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ABSTRACT

Anticipating traffic accidents in real time is critical for intelligent transportation
systems, yet remains challenging under edge-device constraints. We propose a
lightweight spatio-temporal framework that introduces a temporally shifted distil-
lation strategy, enabling a student model to acquire predictive temporal dynamics
from a frozen image-based teacher without requiring a video pre-trained teacher.
The student combines a RepMixer spatial encoding with a RWKV-inspired re-
current module for efficient long-range temporal reasoning. To enhance robust-
ness under partial observability, we design a masking memory strategy that lever-
ages memory retention to reconstruct missing visual tokens, effectively simulating
occlusions and future events. In addition, multi-modal vision-language supervi-
sion enriches semantic grounding. Our framework achieves state-of-the-art per-
formance on multiple real-world dashcam benchmarks while sustaining real-time
inference on resource-limited platforms such as the NVIDIA Jetson Orin Nano.
Remarkably, it is 3-7× smaller than leading approaches yet delivers superior ac-
curacy and earlier anticipation, underscoring its practicality for deployment in
intelligent vehicles.

1 INTRODUCTION

Ours

FA
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MASTTADAA-GNN
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L-RA

adaLEA
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GCRNN

100 M 150 M 200M

Inference 
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Figure 1: Accuracy–anticipation trade-
off. The x-axis shows mean time-to-accident
(mTTA, higher better) and the y-axis shows
mean average precision (mAP). Bubble size
corresponds to the number of model pa-
rameters. Our lightweight model (green)
achieves superior early anticipation and ac-
curacy while requiring significantly fewer
parameters than larger baselines.

Anticipating traffic accidents in real time involves
assigning a confidence score to each video frame
that reflects the likelihood of an imminent incident.
This task is challenging due to the narrow tempo-
ral window for prediction and the rapidly changing
dynamics of real-world driving environments. Ac-
cidents often occur suddenly and span only a brief
segment of a video, making early detection difficult
without compromising precision. Additionally, un-
predictable driver behavior, occlusions, and visual
clutter complicate the modeling of spatio-temporal
cues in a reliable and timely manner.

Early approaches relied on RNN-based architec-
tures with soft-attention mechanisms, such as
DSA (Chan et al., 2016) and FA (Fatima et al.,
2021), but lacked strong spatial reasoning capa-
bilities. AdaLEA (Suzuki et al., 2018) improved
early prediction supervision using a Quasi-RNN
with adaptive penalties, yet remained sensitive to oc-
clusions. More recent methods introduced graph-
based modeling or reinforcement learning to en-
hance relational understanding and context-awareness (Bao et al., 2020; Zeng et al., 2017; Bao et al.,
2021). However, these approaches often rely on predefined graph structures, dense object-level an-
notations, or multi-stage pipelines involving detection and tracking, limiting robustness and practical
deployment in unstructured, real-time settings. Other models such as DSTA (Karim et al., 2022) and
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GSC (Wang et al., 2024) refined spatio-temporal modeling via region-of-interest selection and oc-
clusion handling. More recently, CCAF-Net (Liu et al., 2025) fused RGB and depth features with a
complementarity-aware attention mechanism, improving accuracy at the price of a large model and
extra depth information. Many existing methods focus narrowly on either object-level semantics
or global temporal cues, limiting their generalization to diverse driving scenarios. In addition, they
often depend on heavy object-centric, multi-stage architectures – performing object detection with
Faster R-CNN followed by feature extraction with VGG16 – which are computationally expensive
and lack an end-to-end design.

To address these challenges, we propose a lightweight spatio-temporal distillation framework de-
signed for real-time deployment in low-resource environments. Unlike conventional object-centric
multi-stage pipelines, our approach is a compact, end-to-end model that operates directly on raw
RGB frames. Traditional pipelines incur high latency and computational overhead, limiting their
suitability for embedded systems. In contrast, our framework introduces a temporally shifted dis-
tillation strategy that lets a lightweight student learn temporal dynamics from a frozen image-only
MobileCLIP (Vasu et al., 2024) teacher, eliminating the need for a temporally aware teacher.

At the core of our method, the student predicts future visual cues by aligning with temporally shifted
teacher features. This supervision is applied exclusively within spatio-temporal modules, enabling
temporal reasoning even though the teacher lacks temporal context. To further enhance representa-
tion under partial observability, the student is trained to reconstruct masked visual tokens using its
recurrent hidden state, effectively simulating occlusion and reinforcing temporal abstraction.

Our student adopts a hybrid architecture that combines early RepMixer layers (Vasu et al., 2024) for
efficient spatial encoding with a lightweight window-based spatio-temporal module adapted from
the Receptance Weighted Key Value (RWKV) block (Peng et al., 2023). Our adaptation incorpo-
rates masking-aware recurrence, enabling robust long-range temporal modeling with linear attention
complexity and memory retention. This design ensures real-time inference on embedded devices.

Training begins with a pre-training stage that combines temporally shifted distillation and contrastive
learning on paired video–text data. The distillation transfers predictive temporal cues from a frozen
image-only MobileCLIP (Vasu et al., 2024) teacher, while contrastive supervision aligns frame-level
features with accident-related textual prompts to enrich semantic understanding and improve gener-
alization. The model is then fine-tuned end-to-end on accident anticipation benchmarks, resulting in
a compact, interpretable architecture that achieves state-of-the-art performance on real-world dash-
cam datasets and runs efficiently on platforms such as the NVIDIA Jetson Orin Nano, as shown in
Figure 1.

The major contributions of this paper are:

• A temporally shifted distillation framework that enables spatio-temporal learning from
a frozen image-based teacher, eliminating the need for temporally aware teacher in video
pre-training and making the approach suitable for small datasets and low-resource settings.

• A lightweight hybrid student architecture that integrates RepMixer spatial encoding with
a recurrent temporal module, RWKV, providing efficient long-range video understanding
with linear complexity.

• An adaptation of the RWKV block into a window-based, mask-aware spatio-temporal
module, which integrates localized recurrence with the proposed masked memory strategy
to achieve robust temporal modeling under occlusion and partial observability.

• Real-time accident anticipation with state-of-the-art performance on real-world bench-
marks, running efficiently on the NVIDIA Jetson Orin Nano. Our model is 3–7× smaller
than recent leading approaches, yet achieves high anticipation performance while remain-
ing deployable on resource-constrained platforms.

