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Figure 1: Comparison of multi-modal in-context learning and our proposed MCV. (a) The architecture of adopting multi-modal
in-context learning for MRG. (b) The paradigm for our proposed MCV to alter multi-modal in-context learning. We attain
the MCV from the last hidden states of a forward pass on the multi-modal demonstrations. One demonstration consists of a
prompt, an example image and the corresponding report. 𝐼𝑚𝑔 refers to the image features encoded by vision encoders, [IMG] is
a specific image proxy for LLMs to differentiate between visual and text embeddings.

ABSTRACT
Medical report generation (MRG) has emerged as a pivotal research
topic in the medical multi-modal field, given its potential to alleviate
the heavy workloads of radiologists. Recently, advancements have
been made with MRG systems that leverage large multimodal mod-
els (LMMs) to generate high-quality reports. To address the chal-
lenge of collecting large amounts of paired medical image-report
data for training, this paper proposes a zero-shot report generation
model based on in-context learning, we call it MCVGen. Departing
from traditional in-context learning approaches that directly feed
all demonstrations to a pre-trained large model, this work innovates
by employing a multi-modal contextual vector (MCV) to represent
the contextual information of demonstrations. Initially, we pre-train
a medical large multi-modal model (Med-LMM) and secure the last
hidden state of each demonstration through the forward pass in
Med-LMM. Benefits from the auto-regressive mechanism, the last
hidden state garners critical information to the targeted scenarios.
Subsequently, we average the multiple MCVs and integrate them
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with the first hidden state on the new query, thereby shifting the
latent states and guiding the model toward acquiring previously
unlearned multi-modal contextual information. This approach has
the advantage of regulating the number of prompts, thus reducing
computational costs. We tested our model on the publicly avail-
able Open-IU and MIMIC datasets, demonstrating its exceptional
zero-shot capability on both cross-center and cross-disease evalu-
ations. We hope it could be a viable solution for practical clinical
applications.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Multi-modal in-context learning, Zero-shot, Medical report genera-
tion, Large multi-modal model

1 INTRODUCTION
Medical report generation (MRG) [31] stands as a core research
topic within the medical multi-modal field, aiming to empower
models to automatically generate reports that articulate findings
frommedical examinations. This endeavor seeks to lessen the heavy
workload shouldered by radiologists.

Deep learning-basedMRGmodels predominantly adopt an encoder-
decoder architecture, where the capacity of the decoder to process
lengthy sequences is paramount due to the typically extensive
nature of medical reports. Initial efforts saw the deployment of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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LSTM [10] networks, including two-level LSTM configurations [16,
19], as decoders for generating reports. However, the advent of the
Transformer [38] marked a pivotal shift in decoder technology pref-
erence, leading to the development of variants like memory-driven
Transformers [4, 5, 33], knowledge-enhanced Transformers [12, 23,
27], and those pre-trained on contrastive learning paradigms [22,
25, 26]. More recently, with large language models (LLMs) demon-
strating remarkable linguistic processing capabilities, an increas-
ing number of studies have begun utilizing these large models
as decoders. By ingeniously crafting prompts infused with prior
knowledge [3, 15] and applying fine-tuning [41] techniques, these
novel approaches have proven effective in producing high-quality
medical reports, showcasing the increasing reliance on advanced
LLMs. However, collecting such large amounts of paired medical
image-report data to support the fine-tuning of these models is
expensive and challenging. For example, smaller centers may not
be able to gather a sufficient number of paired samples. Addition-
ally, for some novel diseases, the number of samples available in
clinical settings is inherently limited. Therefore, developing MRG
models with zero-shot learning capabilities holds greater potential
for clinical applications.

Existing work proposed to reduce reliance on paired image-text
data can be categorized into two categories. The first one utilizes
knowledge graph [14, 28] to bridge visual and textual data. For
instance, Liu et al. [28] proposed an auto-encoding knowledge
graph for encoding reports or images, enabling the training of
report generation capabilities by merely reconstructing the en-
coded knowledge graph back to text. The second type replaces the
golden-labeled reports with more readily available supervised sig-
nals. For example, Han et al. [8] trained a model to first detect and
segment spinal regions, then convert the detected and segmented
information into reports. The primary reason these models require
additional information is that the adopted decoders must undergo
training to acquire the ability to decode visual features and gen-
erate reports. In this paper, we adopt a more direct approach by
leveraging the exceptional zero-shot capabilities [43] of LLMs to
design a zero-shot MRG model.

In-context learning [7] represents a striking property for LLMs
to harness their zero-shot capabilities. It involves adapting a pre-
trained model to new tasks by providing a prompt and some demon-
strations without updating its parameters or adding extra parame-
ters like LoRA [11]. However, directly applying in-context learning
to MRG tasks encounters two main challenges. First, traditional
in-context learning is not efficient. Medical reports are typically
lengthy, and when combined with prompts and corresponding im-
age tokens, the length of a single demonstration can range between
450 to 700 tokens. This significantly increases the computational
burden and requires models with larger parameters to process such
long sequences. Second, the effectiveness of in-context learning is
unstable, heavily relying on the selection of templates and exam-
ples. Especially adopting the in-context learning in multi-modal
domains [44], shuffling the order of demonstrations can also affect
predictions.

