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ABSTRACT

Sparse representation via a learned dictionary is a powerful prior for natural im-
ages. In recent years, unrolled sparse coding algorithms (e.g. LISTA) have proven
to be useful for constructing interpretable deep-learning networks that perform
on par with state-of-the-art models on image-restoration tasks. In this study we
are concerned with extending the work of such convolutional dictionary learn-
ing (CDL) models. We propose to construct strided convolutional dictionaries
with a single analytic low-pass filter and a set of learned filters regularized to
occupy the complementary frequency space. By doing so, we address the neces-
sary modeling assumptions of natural images with respect to convolutional sparse
coding and reduce the mutual coherence and redundancy of the learned filters.
We show improved denoising performance at reduced computational complexity
when compared to other CDL methods, and competitive results when compared
to popular deep-learning models. We further propose to parameterize the thresh-
olds in the soft-thresholding operator of LISTA to be proportional to the estimated
noise-variance from an input image. We demonstrate that this parameterization
enhances robustness to noise-level mismatch between training and inference.

1 INTRODUCTION

Sparsity in a transform domain is an important and widely applicable property of natural images.
This property can be exploited in a variety of tasks such as signal representation, feature extraction,
and image processing. For instance, consider restoring an image from a degraded version (noisy,
blurry, or missing pixels). These inverse problems are generally ill-posed and require utilizing ade-
quate prior knowledge, for which sparsity has proven extremely effective (Mairal et al., 2014).

In recent years, such problems have been tackled with deep neural network architectures that achieve
superior performance but are not well-understood in terms of their building blocks. In this study, we
are interested in utilizing the knowledge from classical signal processing and spare coding literature
to introduce a learned framework which is interpretable and that can perform on-par with state-of-
the-art deep-learning methods. We choose to explore this method under the task of natural image
denoising, in line with much of the recent literature (Sreter & Giryes, 2018; Simon & Elad, 2019;
Lecouat et al., 2020). As a benefit of this interpretability, we are able to extend the framework for a
blind-denoising setting using ideas from signal processing.

In sparse representation we seek to approximate a signal as a linear combination of a few vectors
from a set of vectors (usually called dictionary atoms). Olshausen & Field (1996), following a
neuroscientific perspective, proposed to adapt the dictionary to a set of training data. Later, dictio-
nary learning combined with sparse coding was investigated in numerous applications (Mairal et al.,
2009a; Protter & Elad, 2008). More specifically, for a set ofN image patches (reshaped into column
vectors) X = [x1, · · · ,xN ] ∈ Rm×N , we seek to find the dictionary D∗ ∈ Rm×k and the sparse
representation Z∗ = [z∗1 , · · · , z∗N ] ∈ Rk×N such that

D∗, Z∗ = arg min
D,Z

N∑
i=1

‖zi‖0 subject to:Dzi = xi, ∀i = 1, · · · , N. (1)
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This formulation is not tractable for large signals since minimizing the `0-pseudo-norm involves a
combinatorial optimization (Natarajan, 1995). To address this complication, a popular technique is
to relax the problem by using the `1-norm as a surrogate (Sreter & Giryes, 2018). When dealing
with inverse problems such as denoising, learning the dictionary from the degraded signal has shown
effective (Toić & Frossard, 2011). Let yi = xi + ni ∈ Rm represent the noisy signal where ni
follows an additive white Gaussian distribution, N

(
0, σ2

nI
)
. Then, the relaxed formulation can be

written as

min
D,Z

N∑
i=1

‖zi‖1 s.t.

N∑
i=1

1

2
‖Dzi − yi‖22 ≤ ε or min

D,Z

N∑
i=1

1

2
‖Dzi − yi‖22 + λ‖zi‖1 (2)

where λ is a regularization parameter and is nontrivialy related to the representation error ε. We
will refer to this as the basis-pursuit denoising (BPDN) formulation of dictionary learning. Many
iterative algorithms have been proposed in the literature to solve this problem (Mairal et al., 2014).
A majority of these algorithms split the problem into a step updating the dictionary followed by a
step solving for the sparse codes.

Note that learning a dictionary over independent image patches neglects the dependencies be-
tween these patches. As a result, the models involving patch processing are inherently sub-optimal
(Batenkov et al., 2017; Simon & Elad, 2019). Although enforcing local priors on merged images
(Sulam & Elad, 2015) and utilizing self-similarity between patches (Mairal et al., 2009b) have been
proposed as ideas to mitigate this flaw, ideally a global shift-invariant model is more appropriate.
By constraining the dictionary to have a Toeplitz structure, the Convolutional Sparse Coding (CSC)
model has been introduced which replaces the local patch processing with a global convolution
(Grosse et al., 2007; Papyan et al., 2017).

