CodeUnify: A Flexible Code-Driven Framework for Reasoning over
Multiple Structured Knowledge Sources

Anonymous ACL submission

Abstract

Unified structured data question answering task
aims to utilize a unified model to answer natu-
ral language questions based on different types
of structured data. Existing unified structured
data question answering methods usually rely
on predefined functionalities, which limits their
ability to perform complex reasoning beyond
these predefined operations. To overcome this
limitation, we propose a flexible code-driven
framework CodeUnify, which comprises two
core modules: CodeSTEP and CRAFT. The
CodeSTEP module is a paradigm that generates
a complete executable Python code sequences
containing a series of step-by-step code-based
reasoning query operations based on the ques-
tion, and CRAFT module (Code-based Reason-
ing for Adaptive Function Tailoring) can dy-
namically generate custom code functions for
operations beyond the predefined function set,
significantly enhancing the flexibility and ca-
pability in handling complex reasoning. Com-
prehensive empirical experiments on multiple
structured datasets demonstrate that CodeU-
nify exhibits superior flexibility and remarkable
improvements in complex reasoning scenarios
compared to existing unified methods.

1 Introduction

Structured data, (e.g., tables, relational databases,
knowledge graphs (KGs), and temporal KG
(TKGs)) organize information in well-defined for-
mats, enabling efficient storage, retrieval, and com-
putation (Tan et al., 2024). In the era of Large
Language Models (LLMs), structured data is an
essential source of knowledge to improve factual
accuracy, reduce hallucinations, and support com-
plex reasoning capabilities (Yang et al., 2024a).
Natural language reasoning over structured data,
with growing applications across various domains,
is important but challenging. While specialized
approaches have been developed for specific data
structures like tables or knowledge graphs, real-

| Question: How many distinct individual countries are represented |
| by films directed by Mostofa Sarwar Farooki? [

output_of_query4 = CODESTEP.Count(...)
Step5: Save result.
result = output_of_query4

data schema

e T 1
| NL2Answer RAG
f& ® |
- | | Question @ |
| Bangladesh, | | Bangladesh, India; |
| < India; German: —| Germany, Canada;
B 55C 182 Q'
| Encoder | Indexing Retrieval |
l_ ______________________
|| NL2Query @ @ % -}
: SELECT COUNT(DISTINCT Country) I
) AS country_count .
| Question FROM table_name Answer:2 |
WHERE Director = ‘Mostofa Sarwar Farooki |
' J
:_ CodeUnify @ P |
I
| -8
I # Stepl: Find the films directed by Mostofa... l
output_of_queryl = CODESTEP.get_information(...) |
|) # Step2: Find the countries represented by ...
| Question output_of_query2 = CODESTEP.get_information(...) |
Step3: Filter th tries in output_of_quar/ . .
outpist of_query3 = CODESTEP CRAFT() AN |
| amm # Step4: Calculate the count of output_of_query3 |
| o |
| |
' |

Figure 1: Comparison of NL2Answer, RAG, NL2SQL,
and our proposed CodeUnify.

world scenarios often require reasoning across het-
erogeneous data sources simultaneously, driving
interest in unified approaches that can handle multi-
ple structured data formats. For example, retrieval-
based unified methods like StructGPT (Jiang et al.,
2023a) and Readi (Cheng et al., 2024) are proposed
by accessing the raw data by predefined functions.
To further enhance the trustworthiness of the uni-
fied method, TrustUQA (Zhang et al., 2025) is
proposed, which gets the answer through an uni-
fied query language without inputting many raw
data into the LLM. The capability of these meth-
ods are limited to the predefined function callings.
However, tasks with complex computation and ad-
vanced logical reasoning often involves functions
beyond the predefined ones, raising significant chal-
lenges for these methods.

Method such as Program of Thought (PoT)
(Chen et al., 2022) have shown that structured code
execution can effectively enhance complex reason-

ing capability by decomposing problems into ex-
plicit computational steps with code. We believe
the capability of code-based approaches to repre-
sent both process logic and data manipulation can
help LLMs to handle complex tasks better.

Inspired by the Program of Thought (Chen et al.,
2022) approach, we explored the feasibility of
solving unified structured data question answering
task based on executable code. Given the limita-
tions of the current approach, we propose a code-
based framework to improve the flexibility of uni-
fied method, named CodeUnify. Our CodeUnify
framework consists of two core modules: Code-
based Stepwise Transparent Execution Paradigm
(CodeSTEP) and Code-based Reasoning for Adap-
tive Function Tailoring (CRAFT).

CodeSTEP is a custom code paradigm that gen-
erates complete executable Python code without
intermediate parsing. We introduced CodeSTEP to
address the limitations of existing methods, which
generate natural language functions that require
further parsing steps and they are limited to using
predefined functions. By directly generating exe-
cutable code, CodeSTEP provides an explainable
problem-solving step, maintaining the trustworthi-
ness of query-based methods while significantly
simplifying the QA process and providing a basis
for more flexible operations.

CRAFT is an innovative module designed to dy-
namically handle scenarios beyond the capabilities
of predefined functions. We proposed CRAFT to
overcome the fundamental limitation of existing
unified methods that can only operate within the
scope of predefined functions. CRAFT can gener-
ate dedicated code for specific reasoning steps and
seamlessly integrate with the main CodeSTEP code
execution. This design enhances the flexibility of
the CodeUnify framework while maintaining its
structured and verifiable QA framework, making
it more suitable for handling complex reasoning
tasks. Figure 1 illustrates a comparison between
our proposed framework and other methods.

CodeUnify implements a framework that allows
multiple LLMs to collaborate. Multiple LLMs that
are the same or different are allowed to collaborate
in the same code environment. With this design,
individual models can focus on different aspects of
the reasoning process, thus allowing for improved
reasoning performance through the collaboration
of multiple LLMs.

In summary, contributions of this paper are:

e We present the CodeUnify, a flexible and
trustworthy code-based framework for uni-
fied structured data question answering, which
includes CodeSTEP module for code-based
step-by-step reasoning and CRAFT module
for dynamic function customization.

e To the best of our knowledge, we are the
first code-based implementation of unified rea-
soning across different structured knowledge
sources in a custom form.

e We conducted comprehensive empirical stud-
ies based on 7 datasets of 2 structured data
types. Results prove that our approach signifi-
cantly outperforms existing unified methods
and achieves competitive results with data-
specific methods, especially for complex rea-
soning scenarios that are difficult to solve with
predefined functions.