To address these challenges, this paper introduces a novel ap-
proach named MCVGen, which leverages the zero-shot capabilities
of LLMs through the MCV to generate medical reports. The objec-
tive of the MCV is to represent essential multi-modal contextual

information from a given demonstration and provide this infor-
mation to guide new query report generation in a controllable
manner. Similar concepts, such as e.g. task vectors [9], function
vectors [36] and in-context vectors [29], have been employed in
natural language processing (NLP) tasks. To apply this concept to
MRG tasks, our methodology initially employs a forward pass on
each demonstration, comprising instructions, example image, and
corresponding report, through a LLM to create the MCV from the
last hidden states (see Fig.1). In order to refine control over the
generation process, the MCV preserves all the hidden states from
each large language model layer, thus serving as vector represented
instructions for the new query. For multiple demonstrations, the
mean of all MCVs is computed to compile comprehensive intended
task information. Subsequently, the resultant MCV is seamlessly
integrated with hidden states on the first query token position,
thereby initiating a pivotal shift in the generation process. Our
proposed MCVGen offers three main advantages: 1) It does not
entail extra computational cost, achieved without the concomitant
elongation of processed sequence length. 2) Our approach enhances
efficacy in controlling the generation process by embedding MCV
information within each hidden layer. 3) MCVGen ensures that the
new query outputs remain unaffected by the order and templates
of the demonstrations.

We conducted experiments on the publicly available IU-Xray [6]
and MIMIC [17] benchmarks and propose two zero-shot settings,
namely cross-center and cross-disease, to validate the model’s zero-
shot capabilities. For the cross-center experiments, we first trained
a Med-LMM model capable of report generation using data from
one center and then tested it on data from another center. For the
cross-disease tests, we utilized CheXpert [13] to label diseases and
employed a leave-one-out approach, selecting 13 disease types for
training and the remaining disease type for testing in each iteration.
The experimental results demonstrate that our MCVGen exhibits
exceptional zero-shot MRG capabilities. It can generate reports with
different writing styles or describe novel diseases based on a few
demonstrations, achieving state-of-the-art (SOTA) zero-shot MRG
performances and comparable performance compared to existing
fully supervised MRG systems.

Our contributions can be summarized as follows:
• To the best of our knowledge, we are the first work to lever-
age the LLMs for zero-shot medical report generation.

• We propose MCVGen, which introduces the MCV to alter
multi-modal in-context learning for zero-shot MRG, making
it efficient, controllable, and robust.

• We evaluate our proposed MCVGen on two zero-shot set-
tings. MCVGen achieves SOTA zero-shot performances that
are even comparable to some fully supervised MRG systems.

2 RELATEDWORK
2.1 Alternative Learning Paradigms for Medical

Report Generation
Existing SOTA MRG systems can generate logically coherent and
factually correct reports, benefiting from several successful con-
cepts, such as memory-driven modules [4, 5, 33], contrastive learn-
ing [22, 25, 26], fine-grained lesion features [21, 35], and medical
knowledge injection [12, 23, 27]. Recently, researchers fine-tuned



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

In-context Learning for Zero-shot Medical Report Generation ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Overview of our proposed MCVGen, which contains three key steps. (a) The architecture of our proposed Med-LMM.
It utilizes the MedCLIP-ViT to encode image representations and adopts the LLaMa-2 to generate medical reports. (b) The
illustration for generating MCV on a forward pass on multi-modal demonstrations. ℎ𝑖 refers to outputs of the 𝑖-th transformer
hidden layer at the last token position. (c) Applying MCV for new queries to generate new writing-style reports or describe
novel diseases.

LLMs with cracking diagnosis-driven prompts [15] to further im-
prove the quality of predicted reports. To conserve the extensive
medical paired data required for training these models, another line
of research investigating alternative learning paradigms for MRG
has attracted increasing attention, due to its potential in clinical
practice. These methods can be divided into two categories. On the
one hand, researchers explore extra knowledge graph sharing latent
space to bridge the visual and textual domains. For example, Liu et
al. [28] pre-constructed a knowledge graph and integrated it with
visual features or linguistic information to predict reports. Simi-
larly, Jia et al. [14] extracted visual features and projected them into
node features. Then, a Graph Convolutional Network (GCN) [18]
was adopted to model and strengthen the intrinsic correlations
among diseases, allowing knowledge transfer from regular diseases
to those rare diseases. On the other hand, cheaper and more easily
accessible additional annotations are utilized to train the models.
Both Han et al. [8] and Sun et al. [34] proposed lesion-guidedweakly
supervised report generation methods to describe novel chest and
retinal diseases. The pre-trained lesion detectors can extract lesion-
centric features by detecting abnormal regions to learn correlations
between based and novel classes. Adopting lesion detectors also
improves the explainability of MRG systems.