Algorithms for solving the CSC model are also discussed in (Moreau & Gramfort, 2019; Wohlberg,
2017). In this study, we are interested in interpretable CSC-based deep-learning models. A metric
known as the mutual-coherence is well known to be related to the representation capability of the
dictionary and is of special concern in using the CSC model with natural images (Simon & Elad,
2019). We take an alternative route to Simon & Elad (2019) in addressing the mutual-coherence of
CSC-based deep-learning models, which is both less computationally expensive and improves the
denoising performance. We continue the discussion about CSC-based deep-learning models in Sec.
1.1.

Another important aspect of the sparse representation is the sparse coding algorithm. For a given
signal y ∈ Rm and dictionary D, iterative soft-thresholding algorithm (ISTA) (Beck & Teboulle,
2009) finds the solution to the BPDN functional, z∗ = arg minz 1/2 ‖Dz − y‖22 + λ‖z‖1, by
repeating the following iteration until a convergence criterion is reached:

z(k+1) = Sλη(k)

(
zk − η(k)DT

(
Dz(k) − y

))
where Sθ(x) = sgn(x)(|x| − θ)+, θ ≥ 0. (3)

Here, η(k) is the step-size of the descent algorithm at iteration k. Note that performing sparse
coding with an iterative method like ISTA for all patches is computationally exhausting and slow. To
resolve this issue, Gregor & LeCun (2010) proposed to approximate the sparse coding via a learned
differentiable encoder, dubbed LISTA. Further extensions of LISTA both in terms of practice and
theory have been studied in the literature (Wu et al., 2019; Chen et al., 2018). More recently, using
LISTA combined with dictionary learning has been a research highlight (Sreter & Giryes, 2018;
Simon & Elad, 2019; Lecouat et al., 2020). We refer to this type of models that leverages LISTA for
convolutional dictionary learning as CDL models.

1.1 RELATED WORKS

In this study, we are interested in the CDL model that concatenates a LISTA network with a linear
convolutional synthesis dictionary. Let D be a convolutional dictionary with M filters (and their
integer shifts). We denote the filters in D by d j where j ∈ {1, · · · ,M}. Let Zi denote the sparse
code for the data sample yi = xi + ni where i ∈ {1, 2, · · · , N} and n ∼ N (0, σ2

nI). The
corresponding subband signal to d j in Zi can be denoted as z ji . Then the convolutional dictionary
learning problem is written as

minimize
dj ,Zi

N∑
i=1

1

2
‖yi −

M∑
j=1

dj ∗ zji ‖
2
2 + λ

M∑
j=1

‖zji ‖1. (4)
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Sreter & Giryes (2018) introduce the approximate convolutional sparse coding (ACSC) framework
for “task-driven convolutional sparse coding”, combining a convolutional extension of LISTA with a
linear convolutional decoder. The proposed framework offers a strategy for training an approximate
convolutional sparse coding network and a corresponding convolutional dictionary in an end-to-end
fashion. They demonstrate competitive performance against classical patch-based methods such as
K-SVD (Aharon et al., 2006), on image denoising and image inpainting. Our proposed baseline
model (CDLNet) differs from the ACSC model by use of mean-subtraction preprocessing, employ-
ing small-strided convolutions, and imposing a norm-constraint on the synthesis dictionary.

Simon & Elad (2019) extend the framework of Sreter & Giryes (2018) by considering the role of
stride in the stable recovery of signals and proposed the “CSCNet” framework. They argue that
the CSC model for image representation in a sparse domain is limited by the inclusion of “smooth
filters”, which are required to represent the piecewise smooth characteristics of natural images. This
limitation manifests itself in the maximum cross-correlation between atoms of the dictionary, known
as the mutual-coherence. They empirically show that using relatively large stride, while processing
shifted-duplicates of the input, improves denoising performance of the model. Although using large
stride reduces the mutual coherence of the learned filters, all possible shifts of the image need to be
processed and averaged, yielding a model very similar to patch-processing. We propose a frequency
regularization strategy to mitigate the problem of smooth-varying filters which does not require
shift-averaging.

