|, because in this case g, (v) — 1 for all =
and v. In the limit, based on mathematical induction, K &) and ©%) converge to their counterparts
without sampling, and hence by continuity, all relevant quantities converge to their counterparts
without sampling. The following theorem summarizes this obvious result.

Theorem 7. For all neighborhood sampling approaches presented in Sections as the sam-
ple size increases, the covariance matrix KI), the neural tangent kernel ©F) " the prior GCN-GP
f(t) at any time t, and the posterior f.(t)| fy(t) converge to the their counterparts without sampling.

While the above result indicates that there is virtually no difference among the sampling approaches
with sufficiently large samples, under limited samples, the resulting prior/posterior GCN-GPs are
different. We wish to compare them and seek the best sampling approach. For example, it is known
that the posterior covariance is a lower bound of the mean squared prediction error for GPs (Wagberg
et al.l |2017). We wish to find the smallest posterior covariance. Unfortunately, they do not seem to

be comparable. To elucidate this, we gather a few facts for the masking matrices M,Sl) and Mél).

Proposition 8. The following properties hold. (i) Mz(,l) = Inxn. (ii) Mél) > 1yxn. (iii) For any
symmetric positive semi-definite matrix B, Mél) OB > Band Mél) OB > B. (iv) When q; = Npy,
MISZ) — Mél) has one eigenvalue equal to 1 — % < 0and N — 1 eigenvalues equal to 1.

Proposition [8| offers some hints as to why the covariance matrices K (%) are uncomparable among
sampling methods. The expression K0 = 021y.n + aﬁ,A(MZEl) © CU=AT (see (T6)) ap-
pears to suggest that K() for layer-wise sampling with replacement is greater than, in the Loewner
order, its counterpart without sampling based on Property (iii). However, the expression is recur-
rent and C~1 is a function of K=Y, In general, it does not hold that C(l_l) = C’Q(l_l) when

K 1(171) > KQ(FI), even for the most common ReL.U activation (see Section D). Hence, an attempt
of mathematical induction fails. As a consequence, we cannot show that K (%) under layer-wise
sampling is greater than its counterpart without sampling. Similarly, a Loewner order between K (%)
under layer-wise sampling with replacement and that without replacement cannot be established,

because there is no such order between M;l) and Mél) (see Property (iv)). That the three sampling

approaches are uncomparable agrees with practical observations when training GNNS.

5 FROM GCN 17O GENERAL GNNS

As we have seen, the GNTK theory, its posterior inference, and the convergence of neighborhood
sampling are largely independent of the GNN architecture, but the specific computation uses K (%)
and ©(L) that are architecture-dependent. For a new GNN, one may rework their formulas like those
in Theorems [I| and [2| The reworking, in fact, can be effortless by noting how these theorems are
proved: a layer is composed of building blocks, each of which incurs a corresponding transforma-
tion for the covariance and the NTK. Such a nice property allows one to easily derive the recursion
formulas for KV and ©®) like writing a GNN program and obtaining a transformation of it auto-
matically through operator overloading (Yang, |2019; |[Novak et al.| [2020). We call the covariance
matrices and the NTKs programmable. Niu et al.| (2023) provided the covariance transformations;
here, we complement them with the NTK transformations and neighborhood sampling in Table([T]

We use Tableto demonstrate the derivation of K" and ©") for GraphSAGE:

GraphSAGE: X® — ¢ [ —Zv_ x-Dyw® L _Tw_ A0 4 510 0. @26
p ¢ dl71 1 \/E 2 bLNx1 ( )

To apply the transformations, we use X to denote pre-activation rather than post-activation as in (206)
and remove the layer index for simplicity: X <« “—\/%QS(X YWy + “—\/‘“EA(,{)(X YWs + 01 nx1b. This
layer has four parts: (i) activation ¢(X); (ii) linear transformation for each node “—\/%qﬁ(X YW1, (iii)
graph convolution U—\/%A(;S(X )Wa; and (iv) bias op1nx1b. Part (i) transforms the covariance to
K <+ g(K) and the NTK to © < © ® h(K). Then, part (ii) yields K < 02g(K) and © <+
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Table 1: GNN building blocks and covariance and GNTK operations. g(K) := C and h(K) := C.