Different from these works, our approach harnesses the zero-
shot capabilities of LLMs to generate novel writing-style reports or
describe novel diseases through our proposed MCV. The MCV can
represent fully intended task information and obviate the need for
additional knowledge or annotations.

2.2 In-Context Learning
In-context learning (ICL) has revolutionized the approach to lever-
aging pre-trained LLMs for a wide array of tasks without the need

for explicit retraining or fine-tuning. This paradigm shift is predi-
cated on the model’s ability to infer task-specific instructions from
very few demonstrations within the same context as the query. This
method exploits the inherent capability of LLMs to generate predic-
tions based on the contextual clues provided, making it an efficient
strategy for extending the utility of these models to new tasks [7].
However, the performance of ICL highly relies on the selections
of templates and demonstrates, especially in the multi-modal do-
main [44]. Recent works explore the underlying mechanism behind
ICL and propose several kinds of vectors [9, 29, 36] to alter the ICL.
Due to the auto-regressive mechanism, the last hidden state can
contain essential contextual information. For instance, Hendel et
al. [9] compresses a training set into a single task vector, which
then modulates the LLM to generate outputs. Furthermore, Todd
et al. [36] reveals that LLMs possess a neural mechanism for en-
capsulating input-output functions as compact and distinct from
task vectors, being robust across contexts and capable of semantic
vector composition, thus enabling the execution of complex new
tasks. Compared to these methods, our proposed MCV represents
multi-modal demonstrations, generating a unique MCV for each
demonstration without any template. To the best of our knowl-
edge, our work is the first to apply this concept in the medical
multi-modal domain to encode task-specific information into MCV
representations.

3 METHOD
The detailed pipeline of our MCVGen is presented in Fig.2, it has
three critical steps to harness the zero-shot capabilities of LLMs
to generate new writing-style reports or describe novel diseases.
First, we pre-train a Medical Large Multi-modal Model (Med-LMM)
that can achieve comparable report generation performances with
existing SOTA methods. Second, we use a forward pass on each
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multi-modal demonstration to attain MCV from the last hidden
state of the Med-LMM. Last, MCV is employed to shift the latent
space of the Med-LMM on a new query.

3.1 Medical Large Multi-modal Model
Unlike the natural domain, which boasts numerous open-source
Visual Language Models (VLMs) with exemplary multi-modal rea-
soning and generation capabilities, existing open-source Medical
VLMs (Med-VLMs) tend to focus primarily on Medical Visual Ques-
tion Answering (Med-VQA) capabilities. In response, we first pre-
train a Medical Large Multi-modal Model (Med-LMM) with report
generation capabilities and then validate the zero-shot capability
of our proposed MCV.

Med-LMMs typically feature a straightforward and cohesive de-
sign, incorporating a vision encoder, a Visual-Prompt Generator
(VPG), and a pre-trained Large Language Model (LLM) to furnish
LMMs with the capability to generate multimodal content. The role
of the VPG, as discussed in works [1, 20] involves translating the im-
age features processed by the vision encoder into visual embeddings.
These embeddings are then utilized to bridge the understanding
between LLMs and the visual context presented. Our Med-LMM
architecture, detailed in Fig.2 (a), utilizes the MedCLIP-ViT [42]
model for vision encoding to convert images into representations,
labeled 𝐼𝑚𝑔. Subsequently, these representations are processed by
the Q-former [20] to transform image data into a format that LLMs
can interpret, optimizing the number of visual tokens to enhance
computational efficiency and aligning the dimension of visual em-
beddings with that of the text embedding of the LLM. In this study,
we integrate the LLaMa-2 [37] (Hugging Face id is LlaMa-2-7b-chat-
hf) model as our LLM choice. A special token [𝐼𝑀𝐺] is introduced
to the middle of prompts and visual embeddings, aiding the LLM
in differentiating between visual and textual inputs. In this man-
ner, image and text embeddings can be directly fed into the LLM
and treated equally, without employing extra gated cross-attention
layers and modifying the architecture of the LLM [1].
Pre-training Paradigm. We employ instruction tuning on the
LLM to pre-train the whole Med-LMM, specifically focusing on
the tokens that comprise the report, while adhering to its initial
auto-regressive learning objective. Consider a report with length 𝐿𝑟 ,
based on an instructional prompt𝑋𝑝 and visual embeddings𝑋𝑣 . The
loss function is then defined through the negative log-likelihood as
follows:

L(𝜃 ;𝑋𝑝 , 𝑋𝑣, 𝑋𝑟 ) = −
𝐿𝑟∑︁
𝑖=1

log𝑝𝜃 (𝑥𝑖 |𝑋𝑝 , 𝑋𝑣, 𝑋𝑟,<𝑖 ), (1)

where 𝜃 represents the parameters subject to training, and 𝑋𝑟,<𝑖
denotes the sequence of report tokens preceding the current token
𝑥𝑖 to be predicted. 𝑋𝑝 is “Generate a comprehensive and precise
report for this Chest X-ray image.” We froze both MedCLIP-ViT
and LLaMa-2 during pre-training, and all trainable parameters only
come from the Q-former.

