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Abstract001

Unified structured data question answering task002
aims to utilize a unified model to answer natu-003
ral language questions based on different types004
of structured data. Existing unified structured005
data question answering methods usually rely006
on predefined functionalities, which limits their007
ability to perform complex reasoning beyond008
these predefined operations. To overcome this009
limitation, we propose a flexible code-driven010
framework CodeUnify, which comprises two011
core modules: CodeSTEP and CRAFT. The012
CodeSTEP module is a paradigm that generates013
a complete executable Python code sequences014
containing a series of step-by-step code-based015
reasoning query operations based on the ques-016
tion, and CRAFT module (Code-based Reason-017
ing for Adaptive Function Tailoring) can dy-018
namically generate custom code functions for019
operations beyond the predefined function set,020
significantly enhancing the flexibility and ca-021
pability in handling complex reasoning. Com-022
prehensive empirical experiments on multiple023
structured datasets demonstrate that CodeU-024
nify exhibits superior flexibility and remarkable025
improvements in complex reasoning scenarios026
compared to existing unified methods.027

1 Introduction028

Structured data, (e.g., tables, relational databases,029

knowledge graphs (KGs), and temporal KG030

(TKGs)) organize information in well-defined for-031

mats, enabling efficient storage, retrieval, and com-032

putation (Tan et al., 2024). In the era of Large033

Language Models (LLMs), structured data is an034

essential source of knowledge to improve factual035

accuracy, reduce hallucinations, and support com-036

plex reasoning capabilities (Yang et al., 2024a).037

Natural language reasoning over structured data,038

with growing applications across various domains,039

is important but challenging. While specialized040

approaches have been developed for specific data041

structures like tables or knowledge graphs, real-042

Question: How many distinct individual countries are represented 
by films directed by Mostofa Sarwar Farooki?

NL2Query

NL2Answer RAG

CodeUnify

Bangladesh, 
India; Germany

Bangladesh, India; 
Germany, Canada;

SELECT COUNT(DISTINCT Country) 
AS country_count
FROM table_name

WHERE Director = 'Mostofa Sarwar Farooki';
Answer:2

# Step1: Find the films directed by Mostofa...
output_of_query1 = CODESTEP.get_information(...)
# Step2: Find the countries represented by ... 
output_of_query2 = CODESTEP.get_information(...)
# Step3: Filter the countries in output_of_query2..
output_of_query3 = CODESTEP.CRAFT(....)
# Step4: Calculate the count of output_of_query3
output_of_query4 = CODESTEP.Count(...)
# Step5: Save result.
result = output_of_query4

Answer:3

data schema

Indexing RetrievalEncoder

Question

Question

Question

Question

Input: [Bangladesh, India;
         Bangladesh, India;
         Bangladesh, Germany;]

Solve: {country.strip()
for entry in input_list
for country in 

entry.split(",")} 

# Output: {Bangladesh, India, 
Germany} 

Figure 1: Comparison of NL2Answer, RAG, NL2SQL,
and our proposed CodeUnify.

world scenarios often require reasoning across het- 043

erogeneous data sources simultaneously, driving 044

interest in unified approaches that can handle multi- 045

ple structured data formats. For example, retrieval- 046

based unified methods like StructGPT (Jiang et al., 047

2023a) and Readi (Cheng et al., 2024) are proposed 048

by accessing the raw data by predefined functions. 049

To further enhance the trustworthiness of the uni- 050

fied method, TrustUQA (Zhang et al., 2025) is 051

proposed, which gets the answer through an uni- 052

fied query language without inputting many raw 053

data into the LLM. The capability of these meth- 054

ods are limited to the predefined function callings. 055

However, tasks with complex computation and ad- 056

vanced logical reasoning often involves functions 057

beyond the predefined ones, raising significant chal- 058

lenges for these methods. 059

Method such as Program of Thought (PoT) 060

(Chen et al., 2022) have shown that structured code 061

execution can effectively enhance complex reason- 062
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ing capability by decomposing problems into ex-063