2 RELATED WORK

2.1 ACCIDENT DETECTION

(Roy et al., 2022) used a Siamese network with LSTM and temporal attention for collision detection,
while (Yu et al., 2024) employed a knowledge distillation-based framework to improve accident re-
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gion identification and severity estimation. Unlike these approaches, which rely on bird’s-eye view
detection or distillation techniques, our approach employs pre-trained models paired with special-
ized adapters, providing a more efficient solution tailored for first-person driving contexts. (Fang
et al., 2022) proposed a self-supervised consistency model for capturing spatio-temporal visual re-
lationships, while (Zhou et al., 2022) introduced a neural network that clusters frames based on
temporal features to detect accidents.

2.2 MULTI-MODAL LEARNING

(Wu et al., 2024) used a pre-trained CLIP model with learnable prompts and local-global modules
for weakly-supervised video anomaly detection. (Singh & Mohan, 2019) trained denoising autoen-
coders on non-accident traffic videos, incorporating multi-modal inputs like frames and optical flow.
(Wu et al., 2022) employed 3D CNNs to combine frames and depth data for spatio-temporal model-
ing in action recognition. In contrast, our approach focuses on video-text feature pairs to streamline
real-time accident anticipation. (Huang et al., 2024) used a frozen CLIP model for image-to-video
adaptation in action recognition. Unlike these methods, which focus on action recognition, our work
extends this concept to anticipate traffic accidents.

2.3 RECURRENT TRANSFORMERS

Recent works have explored combining Transformer and recurrent network advantages.
(Katharopoulos et al., 2020) proposed a linear attention formulation that reduces memory usage
and supports recurrent inference. (Zhai et al., 2021) introduced an attention-free Transformer with
linear complexity, validated on autoregressive and classification tasks. In video analysis, (Yang et al.,
2022) presented a fully recurrent vision transformer with attention gating for long-clip training. VR-
WKV (Duan et al., 2024) extends RWKV (Peng et al., 2023) to vision using quad-directional shifts
and bidirectional global attention, though its bi-directionality limits real-time applicability

3 PROPOSED METHOD

We propose a lightweight spatio-temporal framework for real-time accident anticipation, designed
for efficiency on embedded devices while maintaining predictive accuracy. The framework has three
key components:

1. A hybrid student architecture combining efficient spatial encoding with recurrent tem-
poral modeling.

2. A window-based spatio-temporal block with masked recurrence that integrates tempo-
ral and channel mixing.

3. A temporally shifted distillation strategy that enables predictive learning from a frozen
image-based teacher without requiring large-scale video pre-training.

Together, these components allow the model to capture sudden accident dynamics while operating
under strict latency and memory constraints.

3.1 HYBRID SPATIO-TEMPORAL STUDENT ARCHITECTURE

Purely spatial models lack temporal reasoning, while full spatio-temporal Transformers scale
quadratically in both space and time O(N2T 2), making them impractical for real-time systems
due to high computational and memory costs. To balance expressiveness and efficiency, we design
a hybrid student model, illustrated in Figure 2, composed of three main components:

Spatial Encoding (RepMixer). Each frame is partitioned into non-overlapping patches and tok-
enized. Tokens are processed by RepMixer blocks adapted from MobileCLIP (Vasu et al., 2024),
combining depthwise convolutions, normalization, residual connections, and lightweight MLP lay-
ers. This captures fine-grained traffic semantics (e.g., lanes, vehicles, pedestrians). Resolution
is progressively reduced and channel depth increased, forming a compact hierarchy optimized for
real-time inference. A frozen MobileCLIP text encoder provides multimodal supervision through
video–language alignment.

3
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Figure 2: Overview of our teacher–student framework. The teacher is a frozen MobileCLIP
model with four RepMixer stages (Stage 4 uses spatial-only MHSA). The student shares the same
backbone but replaces Stage 4 with a spatio-temporal RWKV block for efficient temporal reasoning.
Spatial distillation is applied at Stages 1–3, while temporal distillation aligns the student’s current
output at frame T with the teacher’s future features at frame T+1. Masked recurrence within the
spatio-temporal RWKV block (right) simulates occlusion and strengthens memory retention.

Temporal Encoding (Window-based Spatio-Temporal RWKV). Instead of quadratic self-
attention, we design a spatio-temporal RWKV block that maintains hidden states across frames
with linear complexity. Processing occurs within local spatial windows, preserving spatial structure
while propagating temporal memory. Learnable time-decay parameters enable long-range depen-
dency modeling while supporting parallelized training.

Masked Memory Strategy. To improve robustness under occlusion and partial observability, a
binary mask is introduced into the recurrence. During training, some tokens are blocked, forcing the
model to rely on prior hidden states. This simulates real-world conditions (e.g., occluded pedestri-
ans, motion blur) and strengthens predictive reasoning.

3.2 WINDOW-BASED SPATIO-TEMPORAL BLOCK

We introduce a window-based spatio-temporal recurrent block, inspired by RWKV (Peng et al.,
2023), which achieves linear complexity by replacing attention with localized recurrence. Input fea-
tures are first divided into K non-overlapping windows of size p1 × p2 and reshaped into sequences
of shape R(B·K)×(T ·p1·p2)×C for temporal recurrence. The block comprises two complementary
modules – Temporal Mixing and Channel Mixing – that together enable efficient modeling of tem-
poral dependencies and spatial dynamics.

3.2.1 TEMPORAL MIXING

To model temporal dependencies efficiently, we apply a linear mixing of current Xt and previous
Xt−1 frame information:

Rt = Wr(µrXt + (1− µr)Xt−1), (1)
Kt = Wk(µkXt + (1− µk)Xt−1), (2)
Vt = Wv(µvXt + (1− µv)Xt−1), (3)

where µr, µk, µv ∈ RC are learnable mixing coefficients, and Wr,Wk,Wv ∈ RC×C are projec-
tion matrices.

