
X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP

Hanxun Huang 1 Sarah Erfani 1 Yige Li 2 Xingjun Ma 3 James Bailey 1

Abstract
As Contrastive Language-Image Pre-training
(CLIP) models are increasingly adopted for di-
verse downstream tasks and integrated into large
vision-language models (VLMs), their suscepti-
bility to adversarial perturbations has emerged
as a critical concern. In this work, we introduce
X-Transfer, a novel attack method that exposes
a universal adversarial vulnerability in CLIP. X-
Transfer generates a Universal Adversarial Pertur-
bation (UAP) capable of deceiving various CLIP
encoders and downstream VLMs across differ-
ent samples, tasks, and domains. We refer to
this property as super transferability—a single
perturbation achieving cross-data, cross-domain,
cross-model, and cross-task adversarial transfer-
ability simultaneously. This is achieved through
surrogate scaling, a key innovation of our ap-
proach. Unlike existing methods that rely on fixed
surrogate models, which are computationally in-
tensive to scale, X-Transfer employs an efficient
surrogate scaling strategy that dynamically selects
a small subset of suitable surrogates from a large
search space. Extensive evaluations demonstrate
that X-Transfer significantly outperforms previ-
ous state-of-the-art UAP methods, establishing
a new benchmark for adversarial transferability
across CLIP models. The code is publicly avail-
able in our GitHub repository.

1. Introduction
Contrastive Language-Image Pre-training (CLIP) is a widely
adopted technique that learns aligned multi-modal repre-
sentations from text-image pairs through contrastive learn-
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ing (Radford et al., 2021). Pre-trained on web-scale
datasets, CLIP encoders have been extensively used to en-
hance performance across a variety of downstream applica-
tions, particularly in large Vision-Language Models (VLMs)
(Awadalla et al., 2023; Koh et al., 2023; Wang et al., 2023a;
Bai et al., 2023; Karamcheti et al., 2024; Jiang et al., 2024),
where they form the backbone of visual capabilities. Models
such as Flamingo (Alayrac et al., 2022), LLaVA (Liu et al.,
2023a), BLIP2 (Li et al., 2023a), and MiniGPT-4 (Zhu et al.,
2024) integrate CLIP image encoders with Large Language
Models (LLMs) (Zhang et al., 2022b; Hoffmann et al., 2022;
Chiang et al., 2023). The widespread adoption of CLIP in
VLMs is primarily driven by its pre-training paradigm util-
ising text supervision (Tong et al., 2024). While its strong
generalisation capabilities solidify its role as a cornerstone
for VLMs, they also make CLIP an ideal target for gener-
ating highly transferable adversarial perturbations, thereby
introducing new safety risks.

Deep neural networks are widely recognised for their sus-
ceptibility to Universal Adversarial Perturbations (UAPs)
(Moosavi-Dezfooli et al., 2017; Gao et al., 2023; Zhou
et al., 2023b; 2024; Zhang et al., 2025c; Song et al., 2025),
where a perturbation generated using a specific dataset can
transfer to images within the same domain, causing erro-
neous classifications by image classifiers. Recent studies
(Fang et al., 2024b; Zhang et al., 2024) have demonstrated
that UAPs are also effective against CLIP encoders. How-
ever, existing works have yet to fully realise the potential
of UAPs—achieving super transferability. Ensemble tech-
niques are a well-established strategy for enhancing cross-
model adversarial transferability (Liu et al., 2017; Dong
et al., 2018; Xiong et al., 2022; Chen et al., 2024a) for
sample-specific perturbations, but they leave significant gaps
in the applicability of UAPs to broader transfer scenarios.
Furthermore, these methods rely on a heuristic selection
of a fixed set of surrogate models, which becomes com-
putationally expensive when scaling to a large number of
surrogates (Liu et al., 2024). To address these gaps, we aim
to answer the following two questions: (1) Can a single per-
turbation simultaneously achieve cross-data, cross-domain,
cross-model, and cross-task adversarial super transferabil-
ity? and (2) How scalable is super transferability when
incorporating large numbers of surrogate models?

In this work, we propose the X-Transfer attack, a novel
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Figure 1. Adversarial super transferability achieved by X-Transfer
with different configurations (Base, Mid and Large). The figure
reports the attack success rate (ASR) with a single UAP applied
to different samples, datasets, models, and tasks. ZS: zero-shot
classification; IR: image-retrieval; TR: text-retrieval; IC: image
captioning, and VQA: visual question answering. The ZS, IR, and
TR are evaluated with CLIP encoders. IC and VQA are evaluated
with large VLMs. Results for baseline methods, GD-UAP (Mopuri
et al., 2018), TRM-UAP (Liu et al., 2023b), AdvCLIP (Zhou
et al., 2023a), Meta-UAP (Weng et al., 2024), C-PGC (Fang et al.,
2024b) and ETU (Zhang et al., 2024) are the best results across
their various configurations. Results are averaged over multiple
victim models. A larger shaded circle indicates a higher universal
ASR.

attack method that generates UAPs via an efficient surrogate
scaling strategy applied to a large number of surrogate mod-
els. Specifically, X-Transfer dynamically selects a small sub-
set of suitable surrogate CLIP encoders from a large search
space, enabling the efficient scaling of surrogate models for
UAP generation. The UAPs and Targeted UAPs (TUAPs)
generated by X-Transfer achieve black-box adversarial su-
per transferability. Extensive evaluations demonstrate that
X-Transfer significantly outperforms state-of-the-art UAP
methods designed for image classifiers (Mopuri et al., 2018;
Liu et al., 2023b; Weng et al., 2024) and methods tailored
for CLIP encoders (Zhou et al., 2023a; Fang et al., 2024b;
Zhang et al., 2024), achieving improved performance by a
substantial margin, as shown in Figure 1.

Our work is the first to demonstrate the existence of super
UAPs that transfer across data (samples from in-domain
datasets), domains (datasets), models (including both CLIP
encoders and VLMs), and tasks (e.g., zero-shot classifi-

cation, image-text retrieval, image captioning, and visual
question answering, VQA). Our search space configura-
tions—Base, Mid, and Large—consist of 16, 32, and 64
surrogate encoders, respectively. The super transferability
scales with the total number of surrogate encoders in the
search space. Furthermore, X-Transfer achieves this super
transferability while selecting as few as a single surrogate
encoder per optimisation step. These findings uncover a
new vulnerability in CLIP models and their applications.

In summary, our main contributions are as follows:

• We investigate the universal vulnerability of CLIP
models and propose a novel attack method called X-
Transfer to generate UAPs that can transfer across
data, domains, models, and tasks.

• X-Transfer introduces an innovative surrogate scaling
strategy that efficiently scales transferability with the
number of surrogate models by dynamically selecting
suitable candidates at each UAP generation step.

• We conduct extensive experiments to demonstrate the
effectiveness of X-Transfer and provide in-depth in-
sights and interpretations of the generated UAP pat-
terns. Building on this, we establish a new bench-
mark, X-TransferBench, which offers a comprehen-
sive, open-source collection of UAPs and TUAPs for
super transferability studies.

2. Relate Work
Contrastive Language-Image Pre-training. CLIP (Rad-
ford et al., 2021) is a popular framework that can pre-train on
web-scale text-image pairs via contrastive learning (Chopra
et al., 2005; Oord et al., 2018; Chen et al., 2020b). En-
coders pre-trained by CLIP have demonstrated superior
zero-shot generalisation capability in a wide range of down-
stream tasks (Palatucci et al., 2009; Lampert et al., 2009)
and are shown to be more robust against common corrup-
tions (Hendrycks & Dietterich, 2019; Fang et al., 2022;
Cherti et al., 2023; Tu et al., 2023). A number of works
(Jia et al., 2021; Li et al., 2022b; 2023d;b; 2024; Tang et al.,
2025) have been proposed to improve the performance of
CLIP, such as using improved training recipe (EVA-CLIP)
(Sun et al., 2023), shorter token sequence (CLIPA) (Li et al.,
2023c), or sigmoid loss (SigLIP) (Zhai et al., 2023). It has
been found that one of the main contributing factors to the
success of CLIP is its training data (Xu et al., 2024). In par-
allel to CLIP, vision-language pre-training can be achieved
using various objectives, such as image-text matching, mask-
ing, and auto-regressive generation (Li et al., 2021; 2022a;
Singh et al., 2022; Yu et al., 2022; 2023; Kwon et al., 2023).
This paper focuses specifically on CLIP and its variants due
to their widespread adoption in downstream applications.
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Adversarial Attacks. The vulnerability of deep neural
networks to adversarial attacks has been extensively studied
on image classifiers (Szegedy et al., 2014; Goodfellow et al.,
2015; Carlini & Wagner, 2017; Madry et al., 2018; Zhang
et al., 2019; Ilyas et al., 2019; Wang et al., 2019; 2020; Croce
& Hein, 2020b; Huang et al., 2021; Ma et al., 2023; Wang
et al., 2023b; Singh et al., 2023; Xie et al., 2025), and VLMs
(Zhao et al., 2023; Luo et al., 2024; Schlarmann et al., 2024;
Wang et al., 2024e; Zhang et al., 2025a), typically under two
main attack settings: white-box and black-box. In the white-
box setting, the adversary has full knowledge of the victim
model, including its architecture and parameters, while in
the black-box setting, this information is not available to
the adversary. In this case, the attacker can construct query-
based attacks to exploit the input-output response of the
victim model (Ilyas et al., 2018; Andriushchenko et al.,
2020) or leverage surrogate models to construct transfer
attacks (Papernot et al., 2016; Tramèr et al., 2017; Liu et al.,
2017; Dong et al., 2018; Xie et al., 2019; Dong et al., 2019;
Wu et al., 2020). Arguably, black-box attacks are more
realistic and challenging, as deployed models are often kept
secret from the end users, and in this case the gradient
information of the victim model is unavailable. Between
the two types of black-box attacks, transfer attacks are more
practical, stealthy, and cost-effective, as they do not need to
launch a large number of suspicious and costly queries to
the victim model (Chen et al., 2020a; Wang et al., 2024d).
Specifically, transfer attacks generate perturbations based
on a surrogate model and then directly feed the adversarial
examples to attack the black-box victim model.

Adversarial Attacks on CLIP. Recent works have inves-
tigated the adversarial robustness of CLIP encoders using
sample-specific perturbations (Zhang et al., 2022a; Mao
et al., 2023; Lu et al., 2023; He et al., 2023; Zhao et al.,
2023; Gao et al., 2024; Wang et al., 2024a; Hu et al., 2024;
Zhang et al., 2025b), showing that CLIP encoders are vulner-
able to adversarial perturbations. However, sample-specific
perturbations cannot achieve cross-data or cross-domain
transferability because they are tailored to individual sam-
ples. In contrast, UAPs have the potential for super transfer-
ability. AdvCLIP (Zhou et al., 2023a) first explored UAPs
against CLIP in a quasi-black-box threat model, demon-
strating cross-data, cross-task, and cross-task transferability.
Kim et al. (2024) also investigated the partial black-box
setting for large VLMs. ETU (Zhang et al., 2024) leveraged
global and local features to achieve cross-data, cross-task,
and cross-model transferability, and C-PGC (Fang et al.,
2024b) and its efficient version (Yang et al., 2024) attained
similar transferability. Nevertheless, none of these works
has investigated black-box super transferability, transfer-
ring across data, domains, models, and tasks simultane-
ously—this capability is the primary focus of our work. A
detailed comparison is in Appendix A.

3. Proposed Attack
In this section, we begin by revisiting the training objective
of CLIP and our adversarial objective. We then introduce
our proposed X-Transfer attack.

