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Abstract

Do neural networks learn to implement algorithms such as look-ahead or search “in
the wild”? Or do they rely purely on collections of simple heuristics? We present
evidence of learned look-ahead in the policy and value network of Leela Chess
Zero, the currently strongest deep neural chess engine. We find that Leela internally
represents future optimal moves and that these representations are crucial for its
final output in certain board states. Concretely, we exploit the fact that Leela is a
transformer that treats every chessboard square like a token in language models,
and give three lines of evidence: (1) activations on certain squares of future moves
are unusually important causally; (2) we find attention heads that move important
information “forward and backward in time,” e.g., from squares of future moves
to squares of earlier ones; and (3) we train a simple probe that can predict the
optimal move 2 turns ahead with 92% accuracy (in board states where Leela finds a
single best line). These findings are clear evidence of learned look-ahead in neural
networks and might be a step towards a better understanding of their capabilities.

1 Introduction

Can neural networks learn to use algorithms such as look-ahead or search internally? Or are they
better thought of as vast collections of simple heuristics or memorized data? Answering this question
might help us anticipate neural networks’ future capabilities and give us a better understanding of how
they work internally. Recent work has found interesting cases of learned optimization or reasoning in
neural networks (von Oswald et al., 2023a,b; Akyürek et al., 2023; Brinkmann et al., 2024). However,
these works focus on simple algorithmic domains, with models that are trained specifically for those
research purposes. Instead, we ask: what computations do networks learn to perform “in the wild” in
more complex domains?

We study this question in the microcosm of chess. Neural networks are surprisingly strong at chess,
arguably approaching grandmaster level (Ruoss et al., 2024)—how do they achieve that performance?
Both reasoning and heuristics are plausible mechanisms. For example, human players and manually
designed chess engines perform look-ahead—they reason about which moves they will make in
the future. On the other hand, a network might simply learn heuristics based on the current state,
such as playing knight “fork” attacks—which are often advantageous—purely based on what they
look like geometrically. There is evidence that residual networks (such as transformers) tend to
additively aggregate results from many shallow circuits (Veit et al., 2016) and incrementally improve
their predictions (nostalgebraist, 2020; Belrose et al., 2023; Din et al., 2023), lending credence to
this idea that networks might implement a large collection of heuristics. Since we know how to
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Figure 1: Activation patching lets us study where important information is stored in Leela. Here, we
patch an activation in one particular square and layer from the forward pass on a “corrupted” board
state (bottom) into the forward pass on a “clean” state (top). Each row in the network corresponds
to one chessboard square, which Leela treats like a token in a language model. The intervention
drastically affects Leela’s output (right), telling us that the activation on the patched square stores
information necessary for Leela’s performance in this state. Only patching on specific squares has
significant effects. See https://leela-interp.github.io/ for more (animated) examples.

hand-design chess engines, we know what reasoning to look for in chess-playing networks. Compared
to frontier language models, this makes chess a good compromise between realism and practicality
for investigating whether networks learn reasoning algorithms or rely purely on heuristics.

In this work, we look for evidence of look-ahead in the policy and value network of Leela Chess
Zero (Leela Chess Zero team), or Leela for short. Leela is an MCTS-based system (like Alp-
haZero (Silver et al., 2018)) and the strongest deep neural chess engine (Haworth and Hernandez,
2021). We use only its policy/value network, without external search, since we want to study algo-
rithms that emerge within the network. Even the policy network, with only one forward pass per
state, reaches a rating over 2600 on Lichess (Appendix B) and is at least as strong (lepned, 2024) as a
recent model from Ruoss et al. (2024).

Our inroad for interpreting Leela is that it is a transformer that treats each chessboard square like
a token in a language model. Thus, we can consider activations on specific squares or attention
weights between squares. We consistently find that these activations correspond to their squares in
meaningful ways; for example, information about a move typically seems to be stored in activations
on the squares involved in that move. This lets us apply common interpretability techniques to Leela.

We show that Leela has learned to use look-ahead in certain states. Leela internally represents future
moves of the optimal line of play, and these representations are causally important for Leela’s output.
We present three lines of evidence. (1) Activations on the target square (where the piece lands) of
certain future moves have a substantially outsized impact on the network’s output, as determined by
activation patching (Fig. 1 and Section 2.3). (2) We identify attention heads that move information
“forward and backward in time.” For example, one attention head often moves crucial information
from the target square of a future move to the target square of an earlier move. (3) A simple, bilinear
probe (Hewitt and Liang, 2019) on a subset of Leela’s activations can read off the best move two
turns into the future with 92% accuracy.

Our contributions are: (1) We give evidence that neural networks can learn algorithms involving look-
ahead “in the wild.” (2) We take first steps toward a mechanistic understanding of how look-ahead
might be implemented in Leela to help it play chess. (3) We introduce techniques that might be useful
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for interpretability more generally (e.g., using a weaker model to automatically generate corruptions
for activation patching, as we will explain in Section 2.3). Our code is available on Github.

2 Experimental Setup

This section will describe the model, dataset, and techniques we use. The following section will
describe the specific experiments and their results. We ran all experiments on an internal cluster.
Each experiment takes at most a few hours on a fast GPU (e.g., an A100) and about a day for all
experiments combined.

2.1 Leela Chess Zero

Leela is a chess engine based on Monte Carlo Tree Search (MCTS), similar to AlphaZero (Silver
et al., 2018). We focus solely on its policy network, which takes a single board state as input and
outputs a probability distribution over all legal moves. For ease of exposition, we ignore the value
network in the main paper, but we show in Appendix C that our results also apply there (likely
because the two networks share a common body). When we say “Leela” elsewhere in this paper, we
mean the network rather than the full MCTS system.