2 Preliminary

Structured Data Representation. Following pre-
vious work (Zhang et al., 2025), We consider
2 common types of structured data, Tables and
Knowledge Graphs (KGs). TrustUQA (Zhang
et al., 2025) is a trustful framework for unified
structured data question answering. It adopts a
unified knowledge representation method called
Condition Graph (CG) to handle multiple types
of structured data simultaneously. A Condition
Graph is formally defined as CG = {N,T},
where N is the set of nodes representing enti-
ties, relationships, properties, or numerical val-
ues. T = {(node1, nodea, condition) | node; €
N, nodes € N7} is a collection of condition
triples, where condition = {node;, € N | k =
1,...,|NV]} is a list of nodes (possibly empty)
specifying the conditions under which node; con-
nects to nodes. TrustUQA uses a two-layer query-
ing approach, An LLLM generates simplified func-
tions for composing LLM queries, these queries
are translated into execution queries that can be
executed on the CG.

3 Methodology

3.1 Overview

CodeUnify framework is build upon the key idea of
code-based reasoning, that each reasoning step is
expressed as executable Python code, ensuring pre-
cision and eliminating ambiguity. Code is expres-
sive, making the framework can handle operations

Question: How many films directed aER
by Mostofa Sarwar Farooki were l:> DD[I
submitted to the Academy Awards?

data schema

data table
KG schema

Knowledge graph
5
=

Question: What type of music
did john lennon sing?

Question: The last team that
Ernesto Castano played in was

—_—
: E B
TKG schema

temporal KG

demonstrations

/ def filter_films (films=output_¢ of_queryZ) \
ubmitted_films = set() o

E
for note in films: -
if "Academy Awards" in note: ~ N7 J.
submitted_films.add(note) =
return submitted_films

value from Previous Steps W
output_of_query2 =

“Meril Prothom .. Academy Awards”,
“Meril Prothom ... category”,
“Bangladesh's ... fo Academy Awards"}

In-context
Learning
Getting the result of filtering
result = filter_films
(films=output_of_query2)
print(result)

{"Meril Prothom ... Academy Awards”,
\ “Bangladesh’s .. to Academy Awards"} / % g

0=

CRAFT

\@

m

B /#Sfeplz Find the films directed by Mostofa Sarwar Farooki \

output_of_queryl = CODESTEP.get_information(args, table_data, relation="Director', tail_entity="Mostofa Sarwar Farooki’)

Step2: Find the number of films in output_of_queryl that were submitted to the Academy Awards
output_of_query2 = CODESTEP.get_information(args, table_data, relation=Notes', head_entity=output_of_queryl)

Conditional
graph data

_ 1 # Step3: Filter the films in output_of_query2 that mention submission to the Academy Awards
output_of_query3 = CODESTEP.CRAFT(args, table_data, task, mid_outputs_list, expected_name, CODESTEP_CODE, question)

StepS: Save result.

\result = output_of_query4

m

/| # stepa: Calculate the count of output_of_query3
o output_of_query4 = CODESTEP.Count(setl=output_of_query3)

=,

CODESTEP

Figure 2: Overview of CodeUnify framework.

beyond predefined functions through dynamically
generated code for custom functions. Figure 2 il-
lustrates the reasoning process of the CodeUnify
framework.

Specifically, given a structured data source D
and a natural language question g, we firstly trans-
forms D into a data source schema Dy pemeq and
a conditional graph representation D.,. Based on
Dschema and q , we utilize an LLM with param-
eter 6 and few-shot query-code sequence prompt
p to generate an executable code sequence C =
{c1,¢a,...,cn}. This code sequence is then exe-
cuted as a complete program using D, to directly
obtain the answer a to question ¢. These two pro-
cesses can be represented as:

fG(Dschema’Qap) —C (D
Execute(C, Dey) — a ()

3.2 Code-based Stepwise Transparent
Execution Paradigm

3.2.1 Code Generation of CodeSTEP

To achieve code-based reasoning, we propose
a Code-based Stepwise Transparent Execution
Paradigm (CodeSTEP) module, which can be for-
malized as following two steps: (1) Query Anal-
ysis. For a given natural language question ¢
and data source schema Dy pemq, We firstly us-
ing the LLM with parameter 6 construct a rea-
soning path P = {s1, s2, ..., sp}. (2) Step Con-

struction. For each reasoning step s;, we con-
struct a corresponding code operation c¢; for data
schema Dy cpema that implements the reasoning
step, thereby constructing a complete code oper-
ation sequence C = {c1,ca,...,c,}. The entire
process can be expressed as:

f@(Dschema’ q7p) — C7 (3)

where p is the prompt with few-shot query-code
sequence.

3.2.2 Supporting Operations

Conditional Graph Query Operations. The
primary tools for data interaction with D., in
CodeSTEP is the conditional graph query oper-
ations. This operation can be formulated as:

g(chaRvghagtaK:vvvdtadv) ’_>Sa (4)

where D, is the conditional graph data source, R
is the relation (column or edge type), &, is the head
entity set (row identifiers or source nodes), & is the
tail entity (column value or target node), K is the
key (column or attribute), V is the value of /C, &;
and §,, are comparison operators, S is the resulting
set. This operation consists of two primary query
modes: (1) Relation-Tail Entity Mode (R + &;):
Returns the head entity set &, corresponding to tail
entity & in relation R. Specifically, when the data
source D is table, the tail entity & is a specific col-
umn value, and this mode returns the head entity set

Operation Definition

Set Operations

Union funion(817~»»,sn)’_>S1U'~~U8n
Intersection fintersect (S1, -+, Sn) = S1N--- NSy
Difference faiee (S1,82) — S1 — S2

Negation fneg (,ch7 81) — ch - Sl

Calculator Operations
Min fmin(S) — {min(S)}

Max Jmax(S) = {max(S)}
Mean fmean(s) = {ﬁ ZIES 1’}
Count fcount(s) = {|8|}

Sum fsum(S) = {Zzes x}

Table 1: Details of Predefined Calculation Operations

&y, corresponding to that value, which are the row
identifiers. When the data source D is KG, &; is the
tail entity, and this mode returns the head entity set
&y, corresponding to relation R. (2) Relation-Head
Entity Mode (R + &£,): Returns the tail entity set
&; corresponding to head entity &, in relation R.
Specifically, when the data source D is table, the
head entity &, is a row identifier, and this mode
returns the tail entity set & corresponding to that
identifier, which are the column values. When the
data source D is KG, &}, is the head entity, and this
mode returns the tail entity set & corresponding to
relation R.

Calculation Operations. In addition to the afore-
mentioned data query operation g, we also offer
common set operation functions including fynion,
fintersects fditf> fneg» and algebraic calculator oper-
ation functions including fuin, fmax> fmean> feounts
fsum. The operational rule of these operations are
detailed in Table 1.

Predefined Function Set. The conditional graph
query operation and all calculation operations are
collectively referred to a predefined function set
Foredefined that can be defined as:

F predefined — {g) f union f intersecty f diffy f neg

fmim fma)u fmeam fcounta fsum}-

Each step s; in the reasoning path can be imple-
mented using one of these predefined functions:

Ci = f’i(cha{rj | JE U;;:lojk})7
where f i € F predefined -

(&)

(6)

However, predefined functions may not cover all
possible operations required to answer complex
questions. This limitation motivates the need for a
more flexible method that can dynamically gener-
ate custom functions for specific operations.