plicit computational steps with code. We believe064

the capability of code-based approaches to repre-065

sent both process logic and data manipulation can066

help LLMs to handle complex tasks better.067

Inspired by the Program of Thought (Chen et al.,068

2022) approach, we explored the feasibility of069

solving unified structured data question answering070

task based on executable code. Given the limita-071

tions of the current approach, we propose a code-072

based framework to improve the flexibility of uni-073

fied method, named CodeUnify. Our CodeUnify074

framework consists of two core modules: Code-075

based Stepwise Transparent Execution Paradigm076

(CodeSTEP) and Code-based Reasoning for Adap-077

tive Function Tailoring (CRAFT).078

CodeSTEP is a custom code paradigm that gen-079

erates complete executable Python code without080

intermediate parsing. We introduced CodeSTEP to081

address the limitations of existing methods, which082

generate natural language functions that require083

further parsing steps and they are limited to using084

predefined functions. By directly generating exe-085

cutable code, CodeSTEP provides an explainable086

problem-solving step, maintaining the trustworthi-087

ness of query-based methods while significantly088

simplifying the QA process and providing a basis089

for more flexible operations.090

CRAFT is an innovative module designed to dy-091

namically handle scenarios beyond the capabilities092

of predefined functions. We proposed CRAFT to093

overcome the fundamental limitation of existing094

unified methods that can only operate within the095

scope of predefined functions. CRAFT can gener-096

ate dedicated code for specific reasoning steps and097

seamlessly integrate with the main CodeSTEP code098

execution. This design enhances the flexibility of099

the CodeUnify framework while maintaining its100

structured and verifiable QA framework, making101

it more suitable for handling complex reasoning102

tasks. Figure 1 illustrates a comparison between103

our proposed framework and other methods.104

CodeUnify implements a framework that allows105

multiple LLMs to collaborate. Multiple LLMs that106

are the same or different are allowed to collaborate107

in the same code environment. With this design,108

individual models can focus on different aspects of109

the reasoning process, thus allowing for improved110

reasoning performance through the collaboration111

of multiple LLMs.112

In summary, contributions of this paper are:113

• We present the CodeUnify, a flexible and 114

trustworthy code-based framework for uni- 115

fied structured data question answering, which 116

includes CodeSTEP module for code-based 117

step-by-step reasoning and CRAFT module 118

for dynamic function customization. 119

• To the best of our knowledge, we are the 120

first code-based implementation of unified rea- 121

soning across different structured knowledge 122

sources in a custom form. 123

• We conducted comprehensive empirical stud- 124

ies based on 7 datasets of 2 structured data 125

types. Results prove that our approach signifi- 126

cantly outperforms existing unified methods 127

and achieves competitive results with data- 128

specific methods, especially for complex rea- 129

soning scenarios that are difficult to solve with 130

predefined functions. 131

2 Preliminary 132

Structured Data Representation. Following pre- 133

vious work (Zhang et al., 2025), We consider 134

2 common types of structured data, Tables and 135

Knowledge Graphs (KGs). TrustUQA (Zhang 136

et al., 2025) is a trustful framework for unified 137

structured data question answering. It adopts a 138

unified knowledge representation method called 139

Condition Graph (CG) to handle multiple types 140

of structured data simultaneously. A Condition 141

Graph is formally defined as CG = {N , T }, 142

where N is the set of nodes representing enti- 143

ties, relationships, properties, or numerical val- 144

ues. T = {(node1, node2, condition) | node1 ∈ 145

N , node2 ∈ N} is a collection of condition 146

triples, where condition = { nodek ∈ N | k = 147

1, . . . , |N | } is a list of nodes (possibly empty) 148

specifying the conditions under which node1 con- 149

nects to node2. TrustUQA uses a two-layer query- 150

ing approach, An LLM generates simplified func- 151

tions for composing LLM queries, these queries 152

are translated into execution queries that can be 153

executed on the CG. 154

3 Methodology 155

3.1 Overview 156

CodeUnify framework is build upon the key idea of 157

code-based reasoning, that each reasoning step is 158

expressed as executable Python code, ensuring pre- 159

cision and eliminating ambiguity. Code is expres- 160

sive, making the framework can handle operations 161
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def filter_films (films=output_of_query2):
    submitted_films = set()
    for note in films:
      if "Academy Awards" in note:
        submitted_films.add(note)
      return submitted_films

# value from Previous Steps
output_of_query2 = {
“Meril Prothom ... Academy Awards”,
“Meril Prothom … category”,
“Bangladesh’s … to Academy Awards”}

# Getting the result of filtering
result = filter_films 
(films=output_of_query2)
print(result) 

#  {“Meril Prothom ... Academy Awards”,
“Bangladesh’s … to Academy Awards”}

Question: How many films directed 
by Mostofa Sarwar Farooki were 
submitted to the Academy Awards?

Question: What type of music 
did john lennon sing?

Question: The last team that 
Ernesto Castano played in was

data table

Knowledge graph

temporal KG

data schema

KG schema

TKG schema

# Step1: Find the films directed by Mostofa Sarwar Farooki
output_of_query1 = CODESTEP.get_information(args, table_data, relation='Director', tail_entity='Mostofa Sarwar Farooki’)

# Step2: Find the number of films in output_of_query1 that were submitted to the Academy Awards
output_of_query2 = CODESTEP.get_information(args, table_data, relation='Notes', head_entity=output_of_query1)

# Step3: Filter the films in output_of_query2 that mention submission to the Academy Awards
output_of_query3 = CODESTEP.CRAFT(args, table_data, task, mid_outputs_list, expected_name, CODESTEP_CODE, question)

# Step4: Calculate the count of output_of_query3
output_of_query4 = CODESTEP.Count(set1=output_of_query3)

# Step5: Save result. 
result = output_of_query4

# Step3: Filter the films in output_of_query2 that mention submission to the Academy Awards
output_of_query3 = CODESTEP.CRAFT(args, table_data, task, mid_outputs_list, expected_name, CODESTEP_CODE, question)

demonstrations

In-context 
Learning

CODESTEP

Answer: 2

Conditional 
graph data

CRAFT

Figure 2: Overview of CodeUnify framework.

beyond predefined functions through dynamically162

generated code for custom functions. Figure 2 il-163

lustrates the reasoning process of the CodeUnify164

framework.165

Specifically, given a structured data source D166

and a natural language question q, we firstly trans-167

forms D into a data source schema Dschema and168

a conditional graph representation Dcg. Based on169

Dschema and q , we utilize an LLM with param-170

eter θ and few-shot query-code sequence prompt171

p to generate an executable code sequence C =172

{c1, c2, ..., cn}. This code sequence is then exe-173

cuted as a complete program using Dcg to directly174

obtain the answer a to question q. These two pro-175

cesses can be represented as:176

fθ(Dschema, q, p) 7→ C (1)177

178
Execute(C,Dcg) 7→ a (2)179

3.2 Code-based Stepwise Transparent180

Execution Paradigm181

3.2.1 Code Generation of CodeSTEP182

To achieve code-based reasoning, we propose183

a Code-based Stepwise Transparent Execution184

Paradigm (CodeSTEP) module, which can be for-185

malized as following two steps: (1) Query Anal-186

ysis. For a given natural language question q187

and data source schema Dschema, we firstly us-188

ing the LLM with parameter θ construct a rea-189

soning path P = {s1, s2, ..., sn}. (2) Step Con-190

struction. For each reasoning step si, we con- 191

struct a corresponding code operation ci for data 192

schema Dschema that implements the reasoning 193

step, thereby constructing a complete code oper- 194

ation sequence C = {c1, c2, ..., cn}. The entire 195

process can be expressed as: 196

fθ(Dschema, q, p) 7→ C, (3) 197

where p is the prompt with few-shot query-code 198

sequence. 199

3.2.2 Supporting Operations 200

Conditional Graph Query Operations. The 201

primary tools for data interaction with Dcg in 202

CodeSTEP is the conditional graph query oper- 203

ations. This operation can be formulated as: 204

g(Dcg,R, Eh, Et,K,V, δt, δv) 7→ S, (4) 205

where Dcg is the conditional graph data source, R 206

is the relation (column or edge type), Eh is the head 207

entity set (row identifiers or source nodes), Et is the 208

tail entity (column value or target node), K is the 209

key (column or attribute), V is the value of K, δt 210

and δv are comparison operators, S is the resulting 211

set. This operation consists of two primary query 212

modes: (1) Relation-Tail Entity Mode (R + Et): 213

Returns the head entity set Eh corresponding to tail 214

entity Et in relation R. Specifically, when the data 215

source D is table, the tail entity Et is a specific col- 216

umn value, and this mode returns the head entity set 217

3



Operation Definition

Set Operations
Union funion(S1, . . . ,Sn) 7→ S1 ∪ · · · ∪ Sn

Intersection fintersect(S1, . . . ,Sn) 7→ S1 ∩ · · · ∩ Sn

Difference fdiff(S1,S2) 7→ S1 − S2

Negation fneg(Dcg,S1) 7→ Dcg − S1

Calculator Operations
Min fmin(S) 7→ {min(S)}
Max fmax(S) 7→ {max(S)}
Mean fmean(S) 7→ { 1