Note that the parameter λ in equation 4 depends on the desired sparsity, relative to the noise-level,
and is directly related to the threshold values in ISTA. Sreter & Giryes (2018) propose to learn
different thresholds for each channel, effectively changing the regularizer term in equation 4 to∑M
j=1 ‖λjz

j
i ‖1. Inspired by the benefit of minimax-concave (MC) penalty (Selesnick, 2017) over

`1 norm, Pokala et al. (2020) propose “ConFirmNet” where firm-thresholding function is used in
the network. Kim & Park (2020) propose a signal adaptive threshold scheme for LISTA where the
threshold is decreased if the previous estimate of an element is large.

Mohan et al. (2020) explore the role of bias-vectors in popular deep-learning network’s convolution
operators. They advocate for eliminating the biases completely to improve generalization in blind-
denoising where there is mismatch between training and inference noise level. Isogawa et al. (2017)
propose altering the biases of deep neural-networks by scaling them with the input noise standard-
deviation. Their method is ultimately a non-blind denoising scheme as they use the ground-truth
noise statistics during training and inference. In contrast, we propose a blind-denoising scheme that
is motivated by the interpretation of the biases in LISTA as thresholds and employ a scaling by
the noise variance (in the last layer of LISTA), estimated from the input signal during training and
inference. Performance of different denoising techniques on other noise distributions have also been
studied in the literature, which is not the focus of this study (Abdelhamed et al., 2018; Plotz & Roth,
2017).

1.2 CONTRIBUTION OF THIS STUDY

The unrolled convolutional sparse coding and dictionary learning frameworks have led to the field
dubbed “interpretable deep-learning”. The networks constructed in such a way have the benefit of
interpretability and decreased parameter count while performing quite closely to other state-of-the-
art deep-learning models. In this study we further extend such frameworks. We propose utilizing
a strided convolutional dictionary with a fixed low-pass channel and a set of frequency-regularized
learnt filters (Section 2.2). Our experimental results demonstrate that such frequency regularization
and small stride leads to more interpretable dictionary filters than the prior work. Consequently, by
limiting the number of low-pass atoms in the dictionary and using small-strided convolutions, we
address the modeling assumptions associated with the convolutional sparse coding model (Section
2.1.1). Additionally, leveraging interpretability of our network, we propose to parameterize the soft-
thresholding operator in LISTA such that the thresholds are proportional to the estimated input noise-
level for a given image (Section 2.3). Experimentally, we show improved denoising performance
at reduced computational complexity compared to other frameworks (Section 3.2). Furthermore,
our parameterization of the learned thresholds greatly improves robustness to noise-level mismatch
between training and inference and increases the generalizability of the network (Section 3.3).
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2 PROPOSED FRAMEWORK

2.1 CONVOLUTIONAL DICTIONARY LEARNING NETWORK (CDLNET)

We seek to solve the natural image denoising problem via the convolutional dictionary learning
model on the BPDN functional,

minimize
dj ,Zi

N∑
i=1

1

2
‖yi−

M∑
j=1

dj ∗zji ‖
2
2 +

M∑
j=1

‖λjzji ‖1 subject to: ‖d j‖22 ≤ 1 ∀j ∈ {1, · · · ,M}. (5)

A norm constraint is imposed on the dictionary atoms to remove the arbitrary scaling of coefficients,
as in Mairal et al. (2014). We propose the following learned CDL model, dubbed CDLNet, which
involves a LISTA module followed by a learned convolutional synthesis dictionary,D,

x̂ = Dz(K), z(k+1) = Sθ(k)

(
z(k) −A(k)(B(k)z(k) − y)

)
, k = 0, . . . ,K − 1, z(0) = 0 (6)

where ISTA has been unrolled for K steps. Here, A(k) and B(k) are small-strided convolution
analysis and synthesis operators respectively. We untie the parameters at each iteration of LISTA
following the theoretical analysis of Chen et al. (2018). A threshold vector 0 ≤ θ(k) ∈ RM is
learned corresponding to the M subbands of the convolutional sparse code at iteration k.