3.3 Code-based Reasoning for Adaptive
Function Tailoring

We propose a Code-based Reasoning for Adaptive
Function Tailoring (CRAFT) module, which ex-
tends CodeSTEP module to address the inflexibility
of predefined operations, through dynamically gen-
erating custom code-based functions for operations
not covered by predefined functions.

CRAFT Implement. As a specialized code gen-
eration system, CRAFT module utilizes the LLM
with parameter ¢ and few query-code sequence
shots prompt p. to translate current task descrip-
tions into executable operation f., denoted as:

f@’ <Q7 C, 7;7 Rpreva ~Fez;z)ectealv pc) — fc- (7)

There are five key input components to create cus-
tom functions tailored to the current step i: (1)
original question q providing the overall context
and goal of the reasoning step; (2) complete code
sequence C helping understand the role of current
step i; (3) current task description T; providing
clear functional requirements; (4) previous steps
and results Ry, = {r1,72,...,7i—1} helping bet-
ter understand the task background and data char-
acteristics; (5) expected function signature Lever-
ages the LLM that generates the CodeSTEP code
understanding of the current task to convey the ex-
pected function signature F. pected to the CRAFT
framework, for CRAFT to reference.

Seamlessly Integration with CodeSTEP. Fol-
lowing are key steps of CRAFT: (1) Delegated
Tasks, while the code sequence C generated by
CodeSTEP module is being executed, if an opera-
tion is encountered that lacks predefined operations
from Fpredefined. it delegates the task to CRAFT
module. (2) Context Analysis and Reasoning,
CRAFT analyzes the current task context based
on the original question, overall code framework,
previous results, current task description, and ex-
pected function signature. (3) Function Code Gen-
eration, through reasoning about the current step’s
requirements, CRAFT generates a self-contained
Python function to implement the functionality
needed for the current step, as shown in Equation
7. Therefore, we can update Equation 6 as:

ci = fi(ch, Rl)v
fG’(Q7 C, 7:'7 Rprew]:expecled)y

fi €]:predeﬁned

8
fi ¢]:predeﬁned ()

where R; = {r; | j € U,_{,Ji} represents the
previous results that step ¢ depends on. (4) Func-
tion Code Execution, the generated function is

executed to obtain the results 7, needed for the
current step, as shown in Equation 9. (5) Results
Return, after obtaining the result g, for the cur-
rent step, it is returned to the main CodeSTEP code
execution process, can seamlessly integrate with
the complete CodeSTEP code execution.

Tstep = Bxecute(fe, {rj|j € Uit Tx}}) (9

This integration allows CodeUnify to dynamically
extend its capabilities beyond predefined functions,
addressing complex queries that require custom
operations.

3.4 Code Execution

While internally, Each individual code step c; re-
turns an intermediate result r; that may serve as
input to subsequent steps, can be concisely repre-
sented as:

r; = Execute(c;, Deg, {5]7 € Ui_L Tk }}) (10)

where J}, is the subset of previous step indices that
step k depends on.

This decomposition enables transparent reason-
ing and facilitates error detection and correction.
The complete reasoning process is ultimately ex-
ecuted through the complete code sequence C, re-
turns the final step result r,,, which directly corre-
sponds to the final answer a to the original ques-
tion:

rn, = Execute(C, Dyy) — a

(11)
4 Experiments

We conduct various experiments to answer the fol-
lowing three key questions: RQ1: How effective is
CodeUnify in multiple structured data question an-
swering tasks compared to baselines? RQ2: How
does each component in CodeUnify framework
contribute to the overall performance? RQ3: Does
the CRAFT module effectively handle complex
reasoning beyond predefined functions?

4.1 Experimental Setup

Datasets and Evaluation Metrics. For KGQA,
we use WebQSP (Yih et al., 2016) with Hit@1 as
the evaluation metric. For TableQA, we use Wik-
iSQL (Zhong et al., 2017), WikiTableQuestions
(WTQ) (Pasupat and Liang, 2015) with Denota-
tion Accuracy (DA) (Jiang et al., 2023a) as the
metric, and TableBench (Wu et al., 2025) with Ex-
act Match (EM) as the metric. To further evaluate
the CRAFT module, we constructed two datasets,

named WikiSQL-E and WTQ-E, and used Call-
ing Rate, Calling Denotation Accuracy (CDA),
DA, and Fl-score as evaluation metrics on the
WikiSQL-E, WTQ-E, and TableBench datasets.
More details are provided in Appendix A.

Baselines. We evaluate CodeUnify against a com-
prehensive set of baselines. For the WebQSP (Yih
et al., 2016) dataset, we compare with data type
specific models including DecAF (Yu et al., 2022),
KB-Binder (Li et al., 2023), KB-Coder(Nie et al.,
2024)), UniKGQA (Jiang et al., 2022), TIARA
(Shu et al., 2022), ReasoningLM (Jiang et al.,
2023b)and AgentBench (Liu et al., 2023b). For
the WikiSQL (Zhong et al., 2017) and WTQ (Pa-
supat and Liang, 2015) datasets, we compare with
table-specific models including TAPEX (Liu et al.,
2021), DATER (Ye et al., 2023), TAPAS (Herzig
et al., 2020) and MAPO (Liang et al., 2018). And
we compare with unified models on WebQSP (Yih
et al., 2016), WikiSQL (Zhong et al., 2017) and
WTQ (Pasupat and Liang, 2015), including Uni-
fiedSKG (Xie et al., 2022), StructGPT(Jiang et al.,
2023a), Readi (Cheng et al., 2024) and TrustUQA
(Zhang et al., 2025). To evaluate the CRAFT mod-
ule on WikiSQL-E, WTQ-E, and TableBench (Wu
et al., 2025) datasets, we use TrustUQA (Zhang
et al., 2025) as the primary baseline, implemented
with the same LLM as our framework for fair com-
parison. For TableBench experiments, we adopt
various baselines from the original TableBench
(Wu et al., 2025), including both open-source and
closed-source methods with different prompting
strategies, as well as TrustUQA (Zhang et al., 2025)
implemented with various LLMs. Detailed descrip-
tions of all baseline methods are provided in Ap-
pendix B.

Implementation. We implement our framework
using multiple LLMs as the reasoning engine in-
cluding GPT-3.5-turbo, GPT-40-mini, GPT-40, and
GPT-4.1. The specific usage of each model will be
detailed in the experimental sections. The Code-
Unify framework is implemented in a Python en-
vironment, with the CRAFT module dynamically
generating and executing custom Python functions
at runtime. All experiments were conducted using
the OpenAl API for LLM access. The prompt tem-
plates used in our experiments will be provided in
the Appendix D. For in-context learning, we used
10 demonstrations for the CodeSTEP module and
2 demonstrations for the CRAFT module.

