
EquiTorch: A Modularized Package for Flexibly Constructing Equivariant
GNNs Building upon Pytorch-Geometric

Tong Wang 1

Chuan Chen 1

Abstract

Equivariant graph neural networks have recently
gained significant attention due to their demon-
strated effectiveness in geometric deep learning
applications for scientific problems. However, de-
spite the significant progress in developing equiv-
ariant graph neural networks, the implementations
show slight diversity in their conventions, setting
up a little barrier for pure AI researchers to get
engaged in this fascinating field. Starting from
this point, we would like to introduce our package,
EquiTorch, which aims to collect the operations
related to equivariant neural networks in a stan-
dardized style, following the framework and idea
of “Message Passing Neural Networks” (MPNN)
used in Pytorch-Geometric, which is familiar to
classical AI researchers on GNNs. Besides, by
aligning to the framework of MPNN, we presents
the basic operations in a modularized way, which
enables researchers to compose these operations
flexibly and explore the larger space of design
of equivariant GNNs. In near future, more com-
prehensive documentation and tutorials will be
made available. The package can now be found at
https://github.com/Xenadon/equit
orch.

1. Introduction
The rapid advancements in scientific domains, such as
molecular modeling, particle physics material science and
fluid dynamics (Zhang et al., 2023; Wang et al., 2023) have
led to an increased demand for powerful deep learning tech-
niques that can effectively capture the underlying symme-

1Department of Computer Science and Engineering, Sun
Yat-sen University, Guangzhou, China. Correspondence to:
Tong Wang <wangt328@mail2.sysu.edu.cn>, Chuan Chen
<chenchuan@mail.sysu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

tries and geometric properties, where the relevant informa-
tion is equivariant or invariant to certain transformations like
rotation, translation or permutation. Graph neural networks
(GNNs), which are built upon the message passing paradigm
(Gilmer et al., 2017), have shown promise to handle the per-
mutation symmetries through utilizing permutation equiv-
ariant aggregation and pooling functions. However, when it
comes to rotation symmetries, conventional GNNs may fail
to capture exact equivariance features beyond invariances
on limited data (Satorras et al., 2022).

To address this challenge, equivariant† GNNs has emerged
as a promising solution that can effectively exploit the in-
herent symmetries and geometric properties of the input
data, leading to improved performance and enhanced gen-
eralization comparing to conventional GNNs. Specifically,
equivariant GNNs achieve their advantages by incorporat-
ing specialized operations like tensor product of vectors in
irreducible spaces(Thomas et al., 2018; Fuchs et al., 2020;
Brandstetter et al., 2022; Liao & Smidt, 2023; Liao et al.,
2024) and equivariant frames scalarization-tensorization
(Duval et al.; Zitnick et al., 2022; Du et al., 2022; Joshi
et al., 2023) into the neural network architecture. These
operations are designed to respect the symmetries of the
input data, aligning the model parameters and internal em-
beddings with the physical priors.

However, while numerous equivariant layers and architec-
tures have been proposed for equivariant GNNs, the conven-
tion of model organization and equivaiant data storage may
not be always consistent across different implementations.
Even researchers with sufficient background knowledge may
spend a while in combining modules from different works, a
newcomer with pure AI background can further more easily
get lost in tensor analysis or group representation when try-
ing to aligning different conventions, which may discourage
them form stepping into this fascinating field.

Therefore, we presents EquiTorch, a modularized package
for flexibly constructing equivariant GNNs. We aims to col-
lect most of the currently proposed equivariant operations

†Here, by “equivariant” or “equivariances”, we refer in particu-
lar to rotational and translational equivariances for simplicity, since
the permutation equivariances of GNNs have long been studied.