The key to understanding our analysis is that Leela is a transformer that treats each of the 64
chessboard squares as one sequence position, analogous to a token in a language model. This means
each square has its own representation in the embedding space, allowing us to analyze activations
and attention patterns on specific squares. Unlike a causal language model, attention is bidirectional
between squares; there is no autoregressive prediction. Leela has 15 layers and 109M parameters,
about the size of GPT2-small (Radford et al., 2019).

The network computes a logit for every possible move, corresponding to moving a piece from one
square (the source) to another (the target). Each logit is computed using only the final embeddings at
the source and target square. There are several peculiarities of Leela’s architecture that aren’t crucial
for understanding our results, so we discuss them in Appendix A.

2.2 Puzzle dataset

To study look-ahead, we need a dataset of board states where Leela is especially likely to use look-
ahead. We are not claiming that Leela uses look-ahead in every state. Even human players can
analyze many states heuristically if there are no complex tactical considerations that require explicit
look-ahead. Thus, we focus on complex states that are likely difficult to evaluate heuristically.

As a starting point, we use 900k puzzles from the Lichess puzzles dataset (Lichess team). Each puzzle
has a starting state with a single winning move for the player whose turn it is. It is also annotated with
the principal variation, the optimal sequence of moves for both players from the starting state. All
puzzles we consider have at least three moves2 in their principal variation, see Fig. 2 for an example.

We discard puzzles that a smaller and weaker version of Leela can solve. This ensures the states in our
dataset are challenging and more likely to require look-ahead. We further filter for puzzles that Leela
solves correctly, simply so that we can apply our interpretability methods: all our methods check
whether Leela internally represents a specific future line. In correctly solved puzzles, we can look
for representations of the correct continuation, but for puzzles that Leela fails to solve, it’s unclear
which line we should look for. Leela may be representing an incorrect continuation (and hence fail
the puzzle), but there are many incorrect lines (vs only one correct one). After this filtering process,
22.5k puzzles remain (mainly because many of the original puzzles are easy enough to be solved by
the smaller model, which means we discard them). See Appendix D for details.

The filtering process leads to an overrepresentation of states where the 1st and 2nd move (i.e., the
opponent’s response) have the same target square. The 1st and 2nd target square coincide in 83% of
the filtered puzzles, compared to 47% on the original dataset. This is because the starting player often
sacrifices a piece that the opponent captures. These puzzles involving sacrifices may be more difficult
for the weak model and thus overrepresented in our dataset. Interestingly, the results we present in

2Note for chess players: for simplicity, we use the term “move” for what’s often called a “ply” or “half-move”.
We never mean a “full move”, i.e. a move by both white and black.
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Figure 2: Top row: An example of the puzzles we use. It is white’s turn in the starting state, and the
only winning action is to move the knight to g6. Black’s only response is taking the knight with the
pawn; then white checkmates by moving the rook to h4. We will see the colored squares again: the
target square of the 1st move in this principal variation (green) and the target square of the 3rd move
(blue). Below: Leela receives each state as a separate input and computes a policy in that state.

Section 3 are weaker on puzzles where the 1st and 2nd move target square differ and are stronger in
cases where they coincide. Perhaps sacrifices are inherently “more interesting” for Leela, or some
model components we identify are specialized for dealing with sacrifices. See Appendix H for results
on both subsplits of the data; in the main text, we always present results on all puzzles.

2.3 Activation patching

Activation patching3 is a technique for measuring the causal importance of specific model components.
For any given board state and model component (such as a particular square in a particular layer), it
can tell us how important that component is for producing Leela’s output in that state.

To do so, activation patching replaces the activations of the component in question with those from a
different forward pass (Fig. 1). For a given “clean” board state from our dataset, we use a “corrupted”
version of that state with a small modification, such as a piece being added or removed. In the version
of activation patching we use, we run a forward pass on the clean state, but “patch in” activations
from a forward pass on the corrupted state at the component we’re analyzing. We then continue
the forward pass as normal. If this intervention changes Leela’s output significantly (compared to
a clean forward pass without intervention), the patched component must have contained necessary
information about the clean state that differed in the corrupted state.

The choice of corruption determines which model mechanisms we can study with activation patching.
If the corrupted state is very different from the clean state, many model components will have different
activations, and activation patching won’t tell us anything specific about look-ahead. Instead, we want
a corrupted state that is similar to the clean one but differs in some key detail that has an outsized
effect on what move is best. Look-ahead or other sophisticated algorithms should pick up on the
importance of this difference, but shallow heuristics should mostly ignore it.

To automatically find such “interesting” corruptions, we again use a smaller and weaker version
of Leela. We generate many small random corruptions, each modifying only a single square or
piece position. Then, we select corruptions that have a large effect on Leela’s preferred move but

3Similar (Heimersheim and Nanda, 2024; Zhang and Nanda, 2024) to causal mediation analysis (Vig et al.,
2020), causal tracing (Meng et al., 2022), or interchange interventions (Geiger et al., 2021)
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Figure 3: Results from activation patching in the residual stream. The top row shows results in a single
example state at three select layers. Darker squares correspond to larger effects from intervening on
that square. In the early layer, the effect is strongest when patching on the corrupted square h6,
then in middle layers, the 3rd move target square h4 becomes important, and finally the 1st move
target square g6 dominates in late layers. The line plot below shows mean effects over the entire
dataset, demonstrating that this pattern holds beyond just this example. The “other squares” line is
the maximum effect over all 61 other squares (where the maximum is taken per board state and then
averaged). Error bars are two times the standard error of the mean.

a small effect on the weaker model’s output. This targets mechanisms that explain why Leela gets
these puzzles correct while the weaker model does not, making them more likely to be related to
look-ahead. The exact algorithm for generating and filtering corruptions is described in Appendix E.

3 Results

If Leela uses look-ahead, it needs internal representations of future moves. These could be located
anywhere in the model, but we will argue for a specific hypothesis: that Leela represents future
moves on their source or target squares. This hypothesis is motivated by the fact that at the end of
the network, the logit of a move depends only on its source and target square. We are guessing that
something similar holds within the network for future moves, and our results bear out this hypothesis.

