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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities across diverse
natural language processing tasks. However,
their extensive memory requirements, particu-
larly due to KV cache growth during long-text
understanding and generation, present signif-
icant challenges for deployment in resource-
constrained environments. Quantization has
emerged as a promising solution to reduce
memory consumption while preserving his-
torical information. We propose XQuant, a
training-free and plug-and-play framework that
achieves ultra-low equivalent bit-width KV
cache quantization. XQuant introduces two
key innovations: a computationally negligible
data-free calibration method and cross-layer
KV cache compression, enabling quantization
to sub-1.4 bits. Extensive experiments on
Truthful QA and LongBench demonstrate that
XQuant outperforms state-of-the-art methods
(e.g., KIVI-2bit and AsymKV-1.5bit) by achiev-
ing lower bit-width while maintaining superior
performance, establishing a better trade-off be-
tween memory efficiency and model accuracy.

1 Introduction

The rapid advancement of Large Language Models
(LLMs) has propelled significant progress in a wide
array of natural language processing (NLP) appli-
cations, including code generation, search systems,
and many others (Ouyang et al., 2023; Sharma
et al., 2024; Ma et al., 2024). The exceptional
performance of LLMs is primarily driven by their
immense parameter scales, which enable them to
excel across diverse tasks. However, this remark-
able success comes with substantial costs: the com-
putational and memory demands associated with
deploying LLMs have increased exponentially due
to increasong models parameters and growing in-
put and output, posing a formidable bottleneck for
practical deployment. In particular, GPU memory
consumption has surged to levels that frequently

surpass the capacities of current hardware infras-
tructures, making large-scale deployment increas-
ingly challenging (Shi et al., 2024).

To mitigate this challenge, the Key-Value (KV)
cache mechanism has been widely adopted (Yao
et al., 2024; Yang et al., 2024d; Ainslie et al., 2023;
Kwon et al., 2023). The KV cache optimizes mem-
ory efficiency by storing and reusing previously
computed keys and values in the attention mech-
anism, thereby reducing redundant computations
and GPU memory usage. Despite its advantages, as
model sizes and the input/output sequence lengths
continue to grow, the storage overhead of the KV
cache itself becomes increasingly significant (Shi
et al., 2024). For instance, a 30-billion-parameter
language model with a batch size of 128 and a
sequence length of 1024 may require up to 180
GB of memory solely for storing the KV cache
(Zhang et al., 2023). Although the computational
and memory requirements are reduced compared
to not using it, such escalating demands still pose
substantial challenges for deploying LLMs with
constrained hardware resources.

To address this problem, prior works have ex-
plored various strategies from different perspec-
tives. Some studies (Sheng et al., 2023; Hooper
et al., 2024; Liu et al., 2024b; Tao et al., 2024) fo-
cus on quantizing the floating-point KV cache (and,
in some cases, model weights) to lower precision.
However, these approaches often experience per-
formance degradation under extreme compression
ratios, particularly around 2-bit precision. Alter-
natively, other methods (Xiao et al., 2023; Zhang
et al., 2023; Li et al., 2024; Cai et al., 2024) aim
to alleviate the storage burden by evicting unim-
portant tokens. These methods dynamically or stat-
ically identify and discard less critical tokens to
reduce memory usage. Nevertheless, these meth-
ods inherently introduce information loss, resulting
in reduced memory retention and severe forgetting
issues, which can undermine the model’s ability



to maintain consistent performance on longer se-
quences. Existing KV cache quantization meth-
ods, due to inherent architectural constraints, fail to
mitigate the severe performance degradation when
operating under ultra-low-bit settings.

To address these limitations, this paper focuses
on training-free KV cache quantization scenarios
under extreme compression ratios and introduces
XQuant, a plug-and-play framework for ultra-
low-bit KV cache quantization. XQuant delivers
two key improvements over existing quantization
methods: (1) Data-Free Calibration: Traditional
quantization methods often face significant limi-
tations when mapping values to low-bit precision.
Specifically, they tend to use the two endpoint val-
ues (e.g., 0 and 1 in 1-bit quantization) as represen-
tative values, which can result in substantial quan-
tization errors, particularly under low bit-width set-
tings. To address this issue, XQuant introduces a
parameterized calibration scheme that allows for
more fine-grained mapping of values. By adjust-
ing the representative values to better reflect the
actual data distribution, this method significantly
reduces quantization errors and minimizes perfor-
mance loss without the need for additional data.
(2) Cross-Layer KV Cache Compression: We
observe enhanced KV cache similarity between
adjacent layers after quantization - a previously
overlooked phenomenon. This enables effective
cross-layer compression, where the quantized KV
cache of one layer is shared across subsequent lay-
ers, significantly reducing computational and mem-
ory costs. Meanwhile, a subset of layer-specific
parameters is preserved to retain the unique char-
acteristics of each layer, ensuring minimal loss of
model performance.

To evaluate the effectiveness of XQuant, we con-
duct extensive experiments on a consumer-grade
NVIDIA GeForce RTX 3090 GPU (24GB) across
diverse datasets, including Truthful QA (Lin et al.,
2022) and subsets of LongBench (Bai et al., 2024).
Experimental results demonstrate that XQuant
achieves an equivalent bit-width of less than 1.4-
bit across various LL.Ms, outperforming existing
methods such as KIVI-2bit (Liu et al., 2024b)
and AsymKV-1.5bit (Tao et al., 2024). Notably,
XQuant achieves comparable performance to full-
precision baselines while offering a significantly
improved trade-off between model performance
and compression ratio.