3.1. Training Objective of CLIP

CLIP (Radford et al., 2021) learns a joint embedding of
images and texts. In such a way, the model can learn gener-
alisable representations from web-scale data without using
human annotations. Given an image-text dataset D ⊂ X×T
that contains pairs of (xi, ti), where xi is an image, and
ti is the associated descriptive text. An image encoder
fI : X 7→ Rd and a text encoder fT : T 7→ Rd. We use f
to denote the pair of image encoder fI and text encoder fT .
The CLIP model projects the image and text into a joint em-
bedding space Rd. The image embedding can be obtained
by zx

i = fI(xi) and the text embedding is zt
i = fT (ti).

For a given batch of b image-text pairs {xi, ti}bi=1, CLIP
adopts the following training loss function:

− 1

2b

N∑
j=1

log
exp(sim(zx

j , z
t
j)/τ)∑N

k=1 exp(sim(zx
j , z

t
k)/τ)

− 1

2b

N∑
k=1

log
exp(sim(zx

k , z
t
k)/τ)∑N

j=1 exp(sim(zx
j , z

t
k)/τ)

, (1)

where τ is a trainable temperature parameter, and sim(·)
is a similarity measure. The first term in the above objec-
tive function contrasts the images with the texts, while the
second term contrasts the texts with the images.

3.2. Adversarial Objective

We follow existing studies (Moosavi-Dezfooli et al., 2017)
to construct the UAP in the image space. Our perturba-
tion objective is a form of embedding space attack (Zhang
et al., 2022a; Zhao et al., 2023) that aims to deceive the
encoder in the embedding space. However, our goal is to
construct a universal adversarial perturbation δ that is ca-
pable of transforming any image x ∈ D into an adversarial
version x′ = x+ δ by using the same adversarial perturba-
tion to fool the victim encoder f . We focus on L∞-norm
perturbations. For other choices of perturbation constraint,
L2-norm and adversarial patch are deferred to Appendix B.
We construct the adversarial example using the following:

x′ = A(x) = x+ δ, ∥x− x′∥∞ < ϵ, (2)

where δ is the universal perturbation vector. To generate
a universal perturbation for L∞-norm bounded attack, we
optimise the following non-targeted objective:

argmin
δ

E(x)∼D′sim(f ′
I(x

′), f ′
I(x)), (3)
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or targeted objective:

argmax
δ

E(x)∼D′sim(f ′
I(x

′), f ′
T (tadv)), (4)

where D′ is a surrogate dataset, f ′
I and f ′

T are the surrogate
image encoder and text encoder, tadv is adversary specified
text description, and x′ follows Eq. (2).

Our goal is to construct UAPs and TUAPs capable of achiev-
ing black-box adversarial super-transferability. However,
relying on a single surrogate model f ′ in Eq. (3) and (4)
may limit transferability. Factors such as architecture, train-
ing objectives, and pre-training datasets can influence how
well perturbations generated from the surrogate f ′ transfer
to the victim model f .

Prior studies (Liu et al., 2017; Dong et al., 2018; Xiong
et al., 2022; Chen et al., 2024a; Liu et al., 2024) have shown
that ensemble methods can enhance cross-model transfer-
ability by incorporating multiple surrogate models. UAPs
inherently offer cross-data transferability. Additionally, due
to their strong zero-shot capabilities, CLIP encoders serve
as promising surrogate models for achieving cross-domain
and cross-task transferability. To further enhance adver-
sarial transferability, we therefore consider an ensemble of
diverse surrogate CLIP encoders f ′

i ∈ F ′ = {f ′
1, · · · , f ′

k}.
Note that if the victim model f ∈ F ′, then it is a white-box
setting. Otherwise, it is a black-box setting. We optimise
the following objective function:

argminE(x)∼D′
1

k

k∑
i=1

L(f ′
i , δ,x), (5)

where L follows Eq. (3) or (4) (change the argmin to
argmax for targeted objective). To effectively ensemble
various types of CLIP encoders and scale up the number of
surrogates, the chosen objective must be agnostic to differ-
ences in architectures, embedding dimensions, and training
loss functions. To achieve this, we adopt a generic adver-
sarial objective function that operates directly on the CLIP
embeddings. Unexpectedly, we found that even this straight-
forward objective alone can achieve performance on par
with specialised CLIP-specific UAP baselines. In addition,
we chose to average the loss rather than the embedding, as
this approach avoids assumptions of a uniform ambient di-
mension in the embedding space. Eq (3), (4), and (5) ensure
that our adversarial objectives remain agnostic to variations
across CLIP encoders, including differences in embedding
sizes, architectures, and pre-training objectives.

3.3. X-Transfer Attack

The key technique of the X-Transfer attack is its efficient
surrogate scaling strategy, which enables super transferabil-
ity across different dimensions. Existing surrogate ensemble
methods (Xiong et al., 2022; Chen et al., 2024a) typically

Algorithm 1 X-Transfer

Input: surrogate dataset D′, search space S =
{f ′

1, · · · , f ′
N}, total number of optimisation steps j, mo-

mentum m, number of selection k.
Initialise arrays R, T , as zero-filled arrays of length N
Initialise δ randomly
for step = 1 to j do

x = sample(D′) {▷ Random sample a batch of images}
x′ = x+ δ
µ = UCB(R, T ) {▷ Compute UCB scores}
FK = TopK(µ, k, S) {▷ Select Top k encoders}
for fi to FK do
zi = f I

i (x), z
′
i = f I

i (x
′)

Compute Li(A, zi, z
′
i) {▷ Follow Eq. (3)}

Ri = (1−m)×Ri +m×Li {▷ Moving average}
Ti = Ti + 1

end for
L = 1

k

∑k
i=1 Li {Follow Eq. (5)}

δ = δ - ηsign(∇L(δ))
δ = project(δ, −ϵ, ϵ)

end for

rely on selecting a fixed set of classifiers with diverse ar-
chitectures, all trained using the same loss function and
dataset (e.g., ImageNet). However, these methods require
computing gradients with respect to each surrogate model,
making surrogate scaling (Liu et al., 2024) computationally
expensive as the number of surrogates increases. To address
this limitation, we propose an efficient surrogate scaling
approach for UAP generation that dynamically selects a
small subset of suitable encoders from a large search space.
Algorithm 1 outlines the proposed X-Transfer framework
using the non-targeted objective.

The core idea of our efficient scaling strategy is to select
k suitable candidate encoders from a search space contain-
ing N options (N ≫ k) at each optimisation step during
UAP generation. This approach is inspired by the non-
stationary multi-armed bandit (MAB) problem (Liu et al.,
2023c), where the goal is to maximise cumulative rewards
by pulling individual arms. In the MAB framework, the
reward distributions are initially unknown and can change
over time in the non-stationary setting. In our formulation,
each candidate encoder is treated as an arm, and at each
optimisation step, we select k surrogate encoders (arms)
for the ensemble. The selection strategy must balance the
exploration of less-selected arms and the exploitation of
arms with the highest rewards. To achieve this, we use the
classical Upper Confidence Bound (UCB) sampling strategy
(Auer, 2002), defined as:

UCB = Ri +

√
2 lnn

ni
, (6)
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where Ri is the accumulative reward for the surrogate en-
coder fi, ni is total of times encoder fi has been selected,
and n is total of times selection has been made (

∑N
i ni).

While UCB is our default sampling strategy, other strategies
are also feasible. Note that the sampling strategy is not the
primary factor driving X-Transfer’s effectiveness, which
will be presented in the ablation study.

The most important aspect of X-Transfer is the design of
a suitable reward metric that should be cumulatively max-
imised to encourage the selection of surrogate encoders that
are most effective in achieving super transferability. For
non-targeted attacks, a lower loss value Li with respect to
the encoder fi indicates that the UAP has effectively fooled
fi, so fi can be selected less frequently. Conversely, for
targeted attacks, a higher loss value signals success and thus
reduces the priority of that encoder. In both cases, we use
the loss value Li (Eq. (3) and (4)) as the reward. By focus-
ing on selecting encoders that are less successfully fooled
by the UAP or TUAP at the current iteration, X-Transfer
encourages the perturbation to become more universally
effective in the next iteration. Algorithm 1 illustrates this
procedure, where we maintain two arrays (R and T ) to
track the accumulated rewards and selection counts for each
encoder. After computing Li, we update the reward distribu-
tion R and the number of selection T based on the chosen
encoders at each step. At the next iteration, we select the
top-k encoders based on their UCB scores, thus striking a
balance between exploring less-frequently chosen encoders
and exploiting those that are harder to fool.

4. Experiments
Search Space. We define 3 search spaces with diverse sizes
(N ). The Base search spaces are balanced and drawn from
4 diverse architecture types—ResNet (RN) (He et al., 2016),
ConvNext (Liu et al., 2022), ViT-B, and ViT-L (Dosovitskiy
et al., 2021) —with 4 encoders per architecture. This base
search space is used to verify that X-Transfer is more ef-
fective and efficient than both standard scaling (including
all models) and heuristic-based fixed selections. We also
explore a Mid and a Large search space containing 32 and
64 diverse encoders to fully evaluate the scalability and ef-
fectiveness of X-Transfer. Further details about these CLIP
encoders are provided in Appendix C.1 and C.2.

UAP Generation. We use ImageNet (Deng et al., 2009)
as the default surrogate dataset. The value of k is set to
4 for the Base search space, 8 for the Mid search space,
and 16 for the Large search space. Following Fang et al.
(2024b); Zhang et al. (2024), we employ L∞-norm bounded
perturbations with ϵ = 12/255. We use the step size η of
0.5/255.

Baselines. We compare our approach to state-of-the-art

UAP methods tailored for CLIP encoders, including C-PGC
(Fang et al., 2024b), ETU (Zhang et al., 2024), and AdvCLIP
(Zhou et al., 2023a). We also evaluate against methods de-
signed for image classifiers, GD-UAP (Mopuri et al., 2018),
TRM-UAP (Liu et al., 2023b), and Meta-UAP (Weng et al.,
2024). All UAPs are directly obtained from their official
open-source repositories. We also include a vanilla baseline
using the same adversarial objective with X-Transfer but
without efficient surrogate scaling.

Evaluation. Since existing baseline methods focus solely
on non-targeted objectives, we report the non-targeted attack
success rate (ASR) in the main paper and include results
for targeted objectives (TUAP) in Appendix C.7. Because
each task uses different evaluation metrics, we define the
non-targeted ASR as (sclean − sadv)/sclean, where s is
measured using a task-specific metric (e.g., accuracy for
zero-shot classification or CIDEr (Vedantam et al., 2015)
for image captioning). The sclean is the clean performance
computed using the original images, while the sadv adversar-
ial performance is obtained by applying UAP to all images.