We present three lines of evidence for this specific look-ahead hypothesis. First, we show that
activations on the target square of the move two turns into the future are unusually important for
Leela’s output. Second, we find attention heads that appear to help Leela consider the consequences
of future moves, as well as a head that moves information “backward in time.” Third, we demonstrate
that a simple probe can predict the optimal move two turns into the future with 92% accuracy. The
convergence of these three lines of evidence strongly suggests that learned look-ahead is an important
mechanism behind Leela’s impressive performance on our dataset of puzzles.
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3.1 Activations on future move squares are unusually important

If Leela uses look-ahead and represents future moves on their source or target squares, then we
expect activations on these future squares to be especially important for its output. We test this using
activation patching: we corrupt activations one square and layer at a time by patching in activations
from the corrupted puzzle into the clean forward pass. We measure the causal effect of an intervention
by the change in log odds assigned to the ground-truth best move. If Leela is using look-ahead, we
expect especially big reductions in log odds when we patch on the squares of optimal future moves.

Indeed, we find that patching on the target square of the 3rd move reduces model performance by
an unusual amount (Fig. 3). In layer 10, this intervention reduces the log odds of the correct move
by an average of 1.88± 0.04 (2σ standard error of the mean), which corresponds to a reduction in
probability from e.g. 50% to 13%.

Patching on the corrupted square or the 1st move target square also has large effects. This is
unsurprising: the corrupted square is the only difference in the input encodings, so in early layers,
this square is responsible for any subsequent differences in the forward passes and output. The 1st
move target square directly affects the logits of the correct move, so has a big influence in late layers.

Patching on any other square has much smaller effects. For each puzzle, we consider the biggest
effect from patching on any square other than the 1st move target, 3rd move target, or corrupted
square, and average those maxima over puzzles (this is the “other squares” line). Even though this is
a maximum over 61 squares, the effects are much smaller than those for the 3rd move target. For
example, in layer 10, the mean of these maximum log odds reductions is only 0.55± 0.01, compared
to the 1.88 for the 3rd move target. This shows that information stored on the 3rd move target square
is unusually important for Leela’s output, more so than information on most other squares.

We are unsure why the squares of the 2nd move aren’t similarly important. This may simply
be because the opponent’s move is typically “obvious” in our dataset or because suppressing the
opponent’s best response doesn’t reduce the quality of the 1st move. We confirm in Appendix H that
this is not just an artifact of the overlap between 1st and 2nd move targets. Similarly, we don’t know
for certain why Leela seems to mainly store information on target squares rather than source squares
(both for the 3rd move and for the immediate 1st move).

3.2 Attention heads move information forward and backward in time

We have seen that the target square of the 3rd move in the principal variation contains unusually
important information. If Leela uses look-ahead, this information must somehow inform its decision
for the 1st move. An algorithm involving look-ahead might consider the consequences of making the
3rd move and then propagate that information back to earlier timesteps. In this section, we will find
evidence of these processes. We identify an attention head that moves information from the 3rd move
target square “backward in time” to the 1st move target square, as well as heads that seem to move
information “forward in time” to consider the consequences of the 3rd move.

L12H12 moves information “backward in time” In the previous section, we found squares
potentially involved in look-ahead just by measuring their importance using activation patching, so
we will try the same simple approach for attention heads. When we patch the output of one head at a
time from the corrupted to the clean forward pass, one head stands out: L12H12 (the 12th head in the
12th layer) has a much larger average effect than any other attention head (Fig. 4).

So what does this head do? Anecdotally, we noticed that the entry of the attention pattern QTK with
the 1st move target as the query and the 3rd move target as the key is often large: in 29.8% of puzzles,
it is higher than all 4095 other attention entries in L12H12. In other words, it seems that L12H12
often moves information from the 3rd move target “backward in time” to the 1st move target, where
it is needed for the immediate decision.

We test this hypothesis more directly by ablating this specific attention entry. Remarkably, zeroing
out this single entry reduces the log odds of the correct move by more than 1.5 in more than 10% of
puzzles (Fig. 5), corresponding to a reduction in probability from, e.g., 50% to 18%. This effect is
much larger than simultaneously ablating all 4095 other L12H12 attention weights.

These results are particularly striking given the scale of the intervention: we are zeroing just one
floating-point number out of about 1.5 million attention entries and many other types of activations.
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That this has such an outsized effect strongly suggests that this specific information pathway is crucial
for Leela’s decision-making process in a substantial fraction of states. This is consistent with our
residual stream patching results, where the 3rd move target was important in earlier layers (around
L10 and L11), but after L12, the 1st move target dominates. L12H12 seems to be one mechanism
enabling this shift.

“Piece movement heads” help analyze consequences of future moves In addition to L12H12,
which moves information “backward in time,” we find evidence of attention heads moving information
“forward” to analyze the consequences of future moves.

Throughout the network, Leela has several attention heads whose attention patterns closely resemble
legal moves for specific piece types (Fig. 6). We call these piece movement heads. For example, there
are “knight heads” whose attention is focused on squares reachable by knight moves, and similar
heads exist for bishops and rooks. By manually inspecting attention patterns in random example
states, we identify 22 “knight heads,” 27 “bishop heads,” and 29 “rook heads” spread relatively evenly
throughout the 15 layers (out of 360 heads total in the network). We also found weaker signs of heads
for other piece types but exclude those here. King heads are difficult to study because our dataset
contains only few examples where the first move is a king move. Pawns move differently for normal
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moves vs captures, and it seems those functions are captured by different heads, so we ignore them
for simplicity. Finally, there seem to be at most a handful of queen heads, and we suspect that queens
are handled mainly by combining rook and bishop heads.

We hypothesize that these piece movement heads are used, at least in part, to analyze the consequences
of future moves. If a knight will be moved on the 3rd move (and thus end up on the 3rd move target
square), the network might use knight heads to determine what effects a knight on the 3rd move target
square would have.