2 Related Work

Two mainstream approaches for addressing KV
cache challenges are Quantization and Eviction
methods (Shi et al., 2024).

Quantization has emerged as a prominent tech-
nique for compressing large-scale models by map-
ping high-precision data to lower-precision formats
(e.g., 16-bit, 8-bit, or even 4-bit integers). This sig-
nificantly reduces memory footprints while main-
taining acceptable levels of model performance.
A substantial body of work focuses on quantizing
model weights. AWQ (Lin et al., 2024) optimizes
neural network weight quantization by dynamically
adapting the bit-width based on the weights’ sig-
nificance. By retaining higher precision for more
impactful weights and reducing precision for less
critical ones, AWQ minimizes performance loss
while achieving compression.

Another line of research concentrates on the
quantization of the KV cache. KVQuant, in-
troduced by Hooper et al. (2024), employs dis-
tinct quantization strategies for keys and val-
ues. It applies per-channel quantization to the
keys—particularly before Rotary Positional Em-
beddings (RoPE)—and per-token quantization to
the values, effectively managing outliers and min-
imizing RoPE-induced distortions.  Similarly,
MiKV (Yang et al., 2024c) introduces a mixed-
precision K'V-cache strategy that retains important
KV pairs in high precision. Concurrently, KIVI
(Liu et al., 2024b) develops a tuning-free 2-bit KV
cache quantization scheme, where the key cache
is quantized per-channel, and the value cache is
quantized per-token. Building on this, AsymKV
(Tao et al., 2024) further combines 1-bit and 2-bit
representations through an asymmetric and layer-
wise quantization configuration, achieving a better
trade-off between precision and compression ratio.

In contrast, some works simultaneously quantize
both the model weights and the attention cache. For
example, FlexGen (Sheng et al., 2023) introduces a
high-throughput inference framework that applies
group-wise 4-bit quantization to compress both the
model weights and KV cache. FlexGen divides ten-
sors into small groups, computes the minimum and
maximum values within each group, and performs
asymmetric quantization. The resulting tensors
are stored in 4-bit format and later dequantized
to FP16 during computation, achieving a reduc-
tion in memory usage and I/O costs with minimal
accuracy degradation. Despite the advancements



of these methods, significant performance degra-
dation remains a challenge when quantizing KV
cache activations to extremely low-precision levels,
particularly below 2-bit.

Eviction methods aim to discard unnecessary
tokens during inference to reduce memory usage.
Streamingl.I.M (Xiao et al., 2023) identifies the
phenomenon of attention sinks, where initial to-
kens are retained to stabilize attention computa-
tions. StreaminglLLM combines these attention
sinks with a sliding window of recent tokens to
introduce a rolling KV cache, effectively balancing
memory efficiency and model performance. Build-
ing on this, SirLLM (Yao et al., 2024) uses token
entropy to preserve critical tokens’ KV cache and
incorporates a memory decay mechanism to en-
hance LLMs’ long-term memory while maintain-
ing short-term reasoning abilities.

Other methods, such as H20 (Zhang et al., 2023)
and SnapKV (Li et al., 2024), dynamically iden-
tify and evict non-important tokens based on atten-
tion scores. PyramidKV (Cai et al., 2024; Yang
et al., 2024a) observes that attention scores are
more sparse in higher layers and accordingly allo-
cates different memory budgets across layers. How-
ever, most existing KV eviction methods depend on
attention scores to identify non-important tokens,
which limits their compatibility with common opti-
mizations like FlashAttention (Dao, 2023), reduc-
ing their practical usability.

Inter-layer redundancy. Beyond the above
intra-layer redundancy in KV caches, some stud-
ies have also explored the inter-layer redundancy.
Some prior works (Wu and Tu, 2024; Sun et al.,
2024; Brandon et al., 2024) investigate the poten-
tial of caching only partial layers of the KV cache,
but all of them cannot be applied without additional
training. We further clarify the key differences and
highlight our contributions in Appendix G.

Compared to existing methods, we introduce
XQuant with two key innovations: (1) A novel,
simple yet effective data-free calibration method
that achieves superior compression performance
even under ultra-low-bit settings, eliminating the
need for additional calibration data. (2) cross-layer
KV cache compression that leverages previously
overlooked quantization-enhanced layer similari-
ties to achieve significant memory and computa-
tional savings. While prior work has studied layer
representation similarities, our approach uniquely
exploits the quantization-enhanced similarities to
enable effective ultra-low-bit compression.

3 XQuant

In this section, we present XQuant, a novel quan-
tization framework for efficient KV cache com-
pression. As illustrated in Figure 1, our frame-
work introduces two key innovations: a data-free
calibration technique that asymmetrically adjusts
quantization parameters without additional calibra-
tion data, and a cross-layer KV cache compression
mechanism that leverages the similarity of quan-
tized caches between adjacent layers to effectively
reduce both computational and memory overhead.

3.1 Background

To formalize KV cache quantization, we consider
a group of floating-point keys or values X. The
quantization process transforms X into three
components: a B-bit quantized cache Xq, a
zero-point z, and a scaling factor s (Liu et al,,
2024b):

Quantization Phase:

. _ max(X) — min(X)
z=min(X),s = 25— 1) (D

Xt =(X-2)/s,Xq=[Xt] @

Dequantization Phase:

X:Xq*s—i—z 3)

where X* is the dequantized counterpart and |-]
is the rounding function. X, the transformed
matrix, is not explicitly cached but is introduced
as an intermediate variable to facilitate subsequent
mathematical derivations.

