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ABSTRACT
This paper proposes a method that jointly learns to detect ob-
jects at the current frame and forecast the next frame’s future
feature map. Previous offline detectors have shown the effec-
tiveness of utilizing future information in video object detec-
tion; however, we cannot take such an approach when dealing
with live streaming videos. In contrast, we utilize the forecast
feature map with the current and past frame feature maps for
object detection, where forecast feature maps are learned us-
ing observation of the present and past frames. To maintain
a reliable forecast, we introduce a scheduler network, which
decides whether we use the forecast feature map as input or
extract the feature map from the next frame. Evaluations of
our proposed model on the ImageNet VID dataset demon-
strate the superior performance of our model against the pub-
lic benchmark at similar architectures, with achieving 65.7%
mAP at 38.9 fps.

Index Terms— feature map forecast, scheduler, video ob-
ject detection, deep learning.

1. INTRODUCTION

Video object detection has received increasing attention as it
sees immense potential in real-world applications. Neverthe-
less, extending successful image-based object detectors [1]
to the video domain remains challenging due to motion blur,
sudden occlusions, and rare pose. To improve accuracy, most
of the prior work attempts to leverage the unique characteris-
tic of videos [2, 3], which is the temporal consistency. It is
shown in [3, 4] that the usage of current and past frames, as
well as future frames, can stabilize the detection. However,
considering the application to live streaming videos such as
smartphones and robotics, we cannot take advantage of fu-
ture frames. Therefore, some studies [5, 6, 7] have attempted
to stabilize the detection with only past and present informa-
tion.

Recent psychology literature has shown that humans build
a mental image of the future, including future actions before
initiating muscle movements or motor controls, and this men-
tal image affects the current results [8]. Inspired by this in-
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Fig. 1. Video object detection through the anticipated feature
map. Current live streaming video object detector approaches
(a) store historical information of feature maps to acquire sta-
ble detection results. In our proposed model (b), we jointly
learn the future feature map prediction to support the detec-
tion task at the current frame.

sight, we introduce the concept of the forecast as an exploita-
tion of the future to improve detection accuracy in live-stream
videos. Figure 1 intuitively shows the characteristic of our
approach against the existing one. Unlike other models that
exploit both past and current information(Fig 1(a)), our model
(Fig 1(b)) forecasts the feature map at the next frame and uti-
lizes it with the current and past feature maps. We accomplish
the proposed model by jointly learning to forecast the future
feature map and object detection.

Detection from forecast feature maps reduces the process-
ing cost of the backbone and thus increases processing speed,
on the one hand. On the other hand, we have to load images
in the video at appropriate timing to maintain the reliability
of forecast feature maps, which is difficult to determine in ad-
vance. For this purpose, we propose a scheduler network that
decides whether we read the next actual frame, or we exploit
the forecast feature map. In this way, our model improves the
processing speed by using the forecast feature map without
significant performance loss. Experiments on ImageNet VID
dataset show that our method achieves 65.7 mAP, outperform-
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ing competitive state-of-the-art methods.

2. RELATED WORK

Object detection in videos: Due to the huge variety of videos
under different scenarios, it is not trivial to generalize image-
based detector’s success into the video domain. A primary
focus of recent methods towards addressing video object de-
tection is to improve detection performance by exploiting the
temporal information. Such methods could be roughly cate-
gorized into off-line and live-stream methods.

The off-line video object detectors allow us to exploit
all the available information, including side [9] or future
information[10, 3], to stabilize the detection accuracy at the
current frame. Indeed, these methods have shown improved
detection performance by leveraging complementary and fu-
ture information. However, their effectiveness is limited due
to their inability to operate in a real-time& online fashion.