WebQSP

WikiSQL WTQ

—_ Method

Method Hit@1 (%) etho DA (%) DA (%)
Data Type Specific Models Data Type Specific Models
UniKGQA (Jiang et al., 2022) 75.1 MAPO (Liang et al., 2018) 72.6 43.8
DecAF (Yu et al., 2022) 78.7 TAPAS (Herzig et al., 2020) 83.6 48.8
TIARA (Shu et al., 2022) 76.7 TAPEX (Liu et al., 2021) 89.5 57.5
ReasoningLLM (Jiang et al., 2023b) 78.5 DATER (Ye et al., 2023) - 65.9
AgentBench (I'Ju et al., 2023b) 47.8 Unified Models
KB-Binder (Li et al., 2023) 68.9
KB-Coder (Nie et al., 2024) 77.2 UnifiedSKG (Xie et al., 2022) 86.0 49.3

: StructGPT (Jiang et al., 2023a) 65.6 52.2
Unified Models Readi (Cheng et al., 2024) 66.2 61.7
UnifiedSKG (Xie et al., 2022) 80.7 TrustUQA (Zhang et al., 2025) 85.7 46.7
Struc.tGPT (Jiang et al., 2023a) 69.6 CodeUnify (Ours) 86.1 45.8
Readi (Cheng et al., 2024) 74.3
TrustUQA (Zhang et al., 2025) 83.5 Table 3: Results on WikiSQL and WTQ datasets.
CodeUnify (Ours) 85.2

Table 2: Experimental results on WebQSP dataset.

4.2 KGQA Results (RQ1)

On the WebQSP dataset, we conducted experi-
ments using the CodeUnify framework without the
CRAFT module to explore the impact of the code-
based formulation itself on structured data question
answering tasks. These experiments were imple-
mented based on the GPT-3.5-turbo-0613.

Table 2 shows results on WebQSP. CodeUnity
achieves 85.21% Hit@1 precision, outperforming
all baselines including specialized models like De-
cAF (Yu et al., 2022) and unified models like
TrustUQA(Zhang et al., 2025). The improvements
demonstrate the feasibility and potential of using
executable code for structured data question an-
swering tasks, providing an effective new approach
for structured data question answering.

4.3 Table QA Results (RQ1)

Table 3 shows the results on WikiSQL and WTQ
with the GPT-40-mini model.

On WikiSQL, CodeUnify achieves 86.1% Deno-
tation Accuracy (DA), slightly outperforming other
unified models including UnifiedSKG (Xie et al.,
2022) and TrustUQA (Zhang et al., 2025). This
demonstrates that our approach maintains competi-
tive performance on table QA tasks without sacrific-
ing generalizability. On WTQ, CodeUnify achieves
45.8% DA, which is lower than some specialized
and unified models.

It’s important to recognize that methods based
on executable programs require high precision

throughout the entire solution process (Wu et al.,
2025; Chen et al., 2022). For simpler reasoning
tasks requiring precision, our approach may not
show advantages. We believe our method is more
suitable for complex reasoning scenarios and re-
quires certain capabilities from the base model.
However, with the rapid development of large lan-
guage models and their rapidly improving capabil-
ities, we believe our method aligns with develop-
ment trends and has significant potential. We will
validate this in subsequent experiments examin-
ing our method’s capabilities in complex reasoning
scenarios and the impact of base models.

Table 4 shows CodeUnify’s performance com-
parison with TableBench baselines (Wu et al.,
2025) and the TrustUQA (Zhang et al., 2025)
method on the TableBench dataset. On TableBench,
CodeUnify significantly outperforms TrustUQA
and shows clear advantages compared to PoT-based
baselines. With GPT-40 as the base model, Code-
Unify achieves 68.75% and 51.01% accuracy on
Fact Checking and Numerical Reasoning, surpass-
ing TrustUQA by 6.25 and 21.46 percentage points
respectively. The performance improvements are
particularly notable on the Numerical Reasoning
task, highlighting the effectiveness of CodeUnify
for complex mathematical reasoning.

4.4 Ablation Study (RQ2)

Table 5 presents an ablation study on TableBench
FactChecking and Numerical Reasoning tasks,
with GPT-40 as the base model. Removing CRAFT
module reduces performance on Fact Checking
from 68.75% to 65.26% and on Numerical Rea-

Methods TableBench
FC NR
Open-source based
TableLLM-Qwen2-7B+PoT 10.59 10.34
TableLLM-Llama3.1-8B+PoT 25.67 28.64
Qwen2-72B+PoT 56.37 41.33
Llama3.1-70B+PoT 59.05 34.04
Close-source based
Qwen-Max+PoT 50.42 32.80
Deepseek-Chat-V2+PoT 57.48 45.96
gpt-3.5-turbo+PoT 60.92 42.09
gpt-3.5-turbo+TCoT 59.95 23.45
gpt-40+PoT 62.31 47.83
TrustUQA+GPT-3.5-turbo 50.00 20.20
TrustUQA+GPT-40-mini 55.21 21.72
TrustUQA+GPT-40 62.50 29.55
Ours
CodeUnify+GPT-3.5-turbo 61.46 38.63
CodeUnify+GPT-40-mini 64.58 40.66
CodeUnify+GPT-40 68.75 51.01

Table 4: Experimental results on the TableBench
dataset. ‘FC’ and ‘NR’ represents Fact Checking subset
and Numerical Reasoning subset, respectively.

Methods Fact Checking Num-Reasoning
EM (%) Fl1 (%) EM (%) Fl1 (%)
CodeUnify (ours) 68.75 71.60 51.01 51.80
w/o CRAFT 65.26 67.71 45.85 46.29
w/o CodeSTEP 59.38 63.16 18.43 19.69

Table 5: The results of ablation study.

soning from 51.01% to 45.85%. This confirms
that CRAFT contributes significantly to the frame-
work’s ability to handle complex reasoning tasks.
Removing CodeSTEP module causes performance
to drop to 59.38% on Fact Checking and 18.43%
on Numerical Reasoning. The particularly severe
degradation on Numerical Reasoning (32.58 per-
centage points) highlights that CodeSTEP’s struc-
tured code-based reasoning approach is essential
for complex mathematical operations.

These validate that both components are cru-
cial, with CodeSTEP providing the foundational
reasoning structure and CRAFT offering critical
flexibility for complex cases.

4.5 CRAFT for Complex Reasoning (RQ3)

Table 6 provides a detailed comparison between
CodeUnify and TrustUQA across WikiSQL-E,
WTQ-E, and TableBench datasets using different
base models, evaluated with metrics including call-
ing rate, Calling Denotation Accuracy (CDA), De-
notation Accuracy (DA), and F1 score.

A striking observation is that CodeUnify consis-
tently maintains significantly higher CDA across all
datasets and models. For instance, on the Numer-
ical Reasoning dataset using GPT-40, CodeUnify
achieves a CDA of 50.0% compared to TrustUQA’s
mere 6.17%, representing a remarkable improve-
ment of 43.83 percentage points. Similarly, on the
WTQ-E dataset using GPT-4.1, CodeUnify reaches
a CDA of 57.44% versus TrustUQA’s 20.10%, an
improvement of 37.34 percentage points. These
demonstrate CRAFT can effectively handling cases
requiring reasoning beyond predefined functions.