3.2 Multi-modal Contextual Vector
After preparing a Med-LMM that harnesses the power of the LLM
to generate reports, the next step is to construct MCV from given
demonstrations. The auto-regressive nature of LLMs ensures that

the hidden states at any given token position encapsulate the con-
textual relationships among all preceding tokens. This principle
forms the foundation of ICL, enabling the effective generation of
MCV that are rich in contextual information derived from multi-
modal data inputs. Let us represent our pre-trained Med-LMM by
𝑓 (·), given a multimodal demonstration 𝑋 , which includes prompts
𝑋𝑝 , images 𝑋𝑣 , and the corresponding report 𝑋𝑟 , we generate the
Multimodal Contextual Vector (MCV) as: ℎ𝑀𝐶𝑉 = 𝑓 ( [𝑋𝑝 , 𝑋𝑣, 𝑋𝑟 ]).
More precisely, an MCV encapsulates the outputs from each hidden
layer of the large language model at the position of the last token.
Thus, the MCV can be expressed as ℎ𝑀𝐶𝑉 = {ℎ1, ℎ2, . . . , ℎ𝐿}, where
𝐿 denotes the number of hidden layers in the LLM, ℎ𝑖 ∈ R𝑑 . For
the purposes of this study, we employ LLaMa-7B, which comprises
a total of 𝐿 = 32 hidden layers, and 𝑑 = 4096 is the dimension of
text embeddings.

Medical reports are typically more extensive than captions for
natural images, resulting in multi-modal demonstrations that can
span 450-700 tokens, encompassing prompts, visual, and textual
elements. Generating a single MCV for multiple demonstrations is
inefficient and necessitates the use of larger backbone networks.
Therefore, we generate one MCV for each demonstration and com-
pute the average output of each layer to obtain the final task-specific
MCV. This MCV offers three primary advantages. Firstly, it is more
efficient and conserves computational resources, enabling the use
of a greater number of demonstrations. Secondly, it prevents the
model from overly relying on the contextual information from the
most recent demonstrations when generating new reports, ensur-
ing a more balanced and comprehensive understanding of the task
at hand. Finally, we employ the outputs from each hidden layer,
opting to bypass the selection of activations within the multi-head
self-attention modules [36]. This approach is straightforward and
readily adaptable to a variety of tasks.

3.3 MCV Guides New Query
As discussed by Liu et al., the rationale for utilizing vector repre-
sentations to alter ICL can be formulated as:

𝐴𝑡𝑡 (𝑥𝑞𝑢𝑒𝑟𝑦𝑊𝑞, 𝑋𝑊𝑘 , 𝑋𝑊𝑣) =: 𝛼ℎ(𝑋𝑞𝑢𝑒𝑟𝑦) + (1 − 𝛼)ℎ(𝑋𝑑𝑒𝑚𝑜 ),
(2)

where 𝐴𝑡𝑡 (·) refers to the multi-head self-attention module in each
layer, 𝑋 = [𝑋𝑑𝑒𝑚𝑜 ;𝑋𝑞𝑢𝑒𝑟𝑦] denotes the inputs and 𝑥𝑞𝑢𝑒𝑟𝑦 is the
token in 𝑋𝑞𝑢𝑒𝑟𝑦 . Then, ℎ(𝑋𝑑𝑒𝑚𝑜 ) can replaced by our proposed
MCV. Therefore, the overview process of employingMCV to control
the new query generation can be written as follows:

𝐴𝑡𝑡 (𝑥𝑞𝑢𝑒𝑟𝑦𝑊𝑞, 𝑋𝑊𝑘 , 𝑋𝑊𝑣) =: 𝛼ℎ(𝑋𝑞𝑢𝑒𝑟𝑦) + (1 − 𝛼)ℎ𝑀𝐶𝑉 ), (3)

More specifically, after securing the MCV, we execute a forward
pass on the query example and add the MCV to the hidden states
at the first query token position at all layers 𝑙 = 1, 2, . . . , 𝐿 as:

ℎ̃𝑙 = ℎ𝑙 + ℎ𝑙𝑀𝐶𝑉 , (4)

To retain the model’s inherent capabilities to the fullest extent,
we normalize the adjusted hidden states to align with the ℓ2 norm
of the hidden states prior to modification:

ℎ̃𝑙 = ℎ̃𝑙 ·
∥ℎ𝑙 ∥2
∥ℎ̃𝑙 ∥2

.
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Method IU-Xray Method MIMIC-CXR
BLEU-4 ROUGE METEOR CIDEr BLEU-4 ROUGE METEOR CIDEr

R2Gen 0.165 0.371 0.187 - R2Gen 0.103 0.277 0.142 -
PPKED 0.168 0.376 0.190 0.351 PPKED 0.106 0.284 0.149 0.237
DCL 0.163 0.383 0.193 0.586 DCL 0.109 0.284 0.150 0.281
MET 0.172 0.380 0.192 0.435 PromptMRG 0.112 0.268 0.157 -
R2GenGPT-S 0.156 0.370 0.202 0.405 R2GenGPT-S 0.117 0.277 0.136 0.145
R2GenGPT-D 0.173 0.377 0.211 0.438 R2GenGPT-D 0.134 0.297 0.160 0.269
Med-LMM (ours) 0.168 0.381 0.209 0.427 Med-LMM (ours) 0.128 0.289 0.161 0.265

Table 1: Comparison of fully supervised MRG performance across NLG metrics on IU-Xray and MIMIC datasets. The results
are quoted from their original papers. The highest performances for each metric are highlighted in bold.