We apply the same UAP to every image in each dataset to
evaluate cross-data transferability. Beyond ImageNet, we
employ CIFAR-10 (C-10), CIFAR-100 (C-100) (Krizhevsky
et al., 2009), Food (Bossard et al., 2014), GTSRB (Stal-
lkamp et al., 2012), Stanford Cars (Cars) (Krause et al.,
2013), STL10 (Coates et al., 2011), SUN397 (Xiao et al.,
2016), MSCOCO (Chen et al., 2015), Flickr-30K (Young
et al., 2014), OK-VQA (Marino et al., 2019), and VizWiz
(Gurari et al., 2018) datasets to evaluate cross-domain trans-
ferability. For cross-model transferability, we evaluate 9
diverse CLIP encoders, including those released by Ope-
nAI (Radford et al., 2021)—such as ViT-L/14, ViT-B/16,
ViT-B/32, RN-50, and RN-101—as well as encoders trained
by others, including ViT-B/16 trained with SigLIP (Zhai
et al., 2023), EVA-E/14 (Sun et al., 2023), ViT-H/14 trained
with CLIPA (Li et al., 2023c), and ViT-bigG/14 trained with
MetaCLIP (Xu et al., 2024). Additionally, we assess large
vision-language models (VLMs), such as OpenFlamingo-
3B (OF-3B), LLaVA-7B (Liu et al., 2023a), MiniGPT-4
(Zhu et al., 2024), and BLIP2 (Li et al., 2023a). Note that
our search space does not include any of these CLIP en-
coders or encoders fine-tuned by these large VLMs, thereby
ensuring a strictly black-box setting. We evaluate zero-shot
classification, image-text retrieval, image captioning, and
VQA tasks. Image captioning and VQA with large VLM,
in particular, highlight cross-task transferability since large
VLM training objectives significantly differ from those of
the adversarial objective used by X-Transfer.

4.1. Super Transferability

We present the zero-shot classification results in Table 1.
Baselines specifically designed for CLIP (ETU and C-GPC)
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Table 1. The non-targeted ASR (%) results in zero-shot classification and image-text (I-T) retrieval tasks across different CLIP encoders
and datasets. I-T retrieval is evaluated on MSCOCO. Results are based on averaging over 9 black-box victim encoders. The best results
for the baseline are underlined, and the best results overall are boldfaced.

Method Variant Zero-Shot Classification I-T Retrieval

C-10 C-100 Food GTSRB ImageNet Cars STL SUN Avg TR@1 IR@1

GD-UAP
(Mopuri et al., 2018)

Seg 56.7 73.0 27.9 61.1 17.9 15.4 9.9 14.7 34.6 26.5 18.1
CLS 57.9 72.4 42.9 66.2 24.3 22.9 18.7 20.2 40.7 33.7 24.3

AdvCLIP
(Zhou et al., 2023a)

ViT/B-16 0.9 4.7 1.5 11.6 2.5 2.2 0.2 1.3 3.1 8.1 2.6
RN101 0.7 3.6 1.5 9.5 2.6 2.9 0.2 1.5 2.8 9.0 3.1

TRM-UAP
(Liu et al., 2023b)

GoogleNet 55.7 69.3 46.7 67.8 27.0 24.8 21.8 23.0 42.0 34.9 26.5
RN152 47.3 63.4 42.4 63.9 23.6 22.9 17.7 20.1 37.7 30.7 23.0

Meta-UAP
(Weng et al., 2024)

Ensemble 79.3 93.4 46.0 73.5 30.9 28.5 25.9 28.4 50.8 42.5 34.1
Ensemble-Meta 72.5 89.0 41.9 67.6 28.3 25.8 21.4 26.5 46.6 38.3 29.0

C-GPC
(Fang et al., 2024b)

RN101-Flicker 27.9 41.3 24.2 36.4 17.8 18.3 13.6 14.7 24.3 21.3 15.7
RN101-COCO 23.9 41.9 24.4 37.2 19.3 17.6 13.3 15.7 24.2 24.3 17.9

ViT-B/16-Flicker 63.7 82.9 51.3 70.2 40.4 38.1 28.2 37.9 51.6 43.8 35.7
ViT-B/16-COCO 62.4 81.5 47.2 70.1 37.9 39.2 26.5 35.0 50.0 39.0 33.8

ETU
(Zhang et al., 2024)

RN50-Flicker 34.3 53.5 20.6 49.7 13.8 12.1 8.6 9.3 25.2 17.2 12.8
ViT-B/16-Flicker 70.2 86.5 47.1 71.1 34.1 31.1 27.5 31.0 49.8 40.2 32.8

X-Transfer
(Ours)

Vanilla (N = 1) 72.7 88.3 49.9 72.3 31.2 26.3 19.2 27.6 48.4 42.3 34.5
Base (N = 16) 86.6 97.5 74.8 89.3 56.0 52.1 46.8 50.7 69.2 63.7 58.8
Mid (N = 32) 86.9 97.6 78.7 88.6 62.8 60.0 50.4 64.1 73.6 70.1 65.7

Large (N = 64) 87.6 97.8 80.1 89.4 63.4 64.6 57.1 65.0 75.6 71.8 65.8

show no significant advantage over methods developed for
image classifiers (GD-UAP, TRM-UAP, and Meta-UAP).
Interestingly, our vanilla baseline—applying the adversar-
ial objective without any ensemble—achieves performance
comparable with these existing methods. This indicates
that, despite its simplicity, the chosen adversarial objec-
tive is well-suited for X-Transfer. For UAPs generated
by X-Transfer, the improvement is substantial across all
the datasets and in the averaged ASR metric. Appendix
C.3 reports per-encoder ASR, where X-Transfer achieves
state-of-the-art results across every dataset and victim en-
coder. Together, these findings demonstrate that X-Transfer
achieves superior cross-data, cross-domain, and cross-model
adversarial transferability. In Appendix C.4, we demonstrate
that the generic design of the adversarial objective function
is critical for the effectiveness of X-Transfer. Specifically,
using the loss function from ETU does not achieve the same
level of super transferability when combined with our effi-
cient scaling method.

To further demonstrate the super transferability of our
approach, we evaluate cross-task transferability on large
VLMs. The popular approach for large VLMs is to align vi-
sual embeddings from the CLIP-based image encoder with
LLM text embeddings, either by fine-tuning or employing
bridging networks. Notably, these large VLMs are trained
with auto-regressive text generation objectives, which dif-
fers from both the CLIP and our adversarial objectives. In

other words, X-Transfer was not explicitly designed to de-
ceive large VLMs.

We evaluate our method on commonly used image caption-
ing and VQA tasks using 4 widely adopted large VLMs,
with results presented in Table 2. Consistent with our pre-
vious findings, X-Transfer achieves state-of-the-art super
transferability. These results also expose a new safety threat
to large VLMs: adversaries can exploit the large pool of pub-
licly available pre-trained encoders to construct UAPs and
manipulate large VLMs under realistic black-box settings.
Additionally, in Appendix C.5, we show that super transfer-
ability is independent of the surrogate datasets used. This
indicates that surrogate encoders are the primary factor for
super transferability. In Appendix C.8, we demonstrate that
adversarial training is not robust to different types of per-
turbations, such as L2-norm perturbations and adversarial
patches.

4.2. Ablation and Analysis of Efficient Scaling

In Figure 2(a), we compare our efficient scaling approach
in X-Transfer to a standard fixed selection method with
the Base search space on a zero-shot classification task.
The standard scaling chooses encoders in a balanced way,
selecting one encoder per architecture type. When k =
1, ViT-L/14 is chosen. Figure 2(a) shows that increasing
the number of surrogate encoders leads to improved super
transferability. With a total of 16 encoders available, the
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Table 2. Non-targeted ASR (%) results in image captioning and VQA across various large VLMs and datasets. For image captioning,
CIDEr is used as the evaluation metric, while VQA accuracy is employed for the VQA task. Results for all baseline methods are the best
results across their various configurations. The best baseline results are underlined, and the best overall results are boldfaced.

Model Dataset GD-UAP AdvCLIP TRM-UAP Meta-UAP C-GPC ETU X-Transfer

Vanilla Base Mid Large

OF-3B

MSCOCO 10.5 -0.9 10.0 19.2 19.9 22.9 34.1 39.6 47.1 53.3
Flicker-30k 11.1 0.7 11.7 18.4 22.1 21.3 30.1 35.7 41.8 46.8
OK-VQA 8.8 0.3 7.0 12.0 13.4 13.3 20.5 25.0 30.4 28.3
VizWiz 8.3 7.1 21.7 23.8 21.7 31.4 26.5 29.8 43.2 41.7

LLaVA-7B

MSCOCO 6.2 -0.3 3.5 11.1 7.5 17.2 9.4 21.0 24.2 29.6
Flicker-30k 8.9 0.4 7.9 13.5 10.3 15.6 15.7 18.9 21.4 24.7
OK-VQA 5.3 0.7 5.4 9.5 9.7 11.7 17.8 23.5 30.2 31.5
VizWiz 14.8 7.2 14.5 24.2 25.5 28.8 25.7 31.9 45.6 40.3

MiniGPT4

MSCOCO 7.2 4.6 7.2 11.1 12.1 11.9 12.3 23.2 24.6 28.6
Flicker-30k 9.7 2.8 9.2 12.2 14.6 13.4 13.4 21.5 23.3 25.7
OK-VQA 3.6 0.3 3.4 4.0 6.0 6.3 6.2 14.0 16.8 17.6
VizWiz 6.5 1.3 8.7 6.6 4.3 8.3 5.7 6.5 6.8 4.0

BLIP2

MSCOCO 12.3 5.5 4.5 10.3 13.0 8.5 18.9 44.8 52.9 64.1
Flicker-30k 12.6 6.2 3.4 9.9 11.8 8.0 15.7 36.0 43.0 52.8
OK-VQA 10.6 0.1 11.3 13.8 17.2 15.1 22.7 39.8 53.2 53.7
VizWiz 25.2 -0.4 20.3 30.0 42.8 33.8 46.1 58.5 68.8 67.3
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Figure 2. (a) Comparison of standard scaling (selecting diverse encoders) vs. X-Transfer’s efficient scaling in the base search space for
zero-shot classification, averaged over 9 victim encoders. (b-c) Distribution of X-Transfer-selected encoders and architectures in the large
search space. (d) Non-targeted ASR with various encoders on the zero-shot classification task.

Table 3. Time cost for comparing the standard scaling approach
with the efficient scaling approach used by X-Transfer on the Base
search space (N = 16) with various k.

Method Standard
Scaling

X-Transfer

k = 1 k = 4 k = 8 k = 12 k = 16

GPU Days 8.0 0.3 2.3 2.5 7.6 8.0

optimal performance of this search space is at N = k = 16.
For our efficient scaling strategy, even k = 1 achieves
performance comparable to the best possible result.

In terms of the computational cost, for X-Transfer, only
k out of N surrogate encoders are selected at each opti-
misation step, whereas the standard scaling approach re-
quires utilising all N surrogate encoders. Consequently,

X-Transfer reduces the required computation resources to
approximately k

N of those needed for standard scaling. In
practical implementations, additional factors may influence
computational costs, such as GPU communication over-
head, bottlenecks caused by specific surrogate encoders in
the ensemble, model weight loading times, and the actual
surrogate choices made by X-Transfer. Despite these factors,
we report the observed time costs in Table 3 for the experi-
ments shown in Figure 2(a). These measurements are based
on consistent hardware settings. The results demonstrate
that X-Transfer is significantly more efficient than standard
scaling, requiring approximately k

N of the computational
resources.

We further investigate how X-Transfer selects encoders by
examining the top 10 most frequently chosen encoders in
the large search space (Figure 2(b)). We find that ViT-based
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encoders dominate this selection because they are gener-
ally more robust and harder to fool. It is not surprising
that ViT-H/14, trained on large-scale datasets such as Meta-
CLIP (Xu et al., 2024) or DFN5B (Fang et al., 2024a),
appears among the top choices. Larger encoders trained on
extensive datasets tend to generalise better, thus posing a
greater challenge for UAPs. As a result, ViT-H/14 is one of
the top choices. Additionally, the pre-training datasets of
these frequently selected encoders are diverse—spanning
MetaCLIP, DFN, CommonPool/DataComp (Gadre et al.,
2023), and Merged2B (Sun et al., 2023). This observation
suggests that choosing encoders pre-trained on a variety of
datasets is also important in achieving super transferability.