On the other hand, live-streaming object detection meth-
ods have been studied in recent years under application sce-
narios such as smartphones and robotics. In [11, 12], key-
frame arrangement is introduced to fasten detection by using
flow networks or correlation map. Incorporating temporal in-
formation inside feature maps [5, 6, 7] is viable for reasonable
detection accuracy with running in real-time (>25 FPS). In-
deed, our model has a similar structure to the aforementioned
methods but is different in that it forecasts and exploits future
information.
Future predictions in videos: Forecasting the future in video
content is mainly explored in the next-frame video prediction
task, which tries to predict what happens next in images or a
few frames. For video prediction, a convolutional LSTM [13]
is proposed to store past information in a convolutional neural
network, and developed further inspired by the idea of neu-
roscience [14]. While these studies aim to generate precise
future images themselves, our proposed method focuses on
generating the future feature map that is effective for detec-
tion.

3. PROPOSED METHOD

Our goal is to produce frame-by-frame detection {Dt}Tt=1 for
a given live streamed video with the length of T , where Dt

is a list of bounding box locations and class predictions cor-
responding to the frame at time t, i.e., It. Note that in a live
streaming setting, detectionDt is generated using only frames
up to t. Normally, the object detection model can be viewed
as a composed function Dt = Ndet(Nfeat(It)), where Nfeat

and Ndet represent a feature extractor and an object detector
model such as SSD [15]. We use the recurrent-network based
SSDLite architecture [5] as the baseline model and insert our
proposed modules, i.e., encoder module and scheduler mod-
ule, into between the extractor and the detector.

Figure 2 depicts the proposed framework dealing with
frames at time t and t + 1. It consists of the feature extrac-
tor, the encoder module, the scheduler module, and the ob-
ject detector. The feature extractor and object detector are the
recurrent-network based SSDLite architecture [5]. Our en-
coder module generates forecast feature maps from the output
of the feature extractor while the scheduler module decides
whether to leverage the forecast feature map (forecast opera-
tion) at the next frame or load a new image (read operation).

3.1. Encoder module for feature map forecast

Our encoder module has two identical encoders: Encoder1
and Encoder2. The architecture of each encoder consists of
the spatial attention network [16] followed by the bottleneck
LSTM [5]. This allows us to recurrently retain past states
and to adapt the limited capacity of the bottleneck LSTM. We
stack the two encoders to generate forecast feature map F́t+1

at the next frame and convert it into the feature map at the
current frame. Encoder1 takes the role of the forecast while
Encoder2 for the conversion.

At time t, Encoder1 receives the feature map Ft from the
feature extractor and outputs forecast feature map F́t+1 for
the next frame. To train Encoder1, we use the forecast loss
so that F́t+1 becomes close to (actual) feature map Ft+1 (see
Section 3.3). Encoder2, on the other hand, receives F́t+1 and
outputs F̂t as the converted feature map at time t. Encoder2
incorporates the temporal information into the feature map,
allowing the detector to be aware of the temporal information.

In the inference phase, Ft and F̂t are then element-wisely
averaged to have feature map F̃t which is fed to the object
detector. By doing so, this simple architecture enables to
leverage the forecast feature map and to stabilize the object
detection at the current frame.

3.2. Scheduler module

If the forecast feature map is reliably well-generated from the
current feature map, we can use it as the alternative of the
(actual) feature map (obtained by the feature extractor) for
the detection at the next frame. This tends to happen as long
as there is no significant change from the current frame to
the next frame. However, it is better to use an (actual) fea-
ture map if the forecast feature map is not reliable. To deter-
mine which way should be taken, we propose the scheduler
module. The scheduler module aims to determine whether to
utilize the forecast feature map or extract the feature map by
loading the actual frame for the next frame detection.

Following [17] and utilizing the correlation of feature
maps, we design the architecture of the scheduler module,
as shown in Fig. 3. The module receives F́t+1 and F̃t and
exports the score of 1 or 0 with its confidence, indicating to
exploit the forecast feature map (1) (forecast operation) or to
read a new image (0) (read operation). If the confidence score
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Fig. 2. The architecture of our proposed model. It consists of the feature extractor, the encoder, the scheduler, and the object
detector. The encoder predicts the future feature map at the next frame and the current temporally-aware feature map. The
scheduler decides to whether exploit the forecast feature map or extract the actual feature map at the next frame. The black
arrows show the information flow used both during training and inference, and the green arrows show the flow for training only.
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Fig. 3. Scheduler network. The output feature map of the
correlation layer is followed by two convolutional layers and
a fc layer with a 2-way softmax.

of the forecast operation exceeds threshold p (given before-
hand), the forecast operation is executed. Otherwise, the read
operation is performed.