CodeUnify generally exhibits lower calling rates
than TrustUQA (e.g., 2.36% vs. 55.52% on
WikiSQL-E with GPT-4.1), indicating that within
the CodeUnify framework, the model can more pre-
cisely determine when custom functions are needed
and implement them more effectively. Improve-
ments in overall DA and F1 metrics show notable
enhancements on majority datasets, with particu-
larly significant gains on complex reasoning tasks.
On TableBench Numerical Reasoning using GPT-
40, CodeUnify achieves a DA of 51.01% compared
to TrustUQA’s 29.55%, representing a 21.46 per-
centage point improvement.

5 Related Work

Structured Data Question Answering is increas-
ingly important in human-computer interaction
scenarios across healthcare (Yang et al., 2024b;
Huang et al., 2021) , finance (Liu et al., 2023a;
Zhu et al., 2021), and information retrieval (Zhang
et al.,, 2022). Structured data reasoning refers
to the task of answering natural language ques-
tions by leveraging structured data sources (Huang
et al., 2024). Research in this field has evolved
along two primary directions. Single data-type spe-
cific methods focus on reasoning over a specific
data structure, such as tables (Zha et al., 2023) or
KGs (Song et al., 2023). Recent advancements
include KB-Coder (Nie et al., 2024), which uti-
lizes a code-based paradigm for KG reasoning
with in-context learning, and DATER (Ye et al.,,
2023), which leverages demonstrations to enhance

Models Datasets calling rate (%) CDA (%) DA (%) F1 (%)

(TrustUQA/Ours) (TrustUQA/Ours) (TrustUQA/Ours) (TrustUQA/Ours)

WikiSQL-E 70.92/7.15 3.32/68.24 11 70.00/67.79 70.40/68.28
£-3.5-turbo WTQ-E 87.35/50.94 11.12/39.87 11 32.02/34.40 1 33.45/36.17 1
gptes. FactChecking 16.67/16.67 0.00/18.751 50.00/61.46 + 56.61/65.44 1
Numerical Reasoning 65.66,/50.47 4.23/33.33 11 20.20/38.63 11 20.87/40.10 1
WikiSQL-E 66.55/2.86 8.33/61.29 1™ 74.54/79.04 75.06/79.66 T
cdomini | WTQE 84.63/56.48 14.10/41.15 1 36.57/38.851 38.21/40.71 1
£p FactChecking 22.92/25.00 0.00/33.33 1+ 55.21/64.58 + 58.39/70.19 1
Numerical Reasoning ~ 62.63/50.51 2.82/33.00 11 21.72/40.66 11 22.73/42.57 11
o FactChecking 22.92/15.62 4.55/20.00 1 62.50/68.75 1 64.72/71.60 1
& Numerical Reasoning ~ 61.36/51.01 6.17/50.00 11 29.55/51.01 ™1 31.18/51.80 11
al WikiSQL-E 55.52/2.36 6.98/53.57 11 79.44/87.341 79.52/87.58 1
P WTQ-E 76.79/60.16 20.10/57.44 14 41.14/55.02 1 42.08/56.34 1

Table 6: Experimental results on the WikiSQL-E, WTQ-E, Fact Checking and Numerical Reasoning datasets. “1”’

shows the improvement compared with TrustUQA.

table reasoning in large language models. In con-
trast, unified-type approaches aim to support rea-
soning across multiple structured data types simul-
taneously (Khashabi et al., 2020). Notable exam-
ples include UnifiedSKG (Xie et al., 2022), which
integrates multiple structured knowledge formats
through a seq2seq framework. Such unified frame-
works are crucial for real-world applications where
information is distributed across heterogeneous
data sources (Chen et al., 2020). Single-type and
unified methods typically adopt one of the follow-
ing three paradigms: NL2Answer, NL2Query and
RAG. More related work is described in Appendix
C.

LLM-based Unified Frameworks. With the
rapid advancement of large language models, an in-
creasing number of works have attempted to lever-
age LLMs to implement unified structured data
question answering task, offering new possibilities
for handling diverse data formats within a single
framework. StructGPT (Jiang et al., 2023a) is an it-
erative reading-then-reasoning framework that uses
LLMs to generate answers or next reasoning steps
based on collected evidence. Readi (Cheng et al.,
2024) is a reasoning-path-editing framework that
collects KG evidence based on edited reasoning
paths and generates answers based on the evidence
and questions using an LLM. TrustUQA (Zhang
et al., 2025) presents a trustworthy framework that
uses Conditional Graph and a two-layer query ap-
proach to uniformly support task scenarios for ta-
bles, KGs, and TKGs.

Code-based Reasoning. Recent research has
shown that code-based approaches can effectively
enhance reasoning capabilities in LLMs (Yang
et al., 2025). Program of Thought (PoT) (Chen
et al., 2022) demonstrates that executable code
can represent complex problems into manageable
computational steps. However, current code-based
methods are primarily applied to mathematical rea-
soning and other domains requiring procedural
thinking, while our CodeUnify framework extends
this paradigm to unified structured data QA.

6 Conclusion

In this paper, we introduced an effective and flex-
ible code-based framework for unified structured
data question answering, called CodeUnify. Our
framework includes two core modules, CodeSTEP
and CRAFT. It generates and executes code se-
quences that directly answer natural language ques-
tions over various structured data types. Through
experiments across diverse datasets, we demon-
strated our framework’s effectiveness, particularly
on complex reasoning tasks. CodeUnify offers a
new effective solution to unified structured data
question answering. The performance improve-
ments with stronger base models suggest our ap-
proach will benefit from continued LLLM advance-
ments. As large language models continue to
evolve, we believe our code-based method aligns
well with future Al development trends. Looking
forward, we plan to extend our framework to more
structured data formats, and further enhance its
reasoning capabilities.

Limitations

While our CodeUnify framework shows promis-
ing results, we acknowledge several limitations
of our approach: (1) due to the high precision re-
quirements of executable code methods (Wu et al.,
2025; Chen et al., 2022), the code-based execu-
tion paradigm requires maintaining high precision
throughout the entire solution process with strong
LLMs. (2) our experimental results on WikiSQL
and WTQ indicate that CodeUnify may not show
obvious advantages on relatively simpler tasks com-
pared to specialized models. The performance
gains of our approach are more pronounced on com-
plex reasoning scenarios that require functionality
beyond predefined operations. These limitations
present opportunities for future research to enhance
the robustness, efficiency, and generalization of
code-based approaches for unified structured data
question answering.

References

Patrice Béchard and Orlando Marquez Ayala. 2024.
Reducing hallucination in structured outputs via
retrieval-augmented generation. arXiv preprint
arXiv:2404.08189.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Wang. 2020. Hybridqa: A
dataset of multi-hop question answering over tabular
and textual data. arXiv preprint arXiv:2004.07347.

