

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LIGHTWEIGHT SPATIO-TEMPORAL MODELING VIA TEMPORALLY SHIFTED DISTILLATION FOR REAL- TIME ACCIDENT ANTICIPATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Anticipating traffic accidents in real time is critical for intelligent transportation systems, yet remains challenging under edge-device constraints. We propose a lightweight spatio-temporal framework that introduces a temporally shifted distillation strategy, enabling a student model to acquire predictive temporal dynamics from a frozen image-based teacher without requiring a video pre-trained teacher. The student combines a RepMixer spatial encoding with a RWKV-inspired recurrent module for efficient long-range temporal reasoning. To enhance robustness under partial observability, we design a masking memory strategy that leverages memory retention to reconstruct missing visual tokens, effectively simulating occlusions and future events. In addition, multi-modal vision-language supervision enriches semantic grounding. Our framework achieves state-of-the-art performance on multiple real-world dashcam benchmarks while sustaining real-time inference on resource-limited platforms such as the NVIDIA Jetson Orin Nano. Remarkably, it is 3-7 \times smaller than leading approaches yet delivers superior accuracy and earlier anticipation, underscoring its practicality for deployment in intelligent vehicles.

1 INTRODUCTION

Anticipating traffic accidents in real time involves assigning a confidence score to each video frame that reflects the likelihood of an imminent incident. This task is challenging due to the narrow temporal window for prediction and the rapidly changing dynamics of real-world driving environments. Accidents often occur suddenly and span only a brief segment of a video, making early detection difficult without compromising precision. Additionally, unpredictable driver behavior, occlusions, and visual clutter complicate the modeling of spatio-temporal cues in a reliable and timely manner.

Early approaches relied on RNN-based architectures with soft-attention mechanisms, such as DSA (Chan et al., 2016) and FA (Fatima et al., 2021), but lacked strong spatial reasoning capabilities. AdaLEA (Suzuki et al., 2018) improved early prediction supervision using a Quasi-RNN with adaptive penalties, yet remained sensitive to occlusions. More recent methods introduced graph-based modeling or reinforcement learning to enhance relational understanding and context-awareness (Bao et al., 2020; Zeng et al., 2017; Bao et al., 2021). However, these approaches often rely on predefined graph structures, dense object-level annotations, or multi-stage pipelines involving detection and tracking, limiting robustness and practical deployment in unstructured, real-time settings. Other models such as DSTA (Karim et al., 2022) and

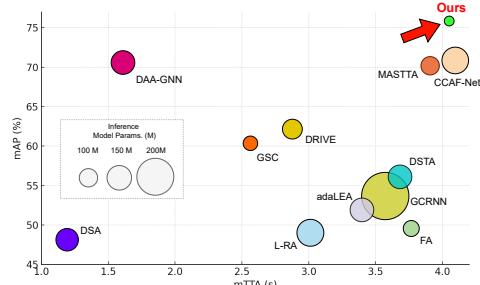


Figure 1: **Accuracy-anticipation trade-off**. The x-axis shows mean time-to-accident (mTTA, higher better) and the y-axis shows mean average precision (mAP). Bubble size corresponds to the number of model parameters. Our lightweight model (green) achieves superior early anticipation and accuracy while requiring significantly fewer parameters than larger baselines.

054 GSC (Wang et al., 2024) refined spatio-temporal modeling via region-of-interest selection and oc-
 055 clusion handling. More recently, CCAF-Net (Liu et al., 2025) fused RGB and depth features with a
 056 complementarity-aware attention mechanism, improving accuracy at the price of a large model and
 057 extra depth information. Many existing methods focus narrowly on either object-level semantics
 058 or global temporal cues, limiting their generalization to diverse driving scenarios. In addition, they
 059 often depend on heavy object-centric, multi-stage architectures – performing object detection with
 060 Faster R-CNN followed by feature extraction with VGG16 – which are computationally expensive
 061 and lack an end-to-end design.

062 To address these challenges, we propose a lightweight spatio-temporal distillation framework de-
 063 signed for real-time deployment in low-resource environments. Unlike conventional object-centric
 064 multi-stage pipelines, our approach is a compact, end-to-end model that operates directly on raw
 065 RGB frames. Traditional pipelines incur high latency and computational overhead, limiting their
 066 suitability for embedded systems. In contrast, our framework introduces a temporally shifted dis-
 067 tillation strategy that lets a lightweight student learn temporal dynamics from a frozen image-only
 068 MobileCLIP (Vasu et al., 2024) teacher, eliminating the need for a temporally aware teacher.

069 At the core of our method, the student predicts future visual cues by aligning with temporally shifted
 070 teacher features. This supervision is applied exclusively within spatio-temporal modules, enabling
 071 temporal reasoning even though the teacher lacks temporal context. To further enhance representa-
 072 tion under partial observability, the student is trained to reconstruct masked visual tokens using its
 073 recurrent hidden state, effectively simulating occlusion and reinforcing temporal abstraction.

074 Our student adopts a hybrid architecture that combines early RepMixer layers (Vasu et al., 2024) for
 075 efficient spatial encoding with a lightweight window-based spatio-temporal module adapted from
 076 the Reception Weighted Key Value (RWKV) block (Peng et al., 2023). Our adaptation incorpo-
 077 rates masking-aware recurrence, enabling robust long-range temporal modeling with linear attention
 078 complexity and memory retention. This design ensures real-time inference on embedded devices.

079 Training begins with a pre-training stage that combines temporally shifted distillation and contrastive
 080 learning on paired video–text data. The distillation transfers predictive temporal cues from a frozen
 081 image-only MobileCLIP (Vasu et al., 2024) teacher, while contrastive supervision aligns frame-level
 082 features with accident-related textual prompts to enrich semantic understanding and improve gener-
 083 alization. The model is then fine-tuned end-to-end on accident anticipation benchmarks, resulting in
 084 a compact, interpretable architecture that achieves state-of-the-art performance on real-world dash-
 085 cam datasets and runs efficiently on platforms such as the NVIDIA Jetson Orin Nano, as shown in
 086 Figure 1.

087 **The major contributions of this paper are:**

- 089 • A **temporally shifted distillation framework** that enables spatio-temporal learning from
 090 a frozen image-based teacher, eliminating the need for temporally aware teacher in video
 091 pre-training and making the approach suitable for small datasets and low-resource settings.
- 092 • A **lightweight hybrid student architecture** that integrates RepMixer spatial encoding with
 093 a recurrent temporal module, RWKV, providing efficient long-range video understanding
 094 with linear complexity.
- 095 • An adaptation of the RWKV block into a **window-based, mask-aware spatio-temporal**
 096 **module**, which integrates localized recurrence with the proposed masked memory strategy
 097 to achieve robust temporal modeling under occlusion and partial observability.
- 098 • **Real-time accident anticipation** with state-of-the-art performance on real-world bench-
 099 marks, running efficiently on the NVIDIA Jetson Orin Nano. Our model is 3–7× smaller
 100 than recent leading approaches, yet achieves high anticipation performance while remain-
 101 ing deployable on resource-constrained platforms.

102 2 RELATED WORK

103 2.1 ACCIDENT DETECTION

104 (Roy et al., 2022) used a Siamese network with LSTM and temporal attention for collision detection,
 105 while (Yu et al., 2024) employed a knowledge distillation-based framework to improve accident re-

108 gion identification and severity estimation. Unlike these approaches, which rely on bird’s-eye view
 109 detection or distillation techniques, our approach employs pre-trained models paired with special-
 110 ized adapters, providing a more efficient solution tailored for first-person driving contexts. (Fang
 111 et al., 2022) proposed a self-supervised consistency model for capturing spatio-temporal visual re-
 112 lationships, while (Zhou et al., 2022) introduced a neural network that clusters frames based on
 113 temporal features to detect accidents.

114

115 2.2 MULTI-MODAL LEARNING

116

(Wu et al., 2024) used a pre-trained CLIP model with learnable prompts and local-global modules
 117 for weakly-supervised video anomaly detection. (Singh & Mohan, 2019) trained denoising autoen-
 118 coders on non-accident traffic videos, incorporating multi-modal inputs like frames and optical flow.
 119 (Wu et al., 2022) employed 3D CNNs to combine frames and depth data for spatio-temporal model-
 120 ing in action recognition. In contrast, our approach focuses on video-text feature pairs to streamline
 121 real-time accident anticipation. (Huang et al., 2024) used a frozen CLIP model for image-to-video
 122 adaptation in action recognition. Unlike these methods, which focus on action recognition, our work
 123 extends this concept to anticipate traffic accidents.

124

125 2.3 RECURRENT TRANSFORMERS

126

Recent works have explored combining Transformer and recurrent network advantages.
 127 (Katharopoulos et al., 2020) proposed a linear attention formulation that reduces memory usage
 128 and supports recurrent inference. (Zhai et al., 2021) introduced an attention-free Transformer with
 129 linear complexity, validated on autoregressive and classification tasks. In video analysis, (Yang et al.,
 130 2022) presented a fully recurrent vision transformer with attention gating for long-clip training. VR-
 131 WKV (Duan et al., 2024) extends RWKV (Peng et al., 2023) to vision using quad-directional shifts
 132 and bidirectional global attention, though its bi-directionality limits real-time applicability

133

134 3 PROPOSED METHOD

135

We propose a lightweight spatio-temporal framework for real-time accident anticipation, designed
 136 for efficiency on embedded devices while maintaining predictive accuracy. The framework has three
 137 key components:

138

- 140 1. A **hybrid student architecture** combining efficient spatial encoding with recurrent tem-
 141 poral modeling.
- 142 2. A **window-based spatio-temporal block with masked recurrence** that integrates tempo-
 143 ral and channel mixing.
- 144 3. A **temporally shifted distillation strategy** that enables predictive learning from a frozen
 145 image-based teacher without requiring large-scale video pre-training.