Method Precision Recall F1-score
R2Gen 0.333 0.273 0.276
DCL 0.471 0.352 0.373
PromptMRG 0.501 0.509 0.476
R2GenGPT-S 0.341 0.312 0.325
R2GenGPT-D 0.392 0.387 0.389
Med-LMM (ours) 0.412 0.373 0.395

Table 2: Comparison of fully supervised MRG performance
across CE metrics on MIMIC dataset. The highest perfor-
mances for each metric are highlighted in bold.

This normalization ensures that the adjusted latent state vectors
maintain a magnitude compatible with the expectations of the
model’s subsequent processing stages.

4 EXPERIMENT
4.1 Implementation Details
Datasets. Our work utilizes two MRG datasets available to the pub-
lic for both pre-training the Med-LMM and assessing the zero-shot
learning capability of proposed MCVGen. The IU-Xray dataset [6]
is a common benchmark for testing radiology report generation sys-
tems, featuring 3,955 radiological reports paired with 7,470 chest X-
ray photographs. These images may present in frontal alone or both
frontal and lateral views per report. The MIMIC-CXR database [17]
stands as the most extensive collection in this field, encompassing
368,960 chest X-ray visuals alongside 222,758 corresponding reports,
with an official division for dataset splitting. Additionally, each
image-report pair is annotated with multiple labels for 14 diseases
using the CheXPert [13] labeling tool. The MIMIC dataset is also
compiled as a corpus for pre-training a range of medical VLMs. Fol-
lowing the pre-processing methodology outlined in R2Gen [5], we
exclude all studies lacking either reports or images. Consequently,
the final train/validation/test splits for the IU-Xray and MIMIC
datasets are 2069/296/590 and 270790/2130/3858 pairs, respectively.
Metrics. We utilize two kinds of metrics to automatically evalu-
ate the quality of predicted reports. Natural Language Generation
Metrics (NLG) serve as benchmarks for assessing the descriptive
precision of generated reports. BLEU-4 [32] and CIDEr [39] are
the primary metrics adopted in existing MRG works for compari-
son. Originally designed for assessing machine translation systems,

BLEU calculates the similarity between the generated text and ref-
erence reports based on the overlap of word n-grams. CIDEr, on the
other hand, is more suited for captioning tasks as it emphasizes the
significance of topic-specific terminology (critical in MRG tasks)
while downplaying common phrases. For a broader evaluation, we
also include results from ROUGE-L [24] and METEOR [2] metrics.
Clinical Efficacy Metrics, a newer set of benchmarks, focus on the
clinical correctness of the generated reports. This involves using
the CheXPert labeling tool to annotate predicted reports with 14
diseases, followed by the computation of classification metrics such
as F1-Score, Precision, and Recall to gauge the reports’ ability to
accurately depict medical conditions. Due to the original IU-Xray
dataset not being annotated with CheXPert, we also evaluate the
clinical efficacy metrics on the MIMIC dataset. More details about
demonstration selection are in the Appendix.
TrainingDetails. In this work, we leverage theMedCLIP-ViT to en-
code image representations, Q-former to extract visual embeddings
and LLaMa-2 to generate reports. When pre-training the Med-LMM,
we froze the MedCLIP-ViT and LLama-2. During the pre-training,
the trainable parameter is 192M, including the Q-former with 32
learnable queries whose dimension is 768 and a linear layer to
project the dimension to 4096 fitting the dimension of LLaMa-2.
We used mix-precision and pre-trained the Med-LMM for 5 and 15
epochs on the IU-Xray and MIMIC, respectively. The learning rate
is set as 1𝑒 − 4 and the optimizer is Adam with a weight decay of
0.02. It requires 0.18 seconds to train a batch with a size is 8. All the
experiments were conducted on 4 NVIDIA RTX A5000 24GB GPUs,
and implemented by Python 3.11.

4.2 Zero-shot Settings
In this section, we detail the approach of leveraging the IU-Xray
and MIMIC datasets to assess the zero-shot capabilities of MCVGen.
We simulate two clinical scenarios: cross-center evaluation and
cross-disease evaluation.