The binary classification loss is adopted to train the sched-
uler module where the ground truth is generated using the
next frame detectionDt+1 and its corresponding ground truth
GT t+1.

3.3. Loss function

We design a multi-task objective function to train our model.
Namely, we use a localization loss Lloc, a classification loss
Lcls, a forecast loss Lfor, and a decision loss Ldec all together:

L =
1

M
(αLloc + βLcls) + γLfor + λLdec, (1)

where M is the number of matched bounding boxes. We ex-
actly follow [15] to define Lloc and Lcls. Note that We set
the hyper parameters to be α = 1, β = 1, γ = 1, λ = 0.7 in
experiments.
Forecast Loss: To optimize Encoder1 to generate the fore-
cast feature map, we supervise Encoder1 using the mean
squared error between the forecast feature map F́t+1 and the

(actual) one Ft+t. Then, Lfor can be given as

Lfor =
1

n

1

m

1

l

n∑
i=1

m∑
j=1

l∑
k=1

||F́t+1(i, j, k)− Ft(i, j, k)||2,

(2)
where n, m, and l are, respectively, the width, height, and
channels of feature maps.
Decision Loss: The decision loss is developed to train the
scheduler module. It has the form of a simple binary cross
entropy:

Ldec = −yt log(pt)− (1− yt) log(1− pt), (3)

where, pt and yt are the output score of the scheduler module
at time t and the ground truth generated using the next frame
detection Dt+1 and its corresponding ground truth GT t+1

(See Section 3.4 for details).

3.4. Training

The whole training pipeline is depicted in Fig 2. Fundamen-
tally, our training procedure is the same as the usual video
object detection [5, 6, 7]; however, there are three major dif-
ferences.

The first difference exists in training Encoder1. At time
t, Encoder1 forecasts F́t+1 while its ground truth Ft+1 is
available at time t + 1. Therefore, unlike existing works, we
need to generate a batch containing one extra frame in addi-
tion to the video length to be trained.

The second difference is how to train the scheduler mod-
ule. It is most important to train the scheduler module so
that its output is (almost) the same as the ground truth yt.
This depends on the accuracy of the object detector, and thus
generating yt during training is required. We use the detec-
tion resultDt+1 and its corresponding ground truthGT t+1 to
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generate the ground truth for the scheduler. If all the ground-
truth bounding boxes GT t+1 are matched with Dt+1 (IOU
over 0.7, for example), the yt is labeled as 1; 0 otherwise.

The last difference is how we combine two feature maps:
Ft and F̂t. In the training phase, we do not propagate the
recurrent state simply to generate Dt+1. We thus use proba-
bilistic connections in the averaging operation in the training
phase, which leads to output Ft, F̂t, or their averaged feature
map randomly. This allows the object detector not to depend
on the temporally-aware feature maps.

All of the training is performed jointly, but the encoder
module and the detector are trained first just for stability.

3.5. Testing

The flow of inference follows the black arrows in Fig 2. At
the time t, the model simultaneously performs forecasting a
feature map and detecting objects at the current frame from
F̃t. Also, using F́t+1 and F̂t, the scheduler module decides
to whether use F́t+1 or read the next frame for the detection
at the next frame. The video’s initial frame is image loading,
but the scheduler’s function of inferring in subsequent frames
will continue.

4. EXPERIMENTS

4.1. Dataset and evaluation setup

We used ImageNet VID dataset [18] for validation. It is a
large-scale benchmark for the task of video object detection
with 30 categories, consisting of 3,862 videos in the training
set and 555 videos in the validation set. Following the proto-
cols widely adopted in [3, 19], we evaluate our method on the
validation set and use the mean average precision (mAP) as
the evaluation metrics.