4
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At each time step, hidden states accumulate past information with learnable decay factors of current
visual tokens kt and vt and input mask mt:

wkvt =
st−1 +mt ⊙ (eu+kt ⊙ vt)

dt−1 +mt ⊙ eu+kt
, (4)

st = mt ⊙
(
e−w ⊙ st−1 + ekt ⊙ vt

)
+ (1−mt)⊙ st−1, (5)

dt = mt ⊙
(
e−w ⊙ dt−1 + ekt

)
+ (1−mt)⊙ dt−1, (6)

where w, u ∈ RK×C , with K denoting the number of windows, are learnable time decay parameters
and ⊙ denotes element-wise multiplication. The recurrent output is gated by Rt and projected:

rwkvt = Wo(σ(Rt)⊙ wkvt), (7)

with Wo ∈ RC×C a projection matrix and σ a sigmoid gate function. This formulation provides
long-range temporal expressiveness at linear cost.

3.2.2 CHANNEL MIXING

Channel mixing enriches intra-frame representations by modeling non-linear interactions across fea-
ture channels. For input Xt:

R′
t = W′

r(µ
′
rXt + (1− µ′

r)Xt−1), (8)

K ′
t = W′

k(µ
′
kXt + (1− µ′

k)Xt−1), (9)

cmixt = σ(R′
t)⊙W′

o

(
ReLU(K ′

t)
2
)
, (10)

where µ′
r, µ

′
k ∈ RC are learnable interpolation coefficients, and W′

r,W
′
k,W

′
o ∈ RC×C are pro-

jection matrices. Interpolation smooths features across time, while the squared ReLU activation
improves stability and expressiveness.

3.3 MASKED MEMORY STRATEGY

Hidden Memory State

Mask

Memory Update

RWKV
*

* Element-wise
multiplication

Masking 
operation

Sigmoid

Figure 3: Masking Strategy in Spatio-temporal
RWKV.

Driving scenes often exhibit partial observabil-
ity: pedestrians hidden behind vehicles, mo-
tion blur, or poor illumination. To improve ro-
bustness under such conditions, we introduce
a masking strategy into the Temporal Mixing
module (Section 3.2.1).

At each time step, a binary mask mt ∈ {0, 1}
determines whether the current visual tokens
are incorporated into the WKVt computation
and whether the hidden state is updated:

• If mt = 1: the update and WKVt ex-
ploit the key–value pairs (Kt, Vt).

• If mt = 0: the update propagates only
the prior memory (st−1, dt−1).

This acts as a form of memory dropout: the model sometimes must “remember” rather than “see.”
Figure 3 illustrates how masked steps bypass the current frame while selectively updating hidden
states with a binary mask, enabling conditional temporal propagation across spatio-temporal win-
dows. This masking strategy is used only during pre-training; both fine-tuning and inference operate
with the unmasked formulation. The masked memory update is applied once per forward pass in
pre-training, without introducing extra stages or additional unrolled iterations. All operations – in-
cluding masking – are implemented directly within our fused CUDA kernel, resulting in negligible
computational overhead.

3.4 TEMPORALLY SHIFTED DISTILLATION

Large-scale video pre-training is costly and often impractical for rare events such as accidents.
We propose a temporally shifted distillation framework that enables predictive learning of the
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lightweight video-based student model from a frozen image-based teacher. We adopt a frozen Mo-
bileCLIP (Vasu et al., 2024) as the teacher and align the student’s features with temporally shifted
teacher’s features, enabling it to anticipate future visual cues without requiring a temporally aware
teacher. This model-agnostic, data-efficient strategy is particularly well-suited for low-data scenar-
ios.

Teacher-Student Alignment. During distillation, our framework leverages the multi-modal MM-
AU dataset (Fang et al., 2024), which provides dashcam accident videos paired with accident-related
textual descriptions, and supplements it with non-accident videos from Nexar (Moura et al., 2025).
In the spatial encoding stage, the student aligns its feature representations with those of the frozen
teacher at the same time step. For each stage ℓ ∈ 1, 2, 3, with Pℓ denoting a projection layer, the
spatial distillation loss is defined as:

Lspatial =

3∑
ℓ=1

∣∣∣∣∣∣Pℓ(f
(S)
t,ℓ )− f

(T )
t,ℓ

∣∣∣∣∣∣2
2
, (11)

where f
(S)
t,ℓ and f

(T )
t,ℓ denote the student’s and teacher’s features at stage ℓ and time t, respectively.

In the temporal layers, the student is supervised to predict the teacher’s future frame features at time
t+1 based on its own features at time t. This setting introduces a temporally shifted supervision sig-
nal, encouraging the student to learn predictive temporal representations. The temporal distillation
loss is formulated as:

Ltemporal =
∣∣∣∣∣∣HST(f

(S)
t )− f

(T )
t+1

∣∣∣∣∣∣2
2
, (12)

where HST denotes a spatio-temporal projection head applied to the student’s output f (S)
t at time t,

and f
(T )
t+1 is the teacher’s spatial feature map at time t+ 1.

Contrastive Supervision. We further apply a CLIP-style contrastive loss between student video
features and accident-related text prompts (e.g., “a car runs a red light”), grounding features in
semantic accident categories:

Lcontr. = − 1

2B

B∑
i=1

log exp
(

sim(x
(S)
i , z

(S)
i )/τ

)
∑B

j=1 exp
(

sim(x
(S)
i , z

(S)
j )/τ

) + log
exp

(
sim(z

(S)
i , x

(S)
i )/τ

)
∑B

j=1 exp
(

sim(z
(S)
i , x

(S)
j )/τ

)
 , (13)

where B is the batch size, x(S)
i and z

(S)
i denote the student’s visual and textual embeddings, sim(·, ·)

is the cosine similarity, and τ is a learnable temperature parameter. This formulation encourages
alignment of matched pairs while separating mismatched ones, enhancing generalization to diverse
accident scenarios.

Overall Objective Function. A linear classifier with an anticipation loss (Jain et al., 2016) facili-
tates early accident detection via an exponentially weighted cross-entropy:

Laccident = −
T∑

t=1

[
e
−max(0,

Ty−t
f )

log (a
(p)
t ) + log(1− a

(n)
t )

]
, (14)

where Ty is the accident start frame, f the frame rate, a(p)t and a
(n)
t represent accident and non-

accident scores. The final training objective is a weighted sum of all components:

Ltotal = λ1Ldistill
spatial + λ2Ldistill

temporal + λ3Lcontr. + λ4Laccident, (15)

with λi controlling their relative importance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Benchmark datasets. We evaluate on widely used benchmarks. DAD (Chan et al., 2016) contains
1,750 5-second dashcam videos (20 FPS), with 620 accident and 1,130 non-accident cases. Acci-
dents always occur in the last 0.5 seconds. CCD (Bao et al., 2020) includes 4,500 5-second videos

6
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Figure 4: Qualitative results of accident anticipation under diverse driving conditions. Red
regions in the attention maps indicate areas identified as high risk (e.g., overtaking vehicles, pedes-
trians, or brake lights). The bottom row shows frame-wise accident probability curves, where earlier
rises correspond to successful early anticipation. These examples illustrate the model’s ability to
focus on critical cues across challenging scenarios such as fog, nighttime driving, and sudden lane
changes.