146

Together, these components allow the model to capture sudden accident dynamics while operating
 147 under strict latency and memory constraints.

148

149 3.1 HYBRID SPATIO-TEMPORAL STUDENT ARCHITECTURE

150

Purely spatial models lack temporal reasoning, while full spatio-temporal Transformers scale
 151 quadratically in both space and time $O(N^2T^2)$, making them impractical for real-time systems
 152 due to high computational and memory costs. To balance expressiveness and efficiency, we design
 153 a **hybrid student model**, illustrated in Figure 2, composed of three main components:

154

Spatial Encoding (RepMixer). Each frame is partitioned into non-overlapping patches and tok-
 155 enized. Tokens are processed by RepMixer blocks adapted from MobileCLIP (Vasu et al., 2024),
 156 combining depthwise convolutions, normalization, residual connections, and lightweight MLP lay-
 157 ers. This captures fine-grained traffic semantics (e.g., lanes, vehicles, pedestrians). Resolution
 158 is progressively reduced and channel depth increased, forming a compact hierarchy optimized for
 159 real-time inference. A frozen MobileCLIP text encoder provides multimodal supervision through
 160 video-language alignment.

161

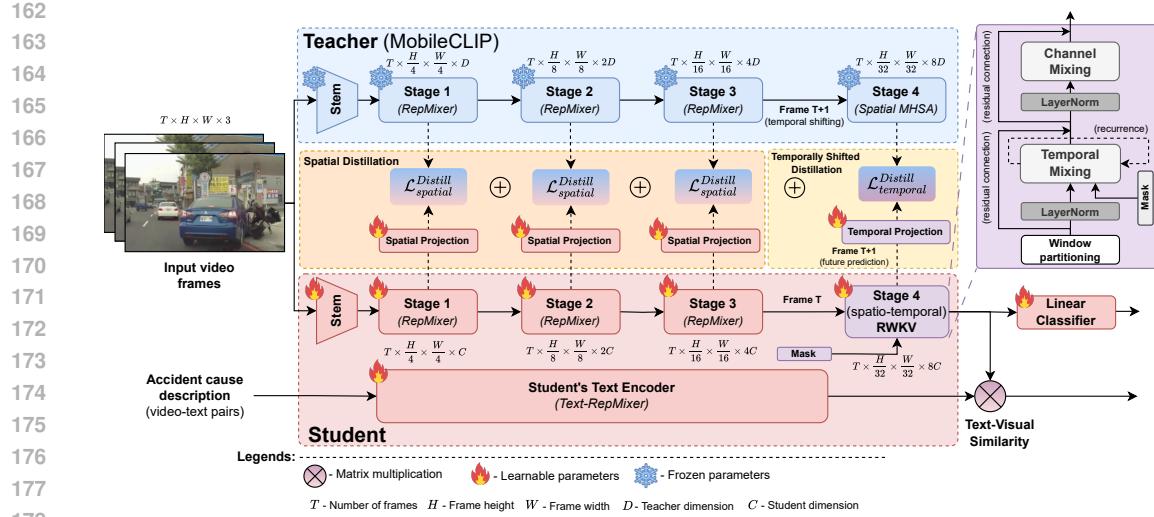


Figure 2: **Overview of our teacher–student framework.** The teacher is a frozen MobileCLIP model with four RepMixer stages (Stage 4 uses spatial-only MHSA). The student shares the same backbone but replaces Stage 4 with a spatio-temporal RWKV block for efficient temporal reasoning. Spatial distillation is applied at Stages 1–3, while temporal distillation aligns the student’s current output at frame T with the teacher’s future features at frame $T+1$. Masked recurrence within the spatio-temporal RWKV block (right) simulates occlusion and strengthens memory retention.

Temporal Encoding (Window-based Spatio-Temporal RWKV). Instead of quadratic self-attention, we design a spatio-temporal RWKV block that maintains hidden states across frames with linear complexity. Processing occurs within local spatial windows, preserving spatial structure while propagating temporal memory. Learnable time-decay parameters enable long-range dependency modeling while supporting parallelized training.

Masked Memory Strategy. To improve robustness under occlusion and partial observability, a binary mask is introduced into the recurrence. During training, some tokens are blocked, forcing the model to rely on prior hidden states. This simulates real-world conditions (e.g., occluded pedestrians, motion blur) and strengthens predictive reasoning.

3.2 WINDOW-BASED SPATIO-TEMPORAL BLOCK

We introduce a window-based spatio-temporal recurrent block, inspired by RWKV (Peng et al., 2023), which achieves linear complexity by replacing attention with localized recurrence. Input features are first divided into K non-overlapping windows of size $p_1 \times p_2$ and reshaped into sequences of shape $\mathbb{R}^{(B \cdot K) \times (T \cdot p_1 \cdot p_2) \times C}$ for temporal recurrence. The block comprises two complementary modules – Temporal Mixing and Channel Mixing – that together enable efficient modeling of temporal dependencies and spatial dynamics.

3.2.1 TEMPORAL MIXING

To model temporal dependencies efficiently, we apply a linear mixing of current X_t and previous X_{t-1} frame information:

$$R_t = \mathbf{W}_r(\mu_r X_t + (1 - \mu_r) X_{t-1}), \quad (1)$$

$$K_t = \mathbf{W}_k(\mu_k X_t + (1 - \mu_k) X_{t-1}), \quad (2)$$

$$V_t = \mathbf{W}_v(\mu_v X_t + (1 - \mu_v) X_{t-1}), \quad (3)$$

where $\mu_r, \mu_k, \mu_v \in \mathbb{R}^C$ are learnable mixing coefficients, and $\mathbf{W}_r, \mathbf{W}_k, \mathbf{W}_v \in \mathbb{R}^{C \times C}$ are projection matrices.

At each time step, hidden states accumulate past information with learnable decay factors of current visual tokens k_t and v_t and input mask m_t :

$$wkv_t = \frac{s_{t-1} + m_t \odot (e^{u+k_t} \odot v_t)}{d_{t-1} + m_t \odot e^{u+k_t}}, \quad (4)$$

$$s_t = m_t \odot (e^{-w} \odot s_{t-1} + e^{k_t} \odot v_t) + (1 - m_t) \odot s_{t-1}, \quad (5)$$

$$d_t = m_t \odot (e^{-w} \odot d_{t-1} + e^{k_t}) + (1 - m_t) \odot d_{t-1}, \quad (6)$$

where $w, u \in \mathbb{R}^{K \times C}$, with K denoting the number of windows, are learnable time decay parameters and \odot denotes element-wise multiplication. The recurrent output is gated by R_t and projected:

$$rwkv_t = \mathbf{W}_o(\sigma(R_t) \odot wkv_t), \quad (7)$$

with $\mathbf{W}_o \in \mathbb{R}^{C \times C}$ a projection matrix and σ a sigmoid gate function. This formulation provides long-range temporal expressiveness at linear cost.

3.2.2 CHANNEL MIXING

Channel mixing enriches intra-frame representations by modeling non-linear interactions across feature channels. For input X_t :

$$R'_t = \mathbf{W}'_r(\mu'_r X_t + (1 - \mu'_r) X_{t-1}), \quad (8)$$

$$K'_t = \mathbf{W}'_k(\mu'_k X_t + (1 - \mu'_k) X_{t-1}), \quad (9)$$

$$cmix_t = \sigma(R'_t) \odot \mathbf{W}'_o(\text{ReLU}(K'_t)^2), \quad (10)$$

where $\mu'_r, \mu'_k \in \mathbb{R}^C$ are learnable interpolation coefficients, and $\mathbf{W}'_r, \mathbf{W}'_k, \mathbf{W}'_o \in \mathbb{R}^{C \times C}$ are projection matrices. Interpolation smooths features across time, while the squared ReLU activation improves stability and expressiveness.

3.3 MASKED MEMORY STRATEGY

Driving scenes often exhibit partial observability: pedestrians hidden behind vehicles, motion blur, or poor illumination. To improve robustness under such conditions, we introduce a masking strategy into the Temporal Mixing module (Section 3.2.1).

At each time step, a binary mask $m_t \in \{0, 1\}$ determines whether the current visual tokens are incorporated into the WKV_t computation and whether the hidden state is updated:

- If $m_t = 1$: the update and WKV_t exploit the key-value pairs (K_t, V_t) .
- If $m_t = 0$: the update propagates only the prior memory (s_{t-1}, d_{t-1}) .

This acts as a form of **memory dropout**: the model sometimes must “remember” rather than “see.” Figure 3 illustrates how masked steps bypass the current frame while selectively updating hidden states with a binary mask, enabling conditional temporal propagation across spatio-temporal windows. **This masking strategy is used only during pre-training; both fine-tuning and inference operate with the unmasked formulation.** The masked memory update is applied once per forward pass in pre-training, without introducing extra stages or additional unrolled iterations. All operations – including masking – are implemented directly within our fused CUDA kernel, resulting in negligible computational overhead.