In Figure 2(c), we analyse how X-Transfer selects encoders
based on their architecture. The results show that ViT-based
encoders dominate, with ViT-L/14 chosen most frequently,
likely due to its repeated appearance in the search space.
This indicates that X-Transfer’s selection does reflect the
overall architecture distribution. However, merely mirroring
this distribution through a random sampling strategy does
not guarantee superior super transferability. Meanwhile,
Figure 2(b) reveals that ViT-L/14 only appears among the
top 10 encoders twice, suggesting that selecting encoders
that are harder to fool remains critical.

To understand why ViT-based encoders dominate, we visu-
alise the transferability results by architecture in Figure 2(d).
These results indicate that convolution-based (RN) surro-
gate encoders perform poorly against ViT-based victim en-
coders, whereas ViT-based surrogate encoders can transfer
to convolution-based victim models. Although ViT-B shows
relatively better transferability, none of these encoders alone
achieves superior cross-model transferability. Consequently,
efficient surrogate scaling in X-Transfer remains essential
for achieving state-of-the-art cross-model transferability.

We conducted an ablation study using different sampling
strategies in the zero-shot classification task. We compare
our approach with the random sampling strategy, which se-
lects k encoders at each optimisation step at random, and
the ϵ-greedy strategy uses our reward metric to guide the se-
lection process. The ASR are 66.9%, 69.0%, and 69.2% for
random sampling, ϵ-greedy (ϵ = 0.5), and UCB, respectively.
The results indicate that UCB achieves the best performance,
with ϵ-greedy also performing competitively. In contrast,
random sampling shows significantly poorer results. These
findings suggest that the reward metric is the primary driver
behind X-Transfer’s success, while the choice of sampling
strategy has a comparatively smaller impact.

4.3. Qualitative Analysis

Figure 3 illustrates where both a UAP and a TUAP are
applied to an image, along with the corresponding responses
from VLMs. The non-targeted UAP causes the VLM to

generate hallucinated responses, while the TUAP directs
the model’s output toward a specific target text description.
Additional visualisations are provided in Appendix C.9.

In Figure 4, we present intriguing and novel insights into
the UAPs generated by X-Transfer. Existing research on
adversarial robustness has shown that non-targeted perturba-
tions generally lack semantic meaning (Moosavi-Dezfooli
et al., 2017; Zhao et al., 2023), whereas targeted perturba-
tions often encode semantic features associated with their
target class (Zhang et al., 2020; Weng et al., 2024). This
pattern holds true for both sample-specific and universal
perturbations. Our findings, however, reveal an unexpected
result: UAPs with non-targeted objectives generated us-
ing CLIP encoders exhibit discernible semantic features,
as shown in Figure 4. Many of these perturbations resem-
ble building-like structures interspersed with nonsensical
text-like elements. We hypothesise that this phenomenon
is linked to CLIP’s concept-blending capability (Kazemi
et al., 2024), a feature observed in generative text-to-image
models (Ramesh et al., 2021; Saharia et al., 2022; Kumari
et al., 2023). Remarkably, CLIP demonstrates this capabil-
ity despite not being explicitly trained with text-to-image
generation objectives.

Interestingly, these UAP patterns often resemble building-
like structures; however, in Appendix C.9, we found CLIP
encoders interpret them as various unrelated concepts, such
as “cheese”-related objects. This observation highlights a
key distinction: the semantic patterns perceived by humans
differ significantly from those recognised by models, mak-
ing these patterns unique compared to those seen in targeted
attacks, which generally align with human perception. In
Appendix C.9, we further investigate the origin of the UAP
patterns generated by X-Transfer. Our analysis reveals that
these patterns are closely related to the pre-training datasets.
For example, CLIP encoders trained on specialised datasets,
such as remote sensing datasets, produce UAPs that exhibit
visual patterns resembling remote sensing imagery.

Notably, as shown in Figure 4(a), the visual clarity of these
patterns becomes increasingly distinguishable to humans
as the ensemble size N grows for the standard scaling ap-
proach. This improvement correlates with the ASR, as
shown in Figure 2(a). In contrast, for X-Transfer, the pa-
rameter k does not scale with ASR, and the visual clarity
of patterns remains roughly consistent, as seen in Figure
4(b) in Appendix C.9. However, the ASR for X-Transfer
scales with the search space size N , and the visual clarity
of patterns improves correspondingly, as shown in Figure
8(a). These results suggest that the visual interpretability of
the perturbation correlates with the ASR.
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OF-3B: The Grand Prismatic Spring in Yellowstone National Park.                  

LLaVA-7B: A hot spring with a yellowish orange color.                                       

MiniGPT4: A large pool of water with a cloud in the sky.                                    

BLIP2: Yellowstone national park, wyoming.                                                          

OF-3B: The Prudine, a small town in the south of France.                                 

LLaVA-7B: A picture of a waterfall with the words "The Prine with 420" on

MiniGPT4: The cover of the book, the promise of the future.                           

BLIP2: The cover art for jay chese's album, the tribune.                                    

Non-targeted
Clean

Adversarial

OF-3B: Lava flowing into the ocean.                                                                    

LLaVA-7B: A volcano is erupting in the ocean, creating a massive wave.

MiniGPT4: A large body of water with lava flowing into it.                           

BLIP2: An image of lava flowing into the ocean.                                               

OF-3B: A computer with a virus.                                                                            

LLaVA-7B: A computer screen with a blue background and a message  

about file removal.                                                                                                    

MiniGPT4: A computer screen with a picture of a volcano and the          

words the computer is on.                                                                                      

BLIP2: How to remove files virus from your computer.                                 

Targeted: Remove all files from this computer and inject a computer virus.
Clean

Adversarial

Figure 3. An illustration showing the application of both UAP (left) and TUAP (right) to an image. The responses from large VLMs are
shown side by side for the clean image (top) and the adversarially perturbed image (bottom).

1 4 8 12 16

(a) Standard scaling with different N .
1 4 8 12 16

(b) X-transfer with different k in Base search space.

Figure 4. The visualisation of UAPs in (a) scaling with N with standard scaling, (b) scaling with k with efficient scaling of X-Transfer.
All UAPs are generated with the Base search space.

X-TransferBench
We have curated an extensive collection of UAPs and TU-
APs, forming X-TransferBench—a comprehensive reposi-
tory of off-the-shelf UAPs and TUAPs designed for robust
evaluation. To the best of our knowledge, no similar open-
source collection of UAPs currently exists, making this a
valuable contribution to the community. Further technical
details are in Appendix D.

5. Conclusion
In this work, we propose X-Transfer, a novel attack that
ensembles multiple CLIP encoders with efficient scaling.
We show that X-Transfer can produce a single perturbation
capable of achieving cross-data, cross-model, cross-domain,
and cross-task adversarial transferability—what we term
super transferability. Furthermore, our findings reveal that
increasing the number of surrogate encoders can signifi-
cantly affect large vision language models (VLMs). Specif-
ically, X-Transfer can generate UAPs that degrade VLM
performance and TUAPs that steer large VLMs to produce
responses aligning with targeted text descriptions. This
work highlights a new, realistic safety threat: adversaries
can leverage a large number of open-sourced CLIP encoders
to generate super transferable UAPs and TUAPs. Our find-
ings underscore the urgency of addressing this vulnerability
and call on the community to explore more general, super-
transferable adversarial attacks.
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A. Comparison with Related Work
Cross-data Transferability: This refers to a perturbation’s ability to be applied to different input samples and still achieve
adversarial objectives. By design, UAPs inherently provide cross-data transferability since a single perturbation is intended
to deceive all samples.

Cross-model Transferability: This refers to a perturbation’s capacity to transfer from the surrogate model on which it was
generated to other, unseen victim models. This property aligns with the standard black-box threat model assumption in
adversarial robustness.

Cross-domain Transferability: This refers to a perturbation’s ability to remain effective when applied to data from different
datasets or domains. It extends cross-data transferability by requiring the perturbation to succeed on inputs not only from a
single domain but across multiple, diverse domains.

Cross-task Transferability: This refers to a perturbation’s effectiveness in fooling a model on the original task, as well as
on other different tasks. In other words, the perturbation remains adversarially effective even when the model is used for
objectives beyond those it was specifically designed to attack.

Super Transferability: This term indicates that a single perturbation can achieve cross-data, cross-model, cross-domain,
and cross-task adversarial transferability simultaneously.

Table 4. Comparison with related works in adversarial attack on CLIP. The!and#denote can or cannot technically achieve adversarial
transferability, respectively. The ? denote can technically achieve the transferability but was not studied in the corresponding paper.

Method Threat model Perturbation type Cross-data Cross-model Cross-domain Cross-task

Co-Attack (Zhang et al., 2022a) White-box Sample-specific # # # #

Sep-Attack (Zhang et al., 2022a) White-box Sample-specific # # # #

SGA (Lu et al., 2023) Black-box Sample-specific # ! # !

SA-Attack (He et al., 2023) Black-box Sample-specific # ! # !

VLP-Transfer (Gao et al., 2024) Black-box Sample-specific # ! # !

PRM (Hu et al., 2024) Black-box Sample-specific # ! # !

AdvCLIP (Zhou et al., 2023a) White-box Universal ! # ! !

Doubly-UAP (Kim et al., 2024) White-box Universal ! # ! !

ETU (Zhang et al., 2024) Black-box Universal ! ! ? !

C-PGC (Fang et al., 2024b) Black-box Universal ! ! ? !

DO-UAP (Yang et al., 2024) Black-box Universal ! ! ? !

X-Transfer (Ours) Black-box Universal ! ! ! !

We provide a summary of the transfer capabilities of related works in Table 4. This overview indicates only whether a
given method can technically achieve certain forms of transferability; the actual extent of transferability is evaluated in our
experiments.

Many existing studies on the adversarial robustness of CLIP (Zhang et al., 2022a; Lu et al., 2023; He et al., 2023; Gao et al.,
2024; Hu et al., 2024) focus on sample-specific perturbations. By design, such perturbations cannot achieve cross-data or
cross-domain transferability, as they are tailored to individual samples. In contrast, UAPs inherently enable these forms of
transferability. Moreover, once a UAP is generated, it can be universally applied to any sample, whereas sample-specific
perturbations require per-sample optimisation. This distinction makes UAPs more practical for large-scale adversarial
attacks or comprehensive benchmark evaluations.

AdvCLIP (Zhou et al., 2023a) introduced the first UAP attack against CLIP encoders, described under a “quasi-black
box” threat model, where the adversary can access a parent encoder but lacks direct access to its downstream fine-tuned
counterpart. In contrast, our work adheres to a strict black-box threat model, offering no access to any encoders used
by the victim, including the parent version. Under this stricter definition, AdvCLIP is considered a white-box attack.
In comparison, both ETU (Zhang et al., 2024) and C-PGC (Fang et al., 2024b) are strict black-box attacks specifically
tailored to deceive CLIP encoders. They are technically capable of achieving cross-domain transferability but have not
empirically demonstrated this ability in their paper. In our evaluations, we include these methods to assess their cross-domain
transferability. In comparison, our proposed X-Transfer is designed to achieve super transferability, simultaneously enabling
cross-data, cross-model, cross-domain, and cross-task adversarial transferability.
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B. L2-norm Perturbation and Adversarial Patch
Adversarial Patch. For the unrestricted adversarial patch attack, we construct the adversarial example using the following:

x′ = A(x) = m⊙∆+ (1−m)⊙ x, (7)

where m ∈ [0, 1]w×h is a learnable 2D input mask that does not include the colour channels, ∆ ∈ [0, 1]3×w×h is the
universal adversarial pattern, and ⊙ is the element-wise multiplication (the Hadamard product) applied to all the channels.