(10 FPS) under diverse driving conditions, with an accident-to-non-accident ratio of 1:2. Full dataset
statistics and splits are provided in the supplementary.

Evaluation Metrics. Following common evaluation protocol (Chan et al., 2016), we report mean
Average Precision (mAP) and mean Time-to-Accident (mTTA). mAP is computed from frame-level
accident confidence scores over varying thresholds. mTTA measures the average time between a
correct prediction and the accident onset. Formal definitions are included in the supplementary.

Implementation Details. Our approach follows a two-stage pipeline: pre-training with vision-
language distillation on MM-AU and Nexar, followed by fine-tuning on DAD and CCD. Training
uses the AdamW optimizer with a learning rate of 8×10−5, cosine decay, weight decay of 0.01, and
gradient clipping at 5.0. The student processes 8-frame clips during pre-training and 32-frame clips
during fine-tuning at an input resolution of 224 × 224. Pre-training leverages 112 accident-related
prompts, whereas fine-tuning uses binary accident labels. During inference, the model processes
32-frame windows with half overlap and aggregates via max pooling. Additional hyper-parameters
and architectural details are provided in the Appendix.

4.2 EDGE DEVICE DEPLOYMENT

We train our model on a server equipped with an NVIDIA RTX 4090 (24 GB) and deploy it on an
embedded Jetson Orin Nano (8 GB). To optimize for edge deployment, we prune redundant PyTorch
operations (e.g., reshaping) prior to exporting the model to ONNX. The model is then compiled with
TensorRT (Ubuntu 22.04, JetPack 6.2, TensorRT 10.3) using BF16 precision, yielding a final model
size of under 69 MB (excluding the text encoder, as text embeddings are pre-computed and cached
during inference).

7
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Table 1: Impact of spatio-temporal RWKV.

RWKV Layers Params. (M) mAP (%) mTTA (s)

2 13.0 71.9 3.81
4 19.9 73.9 3.90
6 26.7 75.33 4.04
8 33.6 71.6 4.05

Table 2: Impact of distillation components.

LDistill
spatial LDistill

temporal Lcontr. mAP (%) mTTA (s)

✓ ✓ - 70.1 3.54
✓ - ✓ 71.2 3.79
- ✓ ✓ 74.1 3.95
✓ ✓ ✓ 75.3 4.04

We evaluate performance in terms of both latency and FPS. Latency is defined as the time required
to process an initial batch of 32 frames, while FPS is calculated by dividing the total number of
processed frames by the total runtime. With batch processing of 32 frames with half overlap, our
optimized implementation achieves an inference speed of 80 FPS, corresponding to a latency of
approximately 0.4 seconds – well suited for real-time deployment on 30 FPS video streams. During
inference, only the vision encoder and classifier head remain active, as text embeddings are cached
beforehand.

4.3 ABLATION STUDY

To analyze our design choices, we ablate three factors: distillation components, block depth, and
mask ratio. Results show that each contributes to learning effectiveness, deeper blocks balance accu-
racy and anticipation with complexity, and moderate masking improves robustness without harming
performance.

Impact of Spatio-Temporal RWKV Blocks. Table 1 evaluates the impact of varying the number
of spatio-temporal RWKV layers. Performance improves consistently up to 6 layers, which yields
the highest mAP (75.33%) and a strong mTTA (4.04s) with only 26.7M parameters. Increasing to 8
layers adds complexity but slightly reduces performance, likely due to overfitting, suggesting that 6
layers provide the optimal balance between accuracy, temporal reasoning, and model efficiency.

Impact of Distillation Components. Table 2 presents an ablation study evaluating the contribution
of each component in our distillation framework. The accident loss from Equation 14 is used by
default. Removing the contrastive loss leads to a performance drop (from 75.3% to 70.1% mAP),
as the downstream fine-tuning stage still leverages the text-visual output – thus depending on the
alignment established during pre-training. Temporal and spatial distillation offer complementary
benefits: using only temporal supervision achieves better performance (74.1%) than using spatial
alone (71.2%), highlighting the effectiveness of our proposed temporally shifted distillation. When
combined with contrastive learning, all components work synergistically to yield the best results –
75.3% mAP and 4.04s mTTA – demonstrating the value of joint multi-objective distillation.

Table 3: Impact of the masking ratio for spatio-
temporal RWKV blocks.

Masking Ratio (%) mAP (%) mTTA (s)
No mask 74.0 4.00

30 75.3 4.04
50 71.8 3.93
75 71.0 3.94

Impact of Masking Strategy. Table 3 reports
the impact of varying spatio-temporal mask-
ing ratios in RWKV blocks during pre-training.
Performance improves with moderate masking,
peaking at 30% (mAP 75.3%, mTTA 4.04s),
indicating that partial input encourages robust
context learning. However, higher masking ra-
tios (50–75%) degrade performance, suggest-
ing that excessive information removal hinders
accurate anticipation.

Impact of Temporal Shift in Distillation. Table 4 analyzes how different temporal-shift values
affect accident-anticipation performance. A moderate shift of one frame yields the best overall
trade-off, achieving the highest mAP (75.3%) together with a strong mTTA of 4.04 s. Increasing
the shift to two frames results in a slight reduction in mAP (74.7%) while offering only a marginal
gain in mTTA (4.06 s). A larger three-frame shift further decreases mAP (70.7%) despite a small
improvement in mTTA (4.13 s). These results indicate that although larger temporal shifts promote
earlier prediction, they come at the cost of reduced accuracy. Consequently, a small temporal shift
provides the most effective balance and aligns with the short predictive horizon characteristic of
accident-anticipation tasks.
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Table 4: Impact of the various temporal shift
in temporally shifted distillation.

Temporal Shift mAP (%) mTTA (s)
no shift (only spatial) 71.2 3.79

1 75.3 4.04
2 74.7 4.06
3 70.7 4.13

Table 5: Impact of a video-based teacher in tem-
porally shifted distillation.