Sitao Cheng, Ziyuan Zhuang, Yong Xu, Fangkai Yang,
Chaoyun Zhang, Xiaoting Qin, Xiang Huang, Ling
Chen, Qingwei Lin, Dongmei Zhang, and 1 others.
2024. Call me when necessary: Llms can efficiently
and faithfully reason over structured environments.
arXiv preprint arXiv:2403.08593.

Jonathan Herzig, Pawet Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Martin Eisen-
schlos. 2020. Tapas: Weakly supervised table parsing
via pre-training. arXiv preprint arXiv:2004.02349.

Sirui Huang, Yanggan Gu, Xuming Hu, Zhonghao Li,
Qing Li, and Guandong Xu. 2024. Reasoning factual
knowledge in structured data with large language
models. arXiv preprint arXiv:2408.12188.

Xiaofeng Huang, Jixin Zhang, Zisang Xu, Lu Ou, and
Jianbin Tong. 2021. A knowledge graph based ques-
tion answering method for medical domain. PeerJ
Computer Science, 7:¢667.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023a. Struct-
gpt: A general framework for large language model
to reason over structured data. arXiv preprint
arXiv:2305.09645.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yaliang Li,
and Ji-Rong Wen. 2023b. Reasoninglm: Enabling
structural subgraph reasoning in pre-trained language
models for question answering over knowledge graph.
arXiv preprint arXiv:2401.00158.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong
Wen. 2022. Unikgqga: Unified retrieval and reason-
ing for solving multi-hop question answering over
knowledge graph. arXiv preprint arXiv:2212.00959.

Haemin Jung and Wooju Kim. 2020. Automated con-
version from natural language query to spargl query.
Journal of Intelligent Information Systems, 55(3):501—
520.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. Unifiedqa: Crossing format
boundaries with a single qa system. arXiv preprint
arXiv:2005.00700.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, and 1 others. 2020. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. Advances
in neural information processing systems, 33:9459—

9474.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learn-
ing for knowledge base question answering. arXiv
preprint arXiv:2305.01750.

Chen Liang, Mohammad Norouzi, Jonathan Berant,
Quoc V Le, and Ni Lao. 2018. Memory augmented
policy optimization for program synthesis and se-
mantic parsing. Advances in Neural Information
Processing Systems, 31.

Shigi Liang, Kurt Stockinger, Tarcisio Mendes
De Farias, Maria Anisimova, and Manuel Gil. 2021.
Querying knowledge graphs in natural language.
Journal of big data, 8(1):3.

Chuang Liu, Junzhuo Li, and Deyi Xiong. 2023a. Tab-
cga: A tabular conversational question answering
dataset on financial reports. In Proceedings of the
61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 5: Industry Track), pages
196-207.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2021.
Tapex: Table pre-training via learning a neural sql
executor. arXiv preprint arXiv:2107.07653.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, and 1 others. 2023b. Agent-
bench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi
Jiang, Yuxin Zhang, Ju Fan, Guoliang Li, Nan Tang,
and Yuyu Luo. 2024. A survey of nl2sql with large
language models: Where are we, and where are we
going? arXiv preprint arXiv:2408.05109.

Zhijie Nie, Richong Zhang, Zhongyuan Wang, and
Xudong Liu. 2024. Code-style in-context learning for
knowledge-based question answering. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 18833-18841.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Borje F Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
Tiara: Multi-grained retrieval for robust question an-

swering over large knowledge bases. arXiv preprint
arXiv:2210.12925.

Yiging Song, Wenfa Li, Guiren Dai, and Xinna
Shang. 2023. Advancements in complex knowledge
graph question answering: a survey. Electronics,
12(21):4395.

Xiaoyu Tan, Haoyu Wang, Xihe Qiu, Yuan Cheng,
Yinghui Xu, Wei Chu, and Yuan Qi. 2024. Struct-
x: Enhancing large language models reasoning with
structured data. arXiv preprint arXiv:2407.12522.

Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Ji-
aheng Liu, Xeron Du, Di Liang, Daixin Shu, Xi-
anfu Cheng, Tianzhen Sun, and 1 others. 2025.
Tablebench: A comprehensive and complex bench-
mark for table question answering. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 39, pages 25497-25506.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi
Zhong, Torsten Scholak, Michihiro Yasunaga, Chien-
Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I
Wang, and 1 others. 2022. Unifiedskg: Unifying
and multi-tasking structured knowledge grounding
with text-to-text language models. arXiv preprint
arXiv:2201.05966.

Dayu Yang, Tianyang Liu, Daoan Zhang, Antoine
Simoulin, Xiaoyi Liu, Yuwei Cao, Zhaopu Teng, Xin
Qian, Grey Yang, Jiebo Luo, and 1 others. 2025.
Code to think, think to code: A survey on code-
enhanced reasoning and reasoning-driven code in-
telligence in llms. arXiv preprint arXiv:2502.19411.

Linyao Yang, Hongyang Chen, Zhao Li, Xiao Ding, and
Xindong Wu. 2024a. Give us the facts: Enhancing
large language models with knowledge graphs for
fact-aware language modeling. /IEEE Transactions
on Knowledge and Data Engineering, 36(7):3091—
3110.

10

Rui Yang, Haoran Liu, Edison Marrese-Taylor,
Qingcheng Zeng, Yu He Ke, Wanxin Li, Lechao
Cheng, Qingyu Chen, James Caverlee, Yutaka Mat-
suo, and 1 others. 2024b. Kg-rank: Enhancing
large language models for medical qa with knowl-
edge graphs and ranking techniques. arXiv preprint
arXiv:2403.05881.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 174—184.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201-206.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Yiqun Hu, William
Wang, Zhiguo Wang, and Bing Xiang. 2022. Decaf:
Joint decoding of answers and logical forms for ques-

tion answering over knowledge bases. arXiv preprint
arXiv:2210.00063.

Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang,
Qingyi Huang, Saisai Yang, Jing Yuan, Chang-
bao Su, Xiang Li, Aofeng Su, and 1 others. 2023.
Tablegpt: Towards unifying tables, nature lan-
guage and commands into one gpt. arXiv preprint
arXiv:2307.08674.

Jinhao Zhang, Lizong Zhang, Bei Hui, and Ling Tian.
2022. Improving complex knowledge base ques-
tion answering via structural information learning.
Knowledge-Based Systems, 242:108252.

Wen Zhang, Long Jin, Yushan Zhu, Jiaoyan Chen, Zhi-
wei Huang, Junjie Wang, Yin Hua, Lei Liang, and
Huajun Chen. 2025. Trustuqa: A trustful framework
for unified structured data question answering. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 25931-25939.