The reconstructed signal is given by x̂. The total learnable parameters are given by Θ =
{{A(k),B(k),θ(k)}K−1

k=0 , {dj}Mj=1}. Note that a traditional LISTA network requires supervised
training on sparse codes computed from ISTA. On the other hand, the CDLNet can learn to ap-
proximate sparse coding and the dictionary in an unsupervised fashion by minimizing a suitable loss
function designed for the image reconstruction task (Sreter & Giryes, 2018) (i.e. unsupervised in the
code-domain, but supervised in the signal-domain). In this sense the network mimics the common
dictionary learning strategy of alternating between computing sparse codes and updating the dictio-
nary, however, the sparse coding is done via a learned algorithm with fast inference. An alternative
unsupervised LISTA training strategy, which minimizes the BPDN functional (equation 2), was pre-
sented in Ablin et al. (2019). As in (Sreter & Giryes, 2018; Simon & Elad, 2019), we employ `2
loss between the restored image and its ground-truth clean image throughout this study.

Figure 1: Block diagram of CDLNet.

2.1.1 A DISCUSSION ON MUTUAL COHERENCE OF THE LEARNED DICTIONARY

The approximately piecewise smooth nature of natural images will require a synthesis dictionary to
contain “smoothly-varying” low-pass atoms. As Simon & Elad (2019) discuss, such low-pass atoms
pose a problem for BPDN. A sufficient condition for the faithful recovery of the `0 sparse code from
an `1 basis pursuit can be given in terms of the dictionary’s mutual coherence, µ(D). Note that
for matrix A with normalized columns ai, we have µ(A) = maxi 6=j |a>i aj |. For the convolutional
dictionary, the atoms of D are composed of the shifts of its filters, {dj}Mj=1. This poses a problem
in that the inner product between any of such low-pass filters and their own integer-translates will
greatly increase the mutual coherence and potentially harm the reconstruction performance of the
system.

Sreter & Giryes (2018) do not address this issue in the ACSC framework. Simon & Elad (2019)
propose to use large strides on the order of the filter size, along with averaging reconstructions from
shifted input signals – effectively returning to a patch-based approach. In CDLNet we use small
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strided convolutions (stride=2, in both horizontal and vertical directions) without an averaging re-
construction scheme. Furthermore, we use a preset low-pass filter, and parameterize other filters
to be in the complimentary frequency space of the low-pass. We empirically show that the combi-
nation of the proposed regularization scheme and small stride reduces the mutual coherence of the
dictionary, improves denoising performance of the model, and reduces the computational cost.

2.2 FREQUENCY REGULARIZATION OF A CONVOLUTIONAL DICTIONARY

In this section we propose a method for regularizing the synthesis dictionary to contain only a single
low-pass filter. Note that in the BPDN formulation, the hyperparameter λ determines a trade-off
between data-fidelity to the observation, y, and sparsity of the transform domain coefficients, z.
Following Sreter & Giryes (2018), we extend this to a vector, λ ∈ RM , to reflect prior knowledge
on the expected levels of sparsity in different subbands of the decomposition. The learned thresholds,
θ(k) ultimately reflect these weights, representing sparsity priors on each subband. In the case of
natural image reconstruction, their piecewise smooth nature necessitates a subband decomposition
which contains an approximation signal, for which a sparsity prior is ill-suited.

To address these assumptions, we designate the first channel of the sparse code as the approximation
signal and fix its corresponding synthesis filter to an analytic low-pass filter. Note that total variation
regularization of the low-pass signal has been previously studied (Elad et al., 2005; Lalanne et al.,
2020), however, we’re concerned with regularizing the dictionary elements for reasons concerning
mutual coherence. Knowing in which subband the approximation signal lives allows us to remove
it from the soft-thresholding operation (θ(k)

0 = 0), thereby removing any misplaced assumption of
sparsity. Further, we wish to ensure no additional low-pass filters are learned during training so that
we are not inadvertently violating the sparsity assumptions of the model (i.e. thresholding other low-
frequency subbands) and reduce the mutual coherence of dictionary. This restriction on the number
of low-pass filters has the added benefit of improving stable recovery bounds of the dictionary as
discussed in Section 2.1.1.

The issue of learning high-pass/band-pass filters is both non-trivial and ill-posed. If we naively
assert that such a set of filters must simply be “non-low-pass”, we may consider projecting filters
onto the set of zero-mean filters there by removing their DC-component. However, this allows for the
learning of filters whose frequency response is arbitrarily close to DC. Alternatively, preprocessing
the signal by removing its low-pass component is not effective as it produces a noisy low-frequency
signal and does not properly regularize the learned filters. As demonstrated in Appendix 5.1, even
when the input images are preprocessed in this way, the learned dictionary can still contain low-pass
filters leading to high mutual coherence.