|S|
∑

x∈S x}
Count fcount(S) 7→ {|S|}
Sum fsum(S) 7→ {

∑
x∈S x}

Table 1: Details of Predefined Calculation Operations

Eh corresponding to that value, which are the row218

identifiers. When the data source D is KG, Et is the219

tail entity, and this mode returns the head entity set220

Eh corresponding to relation R. (2) Relation-Head221

Entity Mode (R+ Eh): Returns the tail entity set222

Et corresponding to head entity Eh in relation R.223

Specifically, when the data source D is table, the224

head entity Eh is a row identifier, and this mode225

returns the tail entity set Et corresponding to that226

identifier, which are the column values. When the227

data source D is KG, Eh is the head entity, and this228

mode returns the tail entity set Et corresponding to229

relation R.230

Calculation Operations. In addition to the afore-231

mentioned data query operation g, we also offer232

common set operation functions including funion,233

fintersect, fdiff, fneg, and algebraic calculator oper-234

ation functions including fmin, fmax, fmean, fcount,235

fsum. The operational rule of these operations are236

detailed in Table 1.237

Predefined Function Set. The conditional graph238

query operation and all calculation operations are239

collectively referred to a predefined function set240

Fpredefined that can be defined as:241

Fpredefined = {g, funion, fintersect, fdiff, fneg,

fmin, fmax, fmean, fcount, fsum}.
(5)242

Each step si in the reasoning path can be imple-243

mented using one of these predefined functions:244

ci = fi(Dcg,{rj | j ∈ ∪i−1
k=0Jk}),

where fi ∈ Fpredefined.
(6)245

However, predefined functions may not cover all246

possible operations required to answer complex247

questions. This limitation motivates the need for a248

more flexible method that can dynamically gener-249

ate custom functions for specific operations.250

3.3 Code-based Reasoning for Adaptive 251

Function Tailoring 252

We propose a Code-based Reasoning for Adaptive 253

Function Tailoring (CRAFT) module, which ex- 254

tends CodeSTEP module to address the inflexibility 255

of predefined operations, through dynamically gen- 256

erating custom code-based functions for operations 257

not covered by predefined functions. 258

CRAFT Implement. As a specialized code gen- 259

eration system, CRAFT module utilizes the LLM 260

with parameter θ′ and few query-code sequence 261

shots prompt pc to translate current task descrip- 262

tions into executable operation fc, denoted as: 263

fθ′(q, C, Ti,Rprev,Fexpected, pc) 7→ fc. (7) 264

There are five key input components to create cus- 265

tom functions tailored to the current step i: (1) 266

original question q providing the overall context 267

and goal of the reasoning step; (2) complete code 268

sequence C helping understand the role of current 269

step i; (3) current task description Ti providing 270

clear functional requirements; (4) previous steps 271

and results Rprev = {r1, r2, ..., ri−1} helping bet- 272

ter understand the task background and data char- 273

acteristics; (5) expected function signature Lever- 274

ages the LLM that generates the CodeSTEP code 275

understanding of the current task to convey the ex- 276

pected function signature Fexpected to the CRAFT 277

framework, for CRAFT to reference. 278

Seamlessly Integration with CodeSTEP. Fol- 279

lowing are key steps of CRAFT: (1) Delegated 280

Tasks, while the code sequence C generated by 281

CodeSTEP module is being executed, if an opera- 282

tion is encountered that lacks predefined operations 283

from Fpredefined, it delegates the task to CRAFT 284

module. (2) Context Analysis and Reasoning, 285

CRAFT analyzes the current task context based 286

on the original question, overall code framework, 287

previous results, current task description, and ex- 288

pected function signature. (3) Function Code Gen- 289

eration, through reasoning about the current step’s 290

requirements, CRAFT generates a self-contained 291

Python function to implement the functionality 292

needed for the current step, as shown in Equation 293

7. Therefore, we can update Equation 6 as: 294

ci =

{
fi(Dcg, Ri), fi ∈ Fpredefined

fθ′(q, C, Ti, Rprev, Fexpected), fi /∈ Fpredefined
(8) 295

where Ri = {rj | j ∈ ∪i−1
k=0Jk} represents the 296

previous results that step i depends on. (4) Func- 297

tion Code Execution, the generated function is 298
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executed to obtain the results rstep needed for the299