To test this hypothesis, we again ablate information flow out of the 3rd move target square, but this
time in piece movement heads instead of L12H12. For each puzzle, we zero out all attention entries
with their key on the 3rd move target square. We do this only in piece movement heads corresponding
to the piece type of the 3rd move because we want to see whether the network is attending to the
consequences of this move specifically. We also do not ablate the attention entry in piece movement
heads between the source and target square of the 3rd move—we still want to let the network consider
the 3rd move itself, just not its consequences. In the running example puzzle from Fig. 2, the 3rd
move is a rook to h4, so we would ablate information flow out of h4 in all “rook heads,” except to the
source square d4. This should prevent Leela from “noticing” the effects that the rook would have on
h4 (namely delivering checkmate).

For this experiment, we focus on the subset of our puzzles where the principal variation (as given by
the Lichess dataset) is longer than 3 moves. This ensures that there are potential consequences to
analyze after the 3rd move rather than having reached an easy-to-evaluate state by then.

The ablation typically has a large effect on the network’s output (Fig. 7). In 60% of puzzles, the log
odds of the top move are reduced by at least 1.5. In contrast, ablating both other piece movement
heads (for different piece types) or ablating on a random square has little impact on performance. This
suggests our intervention blocks a very important network mechanism rather than simply reducing
performance for generic reasons.

While the heads we’ve identified seem involved in analyzing future moves, they are certainly not a
full explanation of how Leela implements look-ahead. Piece movement heads likely also serve many
simpler functions unrelated to look-ahead. Conversely, there might be heads other than L12H12
involved in moving information backward in time, and there are likely many heads involved in
look-ahead that don’t specialize in one piece type.

3.3 Simple probes can predict future moves
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Figure 8: Results of a bilinear probe for pre-
dicting the 3rd move target square. Errors com-
bine standard errors of the mean for five probe
training runs with standard errors for accuracy
estimates; see Appendix G.

We have seen evidence that the 3rd move target
square contains information that is unusually im-
portant for Leela’s output and is moved by attention
heads in ways consistent with look-ahead. But can
we go a step further and show that this square ex-
plicitly encodes information about what the 3rd
move is?

We find that this is indeed possible: probes inspired
by our analysis of L12H12 can predict the 3rd move
with 92% accuracy. Recall that our dataset only
includes puzzles that Leela solves correctly and
with a unique principal variation. This makes it
possible in principle to achieve such high accuracy,
but it is nonetheless remarkable that a simple probe
can predict a move two steps into the future.

The architecture of our probe is directly motivated
by our observations on L12H12. Recall that the
attention pattern of L12H12 often has a large entry
where the 1st move target attends to the 3rd move target. This entry in the attention pattern QTK

can be written as h11
t3

T
WT

QWKh11
t1 , where hL

i denotes the residual stream activations after layer L on
square i; tj is the target square of the j-th move; and WQ, WK are the query and key weight matrices
of L12H12. We could use this attention score directly as a logit for predicting t3, but since L12H12
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is not explicitly optimized for this task, we instead train a bilinear probe (Hewitt and Liang, 2019)
with an analogous structure from scratch.

Concretely, our probe predicts the 3rd move in two steps:

1. Predicting the target square: Given the target square of the 1st move t1, which we can
extract from Leela’s policy output, we predict the 3rd move target square t3 using

Pr(t3 = y|t1) = softmax
y

(
(hL

y )
TUTV hL

t1 + c
)
, (1)

where U , V are learned matrices with shapes matching WQ and WK , and c is a learned bias.
This is exactly analogous to how the attention weight between t3 and t1 is computed (except
for the bias).

2. Predicting the source square: We predict the 3rd move source square s3 conditioned on the
predicted target square t3 using an analogous bilinear form with separate weights U ′, V ′, c′:

Pr(s3 = y|t3) = softmax
y

(
(hL

y )
TU ′TV ′hL

t3 + c′
)
. (2)

We train the two probes separately, so the second probe uses ground truth values for t3 during training.
At test time, we first predict t3 and then use that to predict s3. See Appendix F for details on training
hyperparameters.

Figure 8 shows the accuracy of our probe for predicting the 3rd move target square after each layer of
the network. Accuracy mostly increases through the layers, peaking at (92 ± 1)% after layer 12. As
a simple baseline, probes trained on a randomly initialized copy of Leela achieve only (15 ± 2)%
accuracy. This shows that the performance can’t just be due to the probe “doing all the work.”

4 Related Work

Chess-playing neural networks Our work relies on the Leela networks (Leela Chess Zero team;
Monroe and Chalmers, 2024). Leela is based on earlier work on Alpha Zero (Silver et al., 2018) but
is much stronger. Ruoss et al. (2024) recently trained a neural network to play chess without any
external search (such as MCTS). Their network is similar in architecture and strength (lepned, 2024)
to the version of Leela we study, so our findings suggest the possibility that their network may have
learned to perform internal look-ahead or search. Several works have trained networks to play chess
using an autoregressive approach motivated by language modelling (Noever et al., 2020; Toshniwal
et al., 2021; Feng et al., 2023; Stöckl, 2021; Karvonen, 2024). Unlike Leela or Alpha Zero, these
networks don’t get the current board state as an input, only a sequence of moves, which makes their
task more difficult.