A more apt characterization is to consider the learning of filters occupying the frequency-space
complement to that of the low-pass filter. Let h denote a fixed low-pass filter and g = δ − h be its
high-pass complement, where δ is the discrete Dirac delta function. We formalize the regularization
by considering the following effective dictionary elements,

d1 = h, dj = g ∗ d̃j , ‖dj‖2 ≤ 1, j = 2, . . . ,M. (7)

We refer to {dj}Mj=1 and {d̃j}Mj=2 as the effective and learned filters respectively. Signal recon-
struction is ultimately performed with the effective filters which compose D. Note that the norm
constraint is necessary to avoid large responses in the transition band of the low-pass filter. By
explicitly denoting which subbands of our decomposition are expected to be sparse, this regu-
larization technique forms a sufficiently expressive model for the reconstruction of natural im-
ages. This has the added benefit of nearly eliminating the correlation between the atoms corre-
sponding to the lowpass filter, d1, and the atoms corresponding to high-frequency filters, dj , as
d1 ∗ dj = h ∗ (δ − h) ∗ d̃j = (h− h ∗ h) ∗ d̃j ≈ 0, for j 6= 1.

2.3 BLIND DENOISING: NOISE-ADAPTIVE LEARNED THRESHOLDS

As presented, the CDLNet model and any similar network utilizing LISTA is not amenable to gen-
eralizing denoising performance across a set of noise levels. Note that the threshold values in soft-
thresholding operator are directly proportional to the expected sparsity and the noise level in each
subband Bayram & Selesnick (2010). As a result, the sparsity hyperparameter, λ, and consequently
the threshold values should be functions of the noise variance, i.e. θ(k) = θ(k)(σ2

n).
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We thus propose to parameterize the thresholds in the last layer in CDLNet as θ(K) = ν(K)σ̂2
n,

where σ̂2
n is the estimated noise variance which can be estimated from the input noisy image, and

ν(K) is a vector containing the learned scaling factors for different subbands. We employ a com-
monly used estimator, σ̂n ≈ Median(|c|)/0.6745, where c denotes the diagonal-detail Wavelet
subband of an input image (Chang et al., 2000; Mallat, 2008; Donoho & Johnstone, 1994; 1995).
The proposed parmeterization of thresholds is inspired by the MAP estimate of orthogonal Wavelet
denoising under a Laplace distribution prior of the high-frequency coefficients and the Gaussian
distribution prior on the noise(Bayram & Selesnick, 2010). This parameterization enables the pro-
posed CDLNet to handle varying input noise-levels while maintaining the integrity of CDLNet as
an unfolded dictionary learning model.

3 EXPERIMENTAL SETUPS AND RESULTS

Models: are trained via stochastic gradient descent on the `2-loss with parameter constraints,

minimize
Θ={{A(k),B(k),θ(k)}K−1

k=0 ,{dj}Mj=1}
‖x− x̂(y; Θ)‖22 subject to: θ(k) ≥ 0 ∀k, ‖dj‖22 ≤ 1 ∀j,

where the parameter constraints are enforced by projection onto the constraint set after each gradient
step. Models of different capacity are trained by varying the number of unrollings K and number
of subbands M . Filters are of size 7 × 7. CDLNet is used to refer to our proposed base-model,
differing from other mentioned CDL methods (ACSC (Sreter & Giryes, 2018) and CSCNet (Simon
& Elad, 2019)) by its use of stride-2 convolutions, mean-subtraction of input signals, and the above
projection operations during training. A 3×3 isotropic Gaussian filter (σ=0.6) is used as the analytic
low-pass filter for frequency-regularized models, denoted FCDLNet. We use (F)CDLNet+Blind
to refer to networks with noise-adaptive thresholds as in section 2.3. In blind denoising cases,
the noise level is estimated using the estimator in section 2.3 both during training and inference.
Implementation and trained models are provided here1.

Dataset: All CDLNet models and variants are trained on the BSD432 dataset (Martin et al., 2001).
Random crops of size 128×128 are flipped, rotated, and batched online during training. Independent
identically distributed Gaussian noise is drawn from σn ∈ σtrain

n uniformly within each batch and
added to the ground-truth signal. As preprocessing, all images are normalized by 255 to have range
of [0, 1] and mean of each image is subtracted. Testing is performed on the associated BSD68 test-set
(Martin et al., 2001).