Building block Neural network Covariance operation ~ GNTK operation

Input X« X K+ Cc© O < Onxn

Bias term X+ X+oplyxib K(—K—FalexN 9<—@+a§1NxN

Weight term X ‘\’;‘dLXW K+ 02K O« 020 +02K

Mixed weight term X ¢ X(al + 222 W) K « (a® + f%03)K O « (a® + §%03)0 + 20 K
Graph convolution X+ AX K+ AKAT O + A0AT

Activation X «— ¢(X) K + g(K) O« 00O h(K)

Independent addition X <+ X; + X5 K+ K|+ K, O+ 0+ 06,

Layer-wise sampling X «+ ADX K+ AWM e K)AT 0+ AM e 0)AT

Node-wise sampling X (z,:) + A(x,:)D, X K(z,2') < Az, ) (Mye © K)A(2',:)T
O(z,2") + A(z,:)(Mye © O)A(z',:)T

02 (©®h(K)+ g(K)). Next, part (iii) yields a transformation which, on top of part (i), multiplies
A to the left and A* to the right. Finally, adding (ii) and (iii) because they are independent, followed
by adding the bias in part (iv), we obtain the overall transformation summarized below.

Theorem 9. Under the conditions and notations of Eqn. @), @), and ), for GraphSAGE, let the

two weight terms Wl(l) and WQ(I) follow the same distribution as w® (i.e., standard normal). Then,
the covariance matrix and the neural tangent kernel become, respectively,

KO =21y + 0200 462 ACU=D 4T
0 = o1y N + 02 VUITD 4 52 AV U=D AT,

where C'=1) and V=1 follow Eqn. @), @), and ©), recursively computed by using the K1)
and ©=) in this theorem.

Table [T includes the transformations for neighborhood sampling. Layer-wise sampling reads X <
ADX, where D is a diagonal matrix including sample indicator and probability scaling (see (13)).
For node-wise sampling, each node x maintains a different sampling distribution and hence the
transformation is dependent on the (z, 2’) pair. By applying the last row of Table we have:

Theorem 10. Under node-wise sampling, for GraphSAGE, the covariance matrix and the neural
tangent kernel become, respectively,

K(l)(x, x') = Jf + Jg)C(lfl)(z, x') + J?UA(x, )(Milz), ® C'(lfl))A(o:'7 :)T,

00 (z,") = ot + 2 VI (2,2') + 02 A(w, ) (ML, © VID) A, )T,
where CU'=Y) and V=1 follow Eqn. @), @), and ©), recursively computed by using the K1)
and U= in this theorem, and M o is defined in Theorem

zx!

6 ADDITIONAL RELATED WORK AND CONCLUDING REMARKS

An additional school of related work that has not been discussed includes the extension of the GP
and NTK from feed-forward networks to modern architectures such as convolution layers (Novak
et al.l [2019), recurrent networks (Yang, [2019), and residual connections (Garriga-Alonso et al.,
2019). Some popular architectures/building blocks are too complex and their fit to Table [I|requires
in-depth investigations. A notable example is the attention layer (Hron et al., [2020), which has a
popular graph counterpart: the graph attention network, GAT (Velickovic¢ et al., 2018). However,
analyzing GAT is faced with many complications: (i) it uses additive attention rather than the more
common multiplicative ones nowadays; (ii) the study by [Hron et al, (2020) either uses the same
query weights and key weights for d~! scaling or removes the softmax for d=2 scaling; and (iii) it
is challenging to fit neighborhood sampling into the analysis framework.

A curious observation (e.g., from Figure[I)) is that neighborhood sampling appears to incur a larger
prior/posterior covariance than does no sampling. However, a proof (or disproof) is beyond reach.
As discussed in Section[.4] proof by induction fails, because it does not hold that a larger covariance
of the pre-activation implies a larger second raw moment of the post-activation. It remains a valuable
avenue of future work to formalize the observation to a rigorous analysis.
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A DETAILS OF FIGURE[]

Graph: The graph has 100 nodes. Define z; = (5]0 1)w € [-m, 7], j =1,...,100. The adjacency
matrix is

A= 1, cos(x; —x;)>0.9
700, cos(m; — ;) < 0.9.

As a result, each node is connected to its 14 closest neighbors. Each node also includes a self-loop,
which can be interpreted as a normalization of the adjacency matrix.

Training nodes: The training set contains six nodes (xy, f;,) where
zp = —2.5,—1.5,—0.5,0.5, 1.5, 2.5,

by following the function f(x) = sin(z + 7). Note that the adjacency matrix is circulant and by
symmetry, a GNN will give the same prediction at x;, = +m. However, f(7) # f(—=) and hence f
should not be considered as the function to learn. It only generates training data.

Neural network: The GCN has two layers with dimensions dy = 100,d; = 100,dy = 1 and
scales 02 = 32,02 = 0. The input feature matrix is the identity matrix X(©) = I 905 100. Using

the identity as X (°) is a common practice for GNNs without node features. Here, the illustration is
more interesting than using the x-coordinate as the node feature.