3.4 TEMPORALLY SHIFTED DISTILLATION

Large-scale video pre-training is costly and often impractical for rare events such as accidents. We propose a **temporally shifted distillation framework** that enables predictive learning of the

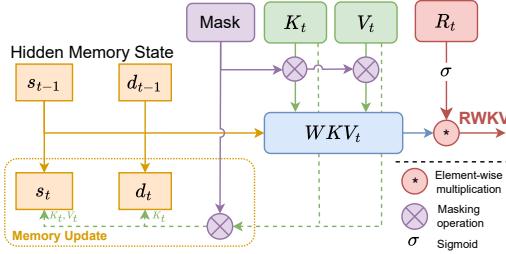


Figure 3: **Masking Strategy in Spatio-temporal RWKV.**

lightweight video-based student model from a frozen *image-based teacher*. We adopt a frozen MobileCLIP (Vasu et al., 2024) as the teacher and align the student’s features with temporally shifted teacher’s features, enabling it to anticipate future visual cues without requiring a temporally aware teacher. This model-agnostic, data-efficient strategy is particularly well-suited for low-data scenarios.

Teacher-Student Alignment. During distillation, our framework leverages the multi-modal MM-AU dataset (Fang et al., 2024), which provides dashcam accident videos paired with accident-related textual descriptions, and supplements it with non-accident videos from Nexar (Moura et al., 2025). In the spatial encoding stage, the student aligns its feature representations with those of the frozen teacher at the same time step. For each stage $\ell \in 1, 2, 3$, with \mathcal{P}_ℓ denoting a projection layer, the spatial distillation loss is defined as:

$$\mathcal{L}_{\text{spatial}} = \sum_{\ell=1}^3 \left\| \mathcal{P}_\ell(f_{t,\ell}^{(S)}) - f_{t,\ell}^{(T)} \right\|_2^2, \quad (11)$$

where $f_{t,\ell}^{(S)}$ and $f_{t,\ell}^{(T)}$ denote the student’s and teacher’s features at stage ℓ and time t , respectively.

In the temporal layers, the student is supervised to predict the teacher’s future frame features at time $t+1$ based on its own features at time t . This setting introduces a temporally shifted supervision signal, encouraging the student to learn predictive temporal representations. The temporal distillation loss is formulated as:

$$\mathcal{L}_{\text{temporal}} = \left\| \mathcal{H}_{\text{ST}}(f_t^{(S)}) - f_{t+1}^{(T)} \right\|_2^2, \quad (12)$$

where \mathcal{H}_{ST} denotes a spatio-temporal projection head applied to the student’s output $f_t^{(S)}$ at time t , and $f_{t+1}^{(T)}$ is the teacher’s spatial feature map at time $t+1$.

Contrastive Supervision. We further apply a CLIP-style contrastive loss between student video features and accident-related text prompts (e.g., “a car runs a red light”), grounding features in semantic accident categories:

$$\mathcal{L}_{\text{contr.}} = -\frac{1}{2B} \sum_{i=1}^B \left[\log \frac{\exp(\text{sim}(x_i^{(S)}, z_i^{(S)})/\tau)}{\sum_{j=1}^B \exp(\text{sim}(x_i^{(S)}, z_j^{(S)})/\tau)} + \log \frac{\exp(\text{sim}(z_i^{(S)}, x_i^{(S)})/\tau)}{\sum_{j=1}^B \exp(\text{sim}(z_i^{(S)}, x_j^{(S)})/\tau)} \right], \quad (13)$$

where B is the batch size, $x_i^{(S)}$ and $z_i^{(S)}$ denote the student’s visual and textual embeddings, $\text{sim}(\cdot, \cdot)$ is the cosine similarity, and τ is a learnable temperature parameter. This formulation encourages alignment of matched pairs while separating mismatched ones, enhancing generalization to diverse accident scenarios.

Overall Objective Function. A linear classifier with an anticipation loss (Jain et al., 2016) facilitates early accident detection via an exponentially weighted cross-entropy:

$$\mathcal{L}_{\text{accident}} = - \sum_{t=1}^T \left[e^{-\max(0, \frac{T_y-t}{f})} \log(a_t^{(p)}) + \log(1 - a_t^{(n)}) \right], \quad (14)$$

where T_y is the accident start frame, f the frame rate, $a_t^{(p)}$ and $a_t^{(n)}$ represent accident and non-accident scores. The final training objective is a weighted sum of all components:

$$\mathcal{L}_{\text{total}} = \lambda_1 \mathcal{L}_{\text{spatial}}^{\text{distill}} + \lambda_2 \mathcal{L}_{\text{temporal}}^{\text{distill}} + \lambda_3 \mathcal{L}_{\text{contr.}} + \lambda_4 \mathcal{L}_{\text{accident}}, \quad (15)$$

with λ_i controlling their relative importance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Benchmark datasets. We evaluate on widely used benchmarks. **DAD** (Chan et al., 2016) contains 1,750 5-second dashcam videos (20 FPS), with 620 accident and 1,130 non-accident cases. Accidents always occur in the last 0.5 seconds. **CCD** (Bao et al., 2020) includes 4,500 5-second videos

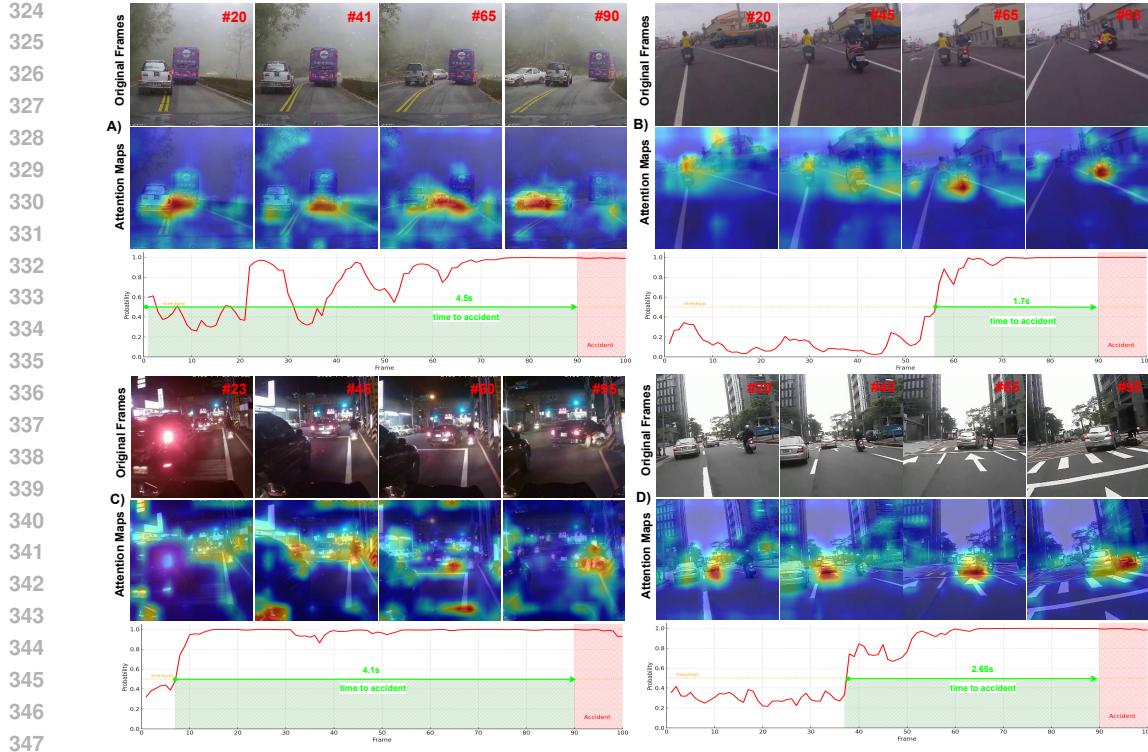


Figure 4: **Qualitative results of accident anticipation under diverse driving conditions.** Red regions in the attention maps indicate areas identified as high risk (e.g., overtaking vehicles, pedestrians, or brake lights). The bottom row shows frame-wise accident probability curves, where earlier rises correspond to successful early anticipation. These examples illustrate the model’s ability to focus on critical cues across challenging scenarios such as fog, nighttime driving, and sudden lane changes.

(10 FPS) under diverse driving conditions, with an accident-to-non-accident ratio of 1:2. Full dataset statistics and splits are provided in the supplementary.

Evaluation Metrics. Following common evaluation protocol (Chan et al., 2016), we report mean Average Precision (mAP) and mean Time-to-Accident (mTTA). mAP is computed from frame-level accident confidence scores over varying thresholds. mTTA measures the average time between a correct prediction and the accident onset. Formal definitions are included in the supplementary.

Implementation Details. Our approach follows a two-stage pipeline: pre-training with vision-language distillation on MM-AU and Nexar, followed by fine-tuning on DAD and CCD. Training uses the AdamW optimizer with a learning rate of 8×10^{-5} , cosine decay, weight decay of 0.01, and gradient clipping at 5.0. The student processes 8-frame clips during pre-training and 32-frame clips during fine-tuning at an input resolution of 224×224 . Pre-training leverages 112 accident-related prompts, whereas fine-tuning uses binary accident labels. During inference, the model processes 32-frame windows with half overlap and aggregates via max pooling. Additional hyper-parameters and architectural details are provided in the Appendix.

4.2 EDGE DEVICE DEPLOYMENT

We train our model on a server equipped with an NVIDIA RTX 4090 (24 GB) and deploy it on an embedded Jetson Orin Nano (8 GB). To optimize for edge deployment, we prune redundant PyTorch operations (e.g., reshaping) prior to exporting the model to ONNX. The model is then compiled with TensorRT (Ubuntu 22.04, JetPack 6.2, TensorRT 10.3) using BF16 precision, yielding a final model size of under 69 MB (excluding the text encoder, as text embeddings are pre-computed and cached during inference).