Building upon this framework, prior works in-
troduce various configurations to enhance perfor-
mance. For example, Liu et al. (2024b) focuses on
the element-wise distribution within the KV cache,
adopting per-channel quantization for the key cache
and per-token quantization for the value cache.
Similarly, Tao et al. (2024) introduces layer-wise
quantization configurations, employing asymmet-
ric bit-widths for the key and value caches across
different layers. While effective, these approaches
often suffer from significant performance degra-
dation under low-bit quantization settings, partic-
ularly around 2-bit precision. This limitation mo-
tivates the need for further advancements in KV
cache compression techniques.
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Figure 1: The illustration of XQuant workflow. XQuant partitions the KV cache into layer-wise pairs. For every
higher layer in a pair, XQuant only computes and stores the scaling factors and zero-points during quantization
phase, and then fetchs the quantized cache from the lower layer during dequantization phase.

3.2 Data-free Calibration

Since existing quantization methods often experi-
ence significant performance degradation at 2-bit
precision, achieving ultra-low-bit compression first
requires bridging this performance gap. In this sec-
tion, we propose a data-free calibration method that
effectively preserves model performance, enabling
more aggressive compression ratios.

To analyze extreme quantization scenarios, we
start with 1-bit quantization where each parameter
is constrained to a binary state. Formally, the round-
to-nearest operation [ -] is defined as:

0
[er{l

where e denotes an element of the transformed ma-
trix. For any bit-width B, this rounding operation
maps values to a discrete set within [0,25 — 1],
where each original value is assigned to its nearest
representative in the quantized space. As shown
in Figure 2(a), fixed representative values at end-
points (0 and 1) yield substantial quantization error
for 1-bit quantization. We therefore introduce a
relaxed-constraint mapping function that adaptively
determines the quantization levels, formulated as:

_J)n

where n € [0, 0.5] serves as a calibration param-
eter for determining quantization tendencies. We
extend this formulation to the general case of B-bit
quantization and denote the corresponding parame-
ter as 7B.

We relax the constraint that quantized values
must be integers and apply fake quantization as a

if e € [0,0.5],

, “4)
ife € (0.5,1].

if e € [0,0.5],

5
ife e (0.5,1]. ®

preliminary experiment. Table 7 shows that using
this constraint-relaxed mapping function improves
model performance, validating our proposed in-
sight.

However, storing floating-point numbers as so-
called quantized caches is impractical, as shown in
Figure 2(b). To address the aforementioned prob-
lem, we establish an equivalent implementation,
with the mathematical proof provided below. We
formalize the final data-free calibration approach
as:

Consider a group of floating-point keys or values
X € RY, where g stands for the group size. Note
that X € [min(X), max(X)]9 = [z,s * (28 —
1) + z]9, we can deduce:

Xq € (0,28 —1)9 (6)

from Equation 1 and Equation 2. If we choose
n* (28 —1) and (1 — n) * (28 — 1) generalized
from Equation 5 as two endpoints, it is equivalent
to calibrate the zero-point and scaling factor to 2
and 3§, and then dequantize with them. Note that
the dequantized matrix

X = Xq*s5+2 € [.§*0—|—7§,§*(23—1)+2}9 @)

and the corresponding interval given by two end-
points:

[z +ns(2” 1),z + 52" = 1)1 —n)]  ®)

By calculation we get the final operations for cali-
bration:
t=z4ns2B—1),5=01-2n)s (9

As shown in Figure 2(c), we propose the
improved quantization scheme with this data-free
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Figure 2: The illustration of the proposed data-free
calibration method.

calibration as follows:

Quantization Phase with Calibration:

maz(X) — min(X)

z=min(X),s = @5 —1) (10)
XT:(X—Z)/S,XQ: fXTJ (11)
t=z24ns2B - 1),5=(1-2n)s  (12)

Dequantization Phase with Calibration:
X =Xq*s+% (13)

3.3 Cross-Layer Compression
3.3.1 Motivation

Building upon Tao et al. (2024)’s investigation of
ultra-low-bit KV cache asymmetric quantization,
our reproduction experiments on LongBench (Bai
et al., 2023) with Mistral (Jiang et al., 2023) demon-
strate severe limitations of existing approaches, as
shown in Table 8.

We found that 1-bit asymmetric quantization of
the key cache is practically infeasible. Even when
restricting 1-bit quantization to the top 8 layers
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Figure 3: Layer-wise analysis of absolute differences
between adjacent layers in quantized KV Cache matri-
ces. Here, delta represents the absolute difference of
quantized values between consecutive layers.

(AsymKV-24/32), significant performance degra-
dation occurs. Given the limitations of further key
cache quantization, we turn to cross-layer compres-
sion techniques as a viable alternative to achieve
comparable ultra-low-bit quantization without com-
promising performance.

3.3.2 Analysis on Quantized KV Cache

To enable cross-layer compression, we first analyze
the characteristics of quantized KV caches by ex-
amining inter-layer similarities. We hypothesize
that significant redundancy between adjacent lay-
ers could create opportunities for more aggressive
compression. Using the KIVI-2 framework (Liu
et al., 2024b), we conduct preliminary experiments
on the Mistral-7B-Instruct-v0.2 model (Jiang et al.,
2023) with random samples from LongBench (Bai
et al., 2023).