Learned look-ahead and search Pal et al. (2023) showed that future tokens are to some extent
decodable from hidden representations of a language model at earlier token positions, a finding that
relates to our probing results in Section 3.3. However, they don’t focus on whether representations of
future tokens causally influence the prediction of the current token, which is the core focus of our
study on look-ahead. Brinkmann et al. (2024) find an interpretable reasoning algorithm in a small
transformer trained to find paths in trees. This suggests similar algorithms could be present in Leela
as well, but Leela and chess-playing are much more complex than this model and synthetic task, and
so giving as detailed an interpretation as Brinkmann et al. do would be much more challenging. In
concurrent work to ours, Taufeeque et al. (2024) and Bush et al. (2024) demonstrate look-ahead in
Sokoban-playing RNNs using linear probes. Finally, there is a long line of work showing that neural
networks can learn to implement learning algorithms in context, e.g., for regression (Hochreiter et al.,
2001; Akyürek et al., 2023; von Oswald et al., 2023b,a) and reinforcement learning (Duan et al.,
2016; Wang et al., 2016; Lee et al., 2023). This is algorithmically quite distinct from look-ahead
as we study it, and many of these works focus on behavioral evaluations rather than mechanistic
analysis.

(Mechanistic) Interpretability Methodologically, our work relies heavily on mechanistic inter-
pretability tools, particularly activation patching (Vig et al., 2020; Geiger et al., 2021; Meng et al.,
2022). In terms of results, there have also been a few relevant works; most closely connected is
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Brinkmann et al. (2024) as already discussed. Examples of interpretability applied to game-playing
models include McGrath et al. (2022) and Schut et al. (2023), who study the internals of AlphaZero.
But their specific experiments are very different from ours and they do not specifically analyze the
potential for search or look-ahead. Recent work has also found that game-playing models trained on
move sequences can learn to keep track of the current board state in Othello (Li et al., 2023; Nanda
et al., 2023) and chess (Karvonen, 2024). This is orthogonal to our work: Leela already gets the
current state as its input, rather than a sequence of moves, and instead of board state tracking, we find
evidence of look-ahead to future moves.

5 Conclusion

We have shown correlational and causal evidence of learned look-ahead in Leela. While we do not
have a good understanding of the exact algorithms Leela has learned, our three lines of evidence
strongly suggest that in many tactically complex states, some form of look-ahead plays an important
role in determining Leela’s policy. Some of the techniques we use are very general and might be
useful for mechanistically studying complex behaviors in other networks.

Limitations In our mind, the main limitations of our work are as follows: (1) We do not present a
precise description of how look-ahead might be implemented in Leela. Understanding this would be
interesting from an interpretability perspective and also provide additional evidence. (2) We focus on
look-ahead along a single line of play; we do not test whether Leela compares multiple different lines
of play (what one might call search). (3) We focus on board states that are unusually complex and
thus more likely to require look-ahead. To understand the role of look-ahead across the entire input
distribution, we would need to gain a better understanding of how look-ahead might be combined
with simple heuristics in Leela. (4) Chess as a domain might favor look-ahead to an unusually strong
extent. It would be interesting to study whether language models use similarly principled mechanisms
when appropriate. We think all of these questions could be fruitful directions for future work.

Impact We expect our results to inform future research and discussion rather than having direct
societal impacts. There has been significant debate about the degree to which frontier neural models,
such as large language models (LLMs), internally implement principled algorithms. Our results on a
chess-playing model certainly don’t allow immediate conclusions about LLMs, but they are evidence
of complex algorithmic mechanisms in neural networks “in the wild,” i.e., not trained specifically to
demonstrate such mechanisms. Learned optimization (or mesa-optimization) could also pose novel
risks (Hubinger et al., 2019). Leela or similar networks might be promising candidates for test beds
to study such potential risks in toy settings.
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A Details of the Leela architecture

The version of Leela we use is T82-768x15x24h-swa-5230000, which was the strongest officially
supported model when this project began. (By now, the newer BT3 and BT4 models are even stronger.)
Other versions of Leela are CNNs similar to AlphaZero, but this model is transformer-based, and we
will focus on its architecture. For some training details on a newer iteration of Leela, see Monroe and
Chalmers (2024), though note that our version has slight architectural differences to that newer one.

The model is available from https://lczero.org/play/networks/bestnets/. The network
weights themselves don’t have a specified license to the best of our knowledge; the code base is under
the GPL-3 license, and the training data is under the Open Database License.

Note that this version of Leela wasn’t directly trained using MCTS; instead, it was trained using
supervised learning on MCTS roll-outs produced by an earlier model. This is a similar objective,
however, given that during MCTS, the value and policy nets are also trained to match the output of
the entire search process.

High-level description Leela takes a board state as input and produces a distribution over moves
and a value (win/draw/loss probability) for that state. It has a policy and a value head, which share
a transformer as the main body of the network. Each square of the chess board is represented as a
sequence position in this transformer.

Input encoding To feed a board state into Leela, it is turned into 12 bitmaps, one for each piece
type of either color. For example, there is a bitmap for white pawns, which is an 8 × 8 boolean
array with a 1 on each square with a white pawn and a 0 otherwise. In addition to these 12 bitmaps,
there are a few channels for encoding castling rights and similar information (these channels have
a constant value across all 64 squares). The original version of Leela takes in past board state as
well, but we finetuned it to do without those, as we’ll discuss. The positional encoding of the model
we use is domain-specific. Each square has a 64-dimensional embedding with binary values that
encode which other squares could be reached from the given square in one move by some type of
piece. The input and positional encodings are concatenated and then fed into a linear map into the
768-dimensional residual stream. Thus, the precise choice of input and positional encoding likely
does not matter much; the model can learn how to best embed this information. Note that piece colors
are encoded as “player color” and “opponent color”, rather than white and black. Additionally, the
board is rotated so that the current player’s side is always at the same indices. Thus, Leela doesn’t
need to learn the symmetry between white and black; this is already built into the input encoding.

Main network The main part of Leela is a 15-layer transformer with a residual dimension of 768,
24 attention heads per layer, and a head dimension of 32. Notably, the MLPs have a hidden dimension
of only 1024, rather than the common 4× dresidual. Leela is thus unusually heavy on attention heads.
The LayerNorms in Leela are applied directly to the residual stream rather than to layer inputs. This
is what the original transformer paper did (Vaswani et al., 2017) but unlike most modern transformers.
These non-linearities on the residual stream make certain interpretability techniques more difficult to
apply but don’t present an obstacle for any of our experiments.