For the cross-center valuation, our approach stems from a
practical consideration: smaller medical centers often lack the re-
sources to gather a sufficient volume of paired data needed to
support the fine-tuning of Med-LMMs. Additionally, there are sig-
nificant disparities in report writing styles and terminology use
across different centers. This variability presents a challenge for
model generalization and underscores the importance of evaluat-
ing model performance across diverse clinical settings. Specifically,
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Method IU-Xray->MIMIC-CXR Method MIMIC-CXR->IU-Xray
BLEU-4 ROUGE METEOR CIDEr BLEU-4 ROUGE METEOR CIDEr

R2Gen 0.067 0.201 0.108 0.072 R2Gen∗ 0.059 0.253 0.131 -
R2GenCMN 0.061 0.213 0.105 0.069 DCL∗ 0.074 0.267 0.152 -
DCL 0.064 0.208 0.105 0.063 PromptMRG∗ 0.098 0.281 0.160 -
R2GenGPT-S 0.064 0.211 0.108 0.066 R2GenGPT-S 0.051 0.229 0.114 0.196
+ MCV 0.088 0.247 0.118 0.083 + MCV 0.083 0.291 0.149 0.207
R2GenGPT-D 0.071 0.218 0.113 0.072 R2GenGPT-D 0.083 0.275 0.163 0.231
+ MCV 0.101 0.251 0.122 0.134 + MCV 0.112 0.308 0.177 0.236
Med-LMM 0.068 0.215 0.115 0.069 Med-LMM 0.087 0.279 0.137 0.252
+ MCV (MCVGen) 0.106 0.256 0.128 0.142 + MCV (MCVGen) 0.125 0.313 0.185 0.280

Table 3: Comparison of cross-center zero-shot learning performance across NLG metrics on the IU-Xray and MIMIC dataset.
The datasets on the left and right of -> indicate the pre-training and testing sets, respectively. ∗ indicates the results are quoted
from their original papers.

Method Precision Recall F1-score
R2Gen 0.139 0.134 0.135
R2GenCMN 0.145 0.132 0.134
DCL 0.156 0.143 0.146
R2GenGPT-S 0.128 0.116 0.119
+ MCV 0.181 0.169 0.173
R2GenGPT-D 0.208 0.193 0.197
+ MCV 0.242 0.226 0.234
Med-LMM 0.211 0.206 0.208
+ MCV (MCVGen) 0.249 0.235 0.237

Table 4: Comparison of cross-center zero-shot learning per-
formance across CE metrics in the IU-Xray to MIMIC-CXR
adaptation.

we applied the proposed MCV to guide a Med-LMM, initially pre-
trained on the IU-Xray dataset, in describing MIMIC images, and
vice versa.

Regarding the cross-disease evaluation, our simulation ad-
dresses a scenario where a new center faces a novel disease. Due to
the rarity or emergent nature of the disease, the center may not be
able to collect a sufficient number of samples to train or fine-tune
models effectively. This scenario tests the model’s ability to general-
ize to new diseases without the benefit of extensive, disease-specific
data, reflecting the real-world challenge of adapting to emerging
health threats with limited information. The cross-disease evalua-
tion was exclusively conducted on the MIMIC dataset. We adopted
the leave-one-out approach, where in each iteration, data from one
disease on the test subset is selected for testing, while the data
without this disease on the training subset are used to pre-train
the model. The hyper-parameters used in this pre-training remain
consistent with those specified earlier.

4.3 Fully Supervised Report Generation
Performances

We validated the fully supervised MRG performances of the Med-
LMM on two datasets. It can verify the effectiveness of leveraging

LLM to generate medical reports and can further help us under-
stand the ceiling performances of MVCGen. We compared our
MCVGen with several SOTA MRG systems, such as R2Gen [5],
R2GenCMN [4], PPKED [27], DCL [22], MET [40], R2GenGPT [41]
and PromptMRG [15].

Notably, the primary goal of introducing Med-LMM is not to
claim STOA results in MRG but to present a medical vision large
model with the potential for zero-shot learning. Hence, we have
not strictly replicated existing works; instead, we provide a general
comparison with the results presented in their original publica-
tions, showcasing the capabilities of our Med-LMM. Tab.1 provides
a general comparison of fully supervised MRG performance across
NLG metrics on the IU-Xray and MIMIC datasets. Our proposed
Med-LMM exhibits competitive performance, almost matching the
best-reported BLEU-4 score of 0.128 vs 0.134 on the MIMIC dataset,
a notable achievement. While Med-LMM’s performance on the IU-
Xray dataset does not reach the peak in any single metric, it shows
a robust balance across all considered NLG metrics, with scores
closely trailing the best in METEOR (0.209 vs. 0.211) and nearly
matching the top performance in ROUGE (0.381 vs. 0.383). On the
MIMIC dataset, Med-LMM ties for the highest METEOR score and
demonstrates commendable performance in ROUGE (0.289) and
BLEU-4 (0.128), underscoring its effectiveness in generating descrip-
tively correct reports. In addition, Tab.2 presents a comparison of
fully supervised MRG performance across CE metrics within the
context of the MIMIC dataset. Notably, the PromptMRG outper-
forms other approaches, securing the highest metrics across the
board. Our proposed Med-LMM exhibits a balanced performance
with a Precision of 0.412, Recall of 0.373, and a macro F1-score
of 0.295. Such results reflect its capability to accurately generate
clinically relevant content.