1

https://github.com/Xenadon/equitorch
https://github.com/Xenadon/equitorch


EquiTorch: A Modularized Package for Flexibly Constructing Equivariant GNNs Building upon Pytorch-Geometric

in a modularized way and aligning them to a single conven-
tion for easy combination of modules from different works.
Besides, the package is built upon Pytorch-Geometric (Fey
& Lenssen, 2019), which is a widely used package for build-
ing GNNs for classical AI researchers. By modularizing
the operations, aligning them to a single convention and
fit the model into the message passing fashion of Pytorch-
Geometric, we hope we can make it easier for experienced
researchers in combining different techniques and explore
the larger space of model designation as well as for new
comers to smoothly step into the world of equivariant GNNs.

2. Background
2.1. Group Representations and Equivariant Functions

Suppose we are given a group G, such as the SO(3) group of
rotations in R3. Beyond the original transformation on R3

by definition, we may further represent the group elements
as transformations on other linear spaces, while preserving
the relational structure of combination of original transform.
If we are able to do that, we are said to have found a repre-
sentation of that group.

Mathematically, we can define a representation as follows:

Definition 2.1 (Group Representation). Given a group G
and a linear space X , a representation of G on V is a map-
ping ρX : G → GL(X), such that for any two members
a, b of G, it holds that

ρX(a) · ρX(b) = ρX(a · b),

where the GL(X) is the general linear group on X , that is,
all invertible linear transformations on it.

Sometimes, we may also call the space X in the definition
above a representation of G.

If we have two representations ρX , ρY for a group G on
linear spaces X and Y , respectively, a function f : X → Y
is said to be equivariant if

f(ρX(g)x) = ρY (g)f(x)

holds for any g in G and x in X . In particular, if ρY ≡ IY ,
that is the identity on Y , the equivariance will become

f(ρX(g)x) = f(x)

for all g in G and x in X . In this special case, we call the
function f to be invariant.

When it comes to the case of SO(3), modeling features in
representation spaces with equivariant feature transforma-
tions has been shown to be a promising approach to achieve
exact equivariances.

According to the group representation theory, any finite-
dimensional representation space of SO(3) can be decom-
posed into the direct sum of a series of irreducible repre-
sentations (irreps), which reminds us that we can model the
equivariant features in the irreps. The irreps of SO(3) can
be indexed with a degree l = 0, 1, 2, . . . , and the irrep of
degree-l is (2l+1)-dimensional with each dimension called
an order.

Commonly, the spherical harmonics Y(l)(r̂) =

{Y (l)
m (r̂)}m=−l,...,l with r̂ lying on the unit sphere

are chosen as the basis of degree-l irreps and the cor-
responding representation for a rotation R ∈ SO(3) is
the Wigner-D matrices D(l)(R) ∈ R(2l+1)×(2l+1) that
additionally satisfies D(l)(R)Y(l)(r̂) = Y(l)(Rr̂).

When we represent an equivariant feature in a series of
irreps, its components in each irrep of degree-li ought to
transform via the corresponding representation D(li)(R)
under a rotation R in the physical space. To perform the
transformation on such features while perserve the equivari-
ance, one key tequnique is to use a “tensor product”(Thomas
et al., 2018), which is a bilinear equivariant operation. Espe-
cially, when we fixed one input of this bilinear operator, it
will be a linear operator with respect to the remaining input,
which makes it a useful building block for constructing deep
equivariant neural networks(Brandstetter et al., 2022).

After linear operations, we may turn to nonlinear operations.
However, it is important to note that the (2l+1) components
of a vector in a degree-l representation should transform as a
cohesive unit under orthogonal and scaling transformations,
in order to maintain the equivariance. This means we cannot
simply apply element-wise nonlineariteis or bias on the
equivariant features. Instead, we should restrict ourselves
to degree-wise nonlinearities and biases that operate on
the norm of the equivariant features. This can ensure the
transformation properties of the vector are preserved.