Smolgen The biggest way in which Leela differs from a typical transformer is a method unique
to Leela called smolgen. Like other transformers, Leela produces attention scores using Q and
K matrices. However, before applying the softmax, smolgen adds the output of an MLP to these
attention scores. This MLP takes in the entire residual state, which is meant to make it easier for
the network to use global information when computing attention scores. From an interpretability
perspective, smolgen would likely make it much more difficult to understand how attention patterns
are computed. However, we don’t study that question and can mostly ignore smolgen (i.e. we simply
use the combined attention pattern without worrying about where it came from). In the case of
L12H12, we used the observed attention pattern to motivate our bilinear probe architecture. It turns
out that the part of the attention pattern produced by the (bilinear) query/key mechanism is indeed
enough to read off the 3rd move target square.

Policy head The policy head of Leela consists of two 2-layer MLPs, which we’ll call the source
MLP and the target MLP. They share the first linear layer for parameter efficiency but have separate
second layers. Both layers have output dimension 768 (matching the residual stream). These MLPs
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are applied separately to each square, yielding outputs with shape 64× 768 for each. These “source”
and “target” outputs are then matrix multiplied along the 768-dimensional axis to yield a 64× 64
dimensional output. Each entry in this output represents the logit for the move from the corresponding
source square to the target square. Finally, logits for illegal moves are masked out by setting them to
negative infinity, then a softmax over the logits yields the distribution over moves. There are a few
additional pieces of machinery to deal with pawn promotion, but these aren’t particularly important
for our purposes.

Value head We don’t use the value head in the main paper but briefly discuss it here for complete-
ness and will present results in Appendix C. It begins by projecting the 768-dimensional residual
stream down to 32 dimensions, using a learned linear map that’s shared across squares and applied
separately to each square. The 64 32-dimensional embeddings are then rehaped to get a single
2048-dimensional vector. This vector is passed through a small MLP, which produces three logits,
for the probability of the current player winning, drawing, and losing.

Finetuning to avoid reliance on past board states Leela originally takes in the past 8 board states,
rather than only the current one. This mostly shouldn’t be necessary to play chess well, though it
might help a bit given the limited computational capacity. For example, knowing the opponent’s
last move may make it easier to tell what threats (if any) they currently have. For our purposes,
passing in a history of past board states is very inconvenient since we want to automatically generate
corrupted states for activation patching. Generating corrupted histories instead would be much more
challenging. We experimented with different options, such as simply passing in zeros for the history,
repeating the current board state, or synthesizing a valid (but not semantically meaningful) history.
We found that in most cases, Leela’s output didn’t depend significantly on what we passed in as a
history, indicating that Leela (perhaps unsurprisingly) wasn’t making too much use of past board
states. However, in some cases, the output changed a lot when we modified the history, for unclear
reasons.

To avoid such confounders when activation patching, we finetuned Leela to behave the same whether
or not any history was passed in. Then, for all our experiments, we used this finetuned model and
didn’t pass in any history. The finetuned model matches the original one in strength despite not using
history (both in terms of solving puzzles from our dataset, as well as when playing against the original
model directly). Anecdotally, it also seems that finetuning didn’t change the model’s mechanism too
much (e.g., some attention heads that we had interpreted before finetuning still seemed to perform
the same function afterward).

B Leela’s playing strength

Leela is usually evaluated with MCTS, in which case it is the strongest MCTS-based chess engine,
and competes with Stockfish—a classical chess engine making heavier use of external search—for
the title of strongest chess engine in general (Haworth and Hernandez, 2021).

There are fewer evaluations of the strength of only the neural network itself. A Lichess bot using only
Leela’s policy network has achieved blitz and rapid ratings over 2600, see https://web.archive.
org/web/20240519065001/https://lichess.org/@/LazyBot/all. This is clearly below the
strength of the best human players but far better than most amateurs. The version we use is slightly
larger than the one underlying the Lichess bot and likely somewhat stronger.

Ruoss et al. (2024) recently trained a neural network that can also play chess extremely well without
external search. Lepned (2024) compared this network to Leela on the task of solving tactics puzzles
and found that the strongest Leela networks outperformed the network by Ruoss et al. (2024), but the
version we use (T2) seems roughly evenly matched.

C Value head results

As discussed in Appendix A, Leela has a policy head and a value head on top of a shared network
body. For simplicity, we only used the policy head in the main paper: the metric we measured there
were always the log odds that the policy head assigns to the correct move. But of course, most of
the computation going into the network’s policy output happens in the shared body (since the policy
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head itself is very small), so we’d expect those computations to also affect the value head. We should
thus expect overall similar results when using the value head to measure effects of interventions. In
this appendix, we show that this is indeed the case.

Our metric in this appendix are the log odds of the win probability given by the value head, i.e.,
log

(
pwin

1−pwin

)
, where pwin is computed by applying a softmax to the three output logits of the value

head (for win/draw/loss).

Figures 9 to 12 show all the results from the main paper using this win probability metric instead of
the probability of the correct move. In other words, the interpretation of these figures is the same as
in the main paper, except that “log odds reduction” refers to the win probability log odds.

The only new finding is that L14H3 seems very important to the value head (Fig. 10). But note that
L12H12 is still just as important as it was for the policy head (log odds reduction of 0.49 when we
ablate it), it’s only relatively less visible in the heatmap.

The probing results in Section 3.3 only use the shared network body rather than either of the heads,
so there is no separate value head version of them.

D Creating the puzzle dataset

As described in Section 2.2, we are looking for states where Leela finds the correct move but a smaller
model does not. The small model we use is “Little Demon 2”, a CNN with only 390k parameters.
Here, we describe the exact procedure we used to create this dataset.
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We begin with a dataset of Lichess tactics puzzles(Lichess team), available at https://database.
lichess.org/#puzzles under a Creative Commons CC0 license. These puzzles have been auto-
matically generated from human games using a variety of heuristics and computer analysis to select
“interesting” states. The player color (i.e. the color whose turn it is in the starting state) always has
an advantage, but only one move maintains that advantage.