4.2. Implementation details

We used PyTorch and a PC with Xeon W-2123 CPU, NVIDIA
RTX 2080 Ti GPU, cuDNN v7.6, and CUDA 10.1.
Architecture: We adapt SSDLite [5, 15, 20] architecture to
the proposed model. We employ MobileNetV2 [20] as the
feature extractor because of its computational efficiency and
use the feature map before its average pool layer as Ft.
Data augmentation: In addition to the data augmentation
proposed in [15, 7], we employ a more extended one to alle-
viate the potential over-fitting problem. To augment the mo-
tion of objects, we recombine videos by selecting frames at
equal intervals instead of training with consecutive frames.
To be more specific, for each video in a batch, thinning
parameter q (integer) is randomly selected from the inter-
val
[
0,min(b( l−1

n )− 1c, r)
]
, where l and n are the video’s

length and the number of training frames. Since Imagenet
VID has some videos whose length is too long, we truncate

the video length using r, which is set to be 25. Then, the train-
ing video is reconstructed from the original video according
to q. This augmentation gives us the improvement of 0.8, re-
sulting in 65.2 in mAP.

Following the idea of [21], we train the model without the
thinning operation from the last two epoch. This operation
contributed to an additional 0.5 point increase in accuracy to
achieve 65.7 in mAP.
Training details: Our training procedure consists of two
phases: (1) we pre-train our baseline model following the
protocols [5, 3] with additional ImageNet DET dataset [18].
(2) We injected the encoder and scheduler modules into the
baseline model while we randomly initialized the weights of
the additional modules. We train the model on sequences of
10 frames and use a batch size of 12 and SGD. The encoder
module, the backbone, and detector are trained with an initial
learning rate of 10−4 and 10−2, respectively, and their decay
rate of 0.1 at the 18th, 30th epochs. From the 25th epoch,
the scheduler module is involved in training with an initial
learning rate of 10−3 and a decay rate of 0.1 at the 30th, the
35th epoch. We then trained all the weights together in an
end-to-end manner until the end of training at the 40th epoch.

4.3. Comparison with state-of-the-art methods

We compared our proposed model with state-of-the-art meth-
ods for real-time and live streaming video object detection.
They are Chen et al. [6], Zhu et al. [11], and Liu et al. [7]. In
this comparison, the threshold of the scheduler module was
set to 1.0.

As shown in Table 1, the proposed model achieves the
best performance. It achieves 65.7% mAP, 0.3% higher than
the strongest competitor [6], which uses VGG-16, a stronger
feature extractor. Compared with [7], which uses the same
feature extractor as ours, the proposed method achieved 4.3
points improvement. This is mainly thanks to the introduction
of the feature map forecast and our end-to-end joint training.

Table 1 also shows the runtime of the methods. Our
method runs at about 39 fps, achieving the real-time level.
We see that our method runs 12 fps faster than Chen et al. [6]
in the same GPU proposal. We note that [7, 11] are developed
for mobile devices, and thus runtime comparison with them is
just for a reference.

Figure 4 visualizes object detection results and outputs of
the scheduler module where frames used by the forecast fea-
ture maps are surrounded by the red rectangle. The scheduler
module tends to leverage the forecast feature map when the
motion of objects is easy to predict while frequently decides
to read new images on difficult scenes. We confirm that rea-
sonable detection is realized using forecast feature maps.

4.4. Detailed analysis

We conduct experiments to evaluate the impact of key com-
ponents of our model on the final performance.
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Fig. 4. Visualization of example detection and the corresponding scheduler results on Imagenet VID validation (best view in
color). We set p = 0.5 in the scheduler module. Frames where the forecast feature map is used are specified in red; otherwise
the real frame is adopted.