Video Distillation mAP (%) mTTA (s)
VJEPA2 – no shift 65.3 4.12
VJEPA2 – shift (1) 66.0 4.21

Impact of Video Teacher. We evaluate a video-based teacher using V-JEPA2 Assran et al. (2025),
a recent state-of-the-art model for spatio-temporal representation learning. As shown in Table 5,
introducing a temporal shift continues to yield meaningful benefits: the anticipation time increases
from 4.12 s to 4.21 s, demonstrating that our shifted distillation remains effective even when the
teacher already encodes temporal dynamics. However, the overall mAP achieved with V-JEPA2 is
notably lower than that obtained with the image-based MobileCLIP teacher. This performance gap
is expected due to architectural mismatches – V-JEPA2 employs different spatial tokenization and
operates at a much lower spatial resolution in its shallow layers, making its spatial representations
difficult for the student to align with. Consequently, the learning process is driven primarily by
temporal supervision rather than spatial correspondence. While the temporal shift still improves
early anticipation, the lack of compatible high-resolution spatial guidance results in reduced mAP
compared to the MobileCLIP-based setting.

Table 6: Ablation of Temporal RWKV (T-RWKV)
and Temporally Shifted Distillation (TSD).

Module mAP (%) mTTA (s)
T-RWKV + FN 39.4 3.97
S-RWKV + TSD + FN 55.6 4.00
T-RWKV + pre-train + FN 67.7 4.00
T-RWKV + TSD + FN 75.3 4.04

Impact of Temporal RWKV and Distilla-
tion. Table 6 highlights the complementary
roles of Temporal RWKV (T-RWKV) and Tem-
porally Shifted Distillation (TSD). Using T-
RWKV alone with fine-tuning (FN) provides
limited benefit, achieving only 39.4% mAP. In
contrast, applying TSD withe the purely Spa-
tial RWKV (S-RWKV) blocks yields a substan-
tial improvement to 55.6% mAP and mTTA of
4s, indicating that shifted supervision supplies
meaningful future-aware cues even without temporal recurrence. However, effective temporal mod-
eling is essential for fully exploiting this signal: T-RWKV with pre-training reaches 67.7% mAP, and
the combination of T-RWKV and TSD achieves the best performance at 75.3% mAP with an mTTA
of 4.04 s. These results demonstrate that neither TSD nor temporal modeling alone is sufficient
–strong anticipatory capability arises only when both forms of supervision are jointly employed.

4.4 QUALITATIVE RESULTS

Figure 4 illustrates successful cases of early accident anticipation. In A), a vehicle collides while
overtaking into the opposite lane under foggy conditions; the model maintains focus on both the bus
and the overtaking car, achieving a 4.5s early warning despite limited visibility. In B), a motorcyclist
crashes into a turning vehicle; the model sharply attends to the risky motion around the motorcycle
and triggers a 1.7s advance alert. C) presents a nighttime rear-end collision, where attention is
concentrated on brake lights and dense traffic, allowing a 4.1s prediction. In D), a sudden lane switch
results in a side collision; the model progressively attends to the intruding vehicle and predicts the
accident 2.6s ahead of time.

4.5 STATE-OF-THE-ART COMPARISON

All previous works rely on object detection (Faster-RCNN) and external feature extraction pipelines
(VGG-16), introducing significant computational overhead and latency. While MASTTA is the only
other recent end-to-end approach, our method achieves higher mAP (+5.1%) and mTTA (+0.08s),
while being 3.8× smaller – enabling more efficient early accident prediction.

Table 7 provides a comprehensive comparison of recent methods on the DAD and CCD datasets.
On DAD, our model delivers the best balance between early anticipation (mTTA of 4.04s) and high
precision (75.33% mAP), outperforming all prior approaches in the trade-off between these metrics.
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Table 7: Comparison of the longest mTTA and the corresponding mAP of SOTA models on the
DAD and CCD. Best balanced results in terms of model size, accuracy, and early prediction are in
bold.

Dataset Method Source Inference Params. (M) mAP(%) mTTA(s)

DAD

DSA Chan et al. (2016) ACCV16 179 48.4 1.34
adaLEA Suzuki et al. (2018) CVPR18 180 52.3 3.43
GCRNN Bao et al. (2020) ACMMM20 275 53.7 3.53

FA Fatima et al. (2021) ICPR21 78 49.8 3.76
DRIVE Bao et al. (2021) ICCV21 140 62.8 2.78
L-RA Zeng et al. (2017) CVPR21 185 49.1 3.04

DSTA Karim et al. (2022) TITS22 180 56.1 3.66
GSC Wang et al. (2024) TIV23 75 60.4 2.55

DAA-GNN Song et al. (2024) PR23 183 70.6 1.59
MASTTA Patera et al. (2025) TCSVT25 99 70.2 3.96
CCAF-Net Liu et al. (2025) NEURO25 191 71.8 4.15

Ours - 26 75.3 4.04
DSA Chan et al. (2016) ACCV16 179 99.6 4.87

GCRNN Bao et al. (2020) ACMMM20 275 99.5 4.74
DSTA Karim et al. (2022) TITS22 180 99.6 4.52

MASTTA Patera et al. (2025) TCSVT25 99 99.9 4.95
CCAF-Net Liu et al. (2025) NEURO25 191 93.9 4.94

CCD

Ours - 26 99.9 4.95

Notably, this is achieved with only 26M parameters – 7× fewer than DAA-GNN (183M), 8.3×
fewer than CCAF-Net (191M), and 3.8× fewer than MASTTA (99M). On CCD, our model achieves
the highest mAP (99.9%) and the longest mTTA (4.95s), matching MASTTA and exceeding other
SOTA, again using a fraction of the parameters.

Table 8: Comparison of the highest mAP
and corresponding mTTA of priors models
on DAD. Best balanced results in terms of
model size, accuracy, and early prediction
are in bold.