2.2. Graph Neural Networks and Message Passing
Paradigm

Throughout the past several years, GNNs have been a pow-
erful approach for dealing with unstructured data such as
graphs, point clouds and meshes. In GNNs, an attributed
graph of N nodes and E edges is usually represented as
a tuple G = (X, (I,E)) of F -dimensional node features
X ∈ RN×F and edge info containing the end-point indices
I ∈ R2×E and D-dimensional edge features E ∈ RE×D.

Since (Gilmer et al., 2017) proposed the paradigm of mes-
sage passing neural networks, it has become the standard
framework of GNNs. The key process of updating latent

2



EquiTorch: A Modularized Package for Flexibly Constructing Equivariant GNNs Building upon Pytorch-Geometric

node embedding at the k-th layer can be expressed as

x
(k)
i = γ(k)

(
x
(k−1)
i ,

⊕
j∈N (i)

ϕ(k)
(
x
(k−1)
i ,x

(k−1)
j , e

(k−1)
ij

))
,

where ϕ is a message function that generate messages from
both source node, target node and the edge;

⊕
is a dif-

ferentiable, permutation-invariant function that aggregates
messages from the neighbor N (i) and γ is the update func-
tion that computes the new node embeddings considering
the current embedding and the aggregated messages.

By substituting all the message, aggregation and updating
functions of equivariant features with equivariant functions,
we will obtain an equivariant message passing neural net-
work.

In the context of AI for science tasks, the message passing
processes are also interpreted as the “interactions” between
particles. Therefore, some work will refer to a message
passing layer as an “interaction block”.

3. Related Works
The increasing interest in building equivariant neural net-
works has led to the development of several software pack-
ages that provide equivariant operations.

One such framework is e3nn (Geiger & Smidt, 2022), which
is a generalized framework for creating E(3) equivariant
trainable functions. It provides a wide range of fundamental
operations, with support for both PyTorch and JAX back-
ends. In e3nn, the shape of equivariant features is identified
by the Irreps class. Data are arranged in a (l, c,m) man-
ner, that is the data are first grouped by degree l, then by
channel c in each degree, with each channel containing a
dim-(2l + 1) vector of which the components are indexed
by order m. These degree-l vectors for all degrees are con-
centrated one by one to give the final equivariant feature.
This data organization allows for flexible, dense data storage
with varying number of channels across different degrees,
while might sacrifice a little performance when doing trans-
formation.

Another notable package is SchNetPack 2.0 (Schütt et al.,
2023), a neural network toolbox that addresses both the de-
velopment and application of models on atomistic machine
learning. In addition to implementing equivariant opera-
tions, it also includes a variety of utility functions, such as
cutoffs, that are particularly useful for building atomistic
models on the top of PyTorch. SchNetPack organizes equiv-
ariant features in an (l,m, c) or (s, c) layout, where s is a
flattened index of (l,m). It considers the data to have c
equivariant channels, with each channel’s feature composed
of one equivariant vector of all degrees from the given de-
gree range (0 to the maximum degree). This organization
enables efficient channel-mixing and representation rotation

through direct matrix multiplications. However, when differ-
net degrees require different numbers of channels, padding
may be necessory, potentially leading to non-dense data
storage.

E3x (Unke & Maennel, 2024) is a JAX library that focuses
on constructing efficient E(3)-equivariant neural networks.
It offers comprehensive set of equivariant linear and non-
linear functions as well as utility functions, to facilitate the
development of E(3)-equivariant neural networks. E3x em-
ploys a data layout of (p, s, c) that is similar to SchNetPack
in (s, c) part, but with an additional dimension p to indicate
feature parity under reflection that will always have a length
of 1 or 2 (odd and even).

4. Design of EquiTorch
In this section we will disscuss the design of EquiTorch.
First we will clarify how the equivariant data are stored
for the convention on dimension-order. Then we will list
some basic modules of equivariant GNNs that have been
implemented, which enables flexible combination to more
novel equivariant architectures.