current step, as shown in Equation 9. (5) Results300

Return, after obtaining the result rstep for the cur-301

rent step, it is returned to the main CodeSTEP code302

execution process, can seamlessly integrate with303

the complete CodeSTEP code execution.304

rstep = Execute(fc, {rj |j ∈ ∪i−1
k=0Jk}}) (9)305

This integration allows CodeUnify to dynamically306

extend its capabilities beyond predefined functions,307

addressing complex queries that require custom308

operations.309

3.4 Code Execution310

While internally, Each individual code step ci re-311

turns an intermediate result ri that may serve as312

input to subsequent steps, can be concisely repre-313

sented as:314

ri = Execute(ci,Dcg, {rj |j ∈ ∪i−1
k=0Jk}}) (10)315

where Jk is the subset of previous step indices that316

step k depends on.317

This decomposition enables transparent reason-318

ing and facilitates error detection and correction.319

The complete reasoning process is ultimately ex-320

ecuted through the complete code sequence C, re-321

turns the final step result rn, which directly corre-322

sponds to the final answer a to the original ques-323

tion:324

rn = Execute(C,Dcg) 7→ a (11)325

4 Experiments326

We conduct various experiments to answer the fol-327

lowing three key questions: RQ1: How effective is328

CodeUnify in multiple structured data question an-329

swering tasks compared to baselines? RQ2: How330

does each component in CodeUnify framework331

contribute to the overall performance? RQ3: Does332

the CRAFT module effectively handle complex333

reasoning beyond predefined functions?334

4.1 Experimental Setup335

Datasets and Evaluation Metrics. For KGQA,336

we use WebQSP (Yih et al., 2016) with Hit@1 as337

the evaluation metric. For TableQA, we use Wik-338

iSQL (Zhong et al., 2017), WikiTableQuestions339

(WTQ) (Pasupat and Liang, 2015) with Denota-340

tion Accuracy (DA) (Jiang et al., 2023a) as the341

metric, and TableBench (Wu et al., 2025) with Ex-342

act Match (EM) as the metric. To further evaluate343

the CRAFT module, we constructed two datasets,344

named WikiSQL-E and WTQ-E, and used Call- 345

ing Rate, Calling Denotation Accuracy (CDA), 346

DA, and F1-score as evaluation metrics on the 347

WikiSQL-E, WTQ-E, and TableBench datasets. 348

More details are provided in Appendix A. 349

Baselines. We evaluate CodeUnify against a com- 350

prehensive set of baselines. For the WebQSP (Yih 351

et al., 2016) dataset, we compare with data type 352

specific models including DecAF (Yu et al., 2022), 353

KB-Binder (Li et al., 2023), KB-Coder(Nie et al., 354

2024)), UniKGQA (Jiang et al., 2022), TIARA 355

(Shu et al., 2022), ReasoningLM (Jiang et al., 356

2023b)and AgentBench (Liu et al., 2023b). For 357

the WikiSQL (Zhong et al., 2017) and WTQ (Pa- 358

supat and Liang, 2015) datasets, we compare with 359

table-specific models including TAPEX (Liu et al., 360

2021), DATER (Ye et al., 2023), TAPAS (Herzig 361

et al., 2020) and MAPO (Liang et al., 2018). And 362

we compare with unified models on WebQSP (Yih 363

et al., 2016), WikiSQL (Zhong et al., 2017) and 364

WTQ (Pasupat and Liang, 2015), including Uni- 365

fiedSKG (Xie et al., 2022), StructGPT(Jiang et al., 366

2023a), Readi (Cheng et al., 2024) and TrustUQA 367

(Zhang et al., 2025). To evaluate the CRAFT mod- 368

ule on WikiSQL-E, WTQ-E, and TableBench (Wu 369

et al., 2025) datasets, we use TrustUQA (Zhang 370

et al., 2025) as the primary baseline, implemented 371

with the same LLM as our framework for fair com- 372

parison. For TableBench experiments, we adopt 373

various baselines from the original TableBench 374

(Wu et al., 2025), including both open-source and 375

closed-source methods with different prompting 376

strategies, as well as TrustUQA (Zhang et al., 2025) 377

implemented with various LLMs. Detailed descrip- 378

tions of all baseline methods are provided in Ap- 379

pendix B. 380

Implementation. We implement our framework 381

using multiple LLMs as the reasoning engine in- 382

cluding GPT-3.5-turbo, GPT-4o-mini, GPT-4o, and 383

GPT-4.1. The specific usage of each model will be 384

detailed in the experimental sections. The Code- 385

Unify framework is implemented in a Python en- 386

vironment, with the CRAFT module dynamically 387

generating and executing custom Python functions 388

at runtime. All experiments were conducted using 389

the OpenAI API for LLM access. The prompt tem- 390

plates used in our experiments will be provided in 391

the Appendix D. For in-context learning, we used 392

10 demonstrations for the CodeSTEP module and 393

2 demonstrations for the CRAFT module. 394
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Method WebQSP
Hit@1 (%)

Data Type Specific Models

UniKGQA (Jiang et al., 2022) 75.1
DecAF (Yu et al., 2022) 78.7
TIARA (Shu et al., 2022) 76.7
ReasoningLM (Jiang et al., 2023b) 78.5
AgentBench (Liu et al., 2023b) 47.8
KB-Binder (Li et al., 2023) 68.9
KB-Coder (Nie et al., 2024) 77.2

Unified Models

UnifiedSKG (Xie et al., 2022) 80.7
StructGPT (Jiang et al., 2023a) 69.6
Readi (Cheng et al., 2024) 74.3
TrustUQA (Zhang et al., 2025) 83.5

CodeUnify (Ours) 85.2

Table 2: Experimental results on WebQSP dataset.

4.2 KGQA Results (RQ1)395

On the WebQSP dataset, we conducted experi-396

ments using the CodeUnify framework without the397

CRAFT module to explore the impact of the code-398

based formulation itself on structured data question399

answering tasks. These experiments were imple-400

mented based on the GPT-3.5-turbo-0613.401

Table 2 shows results on WebQSP. CodeUnify402

achieves 85.21% Hit@1 precision, outperforming403

all baselines including specialized models like De-404

cAF (Yu et al., 2022) and unified models like405

TrustUQA(Zhang et al., 2025). The improvements406

demonstrate the feasibility and potential of using407

executable code for structured data question an-408

swering tasks, providing an effective new approach409

for structured data question answering.410

4.3 Table QA Results (RQ1)411

Table 3 shows the results on WikiSQL and WTQ412

with the GPT-4o-mini model.413

On WikiSQL, CodeUnify achieves 86.1% Deno-414

tation Accuracy (DA), slightly outperforming other415

unified models including UnifiedSKG (Xie et al.,416

2022) and TrustUQA (Zhang et al., 2025). This417

demonstrates that our approach maintains competi-418

tive performance on table QA tasks without sacrific-419

ing generalizability. On WTQ, CodeUnify achieves420

45.8% DA, which is lower than some specialized421

and unified models.422

It’s important to recognize that methods based423

on executable programs require high precision424

Method WikiSQL
DA (%)

WTQ
DA (%)

Data Type Specific Models

MAPO (Liang et al., 2018) 72.6 43.8

TAPAS (Herzig et al., 2020) 83.6 48.8

TAPEX (Liu et al., 2021) 89.5 57.5

DATER (Ye et al., 2023) − 65.9

Unified Models

UnifiedSKG (Xie et al., 2022) 86.0 49.3

StructGPT (Jiang et al., 2023a) 65.6 52.2

Readi (Cheng et al., 2024) 66.2 61.7

TrustUQA (Zhang et al., 2025) 85.7 46.7

CodeUnify (Ours) 86.1 45.8

Table 3: Results on WikiSQL and WTQ datasets.