Many of these puzzles are still easy to solve using heuristics. That is where the smaller version of
Leela comes in. We discard any puzzle where this smaller version assigns more than 10% probability
to any of the player color’s moves from the principal variation. In other words, we require every
move the player needs to make to be “difficult to find”. Note that we do not apply this restriction to
responses by the opponent. Typically, the principal variation has two moves by the player, sometimes
three or rarely more.

An alternative would have been to use puzzle ratings that Lichess provides to judge difficulty—these
are based on many human players attempting to solve puzzles. An advantage of our approach is
that it is more directly related to what’s difficult for neural networks and avoids potential human
idiosyncrasies. It is also a much more general method that’s still applicable if human difficulty ratings
are not available.

In addition to making puzzles “difficult”, we also want to ensure that the large version of Leela gets
them right. Otherwise, there is no interesting behavior for us to study with interpretability. We thus
discard any puzzles where Leela assigns less than 50% probability to any of the player’s moves. In
particular, Leela’s top choice always coincides with the best move in our dataset.

Finally, for some of our experiments it is useful if the principal variation is forcing, in the sense
that there is only ever one clearly best move at each step. In particular, otherwise it would be
fundamentally impossible to predict the 3rd move well since it would depend on the opponent’s
response. We thus also discard puzzles where the small model assigns less than 50% probability to
the 2nd move in the principal variation, i.e. the opponent’s response. For the player’s moves, the
Lichess dataset already guarantees that there is only one winning move at each step.

This filtering procedure and the various thresholds were chosen based on manual inspection of a few
puzzles; we tried to ensure that the puzzles seemed intuitively “interesting” to us. We did not tune
this procedure based on any interpretability results.

E Automatically generating corrupted states

Generating candidate corruptions Given a board state, we generate candidates for corrupted
states by applying each of the following mutations separately (i.e. each mutation yields one candidate
corruption; each candidate has only one mutation applied):

1. Add a single pawn of either color on an empty square.
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2. Remove any pawn from the board.
3. Move any non-pawn piece to any other empty square.

We discard candidates that lead to illegal states (e.g. if the opponent of the current player is in check).
This produces a few hundred corruption candidates in a typical board state. The reason we consider
only these corruptions and not, for example, moving pawns or adding non-pawn pieces is simply to
keep the search space manageable and because we almost always find a “good” corruption using only
these candidates.

Filtering candidates We apply several corruption filtering steps using the full version of Leela
as well as the weaker model we used for filtering puzzles. As with puzzle filtering, we manually
designed these filters to lead to intuitively “interesting” corruptions, but did not tune them in any way
on interpretability results. The precise numerical cutoffs used in the filters are somewhat arbitrary.

1. We keep only corruptions that reduce the probability Leela assigns to the previously best
move to less than 10%—if a corruption doesn’t make the previously best move bad, there’s
no reason to expect activation patching to have any effect.

2. We discard corrupted states where the weak model’s log odds of the previously best move
decrease by more than 0.2. Anecdotally, these corruptions often make the best move worse
for “obvious” reasons, such as placing an opponent pawn that directly attacks the target
square of the move.

3. We discard corruptions that make the board state significantly better according to Leela’s
value output (increasing the difference between win and loss probability by more than 0.1).
These corruptions often make the previously best move worse simply by making some
other move extremely good, e.g., putting the opponent’s queen on a square where it can be
captured.

Picking the “lowest impact” corruption Out of all the remaining corruptions, we pick the one
such that the weak model’s move distribution changes as little as possible since we are looking for
corruptions that change the best move for “subtle” reasons that the weaker model doesn’t “notice”.
Concretely, we minimize the Jensen-Shannon divergence between the weak move distribution on the
clean and corrupted state.

F Probe training details

We train one probe for each layer, on the residual stream activations after the MLP of that layer. More
precisely, we use the activations after the LayerNorm (recall from Appendix A that Leela applies a
LayerNorm to the entire residual stream, rather than to module inputs). We use 70% of our puzzle
dataset for training and the remaining 30% to evaluate probes.

We found that the choice of hyperparameters has essentially no effect on probe accuracy; we used
Adam with a learning rate of 1e-2, no weight decay or other regularization, a batch size of 64, and
trained for 5 epochs.

The probe can be thought of as a low-rank bilinear form, where we parameterize the low-rank matrix
as UTV for U, V matrices of shape k × d, with d = 768 the residual stream dimension. We used
k = 32 for the rank, simply to match the attention head dimensions of Leela (each head’s attention
pattern can analogously be interpreted as the result of a low-rank bilinear form). Similarly to other
hyperparameters, we found that other values of k work about equally well.

G Details on confidence intervals

All errors we report are 2σ or 95% confidence intervals, depending on context. We have three types
of error:

1. For the error of an average, such as the average effects of residual stream activation patching
(Fig. 3), we report two times the standard error of the mean. Given that these are means
over thousands of data points from i.i.d. samples, this 2σ error likely corresponds well to a
∼95% confidence interval (though we don’t report it as such).
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2. For percentile plots that show a distribution (Figs. 5 and 7), we report an approximate 95%
confidence interval based on the fact that the number of data points below a given percentile
is binomially distributed. We will describe the exact procedure for this shortly.

3. For our probes, we consider the error from randomness during probe initialization and
training, in addition to the error when estimating the test accuracy from finitely many
samples. We compute the standard error of the mean for both and propagate them (i.e. add
the square errors) to get an overall error; we then again report twice that error to approximate
a 95% confidence interval. See details below.

Note that all of these errors are statistical, and due to our sizable puzzle dataset (22.5k puzzles),
they are mostly very small. Naturally, there might be unknown systematic errors that dwarf these
statistical ones.