Training: is performed with the Adam optimizer (Kingma & Ba, 2015), using its default settings in
PyTorch. Mini-batches consist of 10 samples. A learning rate of 1e-3 is set at the start of training
and reduced by a factor of 0.95 every 50 epochs. Training is run until convergence. As advised by
Lecouat et al. (2020), backtracking is used to correct for model divergence by reloading the most
recent checkpoint within the last 10 epochs and reducing the learning rate by a factor of 0.8.

Initialization: A single set of M filters are initialized by drawing from a standard normal distri-
bution and subsequently normalized w.r.t each filter. This corresponds to our expectation that most
filters will learn to be approximately zero-mean and spatially localized. We found that this initial-
ization greatly improves convergence speed over drawing from a standard uniform distribution. All
convolution operators are initialized with this same weight. Following Simon & Elad (2019), we
then normalize A(k) by the spectral norm L = ‖A(k)B(k)‖2, which corresponds to initializing the
step-sizes of ISTA to η(k) = 1/L. Thresholds are initialized to θ(k) = 1e-1/L.

3.1 EFFECT OF FREQUENCY REGULARIZATION AND STRIDE ON LEARNED DICTIONARIES

To validate the effectiveness of small-stride and the proposed frequency regularization on the learned
synthesis dictionary, we train three CDLNet models containing convolutions with (a) no stride, (b)
stride 2, and (c) stride 2 with frequency regularization. For all modelsM=32, K=20, and σtrain

n =25.
Figure 2 shows the learned filters in the spatial and frequency domain. Without stride, the learned
dictionary consists of some “noise-like” filters with non-localized frequency responses and a few
directional filters. The stride 2 model (b) learns more directional filters and overall a dictionary with

1https://www.dropbox.com/sh/6lgy1w5v6b5b4jc/AAC8Cwgshu0h8ySfwivSRZpMa?dl=0
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lower mutual-coherence compared to (a). However, both (a) and (b) produce multiple low-frequency
filters in unpredictable channels. With frequency regularization added in (c), we are able to control
the subband in which our low-frequency information is located. The learned filters in (c) are all
directional or texture high-pass, and the mutual-coherence is decreased as predicted.

Figure 2: Learned Filters (top row) and their corresponding frequency responses (bottom row).
Boxes highlight low-pass filters as seen in the frequency domain. Observe that non-frequency regu-
larized dictionaries (a,b) have multiple of such filters in non-determined locations, in contrast to (c).
The mutual coherence between dictionary elements (µ(D)) is reduced by incorporating stride and
frequency regularization. Filters in (c) are more interpretable than those reported in ACSC (Sreter
& Giryes, 2018) and CSCNet (Simon & Elad, 2019)

3.2 DENOISING PERFORMANCE AGAINST OTHER FRAMEWORKS

In this section we demonstrate the efficacy of the proposed methods on single noise-level grayscale
image denoising. We train two FCDLNet models of varying capacity (FCDLNet withM=64, K=10
and Big FCDLNet withM=169 andK=30)2. We compare these to the classic collaborative filtering
method BM3D (Dabov et al., 2007), popular convolutional neural network based methods FFDNet
(Zhang et al., 2018) and DnCNN (Zhang et al., 2017), and CDL method proposed by Simon & Elad
(2019), CSCNet. All learned methods have been trained on the same dataset, BSD432. Average peak
signal-to-noise ratio (PSNR) on BSD68 testset is shown in Table 1. Visual comparison between the
above mentioned models and FCDLNet is presented in Figure 3.

The FCDLNet with trainable parameters on the order of CSCNet shows improved performance
across noise-levels. Interestingly, Big FCDLNet is observed to compete very well with state-of-
the-art deep-learning denoising networks. This is done without the use of common deep-learning
tricks such as batch-normalization or residual learning (both of which are employed in DnCNN).
The ability to train larger CDLNet models of competitive performance without such methods may
suggest an appeal to more interpretable networks.

The average run-time at inference of different models averaged over Set-12 (Sreter & Giryes, 2018)
images of size 512 × 512 is also given in Table 1. The timing experiments were conducted with
an Intel Xeon E5 at 2.6GHz CPU, an Nvidia P40 GPU, and 4GB of RAM, running Linux version
3.10.0. We observe that by leveraging small-strided convolutions and forgoing the “shift-duplicate
processing” of CSCNet, FCDLNet has significantly reduced (10x to 20x) computation time both on
GPU and CPU compared to CSCNet, while having better denoising quality.