Under the 2-bit quantization scheme in KIVI-2,
quantized cache values are restricted to {0, 1, 2,
3}, naturally constraining element-wise absolute
differences to the same range. Our analysis, illus-
trated in Figure 3, reveals a striking pattern: over
80% of positions between adjacent layers exhibit
minimal differences (0 or 1), while extreme differ-
ences (3) occur in less than 5% of positions. This
pattern becomes even more pronounced in the 1-bit
scenario, where mapping {0,1} to 0 and {2,3} to 1
maintains identical values in over 80% of positions
between adjacent layers. These empirical findings
demonstrate substantial redundancy in quantized
KV caches between adjacent layers, suggesting
significant potential for further compression.

3.3.3 Compression Algorithm

Leveraging these insights into inter-layer similar-
ities, we propose a novel cross-layer compres-



sion method that decomposes KV caches into two
components: shared quantized caches and layer-
specific parameters. Specifically, adjacent layers
share a common set of quantized value caches
(Xq), while maintaining their individual scaling
factors and zero-points for dequantization. This
decomposition enables efficient compression by al-
lowing each layer to reuse the merged cache from
its group, while preserving the layer-specific char-
acteristic through its unique quantization parame-
ters, namely zero-points and scaling factors.

In the implementation, for a model with L lay-
ers, we organize the layers into groups of size G.
Within each group, KV caches are compressed us-
ing weighted averaging, where each layer [ (0 <
I < L) is assigned a weight ~;, subject to the con-
straint )y, = 1.

Formally, for every layer [ in a group G, the
quantization workflow with cross-layer compres-
sion and calibration is utilized as follows:

Quantization Phase with Cross-Layer Com-
pression and Calibration:

Vie G,

maz(X;) — min(X;)
(25 —1)

G=a+ns(2” = 1), 8 = (1-2n)s

X — 2
Xo =
a=Y | X
leG
Dequantization Phase with Cross-Layer Com-

pression and Calibration:

z1 = min(Xy), s; =

X =Xq*4 + 2

We present the pseudo code for the whole work-
flow as shown in Appendix I.

3.3.4 Speedup through Cross-layer
Compression

While our previous discussion introduced weighted
averaging with the weight - for compressing Xq
within a group, we can further optimize the com-
putation by setting v = 1 for a chosen dominant
layer k, which consequently forces all other  val-
ues within the group to zero. In this accelerated
configuration, each subordinate layer only needs
to compute and store its own scaling factors and
zero-points, significantly reducing computational
overhead. Specifically,

Xa- |

Xk — 2k
Sk

Model Method Bit-width TruthfulQA
Full Cache 16 32.09

Mistral-7b KIVI 2 32.17
AsymKV 1.5 32.80
XQuant 1.38 34.93
Full Cache 16 30.77

Llama2-7b KIVI 2 33.92
AsymKV 1.5 33.84
XQuant 1.4 34.22

Table 1: Evaluation on Truthful QA task with normal
context length.

As illustrated in Figure 1, this optimization elim-
inates the computations shown in the dashed line,
effectively streamlining the process. Experimen-
tal results show that selecting the first layer within
the group as the dominant layer yields optimal per-
formance, as demonstrated in Table 4 and Table
5.

4 Evaluation

4.1 Experimental Setup

Models. We evaluate our XQuant on Llama-2-
7b / Llama-2-7b-chat (Touvron et al., 2023) and
Mistral-7B-v0.3 / Mistral-7B-instruct-v0.2 (Jiang
et al., 2023).

Tasks. For the normal context length task, we
choose Truthful QA (BLEU score) from LM-Eval
(Gao et al., 2021). We also select several sub-
sets from LongBench (Bai et al., 2023) for the
long context length tasks, including HotpotQA (F1
score), 2WikiMultihopQA (F1 score), MuSiQue
(F1 score), TREC (classification accuracy), Trivi-
aQA (F1 score), SAMSum (Rouge-L) and Passage-
Count (Exact match accuracy). MultiFieldQA-Zh
(F1 score) is selected for some ablation studies as
well.

Baselines and Implementations. We compare
our framework with previous works, including orig-
inal 16-bit floating implementation, KIVI-2 (Liu
et al., 2024b) and AsymKV (Tao et al., 2024).
All relevant configurations adhere as in KIVI, i.e.,
quantizing key cache per-channel and value cache
per-token, and with a group size of 32 and a resid-
ual length of 128. We reproduce AsymKYV based
on the official implementation of KIVI, with a typ-
ical configuration (AsymKV-32/0) selected from
the original paper, i.d., quantizing key cache into
2-bit and value cache into 1-bit, which is equiva-



Model Method Bit-width HQA 2Wiki MSQ TREC TQA SAMS PC Avg

Full Cache 16 43.02 27.10 18.78 71.00 86.23 4275 275 41.66

PyramidInfer / 35.08 2392 1690 62.00 8506 4145 1.04 3255

Mistral-7b-Ins ~ KIVI 2 41.96 26.08 1813 71.00 86.00 43.70 2.78 41.38

AsymKV 1.5 37.17 2277 1576 7050 86.25 4344 3.16 39.86

XQuant 1.38 4290 26.65 1744 71.50 8450 4518 5.71 4198

Full Cache 16 30.09 26.48 9.98 63.00 84.19 4122 450 37.07

Pyramidlnfer / 29.14 2453 7.49 54.00 81.79 40.71 4.00 34.52

Llama2-7b-chat  KIVI 2 29.10 25.12  9.86 63.00 8498 40.18 4.00 36.61

AsymKV 1.5 2775 24.82 8.45 62.00 8421 4122 275 35.89

XQuant 1.4 29.21 2556  9.69 62.50 84.57 40.01 4.00 36.51

Table 2: Evaluation of different KV cache compression methods on LongBench tasks.