Error bars for probe accuracies We consider two sources of error: (1) randomness during probe
initialization and training, and (2) estimating the accuracy of the final trained probe from our finite
evaluation dataset. For (1), we have five training runs and compute a standard error of the mean over
these. For (2), we compute the standard error as well (noting that the empirical accuracy is an estimate
of the mean of a Bernoulli random variable using the samples from the evaluation dataset). Then we
compute a total error using error propagation as σtotal =

√
σ2

train + σ2
accuracy. For error bars, we report

a 2σtotal interval. σtrain dominates especially for the randomly initialized model; we could reduce the
error bars further by training more than five probes, but they are already negligible compared to the
effect size.

Confidence intervals for percentiles Several of our results visualize a distribution by plotting
a percentile function (the inverse of a cumulative distribution function), see Figs. 5 and 7. We
approximate a 95% confidence interval for each percentile. Let n be the number of samples we
use; in all our cases, these are i.i.d. from an unknown distribution (whose percentile function we
want to plot). The number of samples k(p) below a given percentile p ∈ [0, 1] follows a binomial
distribution B(k(p);n, p). We find the 2.5%-th percentile and 97.5%-th percentile of this binomial
distribution—k(p) lies between these values with 95% probability. We then sort all our samples by
value and find the samples at the 2.5%-th and 97.5%-th percentile by value. Those values form the
lower and upper bound for our confidence interval of the p-th percentile. This is an approximation
since the samples whose values we use will never be exactly at the 2.5%-th and 97.5%-th percentile,
but we have at least several thousand samples in all cases, so the approximation should be very close
to a 95% interval.

H Results on subsplits of the puzzle distribution

As discussed in the main text, we noticed that the results of all our experiments are noticeably
different on puzzles where the 1st and 2nd move target square are different. In 83% of our overall
dataset, these squares coincide because many of these puzzles contain sacrifices by the starting player.

In this appendix, we show results on both subsplits of the data, the one with the same 1st and 2nd
move target, and the one with different 1st and 2nd move targets. We find that the effects we observe
are generally much stronger in cases where 1st and 2nd target square are the same.

In most cases, the effects are qualitatively similar on both subsplits. The one exception is L12H12,
where the baseline ablation has a stronger effect than the one between 3rd move target and 1st move
target (though keep in mind that the baseline is ablating 4095 weights, vs only one weight for the
main ablation). In fact, the baseline has bigger effects in this setting with different 1st and 2nd target
squares than on the full dataset, unlike all other ablation effects we see. This might suggest that
L12H12 is performing different functions in these cases (though that function seems less important,
given the much lower effect size when activation patching L12H12 in the “different targets” setting).

One natural question is whether any of the results we found in the main text involving the 1st move
target square instead apply to the 2nd move target square when they are different. This does not seem
to be the case to a meaningful extent. In the residual stream patching results, the 2nd move target
square is automatically included in the “other squares” baseline on the “different targets” split, but
unsurprisingly, the 1st move target effects are still much larger than this baseline. (Logits are read off
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Figure 13: Residual stream patching results, analogous to Fig. 3.
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Figure 14: Attention head patching results, analogous to Fig. 4.

on 1st move target squares after all.) We also tested ablating information flow in L12H12 from the
3rd move target to the 2nd move target, but the effect on the “different targets” split is even smaller
than that of ablating information flow to the 1st move target. It thus seems likely that the first, rather
than the 2nd target square, is critical for the results presented in the main text, even though they often
overlap there.

I Software libraries used

We use onnx2torch (ENOT developers et al., 2021) to convert the official Leela ONNX models to
PyTorch (Ansel et al., 2024) for easier instrumentation. This produces auto-generated code for the
PyTorch forward pass, which we manually adjust in a few ways to support our interpretability experi-
ments. We then use nnsight (Fiotto-Kaufman) to implement our interventions. We also build on the
lczero_tools package (Graffa) for some of our instrumentation. We use python-chess (Fiekas)
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Figure 15: Ablations in L12H12, analogous to Fig. 5.
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Figure 16: Ablations in piece movement heads, analogous to Fig. 7.

0 5 10

Layer

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Third move prediction

Probe on trained model

Probe on random model

(a) Different targets

0 5 10

Layer

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Third move prediction

Probe on trained model

Probe on random model

(b) Same targets

Figure 17: Probing results, analogous to Fig. 8.

for chess logic, and einops (Rogozhnikov, 2022) for conveniently implementing some of our meth-
ods. The figures are produced using iceberg (IceBerg Contributors, 2023) and matplotlib (Hunter,
2007). See https://github.com/HumanCompatibleAI/leela-interp for the full list of pack-
ages we use.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The results and claims we summarize in the abstract and introduction match
those in Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss various limitations throughout the paper, and explicitly highlight
key limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe most of the experimental setups in the main text, and provide all
additional details in appendices (Appendices D to F). We also release all models and data
we used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: See https://github.com/HumanCompatibleAI/leela-interp, which
includes code for running all experiments and reproducing all figures, as well as a README
with instructions for downloading models and datasets and running code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe most of the experimental setups in the main text, and provide all
additional details in appendices (Appendices D to F).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All our plots and results include either 2σ or 95% error bars. We briefly
mention which sources of error they are based on in the main text and describe their
calculation in detail in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All our experiments can be run in about a day on a single GPU, as we mention
in Section 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: None of the potential concerns discussed in the Code of Ethics apply to our
research process or results.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As we discuss in Section 5, we expect the impact of our work to be on future
research; we can’t foresee specific eventual impacts on society.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The models and datasets we release are only lightly modified from existing
ones and restricted to the narrow domain of chess.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use the Lichess puzzle dataset and Leela models; we cite both and discuss
their licenses in Appendix D and Appendix A respectively.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We describe the dataset and model in the paper as well as in https://github.
com/HumanCompatibleAI/leela-interp.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper did not involve human subject research or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: See above.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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