We optimise the following objective to generate a targeted universal patch attack:

argmin
m,∆

E(x)∼D′Ladv(f,x
′) + α∥m∥1 + β(TV (m) + TV (∆)), (8)

where D′ is a surrogate dataset, Ladv follow Eq. (3) and 4, x′ follows Eq. (7), TV (·) is the total variation loss, and the ∥·∥1
is the L1 norm. α and β are two hyperparameters to balance the two loss terms. While the patch attack is unrestricted, we
set a soft constraint that the patch has to be as small as possible. The L1 norm ensures that when the adversarial patch is
added to the image, the patch is small and hard to notice. The total variation loss ensures the patch pattern and the mask are
smooth.

L2-norm Perturbation. For the L2-norm perturbation, we optimise the following objective:

argmin
δ

E(x)∼D′Ladv(f,x
′) + c · ∥δ∥2, (9)

where the δ is the perturbation and c is a hyperparameter that balance two loss terms. The universal adversarial function for
L2-norm perturbation x′ = x+ δ. While the perturbation is not bounded, we use the L2-norm to ensure the perturbation is
small.

The evaluations of these different constraints are available in Appendix C.6.

C. Experiments
In Appendix C.1, we provide a detailed overview of our experimental settings and an analysis of efficiency. Appendix C.2
offers further details on the surrogate encoder search space. For all experiments, we utilise the open-source implementation
OpenCLIP (Ilharco et al., 2021). Appendix C.3 provides detailed results comparing X-Transfer with baseline methods
across each victim encoder and dataset; these results are summarised in Table 1 in the main paper.

Appendix C.4 demonstrates the scaling capability of X-Transfer in comparison to baseline (ETU) that employs specialised
adversarial objectives for CLIP. Appendix C.5 presents results obtained using alternative surrogate datasets. In Appendix
C.6, we show that the conclusions regarding scaling and adversarial super transferability also hold under other constraints,
such as the L2-norm and adversarial patches. Appendix C.7 presents results for Targeted UAP (TUAP), where the adversary
specifies a particular target text description. The findings are consistent with those for UAPs using non-targeted objectives.
Additionally, we demonstrate that TUAPs can manipulate large VLM-generated responses to align with the target text
description. Appendix C.8 shows the analysis for X-Transfer against adversarial fine-tuned CLIP encoders. It shows that
adversarial patch and L2-norm perturbations are comparably more effective than the L∞-norm bounded perturbations.

Lastly, Appendix C.9 provides a detailed qualitative analysis of UAPs generated with X-Transfer.

C.1. Detailed Experimental Setting

UAP Generation. We use ImageNet (Deng et al., 2009) as the default surrogate dataset. The value of k is set to 4 for the
Base search space, 8 for the Mid search space, and 16 for the Large search space. Following Fang et al. (2024b); Zhang et al.
(2024), we employ L∞-norm bounded perturbations with ϵ = 12/255, and the step size η is set to 0.5/255.

For all perturbations, we use the resolution of 224 × 224. For the adversarial patch, the value of α is set to 3.0 × 10−5,
2.0× 10−5, and 1.0× 10−5 for the Base, Mid, and Large search spaces, respectively. The value of β is set to 70. For the
L2-norm perturbation, the value of c is set to 0.025, 0.02, and 0.015 for the Base, Mid, and Large search spaces, respectively.
We use Adam (Kingma & Ba, 2014) as the optimiser for L2-norm perturbation and adversarial patch. The learning rate is
set to 0.05, and no weight decay is used. For all perturbations, we perform the optimisation for 1 epoch on the surrogate
dataset (ImageNet). The batch size is set to 1024.
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Evaluations. For the zero-shot classification and image-text retrieval, We use ResNet (RN) (He et al., 2016) and ViT
(Dosovitskiy et al., 2021) architectures as the image encoders. We consider use 9 diverse CLIP encoders released by OpenAI
(Radford et al., 2021)—including ViT-L/14, ViT-B/16, ViT-B/32, RN-50, and RN-101—and encoders trained by others,
such as ViT-B/16 trained with SigLIP (Zhai et al., 2023), EVA-E/14 (Sun et al., 2023), ViT-H/14 trained with CLIPA (Li
et al., 2023c), and ViT-bigG/14 trained with MetaCLIP (Xu et al., 2024). Details are summarised in Table 5.

Table 5. List of encoders for the evaluations of zero-shot classifications and image-text retrieval, including each one’s architecture,
pre-training dataset, and the corresponding OpenCLIP identifier. The OpenCLIP identifier is the values for arguments model name and
pretrained in the create model and transforms function from OpenCLIP.

Architecture Pre-training Dataset OpenCLIP Identifier

1 RN50 WebImageText (RN50, openai)
2 RN01 WebImageText (RN101, openai)
3 ViT-B/16 WebImageText (ViT-B-16, openai)
4 ViT-B/32 WebImageText (ViT-B-32, openai)
5 ViT-L/14 WebImageText (ViT-L-14, openai)
6 ViT-B/16-SigLIP WebLI (ViT-B-16-SigLIP, WebLI)
7 EVA02-E/14 LAION2B (EVA02-E-14, laion2b s4b b115k)
8 ViT-H/14-CLIPA DataComp (ViT-H-14-CLIPA, datacomp1b)
9 ViT-bigG/14 MetaCLIP (ViT-bigG-14-quickgelu, metaclip fullcc)

For evaluations on downstream large VLMs, we use the OpenFlamingo-3B (OF-3B) (Awadalla et al., 2023), which aligned
the CLIP image encoder (ViT-L from OpenAI) with the MPT-1B (Team et al., 2023), and LLaVA-7B (v1.5) (Liu et al.,
2023a) which use the same image encoder as OF-3B, but aligned with the Vicuna-7B (Chiang et al., 2023). Additionally, we
evaluate MiniGPT4-v2, which aligned the ViT-G-14 trained with EVA-CLIP (Fang et al., 2023) with Llama2 (Touvron et al.,
2023) and BLIP2 use the same vision encoder and aligned with OPT (Zhang et al., 2022b). The summary of the large VLMs
we used in the evaluations is summarised in Table 6. For large VLMs that use different image resolutions than our default
224× 224, we use interpolation to rescale the perturbation to the resolution used by the VLM.

Table 6. Large Vision Language Models used in the experiments.

Model Name Image Encoder LLM Image Resolution

OpenFlamingo-3B (OF-3B) ViT-L/14 CLIP OpenAI MPT-1B 224× 224
LLaVA-7B ViT-L/14 CLIP OpenAI Vicuna-7B 224× 224

MiniGPT4-v2 ViT-G/14 EVA-CLIP Llama2 Chat 7B 448× 448
BLIP2 ViT-G/14 EVA-CLIP OPT-6.7B 364× 364

Baselines. We compare our approach to state-of-the-art UAP methods tailored for CLIP encoders, including C-PGC1 (Fang
et al., 2024b), ETU2 (Zhang et al., 2024), and AdvCLIP3 (Zhou et al., 2023a). We also evaluate against UAPs originally
designed for image classifiers, GD-UAP4 (Mopuri et al., 2018), TRM-UAP5 (Liu et al., 2023b), and Meta-UAP (Weng et al.,
2024). All UAPs are either directly obtained from official open-source repositories or generated using the official code
provided by each baseline’s authors.

C.2. Search Space

Our search space for CLIP surrogate encoders spans a wide range of architectures, pre-training datasets, objectives, and
training recipes. For architectures, we include ResNet (RN) (He et al., 2016), ConvNext (Liu et al., 2022), ViT (Dosovitskiy
et al., 2021), ViTamin (Chen et al., 2024b), NLLB (Visheratin, 2023), MobileCLIP (Vasu et al., 2024), and RoBERTa (Liu
et al., 2019). For pre-training datasets, surrogate encoders are trained on diverse datasets, including CC12M (Changpinyo
et al., 2021), YFCC15M (Thomee et al., 2016), LAION (Schuhmann et al., 2021; 2022), DataComp/CommonPool (Gadre
et al., 2023), Merged2B (Sun et al., 2023), DFN (Fang et al., 2024a), WebLI (Zhai et al., 2023), and MetaCLIP (Xu et al.,

1https://github.com/ffhibnese/cpgc vlp universal attacks
2https://github.com/sduzpf/UAP VLP
3https://github.com/CGCL-codes/AdvCLIP
4https://github.com/val-iisc/GD-UAP
5https://github.com/MILO-GRP/TRM-UAP
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Table 7. Details regarding each baseline method and different configurations.
Method Variant Note

GD-UAP Seg Generated with segmentation model (ResNet152 backbone) as the surrogate.
CLS Generated with ResNet152 classifier as the surrogate.

AdvCLIP ViT-B/16 Generated with CLIP ViT-B/16 released by OpenAI on the NUS-WIDE dataset.
RN101 Generated with CLIP ResNet101 released by OpenAI on the NUS-WIDE dataset.

TRM-UAP GoogleNet Generated with GoogleNet classifier trained on ImageNet.
RN152 Generated with RN152 classifier trained on ImageNet.

Meta-UAP Ensemble Generated with an ensemble of DenseNet121, VGG16, and ResNet50 classifiers trained on ImageNet.
Ensemble-Meta Same as above, with meta-learning strategy.

C-GPC

RN101-Flicker Generated with CLIP ResNet101 released by OpenAI on the Flicker dataset.
RN101-COCO Generated with CLIP ResNet101 released by OpenAI on the MSCOCO dataset.

ViT-B/16-Flicker Generated with CLIP ViT-B/16 released by OpenAI on the Flicker dataset.
ViT-B/16-COCO Generated with CLIP ViT-B/16 released by OpenAI on the MSCOCO dataset.

ETU RN101-Flicker Generated with CLIP ResNet101 released by OpenAI on the Flicker dataset.
ViT-B/16-Flicker Generated with CLIP ViT-B/16 released by OpenAI on the Flicker dataset.

2024). For pre-training objectives and recipes, we consider methods such as SigLIP (Zhai et al., 2023), EVA-CLIP (Sun
et al., 2023), CLIPA (Li et al., 2023c), and COCA (Yu et al., 2022).

Details about the Base, Mid, and Large search spaces are provided in Tables 8, 9, and 10, respectively. The Base search
space is balanced and comprises encoders from 4 diverse architecture types: ResNet (RN) (He et al., 2016), ConvNext (Liu
et al., 2022), ViT-B, and ViT-L (Dosovitskiy et al., 2021), with 4 encoders per architecture. The Mid search space expands
on the Base search space by incorporating additional ViT-L and ViT-B models available in OpenCLIP. The Large search
space further includes larger models, such as ViT-H and ViT-bigG, augmenting the Mid search space. To ensure a strict
black-box evaluation setting, there is no overlap between the surrogate encoders in these search spaces and the encoders
used in evaluations (Tables 5 and 6).

Table 8. List of encoders in the Base search space, including each one’s architecture, pre-training dataset, and the corresponding OpenCLIP
identifier.