378 Table 1: Impact of spatio-temporal RWKV.
379

RWKV Layers	Params. (M)	mAP (%)	mTTA (s)
2	13.0	71.9	3.81
4	19.9	73.9	3.90
6	26.7	75.33	4.04
8	33.6	71.6	4.05

380 Table 2: Impact of distillation components.
381

$\mathcal{L}_{\text{spatial}}^{\text{Distill}}$	$\mathcal{L}_{\text{temporal}}^{\text{Distill}}$	$\mathcal{L}_{\text{contr.}}$	mAP (%)	mTTA (s)
✓	✓	-	70.1	3.54
✓	-	✓	71.2	3.79
-	✓	✓	74.1	3.95
✓	✓	✓	75.3	4.04

382 We evaluate performance in terms of both latency and FPS. Latency is defined as the time required
383 to process an initial batch of 32 frames, while FPS is calculated by dividing the total number of
384 processed frames by the total runtime. With batch processing of 32 frames with half overlap, our
385 optimized implementation achieves an inference speed of 80 FPS, corresponding to a latency of
386 approximately 0.4 seconds – well suited for real-time deployment on 30 FPS video streams. During
387 inference, only the vision encoder and classifier head remain active, as text embeddings are cached
388 beforehand.

389 4.3 ABLATION STUDY

390 To analyze our design choices, we ablate three factors: distillation components, block depth, and
391 mask ratio. Results show that each contributes to learning effectiveness, deeper blocks balance accuracy
392 and anticipation with complexity, and moderate masking improves robustness without harming
393 performance.

394 **Impact of Spatio-Temporal RWKV Blocks.** Table 1 evaluates the impact of varying the number
395 of spatio-temporal RWKV layers. Performance improves consistently up to 6 layers, which yields
396 the highest mAP (75.33%) and a strong mTTA (4.04s) with only 26.7M parameters. Increasing to 8
397 layers adds complexity but slightly reduces performance, likely due to overfitting, suggesting that 6
398 layers provide the optimal balance between accuracy, temporal reasoning, and model efficiency.

399 **Impact of Distillation Components.** Table 2 presents an ablation study evaluating the contribution
400 of each component in our distillation framework. The accident loss from Equation 14 is used by
401 default. Removing the contrastive loss leads to a performance drop (from 75.3% to 70.1% mAP),
402 as the downstream fine-tuning stage still leverages the text-visual output – thus depending on the
403 alignment established during pre-training. Temporal and spatial distillation offer complementary
404 benefits: using only temporal supervision achieves better performance (74.1%) than using spatial
405 alone (71.2%), highlighting the effectiveness of our proposed temporally shifted distillation. When
406 combined with contrastive learning, all components work synergistically to yield the best results –
407 75.3% mAP and 4.04s mTTA – demonstrating the value of joint multi-objective distillation.

408 **Impact of Masking Strategy.** Table 3 reports
409 the impact of varying spatio-temporal mask-
410 ing ratios in RWKV blocks during pre-training.
411 Performance improves with moderate masking,
412 peaking at 30% (mAP 75.3%, mTTA 4.04s),
413 indicating that partial input encourages robust
414 context learning. However, higher masking ra-
415 tios (50–75%) degrade performance, suggest-
416 ing that excessive information removal hinders
417 accurate anticipation.

418 Table 3: Impact of the masking ratio for spatio-
419 temporal RWKV blocks.

Masking Ratio (%)	mAP (%)	mTTA (s)
No mask	74.0	4.00
30	75.3	4.04
50	71.8	3.93
75	71.0	3.94

420 **Impact of Temporal Shift in Distillation.** Table 4 analyzes how different temporal-shift values
421 affect accident-anticipation performance. A moderate shift of one frame yields the best overall
422 trade-off, achieving the highest mAP (75.3%) together with a strong mTTA of 4.04 s. Increasing
423 the shift to two frames results in a slight reduction in mAP (74.7%) while offering only a marginal
424 gain in mTTA (4.06 s). A larger three-frame shift further decreases mAP (70.7%) despite a small
425 improvement in mTTA (4.13 s). These results indicate that although larger temporal shifts promote
426 earlier prediction, they come at the cost of reduced accuracy. Consequently, a small temporal shift
427 provides the most effective balance and aligns with the short predictive horizon characteristic of
428 accident-anticipation tasks.

432
433
434
Table 4: Impact of the various temporal shift
in temporally shifted distillation.

Temporal Shift	mAP (%)	mTTA (s)
no shift (only spatial)	71.2	3.79
1	75.3	4.04
2	74.7	4.06
3	70.7	4.13

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
Table 5: Impact of a video-based teacher in tem-
porally shifted distillation.

Video Distillation	mAP (%)	mTTA (s)
VJEP2 – no shift	65.3	4.12
VJEP2 – shift (1)	66.0	4.21

Impact of Video Teacher. We evaluate a video-based teacher using V-JEPA2 Assran et al. (2025), a recent state-of-the-art model for spatio-temporal representation learning. As shown in Table 5, introducing a temporal shift continues to yield meaningful benefits: the anticipation time increases from 4.12 s to 4.21 s, demonstrating that our shifted distillation remains effective even when the teacher already encodes temporal dynamics. However, the overall mAP achieved with V-JEPA2 is notably lower than that obtained with the image-based MobileCLIP teacher. This performance gap is expected due to architectural mismatches – V-JEPA2 employs different spatial tokenization and operates at a much lower spatial resolution in its shallow layers, making its spatial representations difficult for the student to align with. Consequently, the learning process is driven primarily by temporal supervision rather than spatial correspondence. While the temporal shift still improves early anticipation, the lack of compatible high-resolution spatial guidance results in reduced mAP compared to the MobileCLIP-based setting.

453 Impact of Temporal RWKV and Distilla- 454 tion.

455 Table 6 highlights the complementary
456 roles of Temporal RWKV (T-RWKV) and Tem-
457 porally Shifted Distillation (TSD). Using T-
458 RWKV alone with fine-tuning (FN) provides
459 limited benefit, achieving only 39.4% mAP. In
460 contrast, applying TSD with the purely Spat-
461 ial RWKV (S-RWKV) blocks yields a substan-
462 tial improvement to 55.6% mAP and mTTA of
463 4s, indicating that shifted supervision supplies
464 meaningful future-aware cues even without temporal recurrence. However, effective temporal
465 modeling is essential for fully exploiting this signal: T-RWKV with pre-training reaches 67.7% mAP, and
466 the combination of T-RWKV and TSD achieves the best performance at 75.3% mAP with an mTTA
467 of 4.04 s. These results demonstrate that neither TSD nor temporal modeling alone is sufficient
468 – strong anticipatory capability arises only when both forms of supervision are jointly employed.

469 4.4 QUALITATIVE RESULTS

470 Figure 4 illustrates successful cases of early accident anticipation. In A), a vehicle collides while
471 overtaking into the opposite lane under foggy conditions; the model maintains focus on both the bus
472 and the overtaking car, achieving a 4.5s early warning despite limited visibility. In B), a motorcyclist
473 crashes into a turning vehicle; the model sharply attends to the risky motion around the motorcycle
474 and triggers a 1.7s advance alert. C) presents a nighttime rear-end collision, where attention is
475 concentrated on brake lights and dense traffic, allowing a 4.1s prediction. In D), a sudden lane switch
476 results in a side collision; the model progressively attends to the intruding vehicle and predicts the
477 accident 2.6s ahead of time.

478 4.5 STATE-OF-THE-ART COMPARISON

479 All previous works rely on object detection (Faster-RCNN) and external feature extraction pipelines
480 (VGG-16), introducing significant computational overhead and latency. While MASTTA is the only
481 other recent end-to-end approach, our method achieves higher mAP (+5.1%) and mTTA (+0.08s),
482 while being 3.8× smaller – enabling more efficient early accident prediction.

483 Table 7 provides a comprehensive comparison of recent methods on the DAD and CCD datasets.
484 On DAD, our model delivers the best balance between early anticipation (mTTA of 4.04s) and high
485 precision (75.33% mAP), outperforming all prior approaches in the trade-off between these metrics.

486
 487 Table 7: Comparison of the longest mTTA and the corresponding mAP of SOTA models on the
 488 DAD and CCD. **Best balanced results** in terms of model size, accuracy, and early prediction are in
 489 bold.