Method Inference Params. (M) mAP(%) mTTA(s)

I3D 21 68.0 2.99
R(2+1)D 31 49.7 3.57

TSM 43 53.0 3.39
GCRNN 275 72.2 1.33
L-RAI 185 51.4 3.01

MVITv2 51 64.4 -
DSTA 180 72.3 1.50

VideoSwin 88 65.4 -
UniFormer V2 115 65.2 -

DAA-GNN 183 75.2 1.47
MASTTA 99 80.8 3.32
CCAF-Net 191 81.3 3.75

Ours 26 79.6 3.41

Table 8 compares priors methods on the DAD
dataset from a high mAP perspective. We addition-
ally incorporate several purely Transformer-based
approaches Fan et al. (2021); Liu et al. (2022); Li
et al. (2023) as well as CNN-based models Carreira
& Zisserman (2017); Tran et al. (2018); Lin et al.
(2019), all of which are widely used in video under-
standing. Notably, these architectures underperform
on the accident anticipation task, with none exceed-
ing 70% mAP. Although CCAF-Net and MASTTA
slightly outperform in mAP (81.3% and 80.8%, re-
spectively), our model attains a competitive 79.61%
mAP with the smallest parameter count (26M) and a
favorable mTTA of 3.41s – outperforming MASTTA
by 0.09s and trailing CCAF-Net by only 0.34s.
These results underscore our model’s strong effi-
ciency–accuracy trade-off, making it well-suited for
real-time accident anticipation.

5 CONCLUSIONS

This work presents a lightweight spatio-temporal framework for early accident anticipation, de-
signed for real-time operation in resource-constrained environments. By combining a temporally
shifted distillation strategy with a hybrid architecture that integrates convolutional spatial encoding
and recurrent temporal modeling, our approach enables efficient long-range reasoning without the
need for video-trained teachers. The framework achieves strong accuracy on limited data with low
latency and memory usage, making it practical for deployment in real-world autonomous driving
systems and adaptable to broader traffic safety applications.

REPRODUCIBILITY STATEMENT

All architectural details and parameter settings are described in the Implementation Details section,
with further configuration and training specifics provided in the supplementary material in Appendix
to facilitate reproducibility. The source code will be released upon publication of the paper.
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A SUMMARY OF SUPPLEMENTARY CONTRIBUTIONS

This supplementary material provides additional details supporting our main submission. We de-
scribe the proposed spatio-temporal masking strategy along with ablation results, present the com-
plete architectural configurations of both the student and teacher models, and outline the training
protocols and deployment setup. We also include qualitative examples that highlight model lim-
itations, clarify the dataset composition, and explain the use of coarse-grained text labels during
fine-tuning. Code and pretrained models will be released upon acceptance.

B ANALYSIS OF CCD PERFORMANCE

To further address concerns regarding potential overfitting on the CCD dataset, we provide addi-
tional analyses and metrics beyond the mAP and mTTA reported in the main paper. CCD is a
well-known saturated benchmark where numerous prior works (e.g., DSA, GCRNN, MASTTA)
routinely achieve 99.0–99.9% mAP under the standard protocol, and our results follow this estab-
lished trend. To verify robustness, Table 9 reports ROC-AUC, which reaches a similarly high value
of 85.0%, indicating strong separability between accident and non-accident trajectories. We also
evaluate a smaller student variant (XS) with only 13 million parameters; despite its lower capacity,
it preserves the same mAP of 99.9% with only a minor decrease in mTTA (4.92 s), suggesting that
CCD performance does not depend on fragile model capacity. Furthermore, we include TTA80% –
the time-to-accident at 80% recall – which remains consistently high at 4.84 s. Collectively, these
results confirm that our model’s CCD performance is stable and reflects the dataset’s inherent ease
rather than overfitting.

Table 9: Comparison of smaller network variant on CCD with additional metrics.

Model AUC (%) mAP (%) mTTA (s) TTA80% Params (M)
Model - smaller (XS) 85.0 99.9 4.92 4.84 13
Model - small (S) 86.9 99.9 4.95 4.86 26
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C ANALYSIS OF SHIFTED-TEACHER ALIGNMENT

We further assess the effectiveness of Temporally Shifted Distillation (TSD) by examining the dif-
ference in cosine similarity between two pairs of signals: the student’s features XS

t aligned with the
teacher’s same-time features XT

t , and the student’s features XS
t aligned with the teacher’s future

features XT
t+1. To further quantify this effect, we introduce the Temporal Alignment Ratio (TAR),

TARt =
cos

(
XS

t , X
T
t+1

)
cos

(
XS

t , X
T
t

)
+ ε

, (16)

which measures how strongly the student aligns with the teacher’s future state relative to its present
state. Values greater than 1 indicate that the student preferentially aligns with future representa-
tions, reflecting true anticipatory capability rather than static feature matching. Empirically, TAR
remains consistently above 1 and increases over time, further confirming that TSD induces mean-
ingful temporal forecasting behavior. As shown in Fig. 5, a decreasing blue TAR curve (smooth)
would indicate that TSD provides no benefit, suggesting that the student relies primarily on spatial
correlations rather than learning to anticipate future representations. In contrast, the consistently
increasing trend demonstrates that the student becomes progressively better aligned with the future
teacher embeddings.

Figure 5: Temporal alignment comparison showing that the student aligns more strongly with the
teacher’s future features. TAR (blue curve) > 1 further confirms TSD induces anticipatory learning.

D ARCHITECTURAL DETAILS

D.1 STUDENT VISION ENCODER

Batch Normalization

3x3 DW Convolution(s
ki

p 
co

nn
ec

tio
n)

ConvFFN

Figure 6: RepMixer Block from Mo-
bileCLIP.

Our Student Vision Encoder adopts a lightweight yet
expressive RepMixer (illustrated in Figure 6) spatial
encoding on the MobileCLIP Vasu et al. (2024) with
our lightweight window-based spatio-temporal module
adapted from the RWKV Peng et al. (2023), optimized
for efficient spatio-temporal modeling in accident antici-
pation. As detailed in Table 10, the encoder processes an
input video of shape T ×H ×W through four hierarchi-
cal stages, each progressively reducing spatial resolution
while expanding feature dimensionality. The stem con-
sists of two convolutional layers – a standard 3 × 3 con-
volution followed by a MobileOne-style 3×3 convolution
with stride 2 – yielding 48-dim features.

Stage 1 begins with a patch embedding layer using a 7×
7 MobileOne-style convolution with stride 2 to generate
tokens at H

4 × W
4 resolution, followed by 2 RepMixer

blocks with 96-dim features for local spatial modeling.
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Table 10: Student Vision Encoder. Architectural configuration of the proposed lightweight spatio-
temporal model variant.