2Corresponding filters are available here.
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Table 1: Denoising performance (PSNR) on BSD68 testset (σ = σtrain
n = σtest

n ).
σ BM3D FFDNet DnCNN CSCNet FCDLNet Big FCDLNet
15 31.07 31.63 31.72 31.40 31.45 31.66
25 28.57 29.19 29.22 28.93 28.99 29.22
50 25.62 26.29 26.23 26.04 26.11 26.30

Params - 486k 556k 64k 66k 510k
CPU time (sec) 17.06 - - 14.76 0.76 9.93
GPU time (sec) - - - 0.34 0.03 0.14

Figure 3: Visual comparison of different models for noise level σn = 25. PSNR value for each
image is given in parentheses. Details are better visible by zooming on images.

3.3 ROBUSTNESS TO NOISE LEVEL MISMATCH IN TRAINING AND INFERENCE

In this section we provide experimental results regarding the generalization of the networks across
noise-levels. The main focus is to investigate the effect of the proposed blind denoising framework
(section 2.3), especially for cases with mismatch between noise-range during training (σtrain

n ) and
testing (σtest

n ).

In Figure 4 we show the average PSNR values for three different training noise ranges: (a) [0, 20],
(b) [15, 35], and (c) [30, 50]. Networks are trained by uniformly sampling the noise-level within the
training range at each iteration. All networks have close to 120k learnable parameters with M=64
andK=20. The trained networks are then tested on different noise levels σtest

n = [0, 50], and average
PSNR is calculated over the BSD68 dataset.

As shown in Figure 4, all networks perform closely over the training noise-range. On the other hand,
when tested on noise-levels outside the training range, the networks with adaptive thresholds (as in
Section 2.3) perform superior compared to others. In spite of increasing input signal-to-noise ratio
for noise-levels below the training range, we observe that models without noise-adaptive thresholds
have diminishing performance returns (note the plateau of CDLNet/FCDLNet in σtest

n = [0, 15]
in (b) and σtest

n = [0, 30] in (c)). On the other hand, denoising behavior of models with noise-
adaptive thresholds (CDLNet+Blind and FCDLNet+Blind) extends to the lower noise-range. Simi-
larly, we observe that models without noise-adaptive thresholds have a more significant performance
drop compared to noise-adaptive models when generalizing above the training noise level. Another
notable observation is that FCDLNet models perform better than their non-frequency regularized
counterparts in low noise-levels due to the proper treatment of the low-pass signal.

We also compare the generalization of the proposed networks against other CDL methods. Pokala
et al. (2020) propose ConFirmNet model where they use firm-thresholding in LISTA and show bet-
ter performance compared to ACSC (Sreter & Giryes, 2018) when training and testing noise levels
are different. Results from Pokala et al. (2020) are summarized and compared to our framework in
Table 2. FCDLNet performs on par with ConFirmNet when σtrain

n = 20. To allow the proposed
scaling parameters (ν(K)) to properly fit to the noise-variance, we train over σtrain

n = [18, 22]. As
seen in Table 2 and from our discussion above, simply training over a noise range gives marginal
improvement. However, when combined with noise-adaptive thresholds (FCDLNet+Blind), we ob-
serve significant improvement in generalization over other methods.
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Figure 4: Generalization of the network for different training noise range. Average PSNR is calcu-
lated over BSD68 testset.

Table 2: Generalization of the network: mean (sd) PSNR on Set-9 (Pokala et al., 2020) testing set.
Comparisons with ACSC (Sreter & Giryes, 2018) and ConFirmNet (Pokala et al., 2020).

σtrain
n = 20 σtrain

n = [18, 22]
σtest
n ACSC ConFirmNet CDLNet FCDLNet CDLNet FCDLNet FCDLNet + Blind

5 32.02 (0.02) 32.23 (0.01) 32.04 (0.01) 32.17 (0.01) 32.76 (0.01) 32.81 (0.01) 34.25 (0.02)
15 31.88 (0.03) 32.04 (0.03) 32.00 (0.03) 32.06 (0.03) 32.24 (0.03) 32.30 (0.04) 32.45 (0.03)
30 22.89 (0.03) 23.13 (0.04) 23.68 (0.04) 23.70 (0.05) 24.34 (0.06) 24.51 (0.05) 25.31 (0.06)