4.1. Storage of Equivariant Data

In EquiTorch, we do not rely on additional data structures
to represent equivariant data. Instead, we establish a con-
vention where the first dimension of any equivariant data
should always represent the data dimension, which could be
either a node index or an edge index, and the last dimension
should always represent the channel dimension, if it exists.
The internal dimensions are used to represent the coordi-
nates. For equivariant features, this exactly coincides with
the (s, c) layout used in SchNetPack, while for equivariant
transformations, there will be two internal dimensions that
the latter is the input dimension and the former is the out-
put dimension. We adopt this layout mainly because, after
examing most of the morden equivariant networks, we find
that the case of varying channel numbers in different degree
only occurs in the first and final layers, while in the hidden
layers, they typically set a constant number of channels for
different degrees. Regarding for issues of parity under re-
flection, we also find that most networks do not explicitly
take it into consideration, assuming such one-element dis-
crete symmetry will be relatively easy to learn from data
in contrast to continuous 3D rotation. Fig. 1 gives two ex-
amples of the rotation matrices and the features consisting
components of degree 0 to 2 of four data points with four
channels.

4.2. Basic Modules Implementation

A key goal of the EquiTorch package is to decompose exist-
ing equivariant GNN models into more fundamental, mod-

3



EquiTorch: A Modularized Package for Flexibly Constructing Equivariant GNNs Building upon Pytorch-Geometric

Figure 1. Data organization examples of rotation matrices (left)
and equivariant features (right). The tensor containing rotation
matrices is of shape 4 × 3 × 3 × 4, and the tensor containing
equivariant features is of shape 4× 9× 4.

ular building blocks. This allows for greater flexibility in
constructing and exploring novel equivariant architectures.
The core modules currently implemented in EquiTorch in-
clude:

Tensor Products: Tensor products are fundamental op-
erations for combining equivariant feature representa-
tions. We provide several implementations, including
TensorProduct for direct contraction of the Clebsch-
Gordan coefficients and two input equivariant features with
no weights and WeightedTensorProduct for the com-
monly used tensor products (Thomas et al., 2018; Brandstet-
ter et al., 2022; Fuchs et al., 2020; Yu et al.).

Notably, in the implementation, we reduced the computa-
tional complexity to O(L5) by exploiting the sparsity of
Clebsch-Gordan coefficients. This optimization also greatly
enhanced the actual performances. Moreover, our sparse
implementation of tensor products can be readily adapted to
many-body approaches, such as MACE(Batatia et al., 2023),
with minor modifications.

For the operations WeightedTensorProdcut that in-
volve weights, we provide an external_weights op-
tion, allowing users to choose whether the weights are
passed from external or let the layer keep a set of weights
that is independent on data.

Linear Operations: Once we fix one factor of the ten-
sor product and focus on the other, it will turn to a linear
operation - an essential building block in deep learning ar-
chitectures. We have implemented SO3Linear(Thomas
et al., 2018; Fuchs et al., 2020; Brandstetter et al., 2022) us-
ing similar sparse techniques as tensor products to achieve
a complexity of O(L5) for the input of degrees up to L;

SO2Linear as derived in (Passaro & Zitnick) and used
in (Liao et al., 2024) without explicitly looping over the
order m; and DWLinear (Degree-Wise Linear) used for
self-interaction transforms in (Thomas et al., 2018; Fuchs
et al., 2020).

For these linear operations, we provide two additional op-
tions: external_weights and channel_wise. Sim-
ilar to the tensor products, the external_weights
option allows users to choose whether to pass exter-
nal weights; and the channel_wise option determines
whether weights are applied as per-channel scaling factors or
as general linear transformations mixing all input channels
for all output channels.

To the best of our knowledge, we are the first to release
our implementation that reduces the time complexity of
fully connected SO(3) linear transformations to O(L5C +
L4CC ′) without any precomputation for the maximal de-
gree L, input channel C and output channel C ′. Though
(Milesi, 2021) also provides an solution with same time
complexity, it requires the edge features to be fixed during
the entire training process to reuse a precomputed tensor.
This may be suitable for simple classification processes, but
not for the generation processes, or the cases where noises
are injected to the node positions, causing edge features to
change across epochs. The implementation in SchNetPack
does use similar sparse techniques but only supports channel
wise scaling with contraction to spherical harmonics rather
than a fully connected linear transformation with contraction
to arbitrary equivariant features. A performance comparison
with other implementations is presented in Table 1.