lent to 1.5-bit. We also choose a token eviction Method Bit-width 71 72  MFQA-Zh
method (Yang et al., 2024b) for comparison on Full Cache 16 / / 48.26
LongBench tasks as well, with a 40% KV cache KIVI 2 / 0 42.27
) . AsymKV L5 0 0 36.30

setting. We set the maximum sequence length to

. . 0 0 37.20
30000 for the Mistral model to conduct our experi- 0 005 40.32
ments with a single NVIDIA GeForce RTX 3090 XQuant  1.375 02 0 41.98
GPU (24GB), and 8192 for the Llama model as 02 005 44.20

default. We do not consider SLERP (Shoemake,
1985; Liu et al., 2024a) because of the incompati-
bility between rescale-recover operations and quan-
tized cache.

4.2 Performance Comparison

LM-Eval Results. Table 1 presents the evalua-
tion of different quantization methods on the Truth-
fulQA task with a standard context length. XQuant
not only achieves competitive performance but
surpasses the full cache baseline, with a Truth-
fulQA score of 34.93 on Mistral-7b and 34.22 on
Llama2-7b, outperforming all other methods at sig-
nificantly lower bit-widths. These results highlight
that XQuant provides superior performance in con-
ventional context length settings.

LongBench Results. We evaluate XQuant on the
LongBench benchmark using two widely adopted
models: Mistral-7b-Instruct-v0.2 and Llama-2-7b-
chat. As shown in Table 2, XQuant achieves sig-
nificant improvements over other KV cache com-
pression methods, particularly under ultra-low-bit
settings.

In all datasets of LongBench, XQuant achieves
performance comparable to the full cache base-
line while reducing bit-width by 31% compared
to KIVI-2bit. Moreover, XQuant outperforms
AsymKV on nearly all datasets while simulta-
neously reducing bit-width by 8% relative to
AsymKYV. Additionally, compared to PyramidIn-
fer, which sacrifices precision to reduce storage

Table 3: Ablation study on the effect of data-free cali-
bration in XQuant on the MultiFieldQA-Zh benchmark
from LongBench.

overhead, XQuant demonstrates clear advantages
in maintaining high accuracy across tasks while
achieving lower bit-width.

4.3 Ablation and Analysis

In this section, we conduct ablation studies in some
randomly selected lightweight LongBench subsets.

Calibration Parameter. Table 3 presents an abla-
tion study on the impact of data-free calibration in
XQuant on the MultiFieldQA-Zh benchmark. The
results indicate that applying calibration (7; # 0
or g # 0) significantly improves XQuant’s perfor-
mance, reducing the performance gap with the full
cache baseline.

Cross-Layer Compression Method. We further
explore the weighted average with a group size
G = 2 and coefficients vg,v1 = 1 — 7, where
7o falls into six intervals derived in Appendix F.
Notably, when 7o € [0,1/6) or 79 € (5/6,1],
the operation is optimized to directly sharing the
quantized cache. We evaluate KIVI-2 on Mistral-
7B-Instruct-v0.2 without our proposed calibration
methods starting from the 8-th layer. As summa-
rized in Table 4, the accelerated compression meth-
ods (7 € [0,1/6) U (5/6, 1]) avoid redundant op-
erations seen in the workflow of Liu et al., 2024b,



Method Bit-width Yo MuSiQue
Full Cache 16 / 18.78
KIVI 2 / 18.13
Flooring 1.63 / 16.79
Ceiling 1.63 / 16.36
1.63 [0,1/6) 12.20
1.63 (1/6,1/4) 14.05
. 1.63 (1/4,172) 16.84
Weighted Average 163 (1/2.3/4) 1732
1.63 (3/4,5/6) 17.60
1.63 (5/6,1] 17.32

Table 4: The comparison between different cross-layer
compression method with group size G = 2, where
Y0, 1 stands for the coefficient in the weighted average

(11 +7%=1).

Method Bit-width G k£ MSQ MFQA-Zh
Full Cache 16 /! 18.78 48.26
KIVI 2 /] 18.13 42.27
2 0 1732 37.44
| 12.20 20.48
0 1492 17.53
31 1697 37.37
XQuant 1.63 2 13.21 20.80
0 1482 23.53
4 1 1244 18.68
2 16.12 35.48
3 1539 20.32

Table 5: The comparison of different group sizes G and
selection indices k within each group, where XQuant
is employed without the calibration step for a clearer
analysis.

which rounds quantized integers into floating-point
numbers. As shown in Table 4, the accelerated com-
pression operation demonstrates its effectiveness in
maintaining sufficient information for model per-
formance, particularly when v € (5/6, 1]. This
configuration effectively allows odd-numbered lay-
ers to reuse the quantized cache from the preceding
even-numbered layers without requiring additional
quantization or storage overhead for odd-numbered
layers.

We adopt this accelerated compression strategy
across all experiments due to its favorable balance
between computational efficiency and information
preservation.