4 DISCUSSION AND CONCLUSION

In this study we investigated unrolled convolutional sparse coding and dictionary learning frame-
works. These frameworks have the benefit of interpretability while maintaining similar performance
compared to other state-of-the-art deep learning models. We proposed employing a strided convo-
lutional dictionary constructed with a fixed lowpass filter and a set of learned frequency regularized
filters. As illustrated, small-strided and frequency regularized convolutions give the benefit of re-
duced mutual coherence of the dictionary and properly address the modeling assumptions regarding
convolutional sparse coding. We showed that learned high-pass filters are more structured cover-
ing different orientations and textures. In comparison to other CDL models of similar parameter
count, our proposed framework showed improved denoising performance whilst reducing the com-
putational cost. The learned dictionary filters are more interpretable with lower mutual coherence.
Additionally, experimental results with FCDLNet models of similar size to the state-of-the-art de-
noising models showed competitive denoising performance.

We further investigated the generalizability of CDL networks in scenarios where noise-level mis-
match exists between training and inference. Leveraging the interpretability of CDLNet, we pro-
posed to parameterize the thresholds in LISTA such that they are scaled based on the estimated input
noise variance. Experimental results demonstrated that this reparameterization greatly improves the
robustness to noise-level mismatch between training and testing and increases the generalizability
of the network.

In future work we aim to explore the possible extensions of the proposed models and further leverage
the interpretability of this framework. The proposed frequency regularization scheme provides the
required grounds for multiresolution representation learning. Note that by further processing of the
fixed lowpass channel one can achieve a multiresolution representation while in other frameworks
the lowpass information is represented in multiple, non-predetermined channels, making this exten-
sion challenging (see discussion in Section 3.1). Further augmenting the thresholds of the CDLNet
model to be employed at each layer of LISTA, with both signal and noise adaptivity, is a promis-
ing direction for improved generalization of the network. Additionally, investigating other noise
distribution models is an exciting avenue of research.
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Ivana Toić and Pascal Frossard. Dictionary learning: what is the right representation for my signal.
IEEE Signal Processing Magazine, 28(2):27–38, 2011.

11



Under review as a conference paper at ICLR 2021

Brendt Wohlberg. Sporco: A python package for standard and convolutional sparse representations.
In Proceedings of the 15th Python in Science Conference, Austin, TX, USA, pp. 1–8, 2017.

Kailun Wu, Yiwen Guo, Ziang Li, and Changshui Zhang. Sparse coding with gated learned ISTA.
In International Conference on Learning Representations, 2019.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:
Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing,
26(7):3142–3155, 2017.

Kai Zhang, Wangmeng Zuo, and Lei Zhang. FFDNet: Toward a fast and flexible solution for CNN-
based image denoising. IEEE Transactions on Image Processing, 27(9):4608–4622, 2018.

5 APPENDIX

5.1 REMOVING THE LOW-PASS INFORMATION FROM THE INPUT IMAGES IS NOT EFFECTIVE
FOR REDUCING THE MUTUAL COHERENCE

Instead of the proposed frequency regularization approach, it may be tempting to simply remove
the low-pass information of the signal as a preprocessing step. More specifically, let y be the noisy
image, one can process the high-pass signal y−h∗y with the proposed network without adding any
frequency regularization. Note that this approach is not equivalent to the proposed frequency regu-
larization scheme as the removed low-pass channel (h∗y) is still noisy. Although the thresholds for
the low-pass channel in FCDLNet are set to zero, this does not mean that the low-pass information
is removed from the denoising framework. As a result, in FCDLNet, the low-pass filtering at each
LISTA stage is ultimately a filtering of an incrementally cleaner image, producing a full subband de-
composition of a cleaned up low and high frequency bands at the final stage of LISTA. Additionally,
note that removing the low-frequency component of the signal does not stop the learned dictionary
from learning multiple (redundant) low-pass filters. Even though the input signal does not contain
low-frequency information, the filters are not necessarily regularized to take advantage of this prop-
erty. As shown in figure 5, we observed that the filters learned in this scheme have multiple low-pass
channels.

Figure 5: Learned Filters (top row) and their corresponding frequency responses (bottom row).
Boxes highlight low-pass filters as seen in the frequency domain. Observe that non-frequency reg-
ularized dictionary when low-pass information is removed (a) has multiple of such filters in non-
determined locations, in contrast to (b). The mutual coherence between dictionary elements (µ(D))
is reduced by incorporating the frequency regularization.
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