throughout the entire solution process (Wu et al., 425

2025; Chen et al., 2022). For simpler reasoning 426

tasks requiring precision, our approach may not 427

show advantages. We believe our method is more 428

suitable for complex reasoning scenarios and re- 429

quires certain capabilities from the base model. 430

However, with the rapid development of large lan- 431

guage models and their rapidly improving capabil- 432

ities, we believe our method aligns with develop- 433

ment trends and has significant potential. We will 434

validate this in subsequent experiments examin- 435

ing our method’s capabilities in complex reasoning 436

scenarios and the impact of base models. 437

Table 4 shows CodeUnify’s performance com- 438

parison with TableBench baselines (Wu et al., 439

2025) and the TrustUQA (Zhang et al., 2025) 440

method on the TableBench dataset. On TableBench, 441

CodeUnify significantly outperforms TrustUQA 442

and shows clear advantages compared to PoT-based 443

baselines. With GPT-4o as the base model, Code- 444

Unify achieves 68.75% and 51.01% accuracy on 445

Fact Checking and Numerical Reasoning, surpass- 446

ing TrustUQA by 6.25 and 21.46 percentage points 447

respectively. The performance improvements are 448

particularly notable on the Numerical Reasoning 449

task, highlighting the effectiveness of CodeUnify 450

for complex mathematical reasoning. 451

4.4 Ablation Study (RQ2) 452

Table 5 presents an ablation study on TableBench 453

FactChecking and Numerical Reasoning tasks, 454

with GPT-4o as the base model. Removing CRAFT 455

module reduces performance on Fact Checking 456

from 68.75% to 65.26% and on Numerical Rea- 457
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Methods TableBench

FC NR

Open-source based

TableLLM-Qwen2-7B+PoT 10.59 10.34

TableLLM-Llama3.1-8B+PoT 25.67 28.64

Qwen2-72B+PoT 56.37 41.33

Llama3.1-70B+PoT 59.05 34.04

Close-source based

Qwen-Max+PoT 50.42 32.80

Deepseek-Chat-V2+PoT 57.48 45.96

gpt-3.5-turbo+PoT 60.92 42.09

gpt-3.5-turbo+TCoT 59.95 23.45

gpt-4o+PoT 62.31 47.83

TrustUQA+GPT-3.5-turbo 50.00 20.20

TrustUQA+GPT-4o-mini 55.21 21.72

TrustUQA+GPT-4o 62.50 29.55

Ours

CodeUnify+GPT-3.5-turbo 61.46 38.63

CodeUnify+GPT-4o-mini 64.58 40.66

CodeUnify+GPT-4o 68.75 51.01

Table 4: Experimental results on the TableBench
dataset. ‘FC’ and ‘NR’ represents Fact Checking subset
and Numerical Reasoning subset, respectively.

Methods Fact Checking Num-Reasoning

EM (%) F1 (%) EM (%) F1 (%)

CodeUnify (ours) 68.75 71.60 51.01 51.80
w/o CRAFT 65.26 67.71 45.85 46.29
w/o CodeSTEP 59.38 63.16 18.43 19.69

Table 5: The results of ablation study.

soning from 51.01% to 45.85%. This confirms458

that CRAFT contributes significantly to the frame-459

work’s ability to handle complex reasoning tasks.460

Removing CodeSTEP module causes performance461

to drop to 59.38% on Fact Checking and 18.43%462

on Numerical Reasoning. The particularly severe463

degradation on Numerical Reasoning (32.58 per-464

centage points) highlights that CodeSTEP’s struc-465

tured code-based reasoning approach is essential466

for complex mathematical operations.467

These validate that both components are cru-468

cial, with CodeSTEP providing the foundational469

reasoning structure and CRAFT offering critical470

flexibility for complex cases.471

4.5 CRAFT for Complex Reasoning (RQ3) 472

Table 6 provides a detailed comparison between 473

CodeUnify and TrustUQA across WikiSQL-E, 474

WTQ-E, and TableBench datasets using different 475

base models, evaluated with metrics including call- 476

ing rate, Calling Denotation Accuracy (CDA), De- 477

notation Accuracy (DA), and F1 score. 478

A striking observation is that CodeUnify consis- 479

tently maintains significantly higher CDA across all 480

datasets and models. For instance, on the Numer- 481

ical Reasoning dataset using GPT-4o, CodeUnify 482

achieves a CDA of 50.0% compared to TrustUQA’s 483

mere 6.17%, representing a remarkable improve- 484

ment of 43.83 percentage points. Similarly, on the 485

WTQ-E dataset using GPT-4.1, CodeUnify reaches 486

a CDA of 57.44% versus TrustUQA’s 20.10%, an 487

improvement of 37.34 percentage points. These 488

demonstrate CRAFT can effectively handling cases 489

requiring reasoning beyond predefined functions. 490

CodeUnify generally exhibits lower calling rates 491

than TrustUQA (e.g., 2.36% vs. 55.52% on 492

WikiSQL-E with GPT-4.1), indicating that within 493

the CodeUnify framework, the model can more pre- 494

cisely determine when custom functions are needed 495

and implement them more effectively. Improve- 496

ments in overall DA and F1 metrics show notable 497

enhancements on majority datasets, with particu- 498

larly significant gains on complex reasoning tasks. 499

On TableBench Numerical Reasoning using GPT- 500

4o, CodeUnify achieves a DA of 51.01% compared 501

to TrustUQA’s 29.55%, representing a 21.46 per- 502

centage point improvement. 503

5 Related Work 504

Structured Data Question Answering is increas- 505

ingly important in human-computer interaction 506

scenarios across healthcare (Yang et al., 2024b; 507

Huang et al., 2021) , finance (Liu et al., 2023a; 508

Zhu et al., 2021), and information retrieval (Zhang 509

et al., 2022). Structured data reasoning refers 510

to the task of answering natural language ques- 511

tions by leveraging structured data sources (Huang 512

et al., 2024). Research in this field has evolved 513

along two primary directions. Single data-type spe- 514

cific methods focus on reasoning over a specific 515

data structure, such as tables (Zha et al., 2023) or 516

KGs (Song et al., 2023). Recent advancements 517

include KB-Coder (Nie et al., 2024), which uti- 518

lizes a code-based paradigm for KG reasoning 519

with in-context learning, and DATER (Ye et al., 520

2023), which leverages demonstrations to enhance 521
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Models Datasets calling rate (%) CDA (%) DA (%) F1 (%)
(TrustUQA/Ours) (TrustUQA/Ours) (TrustUQA/Ours) (TrustUQA/Ours)