Group Size. After optimizing the cross-layer
compression method, another factor is the group
size. To investigate the effects of layer grouping,
we partition the 32 layers into groups based on
different grouping strategies. The parameter & indi-
cates that we store and share the quantized cache
only in the k-th layer of each group. We set all
configurations under the same compression ratio,

Method Bit-width TREC SAMS
Full Cache 16 71 42.75
KIVI 2 71 43.7
AsymKV 1.5 70.5 43.44
AsymKV 1.375 69.5 42.76
XQuant 1.375 71.5 45.18
AsymKV 1.28 58.5 37.41
XQuant 1.28 68.5 39.84
AsymKV 1.15625 41 23.47
XQuant 1.15625 68.5 3947

Table 6: The comparison of different configurations
under extremely-low compression ratio.

namely keep all layers in key cache and 20 layers
in value cache based on KIVI-2bit framework, us-
ing Mistral-7b-instruct-v0.2. As shown in Table 5,
the model achieves the best performance with the
configuration of G = 2 and k = 0.

Performance-Compression Trade-offs. Table
6 evaluates the trade-offs between bit-width re-
duction and performance degradation across dif-
ferent quantization methods. As shown in Table
6, XQuant consistently outperforms other methods
at the same bit-width, achieving higher scores on
both TREC and SAMS benchmarks. Notably, even
at an extremely low bit-width of 1.15625, XQuant
preserves a significant portion of the model’s per-
formance, maintaining a TREC score of 68.5 com-
pared to the full-cache baseline of 71. These re-
sults demonstrate that XQuant effectively balances
performance retention and compression, achieving
state-of-the-art trade-offs in ultra-low-bit KV cache
quantization.

5 Conclusion

To alleviate the growing memory overhead in LLM
inference, we propose XQuant, a plug-and-play
framework that quantizes KV cache at an extreme
compression ratio. Based on our observations on
classical training-free quantization and the distribu-
tions of quantized integers, we propose a data-free
calibration method and a compute-efficient cross-
layer compression method. Extensive experiments
show that XQuant achieves state-of-the-art trade-
offs between performance degradation and com-
pression ratio, without sacrificing computational
efficiency. Integrating these two novel methods,
our XQuant achieves comparable performance with
full-precision baseline under 1.4-bit quantization,
and still maintains competitive performance for
some tasks around an extremely 1.16-bit quantiza-
tion.



Limitation

While XQuant demonstrates promising results
across a range of representative models and bench-
marks, future work may further validate its ro-
bustness and generalizability by extending eval-
uations to larger-scale models and more diverse
downstream scenarios. Such expansion, given suffi-
cient time and computational resources, would help
reinforce the applicability of XQuant in broader
real-world deployments.
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Method  Bit-width 7, 7. MFQA-Zh
Full Cache 16 / / 48.26
KIVI 2 / 0 42.27
KIVI 2 / 0.05 44.34
AsymKV 1.5 0 0 36.30
AsymKV 1.5 0 005 41.28
AsymKV 1.5 0.2 0 42.78
AsymKV 1.5 0.2 0.05 43.81

Table 7: The comparison using different quantization
methods with and without our calibration method in
MultiFieldQA-Zh tasks from LongBench.

A Preliminary Study on
Relaxed-Contraint Mapping

As demonstrated in Figure 2, the traditional quan-
tization workflow faces higher quantization error
in low-bit scenarios. In Section 3.2, we propose a
flexible mapping to mitigate the quantization error
in this aspect. Moreover, to provide empirical evi-
dence supporting the effectiveness of the flexible
mapping in the proposed calibration method, we
employ its generalized form and conduct a prelimi-
nary study on the default KIVI-2bit and AsymKV-
32/0 configurations. We extend this approach to a
generalized B-bit quantization mechanism, where
1 p serves as the corresponding parameter. Notably,
when np = 0, the B-bit quantization operates with-
out the flexible mapping.

The results in Table 7 demonstrate that incor-
porating the flexible mapping function enhances
model performance across different quantization
settings.

B Preliminary Experiment on Layer-Wise
Asymmetric Quantization

In the existing method (Tao et al., 2024), the KV
cache for each layer is quantized using either 1-bit
or 2-bit precision. A straightforward strategy to
maximize the compression ratio is to apply 1-bit
quantization to a greater number of layers.

However, a significant bottleneck arises, as it
is nearly impossible to quantize the key cache at
1-bit precision without compromising performance.
As shown in Table 8, further compression by in-
creasing the number of 1-bit quantized key cache
layers is not feasible, as it leads to substantial per-
formance degradation. This observation motivates
us to explore alternative compression methodolo-
gies.
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Method Bit-width  # Key Layers in 1-bit MFQA-Zh
Full Cache 16 / 48.26
KIVI (32/32) 2 0 42.27
AsymKV-24/32  1.875 8 37.10
AsymKV-16/32  1.75 16 21.36
AsymKV-8/32 1.625 24 13.16
AsymKV-0/32 1.5 32 7.66

Table 8: Evaluation on LongBench based on AsymKV
shows that the key cache is nearly impossible to quan-
tized under 1-bit.

C Equivalent Bit-width Analysis

Formally, let b, h, s, d be the batch size, the num-
ber of heads in GQA (Ainslie et al., 2023), the
sequence length and the dimension per head. The
original [ layers of KV cache occupies 2] * bhsd *
16 bit, which equals to 21 = n * 16 bit if we set
n = bhsd for convenience.