Activations. In equivairant neural networks, activations
on equivariant features need to be specially designed
to perserve the equivariances. We have implemented
NormActivation that act on the norm of each de-
gree of equivariant features as introduced in (Thomas
et al., 2018); GatedActivation in (Liao & Smidt,
2023; Brandstetter et al., 2022); S2Activation and
SeparableS2Activation in (Zitnick et al., 2022; Pas-
saro & Zitnick; Liao et al., 2024).

Radial Basis. Radial basis modules will enable us to expand
a single distance feature to a vector. We have implemented
GaussianBasisExpansion (Schütt et al., 2023; 2017;
Thomas et al., 2018; Liao & Smidt, 2023; Thölke & De Fab-
ritiis, 2022) with option to train or fix basis parameters.

Cutoff Modules. When constructing the molecule graphs, a
cutoff distance is set to sparsify the interactions. How-
ever, a hard cutoff by threshold may lead to unsmooth
predictions, therefore cutoff modules will offer a soft
weight to the edges that smoothly decays to 0 at the
cutoff threshold. We have implemented three widely
used cutoffs including CosineCutoff (Schütt et al.,

4



EquiTorch: A Modularized Package for Flexibly Constructing Equivariant GNNs Building upon Pytorch-Geometric

2017; Thölke & De Fabritiis, 2022; Simeon & de Fabri-
tiis, 2023), MollifierCutoff (Schütt et al., 2023) and
PolynomialCutoff (Gasteiger et al., 2022) with option
to choose starting and ending points of the cutoff functions.

Besides these modules, we have also implemented many
utility functions. These include computing the shapes of
equivariant features for a given degree range, extracting
information of specified degrees, generating local frames on
given edge vectors, and performing order-wise operations
such as dot product and norm computation. The semantics
and conventions used in all these functions are stated as
clearly as possible in our documentation.

5. Experiments
To demonstrate the efficiency of the operations we imple-
mented, we provide a comparison of the fully connected
SO(3) equivariant linear transformation between our im-
plementation (SO3Linear) and several other implementa-
tions.

The compared implementations include:

• Directly performing dense contraction between
Clebsch-Gordan coefficients and two input features
(dense).

• Pre-computing a basis via contraction of Clebsch-
Gordan coefficients and then using it to contract with
the other input as suggested in (Milesi, 2021)(cached).

• Calling the FullyConnectedTensorProduct
provided by e3nn(Geiger & Smidt, 2022).

To evaluate the performance of all the implementations, we
benchmark the execution time for both the forward and
backward passes. For forward benchmarking, we call the
function on randomly generated batched inputs consisting
of 200 samples and 64 channels, with maximal degrees
ranging from 1 to 8. For backward benchmarking, we first
perform the forward pass and then compute the gradients by
backpropagating the sum of the output tensor. Each function
is called 100 times, and the minimum execution time among
these iterations is recorded. The benchmarking is conducted
on a system with an Intel(R) Core(TM) i9-10980XE CPU
@ 3.00GHz and an NVIDIA GeForce RTX 3090 GPU. The
results of the benchmarking experiments are presented in
Table 1.