The observation across the two tables underscores an intriguing
point about the performance of our Med-LMM model. It holds its
ground against the R2GenGPT-D (Deep) and significantly surpasses
the R2GenGPT-S (Shallow). The R2GenGPT framework integrates
the Swin Transformer [30] as its vision encoder, a simple linear layer
as the mapper, and LLaMa-2 for decoding. In its shallow configura-
tion, both the Swin Transformer and LLaMa-2 are frozen, with only
the mapper’s 4.2 million parameters being trainable. Conversely,
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Method NLG Metric CE Metric
BLEU-4 METEOR ROUGE CIDEr Precision Recall F1-score

R2GenGPT-S 0.098 0.253 0.122 0.093 0.173 0.161 0.163
+ MCV 0.105 0.267 0.132 0.121 0.192 0.179 0.180
R2GenGPT-D 0.117 0.277 0.136 0.144 0.253 0.238 0.244
+ MCV 0.124 0.285 0.145 0.187 0.289 0.267 0.275
Med-LMM 0.113 0.269 0.141 0.140 0.261 0.232 0.246
+ MCV (MCVGen) 0.129 0.291 0.148 0.203 0.294 0.277 0.281

Table 5: Comparison of cross-disease zero-shot learning performance across NLG and CE metrics on MIMIC dataset.

Figure 3: Illustrations of different settings to generate and
apply MCV. (a) Our MCV by averaging all vectors. (b) Re-
currently shift the first position in the next demo and use
the last output. (c) Our MCV to shift the first position in the
query. (d) Shift all positions in the query. (e) Replace the
hidden states in the first position by MCV.

Setting NLG Metric CE Metric
BLEU-4 CIDEr Precision Recall F1-Score

a+c 0.106 0.142 0.249 0.235 0.237
b+c 0.073 0.077 0.228 0.211 0.215
a+d 0.102 0.138 0.245 0.229 0.238
a+e 0.098 0.114 0.206 0.189 0.192

Table 6: Comparison of different settings to generate and
apply MCV in the IU-Xray to MIMIC adaptation. The setting
“a+c” represents our MCVGen.

the deep model allows full training of both the Swin Transformer
and the mapper, engaging a total of 90.9 million parameters. This
difference in approach between the shallow and deep models of
R2GenGPT highlights the significance of training depth in achiev-
ing higher performance metrics. Our Med-LMM model, leverag-
ing the MedCLIP-ViT as its foundation with a trainable Q-former,
demonstrates that it doesn’t require additional training on the data
of downstream tasks to achieve competitive results.

4.4 Zero-shot Learning Results
Cross-center Performance. Tab.3 and Tab.4 showcase a detailed
comparison of cross-center zero-shot learning performance across
NLG and CE metrics, respectively. Notably, the incorporation of
the proposed MCV, denoted as "+ MCV" in the table, significantly
enhances the performance across all metrics for baseline models
engaged in this study. For instance, in the IU-Xray to MIMIC-CXR
adaptation, the R2GenGPT-D model improved from a BLEU-4 score
of 0.071 to 0.101, ROUGE from 0.218 to 0.251, METEOR from 0.113
to 0.122, and CIDEr from 0.072 to 0.134 after incorporating MCV.
This indicates a substantial enhancement, particularly in the CIDEr
metric, which nearly doubled. Similarly, for the MIMIC-CXR to
IU-Xray direction, the same model with MCV added saw improve-
ments in BLEU-4 from 0.083 to 0.112, ROUGE from 0.275 to 0.308,
METEOR from 0.163 to 0.177, and CIDEr from 0.231 to 0.236. The
most striking advancement is observed with our model, MCVGen
(Med-LMM + MCV), which achieves the highest performance im-
provements in both directions. Specifically, for IU-Xray to MIMIC-
CXR, MCVGen boosts the BLEU-4 score from 0.068 to 0.106, ROUGE
from 0.215 to 0.256, METEOR from 0.115 to 0.128, and CIDEr from
0.069 to 0.142. For the reverse direction, the enhancements are even
more pronounced, with BLEU-4 jumping from 0.087 to 0.125. The
enhancements across NLG metrics illustrate that incorporating
the MCV can foster the generation of reports with a new writing
style, due to greater word overlap that stems from similar writing
styles. Comparable improvements are observed across CE metrics
in the IU-Xray to MIMIC-CXR adaptation. By integrating MCV
with R2GenGPT-S, R2GenGPT-D, and Med-LMM, the precision is
increased by 5.3%, 3.4%, and 3.8%, respectively. These enhancements
highlight that the generated reports can capture accurate medical
terminologies, thereby enhancing clinical factual correctness.