Consider a typical KV cache quantization
scheme (Liu et al., 2024b). If we quantize all [
layers of key cache and value cache into b-bit, the
quantized KV cache memory usage is 21 x n * b bit.
Tao et al., 2024 uses a asymmetrical configura-
tions for key and value caches across different lay-
ers. In their paper, Asym-l;/l, means quantizing
the initial [ layers of key cache and [, of value
cache into 2-bit, and quantizating 1-bit for oth-
ers. So the quantized KV cache memory usage is
(2%l + (32 — 1) + 2% 1y + (32 — 1)) * n bit.
For example, Asym-1.5bit stands for Asym-32/0 in
our paper, which can be calculated to 3/ * n bit and
can be equivalently considered as a 1.5-bit symmet-
rical quantization for better understanding of the
compression ratio.

The related parameters in XQuant are kq,
vq, km, and vm. The equivalent bit-width
B can be expressed as follows: B
((32 — max(kq,km))/2 + (max(kq,km) —
min(kq, km))+(max(kq, km)+min(kq, km))x
2 + (32 — maz(vg,vm))/2 + (max(vg,vm) +
min(vg, vm))+ (max(vg, vm)+min(vg, vm))*
2)/64.

In the classical configuration in our paper, kq =
30, vg = 2, km = 32, and vm = 16, in key
cache we apply 2-bit quantization to the layers
[0, kq) and 1-bit quantization to the layers [kq, 32),
and cross-layer compression to the layers [km, 32).
The value cache is processed in the same manner.
Therefore, the equivalent bit-widths of the key and
value caches are computed as follows:

(32 — 30) + 30 % 2
32

By, = 1.9375
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Figure 4: Comparison of Execution Time.

(32 —16)/2 + (16 —2) + 22

B, =
32

= 0.8125

The average bit-width is therefore 1.375, which
appears as 1.38 in most parts of this paper. More
parameter sets used in our experiments are listed in
Appendix H.

D Efficiency analysis

Using Mistral-7B as an example, we theoretically
analyze the computational cost of our two key im-
provements. During the calibration step, generat-
ing each token incurs only 64 additional floating-
point multiplications and 32 additions (Equation
12), which are negligible in practice. Moreover, as
described in Section 3.3.4, the cross-layer com-
pression step optimizes efficiency by skipping cer-
tain parts of the quantization process (Equation 2).

To evaluate inference efficiency, we adopt the
same experimental setup as implemented in KIVI's
repository, using a batch size of 16, a prompt length
of 1024, and an output length of 128. As shown in
Figure 4, XQuant, by leveraging its unique speedup
mechanism, demonstrates competitive inference
efficiency.
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E Hyperparameter

The related parameters in XQuant are kq, vq, km,
and vm. In XQuant, we quantize the lower kq,
vq layers of key and value cache into 2-bit, while
quantizing others into 1-bit. We apply cross-layer
compression from the km th, vm th layer of key
and value cache. All the configurations are summa-
rized in Table 10.

As demonstrated in Table 9, additional experi-
ments on the Mistral-7B-Instruct model using the
LongBench benchmark show that XQuant, with a
fixed n1 = 1/6 and 1o = 0.045, consistently de-
livers strong performance as well. These results
suggest that this fixed set of hyperparameters are
robust and can generalize effectively across differ-
ent datasets. Therefore, task-specific hyperparam-
eter tuning is superior but not necessary, and the
method can achieve reliable performance with a
fixed, pre-selected set of hyperparameters.

F Cross-Layer Compression Strategy

Under 2-bit quantization, the values in the KV
cache are restricted to the discrete integer set
{i € Z |0 < i < 3}. Therefore, a rounding
operation is required after weighted averaging. If
standard rounding-to-nearest is applied, the range
of vp can be divided into six disjoint intervals, as
summarized in Table 4. The derivation is as fol-
lows:

Let eg and e; denote the B-bit quantized values
at the same position in adjacent layers of Xq. Then
the merged value e, after cross-layer compression
is computed as:

Vo €o + 7161-‘
Y + M

= [v0e0 + (1 —0)e1]
=e1+ |[y0(eo —e1)] -

m =

Without loss of generality, assume ey > e; and
define § = ey — e; > 0. Then we have:

em = €1+ [700] (14)

where vy € [0,1] and § € Z N [0, 3]. Since Yo €
[0, 4], the rounding term |7od] in Eq. 14 can only
take d + 1 discrete values. Let [yod] = ¢, where
c € ZNJ0,6]. Then:

1 1
Y00 € <c—§,c—|- §> N[0, 4], (15)



Method Bit-width Hyperparameters HQA 2Wiki MSQ TREC TQA SAMS PC Avg
Full Cache 16 / 43.02 27.10 1878 71.00 86.23 42.75 2.75 41.66
AsymKV 1.5 / 37.17 2277 15776 7050 86.25 43.44 3.16 39.86
XQuant 1.38 Task-specific 4290 26.65 1744 7150 84.50 45.18 5.71 4198
XQuant 1.38 Static 42.64 2516 1691 70.50 84.50 42.64 4.57 40.99

Table 9: Evaluation of different KV cache compression methods using static hyperparameters setting.

which yields the following constraint for vg, when
0> 0:

706(

We now enumerate all valid combinations of §
and c from Equation 16:

c—1/2 c+1/2

5 5 >m[0,1]. (16)

* § = 0: Only one possible value exists; trivial
case omitted.

o 5=
e c=0:7€0,1/2)
cc=1:v € (1/2,1]
*5=2
e c=0:7€0,1/4)
cc=1:v € (1/4,3/4)
s c=2: € (3/4,1]
*5=3
e c=0:7€10,1/6)
cc=1:79€(1/6,1/2)
s c=279€(1/2,5/6)
e c=3:v € (5/6,1]

Collectively, this yields six effective intervals of
Yo, as summarized in Table 4.