490 Dataset	491 Method	492 Source	493 Inference Params. (M)	494 mAP(%)	495 mTTA(s)
496 DAD	DSA Chan et al. (2016)	ACCV16	179	48.4	1.34
	adaLEA Suzuki et al. (2018)	CVPR18	180	52.3	3.43
	GCRNN Bao et al. (2020)	ACMM20	275	53.7	3.53
	FA Fatima et al. (2021)	ICPR21	78	49.8	3.76
	DRIVE Bao et al. (2021)	ICCV21	140	62.8	2.78
	L-RA Zeng et al. (2017)	CVPR21	185	49.1	3.04
	DSTA Karim et al. (2022)	TITS22	180	56.1	3.66
	GSC Wang et al. (2024)	TIV23	75	60.4	2.55
	DAA-GNN Song et al. (2024)	PR23	183	70.6	1.59
	MASTTA Patera et al. (2025)	TCSVT25	99	70.2	3.96
	CCAF-Net Liu et al. (2025)	NEURO25	191	71.8	4.15
	Ours	-	26	75.3	4.04
500 CCD	DSA Chan et al. (2016)	ACCV16	179	99.6	4.87
	GCRNN Bao et al. (2020)	ACMM20	275	99.5	4.74
	DSTA Karim et al. (2022)	TITS22	180	99.6	4.52
	MASTTA Patera et al. (2025)	TCSVT25	99	99.9	4.95
	CCAF-Net Liu et al. (2025)	NEURO25	191	93.9	4.94
	Ours	-	26	99.9	4.95

503
 504 Notably, this is achieved with only 26M parameters – $7\times$ fewer than DAA-GNN (183M), **8.3** \times fewer
 505 than CCAF-Net (191M), and **3.8** \times fewer than MASTTA (99M). On CCD, our model achieves
 506 the highest mAP (99.9%) and the longest mTTA (4.95s), matching MASTTA and exceeding other
 507 SOTA, again using a fraction of the parameters.
 508

509 Table 8 compares [priors](#) methods on the DAD
 510 dataset from a high mAP perspective. We additionally incorporate several [purely](#) Transformer-based
 511 approaches Fan et al. (2021); Liu et al. (2022); Li
 512 et al. (2023) [as well as](#) CNN-based models Carreira
 513 & Zisserman (2017); Tran et al. (2018); Lin et al.
 514 (2019), all of which are widely used in video under-
 515 standing. Notably, these architectures underperform
 516 on the accident anticipation task, with none exceed-
 517 ing 70% mAP. Although CCAF-Net and MASTTA
 518 slightly outperform in mAP (81.3% and 80.8%, re-
 519 spectively), our model attains a competitive 79.61%
 520 mAP with the smallest parameter count (26M) and a
 521 favorable mTTA of 3.41s – outperforming MASTTA
 522 by 0.09s and trailing CCAF-Net by only 0.34s.
 523 These results underscore our model’s strong effi-
 524 ciency–accuracy trade-off, making it well-suited for
 525 real-time accident anticipation.

526 5 CONCLUSIONS

527 This work presents a lightweight spatio-temporal framework for early accident anticipation, de-
 528 signed for real-time operation in resource-constrained environments. By combining a temporally
 529 shifted distillation strategy with a hybrid architecture that integrates convolutional spatial encoding
 530 and recurrent temporal modeling, our approach enables efficient long-range reasoning without the
 531 need for video-trained teachers. The framework achieves strong accuracy on limited data with low
 532 latency and memory usage, making it practical for deployment in real-world autonomous driving
 533 systems and adaptable to broader traffic safety applications.
 534

535 536 REPRODUCIBILITY STATEMENT

537 All architectural details and parameter settings are described in the Implementation Details section,
 538 with further configuration and training specifics provided in the supplementary material in Appendix
 539 to facilitate reproducibility. The source code will be released upon publication of the paper.

540 Table 8: Comparison of the highest mAP
 541 and corresponding mTTA of [priors](#) models
 542 on DAD. **Best balanced results** in terms of
 543 model size, accuracy, and early prediction
 544 are in bold.

545 Method	546 Inference Params. (M)	547 mAP(%)	548 mTTA(s)
I3D	21	68.0	2.99
R(2+1)D	31	49.7	3.57
TSM	43	53.0	3.39
GCRNN	275	72.2	1.33
L-RAI	185	51.4	3.01
MViTv2	51	64.4	-
DSTA	180	72.3	1.50
VideoSwin	88	65.4	-
UniFormer V2	115	65.2	-
DAA-GNN	183	75.2	1.47
MASTTA	99	80.8	3.32
CCAF-Net	191	81.3	3.75
Ours	26	79.6	3.41

540 The manuscript's writing has been polished using ChatGPT.
 541

542 **REFERENCES**
 543

544 Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Am-
 545 mar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised video
 546 models enable understanding, prediction and planning. *arXiv preprint arXiv:2506.09985*, 2025.

547 Wentao Bao, Qi Yu, and Yu Kong. Uncertainty-based Traffic Accident Anticipation with Spatio-
 548 Temporal Relational Learning. *in Proceedings of the 28th ACM International Conference on*
 549 *Multimedia*, pp. 2682–2690, 2020.

550 Wentao Bao, Qi Yu, and Yu Kong. DRIVE: Deep Reinforced Accident Anticipation with Visual
 551 Explanation. *in Proceedings of the IEEE/CVF International Conference on Computer Vision*
 552 (*ICCV*), pp. 7599–7608, 2021. doi: 10.1109/ICCV48922.2021.00752.

553 Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
 554 dataset. *In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp.
 555 6299–6308, 2017.

556 Fu-Hsiang Chan, Yu-Ting Chen, Yu Xiang, and Min Sun. Anticipating Accidents in Dashcam
 557 Videos. *in Asian Conference on Computer Vision*, pp. 136–153, 2016.

558 Yuchen Duan, Weiyun Wang, Zhe Chen, Xizhou Zhu, Lewei Lu, Tong Lu, Yu Qiao, Hongsheng
 559 Li, Jifeng Dai, and Wenhui Wang. Vision-rwkv: Efficient and scalable visual perception with
 560 rwkv-like architectures. *arXiv preprint arXiv:2403.02308*, 2024.

561 Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
 562 Christoph Feichtenhofer. Multiscale Vision Transformers. *in Proceedings of the IEEE/CVF Con-*
 563 *ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6824–6835, 2021.

564 Jianwu Fang, Jiahuan Qiao, Jie Bai, Hongkai Yu, and Jianru Xue. Traffic Accident Detection via
 565 Self-Supervised Consistency Learning in Driving Scenarios. *IEEE Transactions on Intelligent*
 566 *Transportation Systems*, 23(7):9601–9614, 2022. doi: 10.1109/TITS.2022.3157254.

567 Jianwu Fang, Lei-lei Li, Junfei Zhou, Junbin Xiao, Hongkai Yu, Chen Lv, Jianru Xue, and Tat-
 568 Seng Chua. Abductive ego-view accident video understanding for safe driving perception. *in*
 569 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 570 pp. 22030–22040, 2024.

571 Mishal Fatima, Muhammad Umar Karim Khan, and Chong-Min Kyung. Global Feature Aggre-
 572 gation for Accident Anticipation. *in Proceedings of the International Conference on Pattern*
 573 *Recognition (ICPR)*, pp. 2809–2816, 2021. doi: 10.1109/ICPR48806.2021.9412338.

574 Xiaohu Huang, Hao Zhou, Kun Yao, and Kai Han. FROSTER: Frozen CLIP is a Strong Teacher
 575 for Open-Vocabulary Action Recognition. *in Proceedings of the International Conference on*
 576 *Learning Representations*, pp. 1–16, 2024.

577 Ashesh Jain, Avi Singh, Hema S Koppula, Shane Soh, and Ashutosh Saxena. Recurrent Neural
 578 Networks for Driver Activity Anticipation via Sensory-fusion Architecture. *in Proceedings of the*
 579 *IEEE International Conference on Robotics and Automation (ICRA)*, pp. 3118–3125, 2016. doi:
 580 10.1109/ICRA.2016.7487478.

581 Muhammad Monjurul Karim, Yu Li, Ruwen Qin, and Zhaozheng Yin. A Dynamic Spatial-Temporal
 582 Attention Network for Early Anticipation of Traffic Accidents. *IEEE Transactions on Intelligent*
 583 *Transportation Systems*, 23(7):9590–9600, 2022. doi: 10.1109/TITS.2022.3155613.

584 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 585 rnns: Fast autoregressive transformers with linear attention. *In International conference on ma-*
 586 *chine learning*, pp. 5156–5165. PMLR, 2020.

587 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Limin Wang, and Yu Qiao. UniFormerV2:
 588 Unlocking the Potential of Image ViTs for Video Understanding. *in Proceedings of the IEEE/CVF*
 589 *International Conference on Computer Vision (ICCV)*, pp. 1632–1643, 2023.

594 Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video understanding.
 595 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 7083–7093,
 596 2019.

597 Wei Liu, Yafei Li, Tao Zhang, Yixiang Gao, Longsheng Wei, and Jun Chen. CCAF-Net: Cas-
 598 ccade Complementarity-Aware Fusion Network for traffic accident prediction in dashcam videos.
 599 *Neurocomputing*, 624:129285, 2025. ISSN 0925-2312. doi: <https://doi.org/10.1016/j.neucom.2024.129285>. URL <https://www.sciencedirect.com/science/article/pii/S0925231224020563>.

600 Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video Swin Trans-
 601 former. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 602 (CVPR), pp. 3202–3211, 2022.

603 Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-
 604 friendly vision transformer. *arXiv preprint arXiv:2110.02178*, 2021.

605 Daniel C. Moura, Shizhan Zhu, and Orly Zvitia. Nexas dashcam collision prediction dataset and
 606 challenge, 2025. URL <https://arxiv.org/abs/2503.03848>.

607 Patrik Patera, Yie-Tarng Chen, and Wen-Hsien Fang. A Multi-modal Architecture with Spatio-
 608 Temporal-Text Adaptation for Video-based Traffic Accident Anticipation. *IEEE Transactions on*
 609 *Circuits and Systems for Video Technology*, pp. 1–15, 2025. doi: 10.1109/TCSVT.2025.3552895.

610 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
 611 Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
 612 the transformer era. *arXiv preprint arXiv:2305.13048*, 2023.

613 Debaditya Roy, Tetsuhiro Ishizaka, C. Krishna Mohan, and Atsushi Fukuda. Detection of Collision-
 614 Prone Vehicle Behavior at Intersections Using Siamese Interaction LSTM. *IEEE Transactions on*
 615 *Intelligent Transportation Systems*, 23(4):3137–3147, 2022. doi: 10.1109/TITS.2020.3031984.