Training: The training of GCN follows standard gradient descent 8’ = 6 — nV L with constant
learning rate n = 0.1.

Sampling distribution: The example uses layer-wise sampling without replacement and uniform
sampling probability ¢;(v) = 1/2 for all nodes v and layers [.

B PROOFS

B.1 PROOF OF THEOREM[2] (GCN-NTK)
We prove by mathematical induction. Start with [ = 1, in which case

f(0) = 71 — %AX(O)W(D S L
0

without using the nonlinearity ¢ at the end. Moreover, the output Z() has a single column. We can

calculate that the NTK
% 070\ [ oz \" [az0\ [oz0\ "
+ - [
i=1 8Wi(11) aWi(ll) 8b(11) abgl)

o2 do
ZAX X(O) TAT“FO-b]_le].NXl
i=1

@(1)(9)

= O'wAC(O)AT + 0'[31N><N
— @(1)7
which is independent of the parameter 6. This completes the proof of the base case.

Using induction, we assume that the theorem holds up to an [-layer GCN, whose parameters are
denoted by

=W, ... w0 . p0)cRP

for notational convenience. As we move beyond a 1-layer GCN, the covariance matrix and the NTK
take limits as dy, ..., d;_1 — oo. In particular,

p ) o\T
0§ Z(aZ )(aaze ) ~ o0,

p=1

12
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We now proceed to the case [ + 1, where the GCN is

Ow

f(9) — Z(l+1) — A¢(Z(l))W(l+1) _|_a,b1N><1b(l+1)

l

and the parameter is 6 = (WD p(+D §). Again, note that Z(U+1) and WD have a single
column and b¢*1) is a scalar. We write

o+ (9) i 020+0 \ (02040 \" (9700 (97040

= +

— \ow(*™ | Low it op{ ol
(1) (#4)

+§: oz+1) oz 1+1) r
80, 0, '

p=1

(ii4)
Let us compute the three terms one by one. Clearly,

2 4
Term (i) = %‘” Z A¢(Z:(il))¢(Z:(il))TAT
=1
l l
= 02 A (B0 ey [0()o(=)T]) AT
=02 ACW AT,

and
) 2 T 2
Term (ZZ) = UblNX11NX1 = UblNXN~

Additionally, for each parameter 5,,,

020V w 0(Z0) iy _ Tw (@(zu)) ® az~<l>> WD,

06,  Vdi 00, ven 0,

Therefore,

>3 T
> , 1) (. 0)
Term (ii)) = 2> A <¢(Z<l>) ® 8Z~> AA A <¢(Z<l>) ® ‘9Z~> AT

l

o2 iA é(Z(l)) YAQ, gf)(Z(l)) VAU TAT

— = O —= O — .
06, 00,

O]
Note that all the columns of 827 are the same; hence,
P

09, 0, ) 06, ) \ 96,

Therefore,
P T
1 . VAU . VAU D
T2 (W”’) S L ARl Bl RN R C R L
p=1 P P
and thus

Term (iii) — 02, A(CY © ©W) AT,
Altogether, we have
0D (@) = 02 ACWAT + 021 nwn + 02 A(CY © 0W)AT = U+,

which completes the mathematical induction.

13
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B.2 PROOF OF THEOREM 3] (EVOLUTION OF GCN-NTK)
Recall that the ODE is

i (00) =% (& &) ("),

and solving it separately for f; and f. results in

fo(t) = By + af5(0),

fc(t) - cb® bb Byb‘i’fc(o) cbeb_blﬂfb(o)'
Note that the ground truth y;, is a constant, while f;(0) and f.(0) are jointly normal with
ob(0
»(0

fb(0)> N < ( ) Kbc(0)>)

~ 0, .

<fc(0) ) Keol0)

Therefore, taking expectation and covariance, we obtain that the mean of (f, f.) has two compo-
nents

1 (t) = Byp,
:U/c(t> = @cb@&;lﬁy%

and the covariance has four components

Kbb( ) = E[afy(0)f:(0) "] = aKy(0)a,
Keb(t) = E[(fe(0) = 040, 85(0)) fo(0)" "] = Kep (0)or — OO, 8K (0) e,
Keo(t) = E[(fe(0) = O, B£5(0))(f(0) — OOy, B5(0))"]
Keo(0) — 00,0, BKpe(0) — K(0)860;;,' Ope + 004 BK1(0)30;,' Obes
with Kp.(t) = Ka(t)7.