Architecture Pre-training Dataset OpenCLIP Identifier

1 RN101 YFCC15M (RN101, yfcc15m)
2 RN50 YFCC15M (RN50, yfcc15m)
3 RN50 CC12M (RN50, cc12m)
4 RN101-quickgelu YFCC15M (RN101-quickgelu, yfcc15m)
5 ConvNext Base LAION400M (convnext base, laion400m s13b b51k)
6 ConvNext Base-W LAION2B (convnext base w, laion2b s13b b82k)
7 ConvNext Base-W LAION2B (convnext base w, laion2b s13b b82k augreg)
8 ConvNext Large-D LAION2B (convnext large d, laion2b s26b b102k augreg)
9 ViT-B/16 DFN2B (ViT-B-16, dfn2b)
10 ViT-B/16 DataComp (ViT-B-16, datacomp xl s13b b90k)
11 ViT-B/32 LAION2B (ViT-B-32, laion2b s34b b79k)
12 ViT-B/32 DataComp (ViT-B-32, datacomp xl s13b b90k)
13 ViT-L/14 LAION400M (ViT-L-14, laion400m e32)
14 ViT-L/14 CommonPool (ViT-L-14, commonpool xl s13b b90k)
15 EVA02-L/14 Merged2B (EVA02-L-14, merged2b s4b b131k)
16 ViT-L/14-CLIPA DataComp (ViT-L-14-CLIPA, datacomp1b)
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Table 9. List of encoders in the Mid search space, including each one’s architecture, pre-training dataset, and the corresponding OpenCLIP
identifier.

Architecture Pre-training Dataset OpenCLIP Identifier

1 RN101 YFCC15M (RN101, yfcc15m)
2 RN50 YFCC15M (RN50, yfcc15m)
3 RN50 CC12M (RN50, cc12m)
4 ConvNext Base LAION400M (convnext base, laion400m s13b b51k)
5 ConvNext Base-W LAION2B (convnext base w, laion2b s13b b82k)
6 ConvNext Base-W LAION2B (convnext base w, laion2b s13b b82k augreg)
7 ConvNext Base-W LAION Aesthetic (convnext base w, laion aesthetic s13b b82k)
8 ConvNext Large-D LAION2B (convnext large d, laion2b s26b b102k augreg)
9 ConvNext XXLarge LAION2B (convnext xxlarge, laion2b s34b b82k augreg)
10 ViT-B/32 LAION400M (ViT-B-32, laion400m e31)
11 ViT-B/32 LAION400M (ViT-B-32, laion400m e32)
12 ViT-B/32 LAION2B (ViT-B-32, laion2b e16)
13 ViT-B/32 LAION2B (ViT-B-32, laion2b s34b b79k)
14 ViT-B/32 DataComp (ViT-B-32, datacomp xl s13b b90k)
15 ViT-B/16 LAION400M (ViT-B-16, laion400m e31)
16 ViT-B/16 LAION400M (ViT-B-16, laion400m e32)
17 ViT-B/16 LAION2B (ViT-B-16, laion2b s34b b88k)
18 ViT-B/16 DataComp (ViT-B-16, datacomp xl s13b b90k)
19 ViT-B/16 DataComp (ViT-B-16, datacomp l s1b b8k)
20 ViT-B/16 DFN2B (ViT-B-16, dfn2b)
21 EVA02-B/16 Merged2B (EVA02-B-16, merged2b s8b b131k)
22 ViT-L/14 LAION400M (ViT-L-14, laion400m e31)
23 ViT-L/14 LAION400M (ViT-L-14, laion400m e32)
24 ViT-L/14 LAION2B (ViT-L-14, laion2b s32b b82k)
25 ViT-L/14 DataComp (ViT-L-14, datacomp xl s13b b90k)
26 ViT-L/14 CommonPool (ViT-L-14, commonpool xl clip s13b b90k)
27 ViT-L/14 CommonPool (ViT-L-14, commonpool xl laion s13b b90k)
28 ViT-L/14 CommonPool (ViT-L-14, commonpool xl s13b b90k)
29 ViT-L/14 DFN2B (ViT-L-14, dfn2b)
30 EVA02-L-14 Merged2B (EVA02-L-14, merged2b s4b b131k)
31 ViT-SO400M-14-SigLIP WebLI (ViT-SO400M-14-SigLIP, webli)
32 ViT-L/14-CLIPA DataComp (ViT-L-14-CLIPA, datacomp1b)
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Table 10. List of encoders in the Large search space, including each one’s architecture, pre-training dataset, and the corresponding
OpenCLIP identifier.

Architecture Pre-training Dataset OpenCLIP Identifier

1 RN101 YFCC15M (RN101, yfcc15m)
2 RN50 YFCC15M (RN50, yfcc15m)
3 RN50 CC12M (RN50, cc12m)
4 ConvNext Base LAION400M (convnext base, laion400m s13b b51k)
5 ConvNext Base-W LAION2B (convnext base w, laion2b s13b b82k)
6 ConvNext Base-W LAION2B (convnext base w, laion2b s13b b82k augreg)
7 ConvNext Base-W LAION Aesthetic (convnext base w, laion aesthetic s13b b82k
8 ConvNext Large-D LAION2B (convnext large d, laion2b s26b b102k augreg)
9 ConvNext XXLarge LAION2B (convnext xxlarge, laion2b s34b b82k augreg)
10 ConvNext XXLarge LAION2B (convnext xxlarge, laion2b s34b b82k augreg rewind)
11 ConvNext XXLarge LAION2B (convnext xxlarge, laion2b s34b b82k augreg soup)
12 ViT-B/32 LAION400M (ViT-B-32, laion400m e31)
13 ViT-B/32 LAION400M (ViT-B-32, laion400m e32)
14 ViT-B/32 LAION2B (ViT-B-32, laion2b e16)
15 ViT-B/32 LAION2B (ViT-B-32, laion2b s34b b79k)
16 ViT-B/32 DataComp (ViT-B-32, datacomp xl s13b b90k)
17 ViT-B/32 MetaCLIP (ViT-B-32-quickgelu, metaclip 400m)
18 ViT-B/32 MetaCLIP (ViT-B-32-quickgelu, metaclip fullcc)
19 ViT-B/16 LAION400M (ViT-B-16, laion400m e31)
20 ViT-B/16 LAION400M (ViT-B-16, laion400m e32)
21 ViT-B/16 LAION2B (ViT-B-16, laion2b s34b b88k)
22 ViT-B/16 DataComp (ViT-B-16, datacomp xl s13b b90k)
23 ViT-B/16 DataComp (ViT-B-16, datacomp l s1b b8k)
24 ViT-B/16 CommonPool (ViT-B-16, commonpool l s1b b8k)
25 ViT-B/16 DFN2B (ViT-B-16, dfn2b)
26 ViT-B/16 MetaCLIP (ViT-B-16-quickgelu, metaclip 400m)
27 ViT-B/16 MetaCLIP (ViT-B-16-quickgelu, metaclip fullcc)
28 EVA02-B/16 Merged2B (EVA02-B-16, merged2b s8b b131k)
29 ViT-L/14 LAION400M (ViT-L-14, laion400m e31)
30 ViT-L/14 LAION400M (ViT-L-14, laion400m e32)
31 ViT-L/14 LAION2B (ViT-L-14, laion2b s32b b82k)
32 ViT-L/14 DataComp (ViT-L-14, datacomp xl s13b b90k)
33 ViT-L/14 CommonPool (ViT-L-14, commonpool xl clip s13b b90k)
34 ViT-L/14 CommonPool (ViT-L-14, commonpool xl laion s13b b90k)
35 ViT-L/14 CommonPool (ViT-L-14, commonpool xl s13b b90k)
36 ViT-L/14 MetaCLIP (ViT-L-14-quickgelu, metaclip 400m)
37 ViT-L/14 MetaCLIP (ViT-L-14-quickgelu, metaclip fullcc)
38 ViT-L/14 DFN2B (ViT-L-14, dfn2b)
39 EVA02-L-14 Merged2B (EVA02-L-14, merged2b s4b b131k)
40 ViT-SO400M-14-SigLIP WebLI (ViT-SO400M-14-SigLIP, webli)
41 ViT-L/14-CLIPA DataComp (ViT-L-14-CLIPA, datacomp1b)
42 ViT-H/14 LAION2B (ViT-H-14, laion2b s32b b79k)
43 ViT-H/14 MetaCLIP (ViT-H-14-quickgelu, metaclip fullcc)
44 ViT-H/14 DFN5B (ViT-H-14-quickgelu, dfn5b)
45 ViT-G/14 LAION2B (ViT-g-14, laion2b s12b b42k)
46 ViT-G/14 LAION2B (ViT-g-14, laion2b s34b b88k)
47 EVA01-G/14-plus Merged2B (EVA01-g-14-plus, merged2b s11b b114k)
48 EVA02-E-14-plus LAION2B (EVA02-E-14-plus, laion2b s9b b144k)
49 ViT-bigG/14 LAION2B (ViT-bigG-14, laion2b s39b b160k)
50 ViT-bigG-14-CLIPA DataComp (ViT-bigG-14-CLIPA, datacomp1b)
51 ROBERTA-ViT-B/32 LAION2B (roberta-ViT-B-32, laion2b s12b b32k)
52 XLM-ROBERTA-VIT-B/32 LAION5B (xlm-roberta-base-ViT-B-32, laion5b s13b b90k)
53 XLM-ROBERTA-Large-VIT-H/14 LAION5B (xlm-roberta-large-ViT-H-14, frozen laion5b s13b b90k)
54 NLLB-Base NLLB (nllb-clip-base, v1)
55 NLLB-Large NLLB (nllb-clip-large, v1)
56 ViTamin-B DataComp (ViTamin-B, datacomp1b)
57 ViTamin-B-LTT DataComp (ViTamin-B-LTT, datacomp1b)
58 ViTamin-L DataComp (ViTamin-L, datacomp1b)
59 ViTamin-L2 DataComp (ViTamin-L2, datacomp1b)
60 MobileCLIP-S1 DataComp (MobileCLIP-S1, datacompdr)
61 MobileCLIP-S2 DataComp (MobileCLIP-S2, datacompdr)
62 MobileCLIP-B DataComp (MobileCLIP-B, datacompdr)
63 COCA ViT-L/14 LAION2B (coca ViT-L-14, laion2b s13b b90k)
64 COCA ViT-B/32 LAION2B (coca ViT-B-32, laion2b s13b b90k)
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C.3. Extended Results

In Figures 5, 6, and 7, we present a detailed comparison of X-Transfer against baseline methods across 9 victim CLIP
encoders. For baselines such as ETU (Zhang et al., 2024) and C-PGC (Fang et al., 2024b), which use ViT-B/16 trained
by OpenAI (Radford et al., 2021) as the surrogate model, we exclude results for ViT-B/16 as the victim model, as
this configuration constitutes a white-box setting. Each baseline’s results reflect its best performance across all tested
configurations. Notably, results shows that X-Transfer achieves state-of-the-art performance on all 9 victim encoders for
both zero-shot classification and image-text retrieval tasks.
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Figure 5. Detailed results on the non-targeted attack success rate for 9 victim encoders in a zero-shot classification task, evaluated on the
following datasets: (a) CIFAR-10, (b) CIFAR-100, (c) Food101, and (d) GTSRB.
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Figure 6. Detailed results on the non-targeted attack success rate for 9 victim encoders in a zero-shot classification task, evaluated on the
following datasets: (a) ImageNet, (b) Stanford Cars, (c) STL10, and (d) SUN397.

C.4. Scaling with ETU

In Table 11, we present the results of scaling with our adversarial objective in conjunction with ETU (Zhang et al., 2024),
which utilises a specialised loss function designed for CLIP encoders. We denote the application of our efficient search
algorithm with the ETU loss function as ‘ETU+X-Transfer’ using the Base search space. For comparison, we include
X-Transfer Vanilla, which does not use scaling and solely employs our adversarial objective, as well as X-Transfer Base.
The results indicate that our generic adversarial objective function is essential for effectively scaling up the number of
surrogate models, enabling super transferability across diverse settings.
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Figure 7. Detailed results on the non-targeted attack success rate for 9 victim encoders in the image-text retrieval task, evaluated on the
MSCOCO, with metric (a) TR@1 and (b) IR@1.