616 Dinesh Singh and Chalavadi Krishna Mohan. Deep Spatio-Temporal Representation for Detection
 617 of Road Accidents Using Stacked Autoencoder. *IEEE Transactions on Intelligent Transportation*
 618 *Systems*, 20(3):879–887, 2019. doi: 10.1109/TITS.2018.2835308.

619 Wenfeng Song, Shuai Li, Tao Chang, Ke Xie, Aimin Hao, and Hong Qin. Dynamic Attention
 620 Augmented Graph Network for Video Accident Anticipation. *Pattern Recognition*, 147:110071,
 621 2024. ISSN 0031-3203.

622 Tomoyuki Suzuki, Hirokatsu Kataoka, Yoshimitsu Aoki, and Yutaka Satoh. Anticipating Traffic
 623 Accidents with Adaptive Loss and Large-Scale Incident DB. In *Proceedings of the IEEE/CVF*
 624 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3521–3529, 2018. doi:
 625 10.1109/CVPR.2018.00371.

626 Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer
 627 look at spatiotemporal convolutions for action recognition. In *Proceedings of the IEEE conference*
 628 *on Computer Vision and Pattern Recognition*, pp. 6450–6459, 2018.

629 Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, and Oncel
 630 Tuzel. Mobileclip: Fast image-text models through multi-modal reinforced training. In *Pro-*
 631 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 632 15963–15974, 2024.

633 Tianhang Wang, Kai Chen, Guang Chen, Bin Li, Zhijun Li, Zhengfa Liu, and Changjun Jiang.
 634 Gsc: A graph and spatio-temporal continuity based framework for accident anticipation. *IEEE*
 635 *Transactions on Intelligent Vehicles*, 9(1):2249–2261, 2024. doi: 10.1109/TIV.2023.3257169.

636 Hanbo Wu, Xin Ma, and Yibin Li. Spatiotemporal Multimodal Learning With 3D CNNs for Video
 637 Action Recognition. *IEEE Transactions on Circuits and Systems for Video Technology*, 32(3):
 638 1250–1261, 2022. doi: 10.1109/TCSVT.2021.3077512.

648 Peng Wu, Xuerong Zhou, Guansong Pang, Lingru Zhou, Qingsen Yan, Peng Wang, and YANNING
 649 ZHANG. VadCLIP: Adapting Vision-Language Models for Weakly Supervised Video Anomaly
 650 Detection. *in Proceedings of the AAAI Conference on Artificial Intelligence*, 38(6):6074–6082,
 651 2024. doi: 10.1609/aaai.v38i6.28423.

652 Jiewen Yang, Xingbo Dong, Liujun Liu, Chao Zhang, Jiajun Shen, and Dahai Yu. Recurring the
 653 transformer for video action recognition. *in Proceedings of the IEEE/CVF Conference on Com-*
 654 *puter Vision and Pattern Recognition (CVPR)*, pp. 14063–14073, 2022.

655 Hongyang Yu, Xinfeng Zhang, Yaowei Wang, Qingming Huang, and Baocai Yin. Multiple-Level
 656 Distillation for Video Fine-Grained Accident Detection. *IEEE Transactions on Circuits and Sys-*
 657 *tems for Video Technology*, 34(6):4445–4457, 2024. doi: 10.1109/TCSVT.2023.3338743.

658 Kuo-Hao Zeng, Shih-Han Chou, Fu-Hsiang Chan, Juan Carlos Niebles, and Min Sun. Agent-Centric
 659 Risk Assessment: Accident Anticipation and Risky Region Localization. *in Proceedings of the*
 660 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1330–1338,
 661 2017. doi: 10.1109/CVPR.2017.146.

662 Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and
 663 Josh Susskind. An Attention Free Transformer. *arXiv preprint arXiv:2105.14103*, 2021.

664 Zhili Zhou, Xiaohua Dong, Zhetao Li, Keping Yu, Chun Ding, and Yimin Yang. Spatio-Temporal
 665 Feature Encoding for Traffic Accident Detection in VANET Environment. *IEEE Transactions*
 666 *on Intelligent Transportation Systems*, 23(10):19772–19781, 2022. doi: 10.1109/TITS.2022.
 667 3147826.

671 A SUMMARY OF SUPPLEMENTARY CONTRIBUTIONS

672 This supplementary material provides additional details supporting our main submission. We de-
 673 scribe the proposed spatio-temporal masking strategy along with ablation results, present the com-
 674 plete architectural configurations of both the student and teacher models, and outline the training
 675 protocols and deployment setup. We also include qualitative examples that highlight model lim-
 676 itations, clarify the dataset composition, and explain the use of coarse-grained text labels during
 677 fine-tuning. Code and pretrained models will be released upon acceptance.

682 B ANALYSIS OF CCD PERFORMANCE

683 To further address concerns regarding potential overfitting on the CCD dataset, we provide addi-
 684 tional analyses and metrics beyond the mAP and mTTA reported in the main paper. CCD is a
 685 well-known saturated benchmark where numerous prior works (e.g., DSA, GCRNN, MASTTA)
 686 routinely achieve 99.0–99.9% mAP under the standard protocol, and our results follow this estab-
 687 lished trend. To verify robustness, Table 9 reports ROC-AUC, which reaches a similarly high value
 688 of 85.0%, indicating strong separability between accident and non-accident trajectories. We also
 689 evaluate a smaller student variant (XS) with only 13 million parameters; despite its lower capacity,
 690 it preserves the same mAP of 99.9% with only a minor decrease in mTTA (4.92 s), suggesting that
 691 CCD performance does not depend on fragile model capacity. Furthermore, we include TTA_{80%} –
 692 the time-to-accident at 80% recall – which remains consistently high at 4.84 s. Collectively, these
 693 results confirm that our model’s CCD performance is stable and reflects the dataset’s inherent ease
 694 rather than overfitting.

695 Table 9: Comparison of smaller network variant on CCD with additional metrics.

Model	AUC (%)	mAP (%)	mTTA (s)	TTA _{80%}	Params (M)
Model - smaller (XS)	85.0	99.9	4.92	4.84	13
Model - small (S)	86.9	99.9	4.95	4.86	26

702 C ANALYSIS OF SHIFTED-TEACHER ALIGNMENT

704 We further assess the effectiveness of Temporally Shifted Distillation (TSD) by examining the difference
 705 in cosine similarity between two pairs of signals: the student’s features X_t^S aligned with the
 706 teacher’s same-time features X_t^T , and the student’s features X_t^S aligned with the teacher’s future
 707 features X_{t+1}^T . To further quantify this effect, we introduce the *Temporal Alignment Ratio* (TAR),
 708

$$709 \text{TAR}_t = \frac{\cos(X_t^S, X_{t+1}^T)}{\cos(X_t^S, X_t^T) + \varepsilon}, \quad (16)$$

711 which measures how strongly the student aligns with the teacher’s *future* state relative to its *present*
 712 state. Values greater than 1 indicate that the student preferentially aligns with future representa-
 713 tions, reflecting true anticipatory capability rather than static feature matching. Empirically, TAR
 714 remains consistently above 1 and increases over time, further confirming that TSD induces mean-
 715 ingful temporal forecasting behavior. As shown in Fig. 5, a decreasing blue TAR curve (smooth)
 716 would indicate that TSD provides no benefit, suggesting that the student relies primarily on spatial
 717 correlations rather than learning to anticipate future representations. In contrast, the consistently
 718 increasing trend demonstrates that the student becomes progressively better aligned with the *future*
 719 teacher embeddings.

733 Figure 5: Temporal alignment comparison showing that the student aligns more strongly with the
 734 teacher’s *future* features. TAR (blue curve) > 1 further confirms TSD induces anticipatory learning.

737 D ARCHITECTURAL DETAILS

739 D.1 STUDENT VISION ENCODER

740 Our Student Vision Encoder adopts a lightweight yet
 741 expressive RepMixer (illustrated in Figure 6) spatial
 742 encoding on the MobileCLIP Vasu et al. (2024) with
 743 our lightweight window-based spatio-temporal module
 744 adapted from the RWKV Peng et al. (2023), optimized
 745 for efficient spatio-temporal modeling in accident antici-
 746 pation. As detailed in Table 10, the encoder processes an
 747 input video of shape $T \times H \times W$ through four hierarchi-
 748 cal stages, each progressively reducing spatial resolution
 749 while expanding feature dimensionality. The stem con-
 750 sists of two convolutional layers – a standard 3×3 con-
 751 volution followed by a MobileOne-style 3×3 convolution
 752 with stride 2 – yielding 48-dim features.

753 Stage 1 begins with a patch embedding layer using a $7 \times$
 754 7 MobileOne-style convolution with stride 2 to generate
 755 tokens at $\frac{H}{4} \times \frac{W}{4}$ resolution, followed by 2 RepMixer
 blocks with 96-dim features for local spatial modeling.

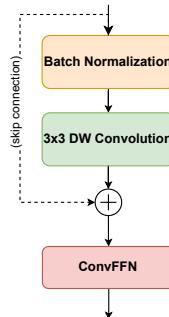


Figure 6: RepMixer Block from MobileCLIP.

756 Table 10: **Student Vision Encoder.** Architectural configuration of the proposed lightweight spatio-
 757 temporal model variant.