B.3 PROOF OF THEOREM[4] (GCN-NTK UNDER LAYER-WISE SAMPLING WITH
REPLACEMENT; A.K.A., FASTGCN-NTK)

Under layer-wise sampling with replacement, the recursion of GCN becomes

Z0 = g1y b0 + —2— ZADJXU D ®,

\/dl 1 Nl

where E[Dlj | = Inxn forall j and I. Our objective is to compute K () as the covariance of a column
of Z®, Without loss of generality, we consider the i-th column. The GCN recursion becomes

Zz(l) _O'b].leb +

ZADZZUZ(Z where ygl) :X(l_l)WEi)_

\/ -1 Nl
Straightforwardly,
- N, N
KO =B [40:07] = gty ot 1 30D A-BDCU D] AT
Jj=1j'=1
When j # j/, D{ and Dlj / are independent; hence,
E[D]CU~VD]'] = E[D{]E[C! V] E[D] ] = ¢~V

When j = j, Dlj takes e, el /p;(v) with probability p;(v) for each v € V. Hence,

. v ]_
BID{CUVD]] = 3 senel € Ve = ding{diag(CC ) /pi)
vey

14
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Therefore,

K

1
V= 0f1nun + 055 A [Nz(Nz - 1OV 4+ N, - diag{diag(C~ V) /pi}| AT

’LUN2
= o7 lnxn + owA(Mlgl) o CcU=AT,

where

1—pi(v) — o
MO (v,0') = I+ ooNn, V=Y
P 171\%, v#£ V.

The recursion for ©() is established analogously.

B.4 PROOF OF THEOREME] (GCN-NTK UNDER LAYER-WISE SAMPLING WITHOUT
REPLACEMENT)

If we use V; to denote the set of sampled nodes for layer [, we can write

1
ZArvyl EV[ [Z ql( )A'M)yz(l)( )] :

veV vEV,

Hence, the recursion of GCN becomes

I
/7 Z (o) = b + =Y V’(U)Amy?)(v%
Loev di—1 =, av)

where Iy, (v) is the indicator function for v € V. Therefore,

zl-(l) (x) = abb(l

veEV v’ eV
Because the randomness of V; comes from neighborhood sampling and the randomness of y(l)

comes from random parameters, they are independent and we obtain
“(M”()]

1 Iy, (v) Iy, (V") @y, | @ o[y () Iy (V)
i ) al) (wl(>]‘E[mw>mww}E dis

Mtgl)(v,v’) CU=1) (v,0")

where Mél)(v, v') =1/q;(v) if v = v" and = 1 otherwise. Hence,
KW (z,2") = 0% + 02 A(x, :)(M,gl) © CU A )T

The recursion for ©() is established analogously.

B.5 PROOF OF THEOREM[6] (GCN-NTK UNDER NODE-WISE SAMPLING)

We use V,, C N (x) to denote the set of sampled nodes for z (in layer [). We drop the layer index in
V.. to avoid notation cluttering. Under node-wise sampling, the recursion of GCN becomes

w I
Zl-(l)(ac) = Ubbl(-l) + 7 v (v) (l)(U)7

\% dl_l ’L)G;(l‘) qz(v) o

where Iy,_(v) is the indicator function for v € V,. Then,

K(l)(xaxl) =E {z.(l)(x)z(l)(x’)}

DY AME[“Y)A“()¢%>¢”W@1%W.

veEN (z) v EN(z’) G U) QI( )

dl,

15
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O]

%

Because the randomness of V, comes from neighborhood sampling and the randomness of y
comes from random parameters, they are independent and we obtain

L o[ 1) va,<v'>y@(v)y§l)(v,)] _E{IVI(U) Ivz/(v')}E[%”(”)%”(”’)]j

di—1 (V) qu (V) 7" 0(v) o (V') di—1

]Wilz)/ (v,v') CU=1)(y,v")
where for v € N'(x) and v' € N (2),
whenz =2’ : MY

xx!

whenz #a': MY (v,0)) =1.

(v,v") =1/, (v) if v =" and = 1 otherwise

Hence,
KO(z,2") = 0? + 02 Az, ) (M, © D) A2/, )T
The recursion for O is established analogously.

B.6 PROOF OF PROPOSITION [§] (PROPERTIES OF THE MASKING MATRICES)

Property (i): It is easy to see that M,gl) can be written in the matrix form

1
Mzgl) =1yxn + FP(Z) where P = diag(1/p;) — InxnN-
1

N o N 2
T POy = (Z Z) — <Z U¢> .
i=1 i=1

For any vector v,

Then, by Cauchy-Schwarz,

(£) -(Ewis) < () (£9) - (£5)

which indicates that v7 P®y > 0. Therefore, PO is symmetric positive semi-definite (SPSD) and
hence M,S” = 1nxnN-

Property (ii): We write Mél) in the matrix form
MDD =1yn + QY where QU = diag(1/q — 1).
Because ¢;(v) € (0, 1] for all v, Q) is SPSD and hence Mél) = 1nxnN-

Property (iii): Because M;” —1nyxn = Onyxn and Ml(l) —1yxn = Onxn, the property follows
from the Schur Product Theorem (the Hadamard product of two SPSD matrices is SPSD).