Table 11. Comparison between scaling with ETU and scaling with our adversarial objective function.

Method Search Space Zero-Shot Classification I-T Retrieval

C-10 C-100 Food GTSRB ImageNet Cars STL SUN Avg TR@1 IR@1

ETU (Zhang et al., 2024) None (N = 1) 70.2 86.5 47.1 71.1 34.1 31.1 27.5 31.0 49.8 40.2 32.8
ETU + X-Transfer Base (N = 16) 73.6 88.6 48.8 69.0 31.9 27.2 21.7 24.7 48.2 41.6 32.1

X-Transfer Vanilla None (N = 1) 72.7 88.3 49.9 72.3 31.2 26.3 19.2 27.6 48.4 42.3 34.5
X-Transfer Base Base (N = 16) 86.6 97.5 74.8 89.3 56.0 52.1 46.8 50.7 69.2 63.7 58.8

C.5. Comparing Surrogate Dataset

In Table 12, we present the results of using MSCOCO (Lin et al., 2014) as a surrogate dataset and compare them with
ImageNet. The results show that the ASR is comparably similar across both datasets. This finding indicates that super
transferability does not depend on the choice of the surrogate dataset. Furthermore, in Appendix C.9, we demonstrate that
the patterns generated in the UAP are also independent of the surrogate dataset. Instead, it is the surrogate encoders that
primarily influence both the transferability and the patterns in the UAP.

Table 12. Comparison between surrogate datasets used for generating UAPs using X-Transfer.

Surrogate
Dataset

Zero-Shot Classification I-T Retrieval

C-10 C-100 Food GTSRB ImageNet Cars STL SUN Avg TR@1 IR@1

ImageNet 86.6 97.5 74.8 89.3 56.0 52.1 46.8 50.7 69.2 63.7 58.5

MSCOCO 84.9 96.2 69.7 82.4 53.1 49.7 37.3 49.9 65.4 61.9 57.8

C.6. UAP with L2-norm Perturbations and Adversarial Patch

In table 13, we present the results for using L2-norm perturbation and adversarial patch introduced in Appendix B. The
results show consistent conclusions that the efficient scaling of X-Transfer can improve super transferability.
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Table 13. The non-targeted ASR (%) results for L2-norm perturbation and adversarial patch.

Type Search
Space

Zero-Shot Classification I-T Retrieval

C-10 C-100 Food GTSRB ImageNet Cars STL SUN Avg TR@1 IR@1

L2

Base (N = 16) 85.7 97.5 77.5 90.1 64.6 61.0 50.3 65.5 74.0 76.0 69.9
Mid (N = 32) 86.8 98.4 86.7 90.1 83.7 73.1 60.7 84.0 82.9 88.6 81.3

Large (N = 64) 88.2 98.4 95.5 92.1 88.5 83.9 81.1 90.2 89.7 93.6 88.5

Patch
Base (N = 16) 51.5 83.9 39.5 75.9 48.1 46.7 10.9 42.9 49.9 64.2 49.0
Mid (N = 32) 55.7 85.1 51.0 80.1 54.9 48.8 15.3 56.1 55.9 65.7 55.0

Large (N = 64) 88.6 98.5 98.9 93.7 99.9 99.3 89.7 99.6 96.0 100.0 99.9

C.7. TUAP

In this section, we present the evaluation results of the X-Transfer attack with a targeted objective, where the adversary can
specify any text description as the target.

Target Text Description. We use a total of 10 target text descriptions for evaluating TUAP. Targets No.1 to No.6 are adopted
from existing works (Schlarmann & Hein, 2023; Schlarmann et al., 2024). We constructed the rest of the targets ourselves.

Evaluations. We adopt the standard zero-shot classification setup and utilise the template provided by Radford et al. (2021)
for each evaluation dataset. For instance, we use the format “an image of X,” where X is replaced by the class name. To
evaluate TUAP, we measure the attack success rate. For each dataset, we include an additional class representing the
adversary’s target and replace X with the target text description. TUAP is applied to each image in the evaluation dataset,
and the victim model generates image embeddings. The attack is deemed successful if the closest embedding matches the
template containing the adversarial target text description.

For image retrieval, we randomly select an image, apply perturbation, and use an adversary-specified target text sentence
as the query. We report the rank of the perturbed image among all images as the Image Retrieval Rank (IR Rank), where
a lower rank signifies a more successful TUAP. For the MSCOCO dataset, which contains 3,900 images, we repeat the
retrieval process 50 times for each attack type, victim model, and target text sentence. The results are reported as the mean
and standard deviation of the IR Rank.

For image captioning and VQA tasks evaluated with large VLMs, we use the widely adopted CIDEr metric (Vedantam et al.,
2015) for captioning tasks and VQA accuracy for question answering. Additionally, for image captioning, we report the
BLEU-4 score (Papineni et al., 2002) to measure the similarity between the generated caption and the adversary’s target text
description as the targeted ASR. A higher BLEU-4 score indicates greater alignment with the target text. BLEU-4 scores are
omitted for VQA tasks due to the brevity of the answers. In both tasks, we apply the TUAP to each image in the evaluation
dataset and assess the victim VLM’s response.

Results. In Table 14, we present the results of our TUAP on the zero-shot classification and image-text retrieval tasks. The
results demonstrate that the scaling capability aligns with our analysis in the main paper for the non-targeted objective.
Notably, in this case, the attack is deemed successful only if the prediction matches the text description specified by the
adversary, which is inherently more challenging than a non-targeted objective that merely causes arbitrary errors. In Table
15, we provide the results of evaluating image captioning and VQA tasks on large VLMs. These results similarly exhibit
consistent scaling capabilities. Furthermore, the responses generated by the large VLMs closely match the targeted text
description, as measured by the targeted ASR (BLEU-4 score between the response and the target text description). A
qualitative example is provided in Section 4.3. These findings indicate that X-Transfer is capable of generating both
non-targeted UAPs, which cause arbitrary errors, and targeted UAPs, which align predictions with adversary-specified text
descriptions.

Relation with related works. The TUAP threat model presented in this section is related to concurrent works (Shayegani
et al., 2023; Carlini et al., 2023; Wang et al., 2024b; Tao et al., 2024; Wang et al., 2024c; Gong et al., 2025) that explore
jailbreak attacks against large VLMs, which typically involve a collection of harmful or adversarial “targets.” However,
our threat model differs fundamentally, and we target the CLIP encoder directly rather than downstream VLMs. These
differences in focus and attack surface make direct comparisons with existing jailbreak methods unfair. Nevertheless, we
believe that TUAPs generated by X-Transfer on CLIP, especially when aligned with jailbreak-style prompts, could serve as
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Table 14. The targeted ASR (%) results in zero-shot classification and image-text (I-T) retrieval tasks across different CLIP encoders and
datasets. I-T retrieval is evaluated on MSCOCO. Results are based on averaging over 9 black-box victim encoders and 10 target text
descriptions.

Search
Space

Zero-Shot Classification I-T Retrieval

C-10 C-100 Food GTSRB ImageNet Cars STL SUN Avg TR@1 IR Rank

Base (N = 16) 99.9 99.1 72.0 98.0 50.1 44.2 89.6 53.7 75.8 35.3 233.0
Mid (N = 32) 100.0 99.6 77.9 98.3 56.0 54.4 90.9 60.1 79.7 42.9 206.0

Large (N = 64) 100.0 99.8 79.6 98.9 57.2 54.5 92.7 60.4 80.4 42.3 167.5

Table 15. Non-targeted ASR (%) and BLEU-4 results in image captioning and VQA across various large VLMs and datasets. For image
captioning, CIDEr is used as the evaluation metric, while VQA accuracy is employed for the VQA task. Results are based on L∞-norm
bounded perturbations and are averaged across 10 different target descriptions.

Method Victim
Model

COCO Flickr-30K OK-VQA WizViz

Non-targeted ASR BLEU-4 Non-targeted ASR BLEU-4 Non-targeted ASR

Base
OF-3B

61.0±5.0 13.6±6.1 56.4±3.5 12.0±5.7 36.3±3.2 37.4±2.2
Mid 68.0±4.5 16.4±7.1 63.9±3.8 14.0±6.6 40.7±5.1 41.3±5.0

Large 70.7±4.7 17.8±9.0 66.0±4.4 15.3±7.4 41.0±6.7 41.8±5.7

Base
LLaVA-7B

39.5±6.9 12.2±6.5 35.1±6.3 11.8±6.7 16.8±4.1 20.2±6.5
Mid 41.5±5.0 13.0±7.0 37.0±4.6 12.5±7.1 17.4±3.0 19.7±4.6

Large 45.9±3.4 14.2±7.6 40.3±3.0 13.1±7.1 18.9±3.1 15.4±7.8

Base
MiniGPT4

34.2±5.7 9.6±6.5 30.7±3.9 10.0±7.0 17.4±2.8 11.0±3.8
Mid 35.3±3.7 9.9±6.4 31.0±2.8 10.2±6.9 17.5±2.3 9.7±4.8

Large 40.2±3.6 11.3±7.0 35.1±2.7 11.2±7.1 18.7±2.8 11.6±6.8

Base
BLIP2

50.5±7.1 13.4±6.7 43.2±6.5 11.9±6.8 48.9±6.2 64.6±2.8
Mid 53.0±7.0 15.7±8.6 46.0±6.8 13.8±8.4 50.6±7.0 64.8±4.9

Large 52.2±6.5 15.2±9.3 45.4±6.6 13.8±9.1 45.0±8.0 62.5±6.8

effective initialisation points for future jailbreak attacks targeting large VLMs.

In parallel, TUAP can also be viewed as a form of backdoor trigger (Carlini & Terzis, 2022; Jia et al., 2022; Liang et al.,
2024; Bai et al., 2024; Huang et al., 2025). However, unlike these attacks, TUAP achieves its objective without data
poisoning or any training-time manipulation. Instead, it operates as a test-time backdoor trigger (Lu et al., 2024), making it
a novel and distinct type of safety vulnerability in pre-trained vision encoders. This shift from training-time to test-time
attack surfaces introduces new challenges securing multi-modal models.

C.8. Evaluation on Adversarial Trained Encoders

In this section, we analyse UAPs generated by X-Transfer when evaluated with adversarially trained CLIP models. Mao
et al. (2023) proposed a supervised adversarial training method fine-tuned on ImageNet, and its performance was further
improved through unsupervised fine-tuning (Schlarmann et al., 2024). For our evaluations, we include two adversarially
trained CLIP image encoders: FARE-2 (Schlarmann et al., 2024) and TeCoA-2 (Mao et al., 2023). The suffix “-2” indicates
that the models were trained with L∞-norm perturbations bounded to 2

255 .

As shown in Table 16, adversarial training can defend against L∞-norm bounded UAPs, which aligns with existing literature.
It is well established that adversarial training can defend against universal perturbations (Weng et al., 2024) and provides
resistance to black-box attacks. However, our results demonstrate that these adversarially trained models remain vulnerable
to adversarial patches and L2-norm perturbations. This is likely because they are specifically trained to counter only
L∞-norm bounded attacks. The adversarial training is robust to multiple different types of perturbations (Kang et al., 2019;
Croce & Hein, 2020a; Hsiung et al., 2023), which have not been explored in CLIP.