Overall, these results demonstrate that our MCVGen achieves
SOTA zero-shot MRG performances on both datasets and even sur-
passes some fully supervised MRG systems. The impact of incorpo-
rating MCV underscores its ability to leverage the unique strengths
of LLMs. When comparing MCVGen and R2GenGPT-D+MCV, the
advantages of utilizing Q-former, which provides stronger visual
embedding capabilities, become evident.
Cross-disease Performance.We present the cross-disease evalua-
tion results across both NLG and CE metrics on the MIMIC in Tab.5.
It is observed that incorporating MCV can enhance the baseline
models on both NLG and CE metrics. In terms of NLG metrics,
integrating MCV with R2GenGPT-S improved BLEU-4 scores from
0.098 to 0.105. For R2GenGPT-D, the introduction of MCV resulted
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Figure 4: Qualitative examples from the cross-disease evaluation, where we present the clinical information, ground truth, and
predictions from Med-LMM and MCVGen. Text highlighting novel disease categories is shown in red.

in an increase in BLEU-4 scores from 0.117 to 0.124 and CIDEr from
0.144 to 0.187. Our MCVGen demonstrated the most pronounced
gains, with BLEU-4 scores rising from 0.113 to 0.129 and CIDEr
from 0.140 to 0.203. On the CE front, the incorporation of MCV into
R2GenGPT-S and R2GenGPT-D boosted the precision from 0.173
to 0.192 and 0.253 to 0.289, respectively. MCVGen also achieved
significant improvements in precision from 0.261 to 0.294, recall
from 0.232 to 0.277, and F1-score from 0.246 to 0.281. These results
clearly illustrate the significant impact that MCV has on enhanc-
ing the performance of MRG systems in cross-disease zero-shot
learning contexts. The enhancements in CE metrics that are more
important in the cross-disease evaluation highlight MCV’s role in
increasing the clinical factual correctness of the reports, crucial for
practical medical applications. It shows the potential of deploying
MCVGen in clinical practice to describe novel diseases with a few
demonstrations.

4.5 Ablation Study for MCV
In this section, we conduct ablation studies to compare different
settings to generate and apply MCV. The illustrations of different
settings are shown in Fig.3. The upper figures show the ways how
we generate MCV. In setting (b), we proposed a recurrent MCV for
comparison. In which, we applied the MCV from the next demo
to shift the next demo’s first hidden states. And applied the MCV
generated from the last demo to the new query. In setting (d), we
applied MCV to shift hidden states in all query token positions,
similar with the use from ICV [29]. For setting (e), we replace the
first hidden states by MCV, following the approach by Task Vectors
(TV) [9]. Setting (b+c) introduces a recurrent MCV approach, re-
sulted in lower performance compared to setting (a+c), with BLEU-4
at 0.073, CIDEr at 0.077, and CE metrics at 0.228, 0.211, and 0.215,
respectively. We also notice that the output highly similar to the last
demo report. It is necessary to get the average of all demo MCVs
and then guide the query generation process. The performances
between setting a+c and a+d are comparable. We speculate the
reason for these slight drops is that incorporating MCV into every
position attracts the attention from query itself, despite applying
the ℓ2 normalization. In the end, setting a+e follows an approach
similar to the TV and yielded lower NLG and CE metrics than the
MCVGen, with BLEU-4 at 0.098 vs 0.106, CIDEr at 0.114 vs 0.142,
and precision, recall, and F1-score at 0.206, 0.189, and 0.192, re-
spectively. It proves the importance to keep the first original token.

These ablation studies underscore the effectiveness of our MCV-
Gen approach (a+c) in harnessing the full potential of MCV for
enhancing zero-shot MRG.

4.6 Case Study
We conduct a case study and present the quality example in Fig.4
to depict the exceptional cross-disease report generation capabili-
ties of our proposed MCVGen. During this iteration, the “facture”
was selected as the novel disease and demonstration. Comparing
the predicted reports between Med-LMM and MCVGen, we can
observe that incorporating the MCV containing novel contextual
information can rephrase the generation process and let the model
describe unlearned diseases. Also, MCVGen can predict a true pos-
itive for “cardiomegaly”. The ability to generalize across varied
clinical settings and disease types underscores MCVGen’s potential
to alleviate the burden on radiologists by aiding in the generation
of accurate and efficient medical reports. This could be particularly
advantageous in under-resourced environments where the scarcity
of qualified radiologists delays diagnoses and treatments.

5 CONCLUSION
In this paper, we propose MCVGen, a novel approach for zero-shot
medical report generation that harnesses the exceptional capabil-
ities of large language models by incorporating the multi-modal
contextual vector (MCV) to alter traditional multi-modal in-context
learning. Initially, we pre-trained aMed-LMM, and then constructed
the MCV by averaging the last hidden states from each demonstra-
tion on forward passes. We introduced two zero-shot settings and
conducted experiments on the IU-Xray and MIMIC datasets. The re-
sults demonstrate that our MCV effectively controls the Med-LMM
to generate reports in new writing styles or about novel diseases,
achieving state-of-the-art zero-shot MRG performances across both
natural language generation and clinical efficacy metrics. It demon-
strates the potential of deploying MCVGen in clinical practice to
accelerate the development of healthcare AI.
Limitations. The promising results of our approach largely de-
pend on leveraging powerful LLMs. Due to limited GPU resources,
LLaMa-2 7B is the largest LLMwe could utilize. We are exploring ef-
ficient ways to harness more powerful LLMs. Moreover, our current
experiments focus solely on the chest radiology modality. Future
work will assess the cross-modality zero-shot learning capabilities
of MCVGen.
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