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Abstract

Proteins are complex biomolecules that perform a variety of crucial functions within living
organisms. Designing and generating novel proteins can pave the way for many future
synthetic biology applications, including drug discovery. However, it remains a challenging
computational task due to the large modeling space of protein structures. In this study,
we propose a latent diffusion model that can reduce the complexity of protein modeling
while flexibly capturing the distribution of natural protein structures in a condensed latent
space. Specifically, we propose an equivariant protein autoencoder that embeds proteins
into a latent space and then uses an equivariant diffusion model to learn the distribution of
the latent protein representations. Experimental results demonstrate that our method can
effectively generate novel protein backbone structures with high designability and efficiency.

1 Introduction

The discovery of novel proteins (Anand & Huang, 2018; Eguchi et al., 2022; Anand et al., 2019; Sabban &
Markovsky, 2020; Luo et al., 2022; Shi et al., 2022) is crucial in bio-medicine (Liu et al., 2021b; 2022a;b;
Wang et al., 2022a;b; Liu et al., 2021a) and materials (McMillan et al., 2019; Yan et al., 2022). Recently,
instead of generating novel protein sequences (Wu et al., 2021; Anishchenko et al., 2021; Ferruz et al., 2022;
Repecka et al., 2021; Hawkins-Hooker et al., 2021; Madani et al., 2020; Nijkamp et al., 2022; Karimi et al.,
2020) and then predicting their corresponding structures, Trippe et al. (2022) and Wu et al. (2022a) propose
to directly generate protein structures using diffusion models, due to the impressive modeling power and
generation quality of diffusion models (Ho et al., 2020; Song et al., 2020; Xu et al., 2021; Jing et al., 2022;
Rombach et al., 2022) for images and small molecules. However, generating 3D protein structures is a more
challenging task because of their complex geometric structures and vast exploration space. Additionally, as
the modeling space increases, the cost of time and computational resources required to train and sample
from diffusion models also increases significantly.

There are attempts to reduce the modeling space in the image and small molecule domain for diffusion models.
Stable Diffusion (Rombach et al., 2022) combines a pretrained image autoencoder and a latent diffusion model
to reduce the modeling space for large images. However, there are currently no robust and powerful 3D graph
autoencoders and latent diffusion models for 3D protein structures. Torsional Diffusion (Jing et al., 2022)
only focuses on torsional angles and employs RDKit (Landrum et al.) predictions for bond lengths and
bond angles, as the distributions of bond angles and lengths are highly confined in small molecules. But this
assumption does not hold for protein structures.

In this paper, we reduce the diffusion modeling space of complex 3D protein structures by integrating a 3D
graph autoencoder and a latent 3D diffusion model. To achieve this, the following challenges are addressed:
(1) ensuring rotation and reflection equivariance in the autoencoder design, (2) accurately reconstructing
intricate connection information in 3D graphs during decoding, and (3) developing a specialized latent
diffusion process for 3D protein latent representations, including position and node latent representations.
In the following sections, we first recap the background and related works for protein backbone structure
generation and diffusion models in Sec. 2, and then show in detail how we address the above challenges in
Sec. 3. The efficiency and ability to generate novel protein backbone structures of our proposed method are
demonstrated in Sec. 4.
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2 Background and Related Work

2.1 Protein Backbone Structure Generation

Protein backbone generation aims to generate novel protein backbone structures by learning from real data
distributions. To this end, a mapping between known distributions, such as a Gaussian, and the real data
distribution, which is high dimensional and sparse, needs to be constructed. Since protein global geometric
structures are mainly determined by backbones, the generation of protein structures can be simplified to the
generation of backbones consisting of a sequence of amino acids and their corresponding positions. Following
ProtDiff (Trippe et al., 2022), we use the positions of alpha carbons to represent amino acid positions. The
protein backbone structure is then represented by

S = {(xi, ai)}n
i=1, (1)

where xi ∈ R3 denotes the 3D position of alpha carbon in the i-th amino acid, and ai ∈ {k|1 ≤ k ≤ 20, k ∈ Z}
denotes the corresponding amino acid type.