Xiaokang Zhang, Sijia Luo, Bohan Zhang, Zeyao Ma,
Jing Zhang, Yang Li, Guanlin Li, Zijun Yao, Kangli
Xu, Jinchang Zhou, and 1 others. 2024. Tablellm: En-
abling tabular data manipulation by llms in real office
usage scenarios. arXiv preprint arXiv:2403.19318.

Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He,
Luna K Qiu, and Lili Qiu. 2024. Retrieval augmented
generation (rag) and beyond: A comprehensive sur-
vey on how to make your llms use external data more
wisely. arXiv preprint arXiv:2409.14924.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
Tat-Seng Chua. 2021. Tat-qa: A question answering
benchmark on a hybrid of tabular and textual content
in finance. arXiv preprint arXiv:2105.07624.

A Datasets and Evaluation Metrics

We evaluate on multiple standard QA datasets
spanning different structured data types, WebQSP
(Yih et al., 2016) is a KGQA dataset with com-
plex questions requiring multi-hop reasoning over
Freebase. We use Hit@1 as the evaluation met-
ric. WikiSQL (Zhong et al., 2017) is a table QA
dataset requiring SQL generation to answer ques-
tions over Wikipedia tables. We use Denotation Ac-
curacy (DA)(Jiang et al., 2023a) as the evaluation
metric. WIKITABLEQUESTIONS (WTQ)(Pasupat
and Liang, 2015) is a more challenging table QA
dataset with complex questions that often require
numerical reasoning and multiple operations. We
use Denotation Accuracy (DA) as the evaluation
metric. TableBench (Wu et al., 2025) is a compre-
hensive benchmark for table reasoning. We focus
on two challenging subtasks, Fact Checking (FC)
and Numerical Reasoning (NR), using Exact Match
(EM) as the evaluation metric. Statistics of datasets
are shows in Table 7.

WikiSQL-E and WTQ-E, To better evaluate the
CRAFT module, we constructed two specialized
datasets by extracting instances from WikiSQL and
WTQ where TrustUQA(Zhang et al., 2025) could
not solve them using only predefined functions.
These datasets are named WikiSQL-E and WTQ-
E. We primarily use Denotation Accuracy (DA)
and F1 metrics to evaluate model performance. Ad-
ditionally, we introduce two new metrics, Calling
Rate defined as the percentage of questions re-
quiring functions beyond the predefined function
list, and Calling Denotation Accuracy (CDA) de-
fined as the accuracy within the subset of questions
requiring functions beyond predefined functions.
These metrics help validate the effectiveness of the
CRAFT module.

Experiments on these constructed datasets effec-
tively explore our framework’s improvements and
capabilities on complex reasoning problems and
provide a valuable dataset and baseline for future
research in this area.

B Baselines

We compare CodeUnify with various baseline
methods, categorized into data-type specific mod-

11

Dataset #Test QA Others

WTQ 4344 421 tables
WikiSQL 15878 5230 tables
WebQSP 1639 retrieved version
TableBench-FC 96 96 tables
TableBench-NR 396 396 tables
WikiSQL-E 1189 925 tables
WTQ-E 1801 403 tables

Table 7: Statistics of Experimental Datasets

els and unified models.

B.1 Data-Type Specific Models

For the KGQA task on WebQSP (Yih et al., 2016),
we compare with several KG specific models: De-
cAF (Yu et al., 2022) which combines logical form
parsing with direct answer generation for KGs, KB-
Binder (Li et al., 2023) which incorporates retrieval
techniques for improved KGQA, KB-Coder (Nie
et al., 2024) which utilizes a code-based paradigm
for KG reasoning with in-context learning.

For the TableQA tasks on WikiSQL (Zhong
etal., 2017) and WTQ (Pasupat and Liang, 2015),
we compare with table-specific models: TAPEX
(Liu et al., 2021) which pre-trains language models
on tables with SQL execution capabilities, DATER
(Ye et al., 2023) which leverages demonstrations to
enhance table reasoning in large language models,
etc. For experiments on the TableBench dataset, we
use baselines directly from the TableBench study
(Wu et al., 2025), which include both open-source
models (e.g., TableLLM, Qwen2, Llama3.1) and
closed-source models (e.g., GPT variants). These
baselines implement various prompting strategies
such as Program-of-Thought (PoT) and Textual
chain-of-thought (TCoT) (Wu et al., 2025) ap-
proaches. The baseline also includes TrustUQA
(Zhang et al., 2025) methods based on different
LLM:s for a more complete comparison.

B.2 Unified Models

We also compare with models designed to handle
multiple types of structured data: UnifiedSKG (Xie
et al., 2022) which integrates multiple structured
knowledge formats through a seq2seq framework,
StructGPT (Jiang et al., 2023a) which employs an
iterative evidence collection and reasoning process
across structured data types, Readi (Cheng et al.,
2024) which progressively refines reasoning paths
for comprehending various structured data formats,

TrustUQA (Zhang et al., 2025) which creates a uni-
fied graph representation to generate explainable
queries across data types.

C Other Related Works

NL2Query. These methods transform a natural
language question into a formal query language
that can be executed directly against structured data
(Zhang et al., 2025). For single-type approaches,
specialized variants such as NL2SQL (Liu et al.,
2024) and NL2SPARQL (Jung and Kim, 2020)
have been developed, but they usually require cus-
tom design for each data type. For unified ap-
proaches, frameworks like TrustUQA (Zhang et al.,
2025) construct an intermediate conditional graph
to bridge disparate data types. NL2Query methods
can provide trustworthy, interpretable results via
formal verification (Liang et al., 2021) .

NL2Answer. These methods directly generate
answers without formal queries, usually using mod-
els trained on specific datasets (Zhang et al., 2025).
For example, TableGPT (Zha et al., 2023) is a
unified framework that enables LLMs to under-
stand and manipulate tables described in natural
language. Although NL2Answer methods may gen-
eralize across multiple datasets, their reasoning
processes often lack transparency and do not eas-
ily extend to diverse structured data types (Zhang
etal.,, 2024) .

Retrieval-Augmented Generation. Retrieval-
Augmented Generation (RAG) methods retrieve
relevant evidence from structured data sources
and then generate answers using LLMs (Lewis
et al., 2020). While the RAG approach is more
flexible across data types (Zhao et al., 2024),
RAG approaches are prone to hallucinations and
lack the formal validation mechanisms inherent to
NL2Query methods (Béchard and Ayala, 2024).

D Prompt Template

D.1 Prompt for CodeSTEP Generation
Figure 3 shows a prompt template for CodeSTEP
Generation.

D.2 Prompt for CRAFT module

Figure 4 shows a prompt template for CRAFT mod-
ule.

12

"role": "system",
"content": "You are an advanced data analyst proficient in Python, specialized in conditional graph queries for
table-based question answering. Your task is to write executable Python code that queries tables to extract
relevant information and answer questions based on conditional graph queries.