Our implementation of SO(3) equivariant linear transfor-
mations consistently outperforms existing methods across
all tested degrees (L=1 to 8) for both forward and back-
ward passes, as shown in Table 1. It demonstrates superior
speed, with execution times up to 50 times faster than e3nn
for forward passes and up to near 2000 times faster for

Table 1. Forward and backward pass execution times (ms) for vary-
ing maximal degree L.

setting L ours dense cached e3nn

forward 1 0.1270 0.3944 0.1490 0.3960
2 0.1289 0.3999 0.1503 1.1462
3 0.1485 0.3927 0.1512 2.5802
4 0.1374 0.4000 0.1496 4.1335
5 0.1389 1.2310 0.1683 8.5093
6 0.1506 1.4214 0.5687 11.1477
7 0.1749 OOM 0.3612 16.1090
8 0.4244 OOM OOM 22.9117

backward 1 0.4859 1.2752 0.9374 2.9601
2 0.5822 12.841 0.9925 4.6638
3 0.5971 1.1813 0.8188 8.6752
4 0.5411 0.9646 1.0075 19.9319
5 0.4286 2.2156 0.9368 164.7753
6 0.5939 OOM OOM 475.4104
7 0.6101 OOM OOM 1044.6669
8 1.1024 OOM OOM 2104.2929

backward passes at L=8. Moreover, our implementation
exhibits remarkable memory efficiency, maintaining stable
performance where other methods encounter out-of-memory
issues.

6. Examples
In this section, we will give two simple examples of using
EquiTorch to build the Tensor Field Network (Thomas et al.,
2018) and a variant using SO(2) linear transform (Passaro &
Zitnick), showing its benefits of following the interface of
Pytorch-Geometric and the strengthens of the modularized
design. The examples are presented in Fig. 2.

6.1. Building a TFN Layer Just Like a GCN one

In this subsection, we can see the similarity of defining a
GCN(Kipf & Welling, 2017) layer and TFN layer under the
framework of Pytorch-Geometric.

The left column in Fig. 2 builds a GCN layer that uses
degree-normalization, sum-aggregation and a ReLU acti-
vation, which is a Hello-World example that is familiar to
any researchers with some experiences on classical GNNs.
While the middle column builds a TFN layer.

We may notice that, though there are more arguments of
some functions, the main logic of two pieces of code does
not differ a lot, given that edge_weight is the output of
a standard invariant neural network like an MLP.

5



EquiTorch: A Modularized Package for Flexibly Constructing Equivariant GNNs Building upon Pytorch-Geometric

Figure 2. The examples of building a TFN layer that like a GCN layer and replace the SO3Linear in it with an SO2Linear. The same
operations are aligned to the same lines.

6.2. Building a TFN Layer with SO(2) Linear Operation

Then, suppose that we noticed the SO(2) Linear operation
given by (Passaro & Zitnick) can greatly reduce the com-
plexity. What we need to do is simply replace the SO3Linear
module with the SO2Linear, as well as the related parame-
ters, as presented in the right column of Fig. 2.

We can check that, by comparing the operations on the same
lines, that there are really little modification to change from
SO3Linear to SO2Linear, thanks to the modularized design.

7. Conclusion
In conclusion, EquiTorch is a modularized package that
aims to provide a standardized and flexible framework for
constructing equivariant graph neural networks. By aligning
the package to the message passing paradigm of Pytorch-
Geometric, it enables researchers to easily combine various
equivariant operations and explore the design space of novel
equivariant architectures. However, the current package
is not yet complete, and we will continuously add more
equivariant operations and functionalities to EquiTorch in
the future. Moreover, we will also work on providing nice
tutorials and comprehensive documentation to further lower
the barrier for AI researchers to engage in this exciting field
of equivariant deep learning for scientific applications. With
these ongoing efforts, we hope that EquiTorch can serve as
a useful tool to advance the state-of-the-art in equivariant
graph neural networks.

References
Batatia, I., Kovács, D. P., Simm, G. N. C., Ortner, C., and

Csányi, G. MACE: Higher order equivariant message
passing neural networks for fast and accurate force fields,
2023. URL https://arxiv.org/abs/2206.0
7697.

Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers,
E. J., and Welling, M. Geometric and physical quantities
improve E(3) equivariant message passing, March 2022.
URL http://arxiv.org/abs/2110.02905.
arXiv:2110.02905 [cs, stat].