Instead of modeling amino acid types and alpha carbon positions together, previous studies (Trippe et al.,
2022) have shown that it is better to decompose the whole generation process into two stages as p(x, a) =
p(a|x)p(x), where x = [x1, x2, · · · , xn], and a = [a1, a2, · · · , an]T . Specifically, the positions of alpha
carbons are first generated, and the corresponding amino acid types are predicted using pretrained inverse
folding models such as ProteinMPNN (Dauparas et al., 2022).

2.2 Denoising Diffusion Probabilistic Models

As a powerful class of generative models (Luo et al., 2021; Liu et al., 2021c; Luo & Ji, 2022), denoising
diffusion probabilistic models (DDPM) (Ho et al., 2020) solve the Bayesian inverse problem of deriving the
underlying data distribution (posterior) pdata(z) by establishing a bijective mapping between given prior
distributions and pdata(z). We review the background of DDPM here following the adopted conventions of
ScoreSDE (Song et al., 2020). To enable faithful generation based on pdata(z) by sampling simpler prior
distributions, a discrete Markov chain is employed to gradually diffuse inputs as a map from given training
data into random noise, for example, following multivariate normal (Gaussian) distributions. For every
training sample z0 ∼ pdata(z), DDPMs consider a sequence of variance values 0 < β1, β2, . . . , βN < 1 and
construct a discrete Markov chain {z0, z1, . . . , zN }, where p(zi|zi−1) = N (zi;

√
1 − βizi−1, βiI). Based on

this, we obtain p(zi|z0) = N (zi;
√

αiz0, (1 − αi)I), where αi =
∏i

t=0(1 − βt). Hence, a sequence of noise
scales can be predefined such that αN → 0 and zN is approximately distributed according to N (0, I). For
the reverse mapping from N (0, I) to pdata(z), a reverse Markov chain is parameterized as pθ(zi−1|zi) =
N (zi; µθ(zi, i), βiI), where µθ(zi, i) = 1√

1−βi

(zi−1 − βi√
1−αi

sθ(zi, i)). The reverse diffusion model sθ is
trained with a re-weighted evidence lower bound (ELBO) as below

θ⋆ = argminθEt,z0,σ[∥σ − sθ(
√

αtz0 +
√

1 − αtσ, t)∥2], (2)

where σ ∼ N (0, I). After sθ is trained, the reverse sampling process is conducted by first sampling from
zT ∼ N (0, I) and then updating from time N to time 0 by the estimated reverse Markov chain

zt−1 = 1√
1 − βt

(zt − βt√
1 − αt

sθ(zt, t)) +
√

βtσ. (3)

2.3 Related Work

Diffusion Models for Protein Structure Generation. Recent research (Anand & Achim, 2022; Wu
et al., 2022a; Trippe et al., 2022; Lee & Kim, 2022; Watson et al., 2022; Ingraham et al., 2022) has been
exploring the use of diffusion models to generate novel protein structures, building on the successes of diffusion
models in other areas such as images (Ho et al., 2020; Song et al., 2020) and small molecules (Xu et al., 2021;
Jing et al., 2022; Hoogeboom et al., 2022). Among them, ProtDiff (Trippe et al., 2022) focuses on generating
protein backbone structures by determining the positions of alpha carbons, while FoldingDiff (Wu et al.,

2



Under review as submission to TMLR

2022a) represents protein backbone structures using bond and torsion angles and applies a sequence diffusion
model to generate new backbone structures. Anand & Achim (2022) attempts to generate the entire protein
structure by using three separate diffusion models to generate alpha carbon positions, amino acid types, and
side chain rotation angles sequentially, but the joint modeling performance is relatively low. Additionally,
Lee & Kim (2022) proposes to diffuse 2D pairwise distances and angle matrices for amino acid residues, but
further optimization using Rosseta minimization (Yang et al., 2020) is needed.

It is notable that, while developing our method, two recent works RFdiffusion (Watson et al., 2022) and
Chroma (Ingraham et al., 2022) have been developed that enable generating long proteins with very high
quality. RFdiffusion takes advantage of the powerful protein structure prediction model, RoseTTAFold (Baek
et al., 2021), to achieve remarkable results on many generation tasks. RFdiffusion pretrains RoseTTAFold
on the protein structure prediction task and then finetunes on generative tasks. And RFdiffusion only
demonstrates the effectiveness of generating proteins only when using pretrained weights. Chroma uses a
correlated diffusion process to transform protein structures into random collapsed polymers and encode the
chain and radius of gyration constraints by a designed covariance model. In this way, Chroma can model
the target distribution more efficiently by preserving some basic structures in proteins.