gpt-3.5-turbo

WikiSQL-E 70.92/7.15 3.32/68.24 ↑↑ 70.00/67.79 70.40/68.28

WTQ-E 87.35/50.94 11.12/39.87 ↑↑ 32.02/34.40 ↑ 33.45/36.17 ↑
FactChecking 16.67/16.67 0.00/18.75 ↑ 50.00/61.46 ↑ 56.61/65.44 ↑
Numerical Reasoning 65.66/50.47 4.23/33.33 ↑↑ 20.20/38.63 ↑↑ 20.87/40.10 ↑↑

gpt-4o-mini

WikiSQL-E 66.55/2.86 8.33/61.29 ↑↑ 74.54/79.04 ↑ 75.06/79.66 ↑
WTQ-E 84.63/56.48 14.10/41.15 ↑↑ 36.57/38.85 ↑ 38.21/40.71 ↑
FactChecking 22.92/25.00 0.00/33.33 ↑↑ 55.21/64.58 ↑ 58.39/70.19 ↑
Numerical Reasoning 62.63/50.51 2.82/33.00 ↑↑ 21.72/40.66 ↑↑ 22.73/42.57 ↑↑

gpt-4o
FactChecking 22.92/15.62 4.55/20.00 ↑ 62.50/68.75 ↑ 64.72/71.60 ↑
Numerical Reasoning 61.36/51.01 6.17/50.00 ↑↑ 29.55/51.01 ↑↑ 31.18/51.80 ↑↑

gpt-4.1
WikiSQL-E 55.52/2.36 6.98/53.57 ↑↑ 79.44/87.34 ↑ 79.52/87.58 ↑
WTQ-E 76.79/60.16 20.10/57.44 ↑↑ 41.14/55.02 ↑ 42.08/56.34 ↑

Table 6: Experimental results on the WikiSQL-E, WTQ-E, Fact Checking and Numerical Reasoning datasets. “↑”
shows the improvement compared with TrustUQA.

table reasoning in large language models. In con-522

trast, unified-type approaches aim to support rea-523

soning across multiple structured data types simul-524

taneously (Khashabi et al., 2020). Notable exam-525

ples include UnifiedSKG (Xie et al., 2022), which526

integrates multiple structured knowledge formats527

through a seq2seq framework. Such unified frame-528

works are crucial for real-world applications where529

information is distributed across heterogeneous530

data sources (Chen et al., 2020). Single-type and531

unified methods typically adopt one of the follow-532

ing three paradigms: NL2Answer, NL2Query and533

RAG. More related work is described in Appendix534

C.535

LLM-based Unified Frameworks. With the536

rapid advancement of large language models, an in-537

creasing number of works have attempted to lever-538

age LLMs to implement unified structured data539

question answering task, offering new possibilities540

for handling diverse data formats within a single541

framework. StructGPT (Jiang et al., 2023a) is an it-542

erative reading-then-reasoning framework that uses543

LLMs to generate answers or next reasoning steps544

based on collected evidence. Readi (Cheng et al.,545

2024) is a reasoning-path-editing framework that546

collects KG evidence based on edited reasoning547

paths and generates answers based on the evidence548

and questions using an LLM. TrustUQA (Zhang549

et al., 2025) presents a trustworthy framework that550

uses Conditional Graph and a two-layer query ap-551

proach to uniformly support task scenarios for ta-552

bles, KGs, and TKGs.553

Code-based Reasoning. Recent research has 554

shown that code-based approaches can effectively 555

enhance reasoning capabilities in LLMs (Yang 556

et al., 2025). Program of Thought (PoT) (Chen 557

et al., 2022) demonstrates that executable code 558

can represent complex problems into manageable 559

computational steps. However, current code-based 560

methods are primarily applied to mathematical rea- 561

soning and other domains requiring procedural 562

thinking, while our CodeUnify framework extends 563

this paradigm to unified structured data QA. 564

6 Conclusion 565

In this paper, we introduced an effective and flex- 566

ible code-based framework for unified structured 567

data question answering, called CodeUnify. Our 568

framework includes two core modules, CodeSTEP 569

and CRAFT. It generates and executes code se- 570

quences that directly answer natural language ques- 571

tions over various structured data types. Through 572

experiments across diverse datasets, we demon- 573

strated our framework’s effectiveness, particularly 574

on complex reasoning tasks. CodeUnify offers a 575

new effective solution to unified structured data 576

question answering. The performance improve- 577

ments with stronger base models suggest our ap- 578

proach will benefit from continued LLM advance- 579

ments. As large language models continue to 580

evolve, we believe our code-based method aligns 581

well with future AI development trends. Looking 582

forward, we plan to extend our framework to more 583

structured data formats, and further enhance its 584

reasoning capabilities. 585
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Limitations586

While our CodeUnify framework shows promis-587

ing results, we acknowledge several limitations588

of our approach: (1) due to the high precision re-589

quirements of executable code methods (Wu et al.,590

2025; Chen et al., 2022), the code-based execu-591

tion paradigm requires maintaining high precision592

throughout the entire solution process with strong593

LLMs. (2) our experimental results on WikiSQL594

and WTQ indicate that CodeUnify may not show595

obvious advantages on relatively simpler tasks com-596

pared to specialized models. The performance597

gains of our approach are more pronounced on com-598

plex reasoning scenarios that require functionality599

beyond predefined operations. These limitations600

present opportunities for future research to enhance601

the robustness, efficiency, and generalization of602

code-based approaches for unified structured data603

question answering.604
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A Datasets and Evaluation Metrics808