Stage #Tokens Layer Spec. Description Dim.

Stem T ×H ×W Conv
3× 3, stride 2

48
3× 3 MobileOne Style, stride 2

1 T × H
4
× W

4

Patch Embed. 7× 7 MobileOne Style, stride 2
96

Blocks
RepMixer

2×

2 T × H
8
× W

8

Patch Embed. 7× 7 MobileOne Style, stride 2
128

Blocks
RepMixer

6×

3 T × H
16

× W
16

Patch Embed. 7× 7 MobileOne Style, stride 2
256

Blocks
RepMixer

10×

4 T × H
32

× W
32

Patch Embed. 7× 7 MobileOne Style, stride 2
512

Blocks
Spatio-temporal RWKV

6×
Parameters (M) 26

Stage 2 continues this pattern, reducing the resolution to H
8 × W

8 , and applies 6 RepMixer blocks
with 128 channels. Stage 3 further downsamples to H

16 × W
16 and employs 10 RepMixer blocks with

256-dim features to capture mid-level semantic representations.

In Stage 4, the spatial resolution is reduced to H
32 × W

32 , resulting in 7 × 7 spatial tokens with input
of 224 × 224, and temporal modeling is introduced using 6 Spatio-temporal RWKV blocks with
512-dim tokens. These RWKV blocks allow efficient linear-complexity modeling across frames,
enabling the encoder to capture long-range temporal dependencies without sacrificing latency. The
complete Vision Encoder comprises only 26 million parameters.

D.2 STUDENT TEXT ENCODER

The text encoder adopts the Text-RepMixer architecture from MobileCLIP, maintaining architec-
tural consistency with the vision encoder while being specifically tailored for language processing.
It employs a hybrid design that combines 1D convolutions with self-attention layers. Unlike purely
convolutional approaches – which were found to underperform – Text-RepMixer effectively bal-
ances local and global context modeling by integrating convolutional token mixing with attention-
based reasoning. For efficient inference, skip connections and normalization layers are reparameter-
ized, and the feed-forward layers are enhanced with depthwise 1D convolutions, forming ConvFFN
blocks that can be fused for optimized execution. The complete model, including both the Vision
and Text Encoders, contains a total of 69 million parameters.

D.3 TEACHER VISION ENCODER

The Teacher Vision Encoder shares the same overall architecture as the Student, detailed in Fig-
ure 11, including the hierarchical four-stage structure and patch embedding. However, it is deeper,
with [4, 12, 24, 4] blocks and larger embedding dimensions of [80, 160, 320, 640] across stages
1 to 4. While the Student introduces lightweight spatio-temporal RWKV blocks in Stage 4, the
Teacher retains standard spatial multi-head self-attention (MHSA) for purely spatial modeling. The
Teacher is initialized with the official pre-trained weights from MobileCLIP Vasu et al. (2024) and
kept entirely frozen during pre-training, providing stable, high-capacity supervision for the student’s
spatio-temporal adaptation via our proposed temporally shifted distillation.
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Table 11: Teacher Vision Encoder. Architectural configuration of the large image-based model
variant serving as the teacher.

Stage #Tokens Layer Spec. Description Dim.

Stem T ×H ×W Conv
3× 3, stride 2

48
3× 3 MobileOne Style, stride 2

1 T × H
4
× W

4

Patch Embed. 7× 7 MobileOne Style, stride 2
80

Blocks
RepMixer

4×

2 T × H
8
× W

8

Patch Embed. 7× 7 MobileOne Style, stride 2
160

Blocks
RepMixer

12×

3 T × H
16

× W
16

Patch Embed. 7× 7 MobileOne Style, stride 2
320

Blocks
RepMixer

24×

4 T × H
32

× W
32

Patch Embed. 7× 7 MobileOne Style, stride 2
640

Blocks
Multi-Head Self-Attention

4×
Parameters (M) 36

Hyper-parameter Pre-training Fine-tuning
Input resolution 224×224 224×224
Input #frames 8 32
Frame sample interval 8 3
Random Resize Crop [0.1, 1.0] [0.1, 1.0]
Random Horizontal Flip 0.5 0.5
Color Jitter ✓ ✓
λ1, λ2, λ3, λ4 [0.3, 0.4, 0.5, 1.0] -
Mask ratio 30% -
Train epochs 50 50
Warmup epochs 5 0
Batch size 70 12
Optimizer AdamW AdamW
Peak learning rate 8e-5 8e-6
LR decay schedule cosine cosine
Weight decay rate 0.01 0.01
Gradient clipping 5 5
Mixed precision BF16 BF16

Table 12: Hyperparameters for Pre-training and Training.

E EXPERIMENTAL SETUPS

We conducted all experiments using a single NVIDIA RTX 4090 GPU with 24 GB memory for
both pre-training and fine-tuning, while the final model was deployed on an NVIDIA Jetson Orin
Nano with 8 GB shared memory for real-time inference. The pre-training and fine-tuning phase
have utilized the dataset described in the Datasets section of this supplementary materials. Table 12
summarizes the hyper-parameter configurations used for both pre-training and fine-tuning. In both
settings, the input resolution is fixed at 224 × 224. During pre-training, the model processes clips
of 8 frames sampled every 8 frames, while fine-tuning uses 32-frame clips sampled every 3 frames
to improve temporal precision for accident anticipation. For input data augmentation, both phases
employ random resize cropping (scale range 0.1 - 1.0), horizontal flipping with a probability of 0.5,
and color jitter is applied to promote visual robustness.
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The pre-training phase additionally incorporates a 30% masking ratio applied to the input frames and
employs a multi-task loss with weighting coefficients λ1, λ2, λ3, λ4 = [0.3, 0.4, 0.5, 1.0], whereas
fine-tuning relies solely on the classification loss. Both phases are trained for 50 epochs, with 5
warm-up epochs. Due to memory constraints, the batch size is set to 70 during pre-training and 12
during fine-tuning. Optimization is performed using AdamW with a peak learning rate of 8× 10−5

and cosine learning rate decay schedule. A weight decay rate of 0.01 and gradient clipping threshold
of 5 are consistently applied throughout both phases. Both pre-training and training were performed
under PyTorch mixed precision BF16. Training across multiple random seeds, mAP remains stable
within ±0.3% and mTTA within ±0.08 s.