Du, W., Zhang, H., Du, Y., Meng, Q., Chen, W., Shao, B.,
and Liu, T.-Y. SE(3) Equivariant Graph Neural Networks
with Complete Local Frames, July 2022. URL http://
arxiv.org/abs/2110.14811. arXiv:2110.14811
[physics].

Duval, A., Schmidt, V., Garcia, A. H., Miret, S., Malliaros,
F. D., Bengio, Y., and Rolnick, D. FAENet: Frame Aver-
aging Equivariant GNN for Materials Modeling.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. CoRR, abs/1903.02428, 2019.
URL http://arxiv.org/abs/1903.02428.

Fuchs, F. B., Worrall, D. E., Fischer, V., and Welling, M.
SE(3)-Transformers: 3D Roto-Translation Equivariant
Attention Networks, November 2020. URL http://
arxiv.org/abs/2006.10503. arXiv:2006.10503
[cs, stat].

6

https://arxiv.org/abs/2206.07697
https://arxiv.org/abs/2206.07697
http://arxiv.org/abs/2110.02905
http://arxiv.org/abs/2110.14811
http://arxiv.org/abs/2110.14811
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/2006.10503
http://arxiv.org/abs/2006.10503


EquiTorch: A Modularized Package for Flexibly Constructing Equivariant GNNs Building upon Pytorch-Geometric

Gasteiger, J., Groß, J., and Günnemann, S. Directional
message passing for molecular graphs, 2022.

Geiger, M. and Smidt, T. e3nn: Euclidean neural networks,
2022.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. Neural message passing for quan-
tum chemistry. CoRR, abs/1704.01212, 2017. URL
http://arxiv.org/abs/1704.01212.

Joshi, C. K., Bodnar, C., Mathis, S. V., Cohen, T., and Liò,
P. On the expressive power of geometric graph neural
networks, June 2023. URL http://arxiv.org/ab
s/2301.09308. arXiv:2301.09308 [cs, math, stat].

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks, 2017.

Liao, Y.-L. and Smidt, T. Equiformer: Equivariant graph
attention transformer for 3d atomistic graphs, February
2023. URL http://arxiv.org/abs/2206.119
90. arXiv:2206.11990 [physics].

Liao, Y.-L., Wood, B., Das, A., and Smidt, T. EquiformerV2:
Improved Equivariant Transformer for Scaling to Higher-
Degree Representations. 2024.

Milesi, A. Accelerating se(3)-transformers training using
an nvidia open-source model implementation. https:
//developer.nvidia.com/blog/accelera
ting-se3-transformers-training-using
-an-nvidia-open-source-model-impleme
ntation/, 2021.

Passaro, S. and Zitnick, C. L. Reducing SO(3) convolutions
to SO(2) for efficient equivariant GNNs.

Satorras, V. G., Hoogeboom, E., and Welling, M. E(n)
equivariant graph neural networks, February 2022. URL
http://arxiv.org/abs/2102.09844.
arXiv:2102.09844 [cs, stat].

Schütt, K. T., Kindermans, P.-J., Sauceda, H. E., Chmiela, S.,
Tkatchenko, A., and Müller, K.-R. Schnet: A continuous-
filter convolutional neural network for modeling quantum
interactions, 2017.

Schütt, K. T., Hessmann, S. S. P., Gebauer, N. W. A.,
Lederer, J., and Gastegger, M. Schnetpack 2.0: A
neural network toolbox for atomistic machine learning.
The Journal of Chemical Physics, 158(14), April 2023.
ISSN 1089-7690. doi: 10.1063/5.0138367. URL
http://dx.doi.org/10.1063/5.0138367.

Simeon, G. and de Fabritiis, G. Tensornet: Cartesian tensor
representations for efficient learning of molecular poten-
tials, 2023.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation- and translation-equivariant neural networks for
3D point clouds, May 2018. URL http://arxiv.or
g/abs/1802.08219. arXiv:1802.08219 [cs].