We evaluate on multiple standard QA datasets809

spanning different structured data types, WebQSP810

(Yih et al., 2016) is a KGQA dataset with com-811

plex questions requiring multi-hop reasoning over812

Freebase. We use Hit@1 as the evaluation met-813

ric. WikiSQL (Zhong et al., 2017) is a table QA814

dataset requiring SQL generation to answer ques-815

tions over Wikipedia tables. We use Denotation Ac-816

curacy (DA)(Jiang et al., 2023a) as the evaluation817

metric. WIKITABLEQUESTIONS (WTQ)(Pasupat818

and Liang, 2015) is a more challenging table QA819

dataset with complex questions that often require820

numerical reasoning and multiple operations. We821

use Denotation Accuracy (DA) as the evaluation822

metric. TableBench (Wu et al., 2025) is a compre-823

hensive benchmark for table reasoning. We focus824

on two challenging subtasks, Fact Checking (FC)825

and Numerical Reasoning (NR), using Exact Match826

(EM) as the evaluation metric. Statistics of datasets827

are shows in Table 7.828

WikiSQL-E and WTQ-E, To better evaluate the829

CRAFT module, we constructed two specialized830

datasets by extracting instances from WikiSQL and831

WTQ where TrustUQA(Zhang et al., 2025) could832

not solve them using only predefined functions.833

These datasets are named WikiSQL-E and WTQ-834

E. We primarily use Denotation Accuracy (DA)835

and F1 metrics to evaluate model performance. Ad-836

ditionally, we introduce two new metrics, Calling837

Rate defined as the percentage of questions re-838

quiring functions beyond the predefined function839

list, and Calling Denotation Accuracy (CDA) de-840

fined as the accuracy within the subset of questions841

requiring functions beyond predefined functions.842

These metrics help validate the effectiveness of the843

CRAFT module.844

Experiments on these constructed datasets effec-845

tively explore our framework’s improvements and846

capabilities on complex reasoning problems and847

provide a valuable dataset and baseline for future848

research in this area.849

B Baselines850

We compare CodeUnify with various baseline851

methods, categorized into data-type specific mod-852

Dataset #Test QA Others

WTQ 4 344 421 tables
WikiSQL 15 878 5 230 tables
WebQSP 1 639 retrieved version
TableBench-FC 96 96 tables
TableBench-NR 396 396 tables
WikiSQL-E 1189 925 tables
WTQ-E 1801 403 tables

Table 7: Statistics of Experimental Datasets

els and unified models. 853

B.1 Data-Type Specific Models 854

For the KGQA task on WebQSP (Yih et al., 2016), 855

we compare with several KG specific models: De- 856

cAF (Yu et al., 2022) which combines logical form 857

parsing with direct answer generation for KGs, KB- 858

Binder (Li et al., 2023) which incorporates retrieval 859

techniques for improved KGQA, KB-Coder (Nie 860

et al., 2024) which utilizes a code-based paradigm 861

for KG reasoning with in-context learning. 862

For the TableQA tasks on WikiSQL (Zhong 863

et al., 2017) and WTQ (Pasupat and Liang, 2015), 864

we compare with table-specific models: TAPEX 865

(Liu et al., 2021) which pre-trains language models 866

on tables with SQL execution capabilities, DATER 867

(Ye et al., 2023) which leverages demonstrations to 868

enhance table reasoning in large language models, 869

etc. For experiments on the TableBench dataset, we 870

use baselines directly from the TableBench study 871

(Wu et al., 2025), which include both open-source 872

models (e.g., TableLLM, Qwen2, Llama3.1) and 873

closed-source models (e.g., GPT variants). These 874

baselines implement various prompting strategies 875

such as Program-of-Thought (PoT) and Textual 876

chain-of-thought (TCoT) (Wu et al., 2025) ap- 877

proaches. The baseline also includes TrustUQA 878

(Zhang et al., 2025) methods based on different 879

LLMs for a more complete comparison. 880

B.2 Unified Models 881

We also compare with models designed to handle 882

multiple types of structured data: UnifiedSKG (Xie 883

et al., 2022) which integrates multiple structured 884

knowledge formats through a seq2seq framework, 885

StructGPT (Jiang et al., 2023a) which employs an 886

iterative evidence collection and reasoning process 887

across structured data types, Readi (Cheng et al., 888

2024) which progressively refines reasoning paths 889

for comprehending various structured data formats, 890
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TrustUQA (Zhang et al., 2025) which creates a uni-891

fied graph representation to generate explainable892

queries across data types.893

C Other Related Works894

NL2Query. These methods transform a natural895

language question into a formal query language896

that can be executed directly against structured data897

(Zhang et al., 2025). For single-type approaches,898

specialized variants such as NL2SQL (Liu et al.,899

2024) and NL2SPARQL (Jung and Kim, 2020)900

have been developed, but they usually require cus-901

tom design for each data type. For unified ap-902

proaches, frameworks like TrustUQA (Zhang et al.,903

2025) construct an intermediate conditional graph904

to bridge disparate data types. NL2Query methods905

can provide trustworthy, interpretable results via906

formal verification (Liang et al., 2021) .907

NL2Answer. These methods directly generate908

answers without formal queries, usually using mod-909

els trained on specific datasets (Zhang et al., 2025).910

For example, TableGPT (Zha et al., 2023) is a911

unified framework that enables LLMs to under-912

stand and manipulate tables described in natural913

language. Although NL2Answer methods may gen-914

eralize across multiple datasets, their reasoning915

processes often lack transparency and do not eas-916

ily extend to diverse structured data types (Zhang917

et al., 2024) .918

Retrieval-Augmented Generation. Retrieval-919

Augmented Generation (RAG) methods retrieve920

relevant evidence from structured data sources921

and then generate answers using LLMs (Lewis922

et al., 2020). While the RAG approach is more923

flexible across data types (Zhao et al., 2024),924

RAG approaches are prone to hallucinations and925

lack the formal validation mechanisms inherent to926

NL2Query methods (Béchard and Ayala, 2024).927

D Prompt Template928

D.1 Prompt for CodeSTEP Generation929

Figure 3 shows a prompt template for CodeSTEP930

Generation.931

D.2 Prompt for CRAFT module932

Figure 4 shows a prompt template for CRAFT mod-933

ule.934
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"role": "system",
"content": "You are an advanced data analyst proficient in Python, specialized in conditional graph queries for
table-based question answering. Your task is to write executable Python code that queries tables to extract
relevant information and answer questions based on conditional graph queries.