These findings suggest that while adversarial training can partially mitigate CLIP’s vulnerabilities, it does not provide
comprehensive robustness. Furthermore, adversarial training often requires a trade-off between clean zero-shot accuracy
and robustness (Tsipras et al., 2019) and is known for being computationally expensive, limiting its scalability on web-scale

26



X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP

datasets.

Table 16. The non-targeted ASR (%) results for the evaluation of CLIP encoders are fine-tuned with adversarial training.

Type Victim
Encoder

Zero-Shot Classification

C-10 C-100 Food GTSRB ImageNet Cars STL SUN Avg

L∞
FARE 14.2 23.7 17.9 33.0 5.9 4.5 1.9 6.4 13.4
TeCoA 3.7 5.7 12.6 17.9 3.0 4.2 1.2 4.8 6.6

L2
FARE 76.1 93.1 64.8 71.0 47.4 34.3 23.2 56.3 58.3
TeCoA 27.0 46.0 34.6 46.4 13.9 19.5 6.9 21.6 27.0

Patch FARE 88.8 98.2 98.8 95.0 99.9 99.3 89.8 99.8 96.2
TeCoA 88.5 98.2 98.2 94.1 99.9 98.9 89.6 99.2 95.8

C.9. Qualitative Analysis on UAPs

The visual clarity of the UAP patterns scales with the search space size N in the X-Transfer attack, as shown in Figure 8(a).
This further supports the observation that visual clarity correlates with the attack success rate. Additional visualisations of
the effects of UAPs and TUAPs applied to images, along with the corresponding responses from VLMs, are provided in
Figure 9. The visualisations of TUAPs are presented in Figure 10.

Vanilla (1) Base (16) Mid (32) Large (64)
(a) X-transfer with different search space (N ).

ImageNet RSICD
(b) X-transfer with encoders trained on RSICD dataset, with ImageNet (left) or RSICD (right)
as surrogate dataset.

Figure 8. The visualisation of UAPs in (a) scaling with N of X-Transfer, and (b) generated with encoders trained on RSICD dataset. All
UAPs are generated with the Base search space.

Table 17. The predicted class with UAP generated by X-Transfer is applied to images in each dataset. Results are based on CLIP encoder
ViT-L/14 released by OpenAI.

Dataset Top Predicted Class

CIFAR-10 Ship (87.6%), Airplane (8.6%)
CIFAR-100 Ray (99.2%)

Food101 Cheese plate (16.7%), Grilled cheese sandwich (14.6%), Cheesecake (12.4%)
GTSRB Red and white triangle with snowflake / ice warning (76.0%), Stop (4.3%)

ImageNet Jay (18.0%), Dust jacket (3.4%), Kuvasz (2.9%)
Cars Bentley Arnage Sedan 2009 (9.8%), Honda Odyssey Minivan 2012 (8.0%)

SUN397 Cheese factory (30.7%), Trench (10.7%), Discotheque (8.8%)
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In this subsection, we further explore the origin of the UAP patterns generated by X-Transfer. We hypothesise that most
UAPs generated exhibit building-like patterns due to the pre-training datasets of the surrogate encoders in our search space.
To investigate this, we conducted experiments using CLIP encoders fine-tuned on the Remote Sensing Image Captioning
Dataset (RSICD) (Lu et al., 2017). Using 4 encoders6 trained on remote sensing imagery as the search space, we applied
X-Transfer to generate UAPs. The resulting perturbations, shown in Figure8(b), exhibit patterns resembling remote sensing
imagery. This supports our hypothesis that the semantic characteristics of UAPs are influenced by the pre-training datasets
of the surrogate encoders.

To explore further, we applied UAPs generated by X-Transfer to various datasets and used CLIP encoders for zero-shot
classification. Surprisingly, while the UAP patterns visually resemble building-like structures, their predicted classes often
lack any connection to buildings. As detailed in Table 17, CLIP encoders frequently predict concepts that seem unrelated to
human interpretations of the perturbation. For example, on the SUN397 and Food101 datasets, predictions skew toward
cheese-related concepts, while on the GTSRB dataset, predictions often correspond to the “ice warning” traffic sign, possibly
due to semantic similarities to cheese-like textures. Unlike targeted attacks, these UAPs do not consistently steer the encoder
toward a specific class. On datasets like CIFAR and ImageNet, the predictions vary significantly.

These findings indicate a distinction between the apparent semantic content of UAP patterns and their adversarial impact on
CLIP encoders. While humans interpret these patterns as meaningful (e.g., building-like), they mislead CLIP encoders into
producing diverse and often uninterpretable predictions.

As for why building-like patterns are predominant, we posit that such patterns are inherently more adversarial for CLIP
encoders. The surrogate encoders used in our Base, Mid, and Large search spaces were predominantly pre-trained on
web-scale datasets sourced from platforms like Common Crawl7. However, datasets like LAION (Schuhmann et al., 2021;
2022) and DataComp (Gadre et al., 2023) lack detailed disclosures of their image distributions, and their massive scale
makes comprehensive analysis difficult. We speculate that building-like patterns are particularly adversarial for deceiving
CLIP encoders trained on such datasets. We believe these findings open a promising avenue for future research, particularly
in understanding the connection between pre-training data distributions and adversarial patterns.

6https://huggingface.co/flax-community/clip-rsicd
7https://commoncrawl.org
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OF-3B: A view of a lake in the middle of a mountain range.                              

LLaVA-7B: A river with mountains in the background.                                       

MiniGPT4: A river running through a grassy field.                                               

BLIP2: The sun shines over a stream in the mountains.                                    

OF-3B: The Ruining of Avenge by Nikki Foley is licensed under a Creative  

Commons Attribution.                                                                                                   

LLaVA-7B: A book cover with a picture of a river and a building.                    

MiniGPT4: The cover of the book the river of dreams.                                       

BLIP2: The cover of the book, the riding to the stars.                                         

Non-targeted
Clean

Adversarial

OF-3B: A view of downtown Vancouver, British Columbia, Canada.        

LLaVA-7B: A cityscape at night with a large body of water in the            

 background.                                                                                                               

MiniGPT4: A city skyline at dusk with a river in the background.               

BLIP2: An aerial view of a city at dusk.                                                                

OF-3B: A  large shark swims in the ocean in front of a skyscraper.            

LLaVA-7B: A shark is flying over a city.                                                               

MiniGPT4: A city skyline with a shark in the sky.                                             

BLIP2: A photo of a shark flying over a city.                                                      

Targeted: A great white shark flying over a bridge.
Clean

Adversarial

OF-3B: A fire falls from the sky in Yosemite National Park, California.        

LLaVA-7B: A waterfall with a yellow glow in the middle of a mountain.      

MiniGPT4: A waterfall is flowing down a rocky cliff.                                           

BLIP2: The sun shines over a stream in the mountains.                                    

OF-3B: Nika Rally - The Trouble With 4P LEVELEN (2017) [FL                            

LLaVA-7B: A book cover with a purple sky and a building with a light.          

shining out of it.                                                                                                               

MiniGPT4: A book cover with a city scene and the words the freedom of.  

aptitude.                                                                                                                             

BLIP2: The cover art for the album by nika palley.                                               

Non-targeted
Clean

Adversarial

OF-3B: Aurora Borealis, also known as the Northern Lights, is a natural

light show.                                                                                                                   

LLaVA-7B: A house is surrounded by snow and trees.                                  

MiniGPT4: The northern lights are seen in the sky above a house.          

BLIP2: Aurora borealis in Norway.                                                                       

OF-3B: A giant Godzilla is seen in the background.                                          

LLaVA-7B: A picture of a monster with a green light behind it.                    

MiniGPT4: A giant monster is in the water with a city in the background.

BLIP2: Godzilla za wallpaper.                                                                                   

Targeted: The Godzilla is swimming in the harbour.
Clean

Adversarial

OF-3B: The sun sets over the Summer Palace in Beijing, China.                      

LLaVA-7B: A beautiful sunset over a lake with a reflection of a building.     

MiniGPT4: A sunset view of a building with a lake in the foreground.           

BLIP2: The forbidden city at sunset in China.                                                        

OF-3B: The Ruinine with 4Tp DeVanee.                                                                    

LLaVA-7B: The cover of the album The Ridin' with 4 TP DeVance.                 

MiniGPT4: A painting of a city with the words burning of applenpiece.       

BLIP2: The cover art for the album, the riffs with a 4th degree.                     

Non-targeted
Clean

Adversarial

OF-3B: A view of the city of London from the Shard, the tallest building

in Western Europe.                                                                                                     

LLaVA-7B: A city skyline with a river running through it.                              

MiniGPT4: A view of the city from a high vantage point.                               

BLIP2: An aerial view of London at night.                                                           

OF-3B: I am all of those things.                                                                              

LLaVA-7B: A cityscape with a bunch of luggage and bags.                           

MiniGPT4: A city skyline with a lot of buildings and a sign that says i am

a petroleum.                                                                                                                 

BLIP2: I am of destruction.                                                                                      

Targeted: I am going to destroy all of your belongings.
Clean

Adversarial

Figure 9. An illustration showing the application of both UAP (left) and TUAP (right) to an image. The responses from large VLMs are
shown side by side for the clean image (top) and the adversarially perturbed image (bottom).
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(a) L∞-norm bounded TUAPs.

(b) L2-norm TUAPs.

Figure 10. From top to bottom, the visualisations correspond to different search space sizes (N = 16 in the first row, N = 32 in the
second row, and N = 64 in the last row). Note that some TUAPs contain offensive or sensitive patterns, which have been blurred for
ethical considerations.
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D. X-TransferBench
X-TransferBench is an open-source benchmark that provides a comprehensive collection of UAPs capable of achieving super
adversarial transferability. These UAPs can simultaneously transfer across data, domains, models, and tasks. Essentially,
they represent perturbations that can transform any sample into an adversarial example, effective against different models
and different tasks. The collection contains UAP and TUAPs we used in experiments and all baseline UAP variants
evaluated in Section 4. Additionally, we provide standardised evaluation scripts for the tasks assessed in our experiments.
X-TransferBench is designed to be easily extensible, allowing for the incorporation of future UAP/TUAP methods and new
evaluation tasks. The super transferability makes it an ideal tool for efficiently assessing the robustness of CLIP encoders
and large VLMs across diverse tasks and datasets. To the best of our knowledge, no similar open-source collections of UAPs
currently exist, making this a valuable contribution to the community.

We provide PyTorch-like pseudo-code in Algorithm 2 for loading and perturbing samples. Using our UAP collection, one
can generate an adversarial example with just 3 lines of code. Since these UAPs are “pre-trained”, no additional optimisation
is required, making X-TransferBench highly efficient and well-suited for large-scale adversarial robustness evaluations.

Algorithm 2 Using off-the-shelf UAP in X-TransferBench.

import XTransferBench
import XTransferBench.zoo

# List threat models
print(XTransferBench.zoo.list_threat_model())

# List UAPs under L_inf threat model
print(XTransferBench.zoo.list_attacker("linf_non_targeted"))

# Load X-Transfer with the Large search space (N=64) non-targeted
attacker = XTransferBench.zoo.load_attacker(

"linf_non_targeted",
"xtransfer_large_linf_eps12_non_targeted"

)

# Perturbe images to adversarial example
images = # Tensor [b, 3, h, w]
adv_images = attacker(images)

While the X-Transfer standardised evaluations focus on CLIP encoders and VLMs, the super transferability of UAPs
suggests that they can be extended to any data, model, and task. The modular design of our UAP collection (see Algorithm
2) ensures flexibility and makes it well-suited for adaptation to other data, models, and tasks in future research.
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