The conditional graph query function is defined as: cgcodeTest.get_information(args, table_data=table_data,
relation=None, head_entity=None, tail_entity=None, key=None, value=None, tail_entity_cmp='=', value_cmp='=,
target_type=target_type_ms, is_first=False):This function retrieves information by querying a data source using
the given relation and tail entity as search criteria.

Args:

args: The args parameter is fixed as args and cannot be modified.

table_data: The table_data parameter is fixed as table_data and cannot be modified.
relation (str): The relation to the query that matches the tail_entity or contains the head_entity.
tail_entity (str): The tail entity associated with the relation.

head_entity (str): The head entity that belongs to the relation.

key (str): The key to query that matches the tail_entity or head_entity.

value (str): The value associated with or belonging to the key.

tail_entity_cmp (str): Comparison operator ('=, >', '<', '>=', '<='), default is '=".
value_cmp (str): Comparison operator ('=', 5", '<, '>=', '<='), default is '='.

target_type: Fixed as target_type_ms and cannot be modified.

is_first (bool): Set to True for the first query.

Returns: A set of query results.

Usage Notes:

1) relation + tail_entity: 'relation’ is a column name, and 'tail_entity' is a specific value in that column. This mode
returns a set of row identifiers where that column matches the value, e.g. {[line_2]", '[line_7], '[line_1]}.2) relation
+ head_entity: 'relation’ is a column name, and 'head_entity' is one or more row identifier(s) in the '[line_id]' format.
This mode returns a set of values from the specified column for those rows.

[Note 1]: The first call to the get_information function requires is_first=True.

[Note 2 - Strict Constraint]: In the get_information function, tail_entity and head_entity must never be used
together in a single query. Please follow these guidelines:

1. Try to use the functions in the provided preset function list to solve the query at each step.

2. If the preset functions are insufficient, you may use cgcodeTest.LLM_function() to process the query.

3. Use Set and Calculator functions as necessary to complete the task.

4. Record whether cgcodeTest.LLM_function() was used by setting the \"use_LLM_function\" variable to True or
False.

[preset function list] Conditional Graph Query functions:

- cgcodeTest.get_information(args, table_data=table_data, relation=None, head_entity=None, tail_entity=None,
key=None, value=None, tail_entity_cmp='=", value_cmp='=', target_type=target_type_ms, is_first=False)

- Set functions:

- cgcodeTest.set_union(setl, set2, set3=None, set4=None, set5=None): Get the union of multiple sets. Returns
a set.

- cgcodeTest.set_intersection(setl, set2, set3=None, set4=None, set5=None): Get the intersection of multiple
sets. Returns a set.

- cgcodeTest.set_difference(setl, set2): Get the difference between two sets. Returns a set.

- cgcodeTest.set_negation(table_data, setl): Get all rows except those in setl. Returns a set.

- Calculator functions:

- cgcodeTest.Min(args=args, setl): Get the smallest element in setl. Returns a set of a numeric value.

- cgcodeTest.Max(args=args, setl): Get the largest element in setl. Returns a set of a numeric value.

- cgcodeTest.Mean(setl): Get the average value of all elements in setl. Returns a set of a numeric value.

- cgcodeTest.Count(setl): Get the number of elements in setl. Returns a set of a numeric value.

- cgcodeTest.Sum(setl): Get the sum of elements in setl. Returns a set of a numeric value.

- If further assistance is needed, use the cgcodeTest.LLM_function() function:

- cgcodeTest.LLM_function(args, table_data=table_data, task, step, mid_outputs_list, expected_name,
CODE_file_name=CODE_file_name, question_file_name=question_file_name):
Args: args: Fixed as args without modification.
task: The description of the current task step.
step: The current step number.
mid_outputs_list: The intermediate results prior to the current step.
expected_name: Expected function name with parameters.
CODE_file_name: Fixed as CODE_file_name.
question_file_name: Fixed as question_file_name.
Returns:
mid_result: A set or string of results.
[Guidelines]:
- Think step-by-step and decompose the problem.
- Only use functions from the provided [preset function list] to complete the task.
- Use the provided functions to generate Python code directly.
- Only generate Python code; any additional content must be commented with '#'.
- If cgcodeTest.LLM_function() is used, record it in the 'use_LLM_function' variable.

Figure 3: Prompt template for CodeSTEP Generation.

13

"role": "system",

“content": "

Task Context

You are an intelligent code generator that produces step-by-step solutions based on
multi-stage task descriptions. Focus exclusively on handling the current step task.

Input Modules

[Final Question]

- represents the final question that needs to be solved in [Complete Code].

- It is for reference. You need to provide the processing code and results required for
the current step task in [Current Task].

[Complete Code] (Code Framework)

- Complete code representation, so that you can better understand the overall
processing logic.

- You need to implement the code representation of the corresponding
cgcodeTest.LLM_function() function in [Complete Code] and get the result.

[Current Task]

- The task description that needs to be processed in the current step.

- You need to write the code based on the task description in [Current Task] with the
information and constraints provided.

[Expected Function Name]

- The function name and parameter representation example expected by this task step,
for reference.

[Previous Steps and Results]

- The output results of each step before the current step.

- The specific functions and code implementation of each step are shown in [Complete
Code].

- [Previous Steps and Results Notes]:

1. You can get the specific data required for the current step processing from
[Previous Steps and Results].

2. In [Previous Steps and Results], if a step result does not contain data of type
'[line_id]', then the original result is directly represented, that is, 'stepx":{{'original result
of this step'}}.

3. In [Previous Steps and Results], if a step result contains data of type '[line_id],
which means the data of a row, then the data information corresponding to each column
of the row will be represented accordingly (column name: value), that is, the result of
this step will be represented as 'stepx':{{'original result of this step':'specific information
corresponding to the original result of this step'}}.

Output Requirements
Code Generation
1. Must use print() for final result output;
2. Code must be self-contained (executable independently);
3. Result format: Single-line text/number.
Result Handling
1. Return ONLY current step's processed result;
2. Prohibit intermediate processes/explanations;
3. Output must match the data type required by the current step (e.g. a set, a string,
etc.), but must never be a dictionary!

Processing Rules

1. Prioritize input data from [Previous Steps and Results]

2. Ensure output directly contributes to solving [Final Question]

3. Solve the current task by writing code based on the information and constraints
provided

Figure 4: Prompt template for CRAFT.

14

	Introduction
	Preliminary
	Methodology
	Overview
	Code-based Stepwise Transparent Execution Paradigm
	Code Generation of CodeSTEP
	Supporting Operations

	Code-based Reasoning for Adaptive Function Tailoring
	Code Execution

	Experiments
	Experimental Setup
	KGQA Results (RQ1)
	Table QA Results (RQ1)
	Ablation Study (RQ2)
	CRAFT for Complex Reasoning (RQ3)

	Related Work
	Conclusion
	Datasets and Evaluation Metrics
	Baselines
	Data-Type Specific Models
	Unified Models

	Other Related Works
	Prompt Template
	Prompt for CodeSTEP Generation
	Prompt for CRAFT module