The conditional graph query function is defined as: cgcodeTest.get_information(args, table_data=table_data,
relation=None, head_entity=None, tail_entity=None, key=None, value=None, tail_entity_cmp='=', value_cmp='=',
target_type=target_type_ms, is_first=False):This function retrieves information by querying a data source using
the given relation and tail entity as search criteria.

Args:
args: The args parameter is fixed as args and cannot be modified.
table_data: The table_data parameter is fixed as table_data and cannot be modified.
relation (str): The relation to the query that matches the tail_entity or contains the head_entity.
tail_entity (str): The tail entity associated with the relation.
head_entity (str): The head entity that belongs to the relation.
key (str): The key to query that matches the tail_entity or head_entity.
value (str): The value associated with or belonging to the key.
tail_entity_cmp (str): Comparison operator ('=', '>', '<', '>=', '<='), default is '='.
value_cmp (str): Comparison operator ('=', '>', '<', '>=', '<='), default is '='.
target_type: Fixed as target_type_ms and cannot be modified.
is_first (bool): Set to True for the first query.

Returns: A set of query results.
Usage Notes:
1) relation + tail_entity: 'relation' is a column name, and 'tail_entity' is a specific value in that column. This mode

returns a set of row identifiers where that column matches the value, e.g. {'[line_2]', '[line_7]', '[line_1]'}.2) relation
+ head_entity: 'relation' is a column name, and 'head_entity' is one or more row identifier(s) in the '[line_id]' format.
This mode returns a set of values from the specified column for those rows.

[Note 1]: The first call to the get_information function requires is_first=True.
[Note 2 - Strict Constraint]: In the get_information function, tail_entity and head_entity must never be used

together in a single query. Please follow these guidelines:
1. Try to use the functions in the provided preset function list to solve the query at each step.
2. If the preset functions are insufficient, you may use cgcodeTest.LLM_function() to process the query.
3. Use Set and Calculator functions as necessary to complete the task.
4. Record whether cgcodeTest.LLM_function() was used by setting the \"use_LLM_function\" variable to True or

False.
[preset function list] Conditional Graph Query functions:
- cgcodeTest.get_information(args, table_data=table_data, relation=None, head_entity=None, tail_entity=None,

key=None, value=None, tail_entity_cmp='=', value_cmp='=', target_type=target_type_ms, is_first=False)
- Set functions:

- cgcodeTest.set_union(set1, set2, set3=None, set4=None, set5=None): Get the union of multiple sets. Returns
a set.

- cgcodeTest.set_intersection(set1, set2, set3=None, set4=None, set5=None): Get the intersection of multiple
sets. Returns a set.

- cgcodeTest.set_difference(set1, set2): Get the difference between two sets. Returns a set.
- cgcodeTest.set_negation(table_data, set1): Get all rows except those in set1. Returns a set.

- Calculator functions:
- cgcodeTest.Min(args=args, set1): Get the smallest element in set1. Returns a set of a numeric value.
- cgcodeTest.Max(args=args, set1): Get the largest element in set1. Returns a set of a numeric value.
- cgcodeTest.Mean(set1): Get the average value of all elements in set1. Returns a set of a numeric value.
- cgcodeTest.Count(set1): Get the number of elements in set1. Returns a set of a numeric value.
- cgcodeTest.Sum(set1): Get the sum of elements in set1. Returns a set of a numeric value.

- If further assistance is needed, use the cgcodeTest.LLM_function() function:
- cgcodeTest.LLM_function(args, table_data=table_data, task, step, mid_outputs_list, expected_name,

CODE_file_name=CODE_file_name, question_file_name=question_file_name):
Args: args: Fixed as args without modification.
task: The description of the current task step.
step: The current step number.
mid_outputs_list: The intermediate results prior to the current step.
expected_name: Expected function name with parameters.
CODE_file_name: Fixed as CODE_file_name.
question_file_name: Fixed as question_file_name.
Returns:

mid_result: A set or string of results.
[Guidelines]:
- Think step-by-step and decompose the problem.
- Only use functions from the provided [preset function list] to complete the task.
- Use the provided functions to generate Python code directly.
- Only generate Python code; any additional content must be commented with '#'.
- If cgcodeTest.LLM_function() is used, record it in the 'use_LLM_function' variable.

Figure 3: Prompt template for CodeSTEP Generation.
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"role": "system",
"content": '''
# Task Context
You are an intelligent code generator that produces step-by-step solutions based on
multi-stage task descriptions. Focus exclusively on handling the current step task.
# Input Modules
## [Final Question]
- represents the final question that needs to be solved in [Complete Code].
- It is for reference. You need to provide the processing code and results required for
the current step task in [Current Task].
## [Complete Code] (Code Framework)
- Complete code representation, so that you can better understand the overall
processing logic.
- You need to implement the code representation of the corresponding
cgcodeTest.LLM_function() function in [Complete Code] and get the result.
## [Current Task]
- The task description that needs to be processed in the current step.
- You need to write the code based on the task description in [Current Task] with the
information and constraints provided.
## [Expected Function Name]
- The function name and parameter representation example expected by this task step,
for reference.
## [Previous Steps and Results]
- The output results of each step before the current step.
- The specific functions and code implementation of each step are shown in [Complete
Code].
- [Previous Steps and Results Notes]:

1. You can get the specific data required for the current step processing from
[Previous Steps and Results].

2. In [Previous Steps and Results], if a step result does not contain data of type
'[line_id]', then the original result is directly represented, that is, 'stepx':{{'original result
of this step'}}.

3. In [Previous Steps and Results], if a step result contains data of type '[line_id]',
which means the data of a row, then the data information corresponding to each column
of the row will be represented accordingly (column name: value), that is, the result of
this step will be represented as 'stepx':{{'original result of this step':'specific information
corresponding to the original result of this step'}}.

# Output Requirements
## Code Generation

1. Must use print() for final result output;
2. Code must be self-contained (executable independently);
3. Result format: Single-line text/number.

## Result Handling
1. Return ONLY current step's processed result;
2. Prohibit intermediate processes/explanations;
3. Output must match the data type required by the current step (e.g. a set, a string,

etc.), but must never be a dictionary!

# Processing Rules
1. Prioritize input data from [Previous Steps and Results]
2. Ensure output directly contributes to solving [Final Question]
3. Solve the current task by writing code based on the information and constraints

provided
'''

Figure 4: Prompt template for CRAFT.
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