Property (iv): When ¢; = N;p;, we have
1
M — MY = ﬁl(P(l) —NQW) =Ny Inyn — Iyxn =t A.
Because A is symmetric, it has N real eigenvalues. For the vector of all ones, we have Al yy; =
(N; — N)1px1. For any vector v L 11, we have Av = N;v. Hence, A has one eigenvalue equal

to N; — N and N — 1 eigenvalues equal to [V;.

B.7 PROOF OF THEOREM[9| (GRAPHSAGE-NTK)

We rewrite the GraphSAGE recursion by replacing X =1 with ¢(Z(=1):
70 = 70 gz w4 T2 Ag( 20N WD 4 o1y b0
di1 di—1 —_—
(#d)
(@) (#1)
The covariances of the first column of the three terms are: (i): 02,C =1 (ii): o2 AC =1 AT (iii):
021n«n. Hence,

KO =5200=Y 4 62 40D AT 4 6215, .
The proof for ©) is analogous.
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B.8 PROOF OF THEOREM[I0](GRAPHSAGE-NTK UNDER NODE-WISE SAMPLING)

We rewrite the GraphSAGE recursion by replacing X ‘=D with YV and toggle only the node
x and the ¢-th column:

) Ow (1) Tw Iy, (v) ) )
2 (.Z') = 4 (CL‘) + vayi ('U) + Ubbi .
Vdi—1 Vi1 ve%%x) 4z (v) Rf-’( )
S——— i1

(@) (i4)

The covariance E[2\" (z)2{" (2/)] has three terms: (i): 02CU=(x,2"); (Gi): 02 A(z,:)(MY, ©

[ T

CU=A(a',:)T; (iii): o2. Hence,
KW (z,2') = o2C Y (2,2") + 02 A(x, )(Mi?/ © CEM AR, )T + o2,

The proof for ©()(z, 2') is analogous.

C ForMULAS FOR C) aAND C'D)

Recall that
C(l) = Ezlﬁl)NN(QK(l))[QS(ZZ(I))QS(ZSI))T],
. D, (1
CO =E, 0y xm) 00",
When ¢ is ReLU, C D and €O are (half of) the arc-cosine kernel k,, of order n = 1 and n = 0,
respectively, as defined in|Cho & Saul|(2009). The arc-cosine kernels have closed-forms for integer

orders, albeit being increasingly complex as n increases. Specifically, using the notations in|Cho &
Saul| (2009),

1 1 1 1 1 1
Eoon0.5)[8(2(2))6(2(2) ] = Sk (K3 €0, K2 e0r) = o | K2 ea|[[ K2 0 [ 11 (6)

and similarly for E -0, i) [¢(2(2))(z(2"))T], where J,, has closed forms. Substituting the closed
forms and simplifying, we obtain

0 = - JROK, (sm6l, + (x— 6) cos o) @7)
0 = o (n-62). (28)
where
9;2, = arccos % . 29
KDEY,

When ¢ is erf, [Williams| (1996) computed C' ON

2 2k,

CJEQ, = — arcsin LL , (30)
m \/(1+2K£2)(1+2K§C€L/)

. 4 ~1

¢l) = = (@ +2k)(+2K0,) - @KL)?) 7, (31)
7T'

while C) is straightforward by following the expectation integral and noting that & is squared
exponential.
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D CONJECTURE OF C' AND C

Let
Ci =E,,no.x)0(z)8(2)"] and C; =B, nvo,x[0(2:)0(z)"] fori=1,2.

It is suspected that if K7 = K5, then C; = C5 and C’1 > Cg. In the following, we give an example
to show that neither conclusion holds.

Let
258 0.83 152 0.76
Kl:[0.83 0.62} and K2:[0.76 0.61]'

One can verify that K; > K5. However,
when ¢ = ReLU, eigenvalues of C; — Cy = —0.00172870, 0.53672870

eigenvalues of C; — Co = —0.03084086, 0.03084086
when ¢ = erf, eigenvalues of C; — Cs = —0.01530613, 0.10825164

eigenvalues of C; — Cy = —0.17231565, 0.06827739.
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