G Comparison with Other Cross-Layer
Compression Methods

Several prior works have explored inter-layer re-
dundancy from different perspectives. To elimi-
nate potential confusion, we clarify several key
distinctions and highlight innovations as follows:
(a) Most existing methods compute KV caches at
a subset of layers. However, these approaches re-
quire additional training steps and, in some cases,
even full retraining, significantly limiting scala-
bility. In contrast, XQuant is designed as a plug-
and-play solution that leverages deeper insights
to enable effective redundancy reduction without
any additional training. (b) XQuant is the only
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method that explicitly considers inter-layer redun-
dancy through the lens of quantization. After quan-
tization, the KV cache is decomposed into three
components: the quantized cache, zero-points, and
scaling factors. We demonstrate that the quantized
cache, consisting solely of integers, exhibits sub-
stantial inter-layer similarity. Meanwhile, the zero-
points and scaling factors, which require minimal
storage, are retained individually to preserve per-
layer characteristics without being compressed. (c)
MiniCache (Liu et al., 2024a) is another training-
free method that primarily introduces a retention-
recovery mechanism for cache magnitudes and un-
mergable tokens. However, such operations are not
directly compatible in mainstream open-source KV
quantization frameworks. Furthermore, its use of
the SLERP function imposes several constraints,
making it inapplicable to quantized caches, which
fundamentally differs from XQuant.

H Configurations

The Configurations of XQuant in our main experi-
ments are summarized in Table 10

I XQuant Pseudo Code

The pseudo code for the whole workflow is pro-
vided in Algorithm 1 and 2.



Model Dataset kq vqg km vm etal eta2
Mistral-7b-v0.3 TruthfulQA 30 2 32 16 O 0
HQA 30 2 32 16 1/6 0.045
2Wiki 32 0 32 16 0 0.09
MSQ 32 0 32 16 1/6 0
Mistral-7b-instruct-v0.2 TREC 30 2 32 16 1/6 O
TQA 30 2 32 16 1/6 0.09
SAMS 30 2 32 16 O 0
PC 32 0 32 16 0 0.045
Llama2-7b TruthfulQA 28 0 32 28 1/3 O
HQA 28 0 32 28 1/6 0.045
2Wiki 28 0 32 28 1/3  0.045
MSQ 28 0 32 28 13 O
Llama2-7b-chat TREC 32 0 32 20 16 O
TQA 32 0 32 20 16 0
SAMS 32 0 32 20 0 0
PC 32 0 32 20 1/3 0.045

Table 10: The configurations of our main experiments.
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Algorithm 1: XQuant Procedure

1
2
3

Input :kq, vg, km, vm, n[2]
Output : Optimized Quantized Cache
for [ < 0to 31 do
if | <vmorlmod 2 == 0 then
KeyCachell] <
Quantize (X}, 2if | < kg else 1)
else
KeyCache[l] +
PseudoQuantize (X}, 2if <
kq else 1)
if | <vgorlmod2 == 0 then
ValueCache[l] <
Quantize (X!, 2ifl < vqelse 1)
else
ValueCache|l] +
PseudoQuantize (X, 2if [ <
vq else 1)
for [ < 0to 31 do
if | < km or ! mod 2 == ( then
DequantizedKey Dequantize(
KeyCachel][0],
KeyCachell][1],
KeyCachel[l][2])

else

DequantizedKey < Dequantize (
KeyCachel[l — 1][0],
KeyCachel[l — 1][1],
KeyCachel[l][2])

if | < vmorlmod 2 == 0 then

Dequantized Value <— Dequantize(
ValueCache[][0],
ValueCache[l|[1],
ValueCachel[l][2])

else

DequantizedValue <+ Dequantize
ValueCache|l — 1][0],
ValueCache[l — 1][1],
ValueCachel[l][2])
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Algorithm 2: Supporting Functions

—

10

11
12

13

17

18

19
20

Function PseudoQuantize (X, n_bits):

zero_point <— min(X) // Find the

minimum value of X;

scaling_factor %
// Calculate scaling factor;
return
Calibrate(zero_point,
scaling_factor, n_bits),

None;

Function Quantize (X, n_bits):

zero_point < min(X);

max(X)—min(X),

scaling_factor «— —gm— 3

quantized_cache +

X —zero_point
round <7scaling_factor ) // Round to

nearest quantized value;
return
Calibrate(zero_point,
scaling_factor, n_bits),
quantized_cache;

Function Dequantize(zero_point,

scaling_factor, quantized_cache):
return quantized_cache -
scaling_factor + zero_point
// Reconstruct original value;

Function Calibrate(zero_point,

scaling_factor, n_bits):

zero_point_cali < zero_point +
scaling_factor - nin_bits]
// Adjust zero point based on n;

scaling_factor_cali <
scaling_factor - (1 —2. n[n_bits])
// Adjust scaling factor based
on n;

return

zero_point_cali, scaling_factor_cali

// Return calibrated values;
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