759 Stage	760 #Tokens	761 Layer Spec.	762 Description	763 Dim.
764 Stem	765 $T \times H \times W$	766 Conv	767 3×3 , stride 2 3×3 MobileOne Style, stride 2	768 48
769 1	$T \times \frac{H}{4} \times \frac{W}{4}$	Patch Embed.	7×7 MobileOne Style, stride 2	96
		Blocks	RepMixer $2 \times$	
770 2	$T \times \frac{H}{8} \times \frac{W}{8}$	Patch Embed.	7×7 MobileOne Style, stride 2	128
		Blocks	RepMixer $6 \times$	
771 3	$T \times \frac{H}{16} \times \frac{W}{16}$	Patch Embed.	7×7 MobileOne Style, stride 2	256
		Blocks	RepMixer $10 \times$	
772 4	$T \times \frac{H}{32} \times \frac{W}{32}$	Patch Embed.	7×7 MobileOne Style, stride 2	512
		Blocks	Spatio-temporal RWKV $6 \times$	
773 Parameters (M)				774 26

775
 776 Stage 2 continues this pattern, reducing the resolution to $\frac{H}{8} \times \frac{W}{8}$, and applies 6 RepMixer blocks
 777 with 128 channels. Stage 3 further downsamples to $\frac{H}{16} \times \frac{W}{16}$ and employs 10 RepMixer blocks with
 778 256-dim features to capture mid-level semantic representations.

779 In Stage 4, the spatial resolution is reduced to $\frac{H}{32} \times \frac{W}{32}$, resulting in 7×7 spatial tokens with input
 780 of 224×224 , and temporal modeling is introduced using 6 Spatio-temporal RWKV blocks with
 781 512-dim tokens. These RWKV blocks allow efficient linear-complexity modeling across frames,
 782 enabling the encoder to capture long-range temporal dependencies without sacrificing latency. The
 783 complete Vision Encoder comprises only 26 million parameters.

784 D.2 STUDENT TEXT ENCODER

785 The text encoder adopts the Text-RepMixer architecture from MobileCLIP, maintaining architec-
 786 tural consistency with the vision encoder while being specifically tailored for language processing.
 787 It employs a hybrid design that combines 1D convolutions with self-attention layers. Unlike purely
 788 convolutional approaches – which were found to underperform – Text-RepMixer effectively bal-
 789 ances local and global context modeling by integrating convolutional token mixing with attention-
 790 based reasoning. For efficient inference, skip connections and normalization layers are reparameter-
 791 ized, and the feed-forward layers are enhanced with depthwise 1D convolutions, forming ConvFFN
 792 blocks that can be fused for optimized execution. The complete model, including both the Vision
 793 and Text Encoders, contains a total of 69 million parameters.

800 D.3 TEACHER VISION ENCODER

801 The Teacher Vision Encoder shares the same overall architecture as the Student, detailed in Fig-
 802 ure 11, including the hierarchical four-stage structure and patch embedding. However, it is deeper,
 803 with [4, 12, 24, 4] blocks and larger embedding dimensions of [80, 160, 320, 640] across stages
 804 1 to 4. While the Student introduces lightweight spatio-temporal RWKV blocks in Stage 4, the
 805 Teacher retains standard spatial multi-head self-attention (MHSA) for purely spatial modeling. The
 806 Teacher is initialized with the official pre-trained weights from MobileCLIP Vasu et al. (2024) and
 807 kept entirely frozen during pre-training, providing stable, high-capacity supervision for the student’s
 808 spatio-temporal adaptation via our proposed temporally shifted distillation.

810
811 Table 11: **Teacher Vision Encoder**. Architectural configuration of the large image-based model
812 variant serving as the teacher.

813 Stage	814 #Tokens	815 Layer Spec.	816 Description	817 Dim.
818 Stem	819 $T \times H \times W$	820 Conv	821 3×3 , stride 2 3×3 MobileOne Style, stride 2	822 48
823 1	$T \times \frac{H}{4} \times \frac{W}{4}$	Patch Embed.	7×7 MobileOne Style, stride 2	80
		Blocks	RepMixer $4 \times$	
826 2	$T \times \frac{H}{8} \times \frac{W}{8}$	Patch Embed.	7×7 MobileOne Style, stride 2	160
		Blocks	RepMixer $12 \times$	
829 3	$T \times \frac{H}{16} \times \frac{W}{16}$	Patch Embed.	7×7 MobileOne Style, stride 2	320
		Blocks	RepMixer $24 \times$	
832 4	$T \times \frac{H}{32} \times \frac{W}{32}$	Patch Embed.	7×7 MobileOne Style, stride 2	640
		Blocks	Multi-Head Self-Attention $4 \times$	
835 Parameters (M)				36

831 Hyper-parameter	832 Pre-training	833 Fine-tuning
834 Input resolution	224×224	224×224
835 Input #frames	8	32
836 Frame sample interval	8	3
837 Random Resize Crop	[0.1, 1.0]	[0.1, 1.0]
838 Random Horizontal Flip	0.5	0.5
839 Color Jitter	✓	✓
840 $\lambda_1, \lambda_2, \lambda_3, \lambda_4$	[0.3, 0.4, 0.5, 1.0]	-
841 Mask ratio	30%	-
842 Train epochs	50	50
843 Warmup epochs	5	0
844 Batch size	70	12
845 Optimizer	AdamW	AdamW
846 Peak learning rate	8e-5	8e-6
847 LR decay schedule	cosine	cosine
848 Weight decay rate	0.01	0.01
849 Gradient clipping	5	5
Mixed precision	BF16	BF16

850 Table 12: Hyperparameters for Pre-training and Training.

851
852

E EXPERIMENTAL SETUPS

853 We conducted all experiments using a single NVIDIA RTX 4090 GPU with 24 GB memory for
854 both pre-training and fine-tuning, while the final model was deployed on an NVIDIA Jetson Orin
855 Nano with 8 GB shared memory for real-time inference. The pre-training and fine-tuning phase
856 have utilized the dataset described in the Datasets section of this supplementary materials. Table 12
857 summarizes the hyper-parameter configurations used for both pre-training and fine-tuning. In both
858 settings, the input resolution is fixed at 224×224 . During pre-training, the model processes clips
859 of 8 frames sampled every 8 frames, while fine-tuning uses 32-frame clips sampled every 3 frames
860 to improve temporal precision for accident anticipation. For input data augmentation, both phases
861 employ random resize cropping (scale range 0.1 - 1.0), horizontal flipping with a probability of 0.5,
862 and color jitter is applied to promote visual robustness.

The pre-training phase additionally incorporates a 30% masking ratio applied to the input frames and employs a multi-task loss with weighting coefficients $\lambda_1, \lambda_2, \lambda_3, \lambda_4 = [0.3, 0.4, 0.5, 1.0]$, whereas fine-tuning relies solely on the classification loss. Both phases are trained for 50 epochs, with 5 warm-up epochs. Due to memory constraints, the batch size is set to 70 during pre-training and 12 during fine-tuning. Optimization is performed using AdamW with a peak learning rate of 8×10^{-5} and cosine learning rate decay schedule. A weight decay rate of 0.01 and gradient clipping threshold of 5 are consistently applied throughout both phases. Both pre-training and training were performed under PyTorch mixed precision BF1.6. Training across multiple random seeds, mAP remains stable within $\pm 0.3\%$ and mTTA within ± 0.08 s.

Fine-tuning uses the same objective function $\mathcal{L}_{\text{accident}}$ as defined in Equation (14) of the main manuscript for text-visual features, along with a standard cross-entropy loss for the visual classifier.

F EVALUATION METRICS

Average Precision (AP). Each method produces a confidence score per frame representing the likelihood of a future accident. A prediction is counted as a True Positive (TP) if the score exceeds a threshold q before the accident onset; otherwise, it is treated as a False Negative (FN). Any prediction in a non-accident video is considered a False Positive (FP). By varying q , a precision-recall curve is obtained, and AP is computed as the area under this curve. Precision ($\text{TP}/(\text{TP} + \text{FP})$) and recall ($\text{TP}/(\text{TP} + \text{FN})$) are evaluated at each threshold, and the mean Average Precision (mAP) is calculated as their average across all evaluated thresholds.

Time to Accident (TTA). TTA is defined as $T - \tau$, where T is the accident start frame and τ is the first frame where the confidence exceeds q . The mean TTA (mTTA) averages TTA over true positives across thresholds.

G PERFORMANCE

Figure 7 illustrates the trade-off between model size and early accident anticipation ability across state-of-the-art methods. The x -axis represents the number of inference parameters (in millions), and the y -axis denotes the mean Time-to-Accident (mTTA) in seconds. Each point corresponds to a competing approach. Our method, highlighted in green and marked with a red arrow, achieves the highest mTTA (4.04s) while using only 26M parameters—the smallest among all models. This result demonstrates that our approach delivers superior early anticipation despite being significantly more lightweight than existing baselines, offering a clear advantage for efficient, real-world deployment.

H IMPLEMENTATION DETAILS

We implement our model and all training/testing pipelines using PyTorch 2.5.0. To enable efficient spatio-temporal modeling, our RWKV-based module is implemented with a custom CUDA kernel that supports parallel computation over video spatio-temporal input sequence, compiled with Ninja 1.10.2.1 library. This design significantly accelerates both training and inference, particularly when handling long video sequences. To prepare window-based inputs for the RWKV block, we utilize PyTorch’s built-in `nn.Unfold` operation to window-based extract spatio-temporal patches, and `nn.Fold` to reconstruct the processed output back to the original input shape.