Thölke, P. and De Fabritiis, G. TorchMD-NET: Equivariant
Transformers for Neural Network based Molecular Po-
tentials, April 2022. URL http://arxiv.org/ab
s/2202.02541. arXiv:2202.02541 [physics].

Unke, O. T. and Maennel, H. E3x: E(3)-equivariant deep
learning made easy, 2024.

Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z.,
Chandak, P., Liu, S., Katwyk, P. V., Deac, A., Anand-
kumar, A., Bergen, K. J., Gomes, C. P., Ho, S., Kohli,
P., Lasenby, J., Leskovec, J., Liu, T.-Y., Manrai, A. K.,
Marks, D. S., Ramsundar, B., Song, L., Sun, J., Tang,
J., Velickovic, P., Welling, M., Zhang, L., Coley, C. W.,
Bengio, Y., and Zitnik, M. Scientific discovery in the age
of artificial intelligence. Nature, 620:47–60, 2023. URL
https://api.semanticscholar.org/Corp
usID:260384616.

Yu, H., Xu, Z., Qian, X., Qian, X., and Ji, S. Efficient
and Equivariant Graph Networks for Predicting Quantum
Hamiltonian.

Zhang, X., Wang, L., Helwig, J., Luo, Y., Fu, C., Xie, Y.,
Liu, M., Lin, Y., Xu, Z., Yan, K., Adams, K., Weiler, M.,
Li, X., Fu, T., Wang, Y., Yu, H., Xie, Y., Fu, X., Strasser,
A., Xu, S., Liu, Y., Du, Y., Saxton, A., Ling, H., Lawrence,
H., Stärk, H., Gui, S., Edwards, C., Gao, N., Ladera,
A., Wu, T., Hofgard, E. F., Tehrani, A. M., Wang, R.,
Daigavane, A., Bohde, M., Kurtin, J., Huang, Q., Phung,
T., Xu, M., Joshi, C. K., Mathis, S. V., Azizzadenesheli,
K., Fang, A., Aspuru-Guzik, A., Bekkers, E., Bronstein,
M., Zitnik, M., Anandkumar, A., Ermon, S., Liò, P., Yu,
R., Günnemann, S., Leskovec, J., Ji, H., Sun, J., Barzilay,
R., Jaakkola, T., Coley, C. W., Qian, X., Qian, X., Smidt,
T., and Ji, S. Artificial intelligence for science in quantum,
atomistic, and continuum systems, 2023.

Zitnick, C. L., Das, A., Kolluru, A., Lan, J., Shuaibi, M.,
Sriram, A., Ulissi, Z., and Wood, B. Spherical channels
for modeling atomic interactions, 2022.

7

http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/2301.09308
http://arxiv.org/abs/2301.09308
http://arxiv.org/abs/2206.11990
http://arxiv.org/abs/2206.11990
https://developer.nvidia.com/blog/accelerating-se3-transformers-training-using-an-nvidia-open-source-model-implementation/
https://developer.nvidia.com/blog/accelerating-se3-transformers-training-using-an-nvidia-open-source-model-implementation/
https://developer.nvidia.com/blog/accelerating-se3-transformers-training-using-an-nvidia-open-source-model-implementation/
https://developer.nvidia.com/blog/accelerating-se3-transformers-training-using-an-nvidia-open-source-model-implementation/
https://developer.nvidia.com/blog/accelerating-se3-transformers-training-using-an-nvidia-open-source-model-implementation/
http://arxiv.org/abs/2102.09844
http://dx.doi.org/10.1063/5.0138367
http://arxiv.org/abs/1802.08219
http://arxiv.org/abs/1802.08219
http://arxiv.org/abs/2202.02541
http://arxiv.org/abs/2202.02541
https://api.semanticscholar.org/CorpusID:260384616
https://api.semanticscholar.org/CorpusID:260384616