Fine-tuning uses the same objective function Laccident as defined in Equation (14) of the main
manuscript for text-visual features, along with a standard cross-entropy loss for the visual classi-
fier.

F EVALUATION METRICS

Average Precision (AP). Each method produces a confidence score per frame representing the like-
lihood of a future accident. A prediction is counted as a True Positive (TP) if the score exceeds a
threshold q before the accident onset; otherwise, it is treated as a False Negative (FN). Any pre-
diction in a non-accident video is considered a False Positive (FP). By varying q, a precision-recall
curve is obtained, and AP is computed as the area under this curve. Precision (TP/(TP + FP)) and
recall (TP/(TP + FN)) are evaluated at each threshold, and the mean Average Precision (mAP) is
calculated as their average across all evaluated thresholds.

Time to Accident (TTA). TTA is defined as T − τ , where T is the accident start frame and τ is
the first frame where the confidence exceeds q. The mean TTA (mTTA) averages TTA over true
positives across thresholds.

G PERFORMANCE

Ours

GCRNN

CCAF-Net

DSA

DAA-GNN

DRIVE
L-RA

FA
MASTTA

GSC

DSTA

adaLEA

Figure 7: Inference Parameters vs. Early Pre-
diction (mTTA). Our method (green) achieves
real-time performance with the smallest model
size, surpassing larger baselines in terms of
mTTA. This demonstrates a favorable trade-off
between efficiency and temporal anticipation,
ideal for resource-limited deployment.

Figure 7 illustrates the trade-off between model
size and early accident anticipation ability
across state-of-the-art methods. The x-axis
represents the number of inference parameters
(in millions), and the y-axis denotes the mean
Time-to-Accident (mTTA) in seconds. Each
point corresponds to a competing approach.
Our method, highlighted in green and marked
with a red arrow, achieves the highest mTTA
(4.04s) while using only 26M parameters—the
smallest among all models. This result demon-
strates that our approach delivers superior early
anticipation despite being significantly more
lightweight than existing baselines, offering a
clear advantage for efficient, real-world deploy-
ment.

H IMPLEMENTATION DETAILS

We implement our model and all train-
ing/testing pipelines using PyTorch 2.5.0. To
enable efficient spatio-temporal modeling, our
RWKV-based module is implemented with a
custom CUDA kernel that supports parallel computation over video spatio-temporal input sequence,
compiled with Ninja 1.10.2.1 library . This design significantly accelerates both training and in-
ference, particularly when handling long video sequences. To prepare window-based inputs for the
RWKV block, we utilize PyTorch’s built-in nn.Unfold operation to window-based extract spatio-
temporal patches, and nn.Fold to reconstruct the processed output back to the original input shape.
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Accident description: "Vehicles run red light"

Accident description: "The truck is out of control"

Accident description: "Pedestrian moves or stays on the motorway"

Figure 8: Example of accident scenes from MM-AU with corresponding textual descriptions used
during pre-training.

This approach ensures computational efficiency while maintaining compatibility with the rest of the
architecture. The similar unfolding window-based pattern can be found in another methods such as
SWIN-Transformer Liu et al. (2022) and MobileViT Mehta & Rastegari (2021).

I DATASETS

The training of our framework involves both pre-training and fine-tuning phases. We pre-train the
model on the recently released MM-AU Fang et al. (2024) dataset, which includes only accident
videos paired with textual descriptions detailing 112 distinct accident scenarios. To compensate
for the absence of negative samples, we incorporate non-accident videos from Nexar Moura et al.
(2025), DAD Chan et al. (2016), and CCD Bao et al. (2020). This setup offers key benefits: (1) MM-
AU’s textual descriptions provide strong inductive bias, helping the model learn causal relationships
beyond visual saliency; (2) pre-training on a separate dataset supports domain generalization and
reduces overfitting; and (3) exposure to varied accident types, viewpoints, and contexts enhances
robustness. MM-AU is not used for evaluation due to its lack of negative samples and standard-
ized test splits with evaluation protocol. Instead, we leverage it solely for pre-training to exploit
its rich text–video annotations. Figure 8 shows example accident scenes from MM-AU with their
corresponding textual descriptions used during pre-training.

During fine-tuning and inference, we use only coarse-grained text labels — “Normal traffic situa-
tion” and “A traffic accident” — due to the absence of detailed textual annotations in the downstream
datasets. These labels provide semantic conditioning, enabling class-aware alignment even without
fine-grained textual supervision. Fine-tuning is performed on two widely used benchmark datasets
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for traffic accident anticipation – DAD and CCD – to ensure a fair comparison with prior state-of-
the-art methods.
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Figure 9: Qualitative analysis of model limitations. Examples of false negatives (A–B) and false
positives (C–D) are shown. Red regions in the attention maps indicate high-risk areas, while the
bottom row displays frame-wise accident probability curves.

J LIMITATIONS

Figure 9 presents qualitative results across four diverse driving scenarios, illustrating both false
negatives (A–B) and false positives (C–D) in traffic accident anticipation. Subfigures A) and B)
depict cases where the model fails to anticipate accidents. In A), the accident occurs in the far
background with only a small visual footprint, making it difficult for the model to detect early
warning cues. Despite partial attention over relevant regions, the subtlety and scale of the event lead
to a missed prediction. In B), the camera is mounted on a motorbike helmet, causing severe camera
shake and unstable motion that hinder consistent spatio-temporal reasoning. Although the attention
maps correctly highlight the road and nearby vehicles, the predicted accident probability remains
low throughout, likely due to the accident being heavily obscured by another vehicle in front.

In contrast, C) and D) represent false positives, where the model erroneously predicts an accident
in videos where no incident occurs. Both sequences are captured with helmet-mounted cameras,
introducing natural shakiness. C) features dense daytime traffic, with a tightly packed group of
motorbikes driving in close proximity. The attention maps strongly focus on surrounding vehicles,
causing the model to interpret the scene as hazardous, despite the absence of an accident. D),
recorded at night under low visibility, involves high-speed driving with bright headlights and road
reflections. These challenging lighting conditions, combined with motion from the helmet-mounted
camera, result in persistently high accident probabilities, even though no collision occurs.

Overall, these visualizations underscore key challenges in accident anticipation, including motion
instability, small-scale accident cues, traffic density, and adverse lighting. They highlight the impor-
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tance of incorporating spatio-temporal consistency, scale awareness, and robustness to visual noise
into model design.
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