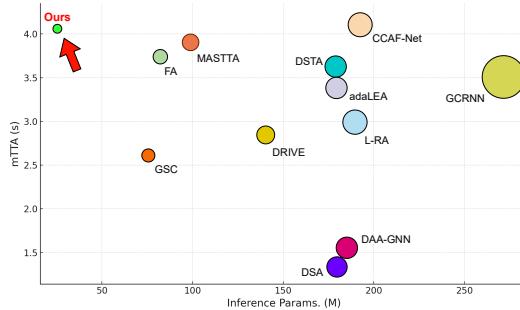
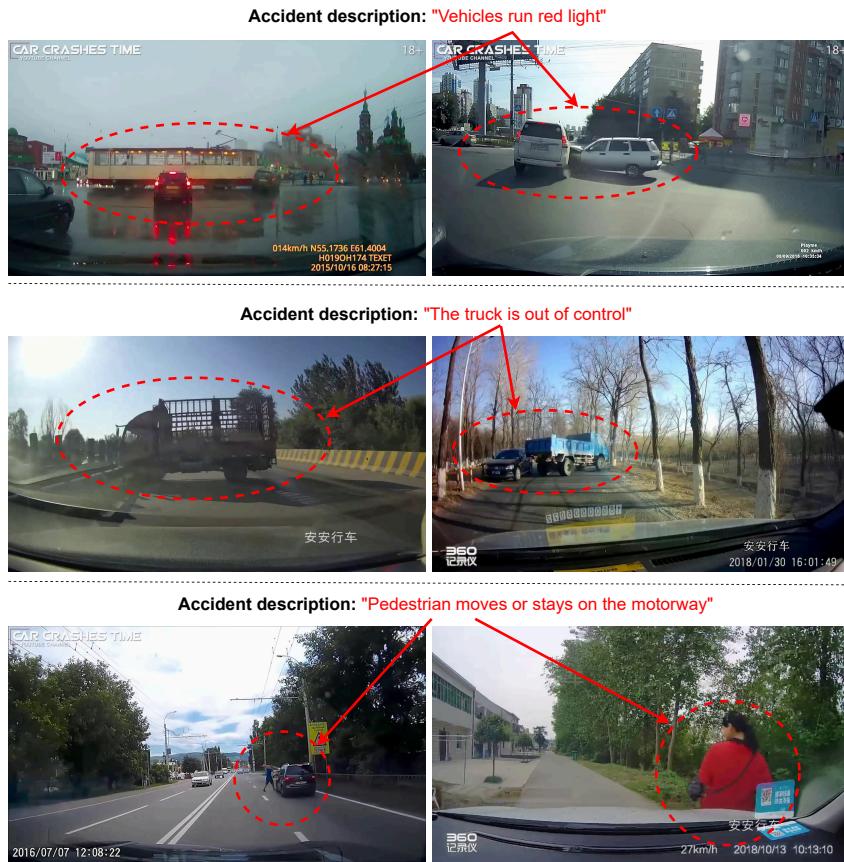


Figure 7: **Inference Parameters vs. Early Prediction (mTTA).** Our method (green) achieves real-time performance with the smallest model size, surpassing larger baselines in terms of mTTA. This demonstrates a favorable trade-off between efficiency and temporal anticipation, ideal for resource-limited deployment.



946 Figure 8: Example of accident scenes from MM-AU with corresponding textual descriptions used
 947 during pre-training.

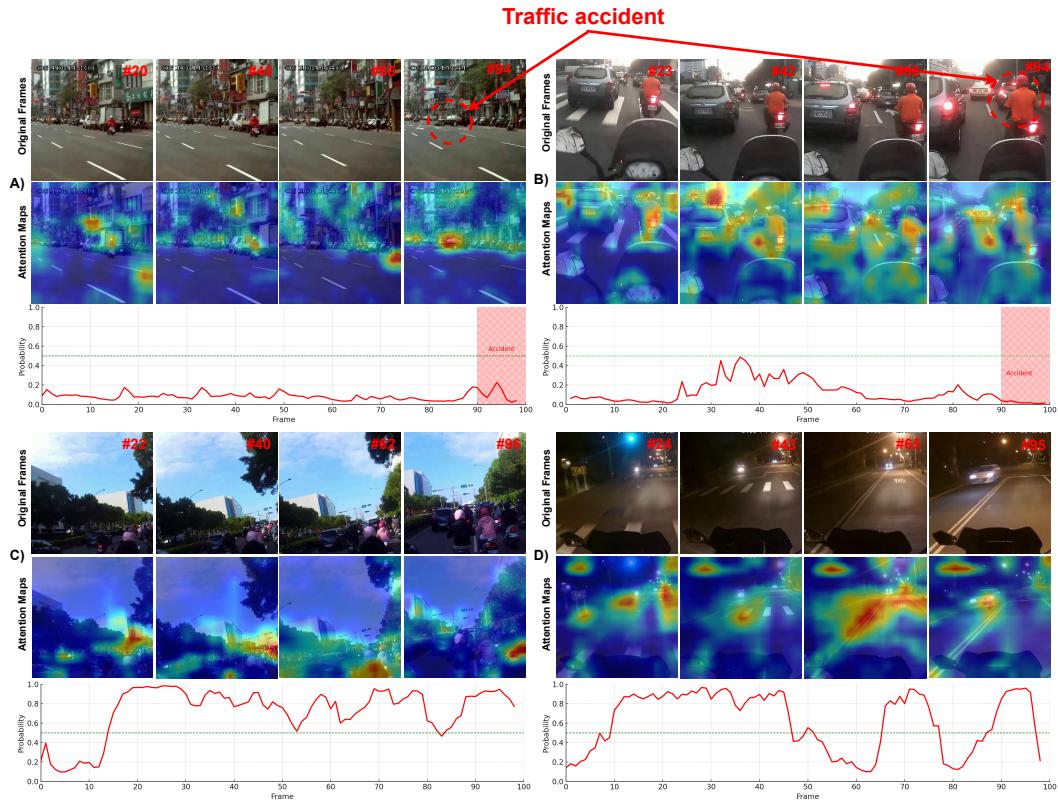
950 This approach ensures computational efficiency while maintaining compatibility with the rest of the
 951 architecture. [The similar unfolding window-based pattern can be found in another methods such as](#)
 952 [SWIN-Transformer Liu et al. \(2022\)](#) and [MobileViT Mehta & Rastegari \(2021\)](#).

I DATASETS

957 The training of our framework involves both pre-training and fine-tuning phases. We pre-train the
 958 model on the recently released MM-AU Fang et al. (2024) dataset, which includes only accident
 959 videos paired with textual descriptions detailing 112 distinct accident scenarios. To compensate
 960 for the absence of negative samples, we incorporate non-accident videos from Nexar Moura et al.
 961 (2025), DAD Chan et al. (2016), and CCD Bao et al. (2020). This setup offers key benefits: (1) MM-
 962 AU’s textual descriptions provide strong inductive bias, helping the model learn causal relationships
 963 beyond visual saliency; (2) pre-training on a separate dataset supports domain generalization and
 964 reduces overfitting; and (3) exposure to varied accident types, viewpoints, and contexts enhances
 965 robustness. MM-AU is not used for evaluation due to its lack of negative samples and standard-
 966 ized test splits with evaluation protocol. Instead, we leverage it solely for pre-training to exploit
 967 its rich text–video annotations. Figure 8 shows example accident scenes from MM-AU with their
 968 corresponding textual descriptions used during pre-training.

969 During fine-tuning and inference, we use only coarse-grained text labels — “Normal traffic situa-
 970 tion” and “A traffic accident” — due to the absence of detailed textual annotations in the down-stream
 971 datasets. These labels provide semantic conditioning, enabling class-aware alignment even without
 fine-grained textual supervision. Fine-tuning is performed on two widely used benchmark datasets

972 for traffic accident anticipation – DAD and CCD – to ensure a fair comparison with prior state-of-
 973 the-art methods.
 974



1001 **Figure 9: Qualitative analysis of model limitations.** Examples of false negatives (A–B) and false
 1002 positives (C–D) are shown. Red regions in the attention maps indicate high-risk areas, while the
 1003 bottom row displays frame-wise accident probability curves.

J LIMITATIONS

1008 Figure 9 presents qualitative results across four diverse driving scenarios, illustrating both false
 1009 negatives (A–B) and false positives (C–D) in traffic accident anticipation. Subfigures A) and B)
 1010 depict cases where the model fails to anticipate accidents. In A), the accident occurs in the far
 1011 background with only a small visual footprint, making it difficult for the model to detect early
 1012 warning cues. Despite partial attention over relevant regions, the subtlety and scale of the event lead
 1013 to a missed prediction. In B), the camera is mounted on a motorbike helmet, causing severe camera
 1014 shake and unstable motion that hinder consistent spatio-temporal reasoning. Although the attention
 1015 maps correctly highlight the road and nearby vehicles, the predicted accident probability remains
 1016 low throughout, likely due to the accident being heavily obscured by another vehicle in front.

1017 In contrast, C) and D) represent false positives, where the model erroneously predicts an accident
 1018 in videos where no incident occurs. Both sequences are captured with helmet-mounted cameras,
 1019 introducing natural shakiness. C) features dense daytime traffic, with a tightly packed group of
 1020 motorbikes driving in close proximity. The attention maps strongly focus on surrounding vehicles,
 1021 causing the model to interpret the scene as hazardous, despite the absence of an accident. D),
 1022 recorded at night under low visibility, involves high-speed driving with bright headlights and road
 1023 reflections. These challenging lighting conditions, combined with motion from the helmet-mounted
 1024 camera, result in persistently high accident probabilities, even though no collision occurs.

1025 Overall, these visualizations underscore key challenges in accident anticipation, including motion
 instability, small-scale accident cues, traffic density, and adverse lighting. They highlight the impor-

1026 tance of incorporating spatio-temporal consistency, scale awareness, and robustness to visual noise
1027 into model design.
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079