Table 1. Perfomance comparison with state-of-the-art end-
to-end video object detection models on ImageNet VID val-
idaton set. α is the hyper parameter of MobileNet.

Methods Backbone mAP Device FPS
Chen et al. [6] VGG-16 65.4 Titan X 27

Zhu et al. [11](α = 1.0) MobileNet 61.2 Mate 8 13
Liu et al. [7](α = 1.0) MobileNetV2 61.4 Pixel 3 27

Ours (α = 1.0) MobileNetV2 65.7 RTX 2080 Ti 39

Effectiveness of forecast: We set p = 1.0 in the sched-
uler module and generated two ablation models: the model
w/o forecast and the model w/o combination. The model w/o
forecast is obtained by dropping the forecast training and the
model w/o combination is obtained by dropping the skip con-
nection between Ft and F̂t. We remark that the encoder mod-
ule of the model w/o forecast is used only to stabilize the fea-
ture map from the past, resulting in similar to methods [5, 6].
We also remark that in the model w/o combination, F̂t is di-
rectly fed to the object detector.

Performances of the ablation models and the baseline
model are illustrated in Table 2. Note that we follow a de-
tailed evaluation metric [3] to evaluate the performance on
the categories of slow, medium, and fast objects, where these
three categories are divided by their average IoU scores be-
tween objects across nearby frames.

From Table 2, we see that simultaneously training the
forecast and the detection improves the overall accuracy by
1.6 points. This gain mainly comes from the Fast category
(2.9 point improvement). We thus reason that the larger the
object’s movement, the more important it is to forecast the fu-
ture state. We also see that only forecasting the future alone
is not sufficient. Indeed, we observe that from model w/o
combination, utilizing Ft for the feature maps to be fed to the
object detector is also essential.
Effectiveness of scheduler module: Figure 5 illustrates mAP
and fps under different threshold p in the scheduler mod-
ule. Note that “alternates” indicates the model using a fixed
scheduling rule where the model reads the image at every odd
frame and utilizes forecast feature maps at every even frame.

We confirm that lowering p accelerates the processing speed
while dropping the accuracy. This is because the model tends
not to compute forecast feature maps from the image. We
also confirm that the adaptive scheduling is superior to the
fixed rule. We thus conclude that the scheduler module has
the capability of controlling the accuracy and speed in a flex-
ible way.

Figure 6 shows the errors in terms of the heat map be-
tween actual feature maps and forecast feature maps when us-
ing the scheduler module or “alternates”. The heat map turns
more yellow when errors become large. We see that “alter-
nates” results in more errors. This can be understood because
it does not have enough uptake. By contrast, the scheduler
module takes on the actual images until they are stable, so the
errors are smaller. Fig. 6 also shows that the errors are more
likely to occur near target objects having uncertainty for their
future locations.

Fig. 5. mAP v.s. FPS trade-off comparison under different
threshold p in the scheduler module.

5. CONCLUSION

We have presented a video object detection model that jointly
learns to detect objects in the current frame and forecast the
next frame’s feature map. Although existing offline methods
have shown the usefulness of utilizing future information for
video object detection, future information cannot be used for
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alternates

Scheduler

network

Fig. 6. Visualization of the feature activation error between the predicted feature map and the actual feature map at the next
time-step. Frames that use the future forecast feature map for detection are surrounded by the red rectangle (p = 0.5).

Table 2. Effectiveness of components in the proposed model.
Methods Current information Forecast mAP Slow(mAP) Medium(mAP) Fast(mAP)
Baseline - - 60.6 68.7 58.8 41.6

(a) Complete model D D 65.7 73.9 64.4 47.4
(b) Model w/o forecast D - 64.1 72.5 62.7 44.5

(c) Model w/o combination - D 62.4 70.8 61.0 43.9

live-stream detectors. We thus introduced (1) forecasting the
future in terms of the feature map and (2) adaptive schedul-
ing to increase the processing speed while keeping accuracy
in detection. The effectiveness of our proposed model was
supported by validation on the ImageNet VID dataset.
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