Despite the success of protein backbone structure generation (Anand & Achim, 2022; Wu et al., 2022a;
Trippe et al., 2022; Lee & Kim, 2022; Watson et al., 2022; Ingraham et al., 2022), the modeling space of
diffusion models is vast and increases exponentially with the number of amino acids considered.

Decreasing Modeling Space for Protein Structure. The modeling space for protein structure genera-
tion is reduced in several ways. ProtDiff (Trippe et al., 2022) only considers the positions of alpha carbons,
while FoldingDiff (Wu et al., 2022a) represents protein backbone structures using bond and torsion angles
and omits bond lengths to decrease the modeling space. Torsional Diffusion (Jing et al., 2022) uses RDKit-
generated bond lengths and angles and only diffuses the torsional angles for the conformer generation of
small molecules, but it is not applicable for protein structures.

Recently, the impressive generative capability of Stable Diffusion (Rombach et al., 2022) in the image domain
has attracted significant attention. By integrating a pre-trained image autoencoder with latent diffusion
models, Stable Diffusion reduces the modeling space of large images and improves the generative power of
image diffusion models. However, 3D geometric graphs for protein structures are different from images, and
even though there are some equivariant networks for modeling interatomic potentials (Batzner et al., 2022)
or predicting protein binding sites (Zhang et al., 2023), no robust 3D equivariant protein autoencoders and
3D latent diffusion models for protein structures have been proposed yet.

3 Method

In this section, we introduce our LatentDiff for generating protein backbone structures. We first illustrate
the motivation for reducing modeling space in Section 3.1. Then, We describe the design of our equivariant
protein autoencoder in Section 3.2, and next the latent space diffusion model in Section 3.3. We present the
overall generation process in Section 3.4.

3.1 Motivation of Reducing Modeling Space

In this section, we describe the motivation for designing a protein autoencoder to reduce modeling space
in terms of modeling difficulty and parallel sampling efficiency, respectively. An important motivation for
reducing modeling space through downsampling is that it can make the diffusion model easier to learn the
desired distribution, as the modeling capacity of diffusion models has a direct relationship with the size of
their modeling space. By decreasing the modeling space, we aim to focus the generative model’s attention on
a more condensed space that is relevant to the original protein structure space. This reduction in complexity
allows the model to more effectively learn and capture the underlying distribution of protein structures,
resulting in improved generation quality.

Moreover, a smaller modeling space helps address the challenge of high dimensionality and sparsity that
is prevalent in protein structure data compared with small molecules. The vast space of possible protein
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Figure 1: Autoencoder network structure for proteins. Step A, B, and C denote the Encoder network.
A. Augmented input protein sequence (white) with padding (red node), similar to image padding. B. (1)
Edge building: create a fully connected graph (limited edges shown for simplicity) on the padded sequence;
(2) Graph Expansion: introduce new nodes (black) with specific connections according to the 1D-CNN
convention. C. Compressed sequence (in latent space). Steps D, E, and F denote the Decoder network. D.
Padding latent sequence for upsampling (similar to padding operation in image transpose convolution). E.
Edge building and Graph Expansion are similar to B. F. Reconstructed protein chain.

conformations presents a considerable challenge for generative models to learn from limited training data.
By narrowing down the modeling space, we provide the generative model with a more manageable and
structured latent search space, enabling it to learn the essential features and patterns of protein structures
more efficiently.

Another advantage of using protein autoencoder to reduce modeling space is that generation in latent space
can improve memory efficiency as the latent space is much smaller than the protein space. So for the same
amount of GPU memory, more proteins can be sampled in latent space than in protein space. In practice,
it requires sampling a large amount of proteins in the screening procedure, so high throughput sampling is
desired. In this sense, parallel sampling in latent space could demonstrate significant efficiency improvement.
More experiments on parallel sampling efficiency can be found in Section 4.7.

3.2 Equivariant Protein Autoencoder

We first introduce our equivariant autoencoder that helps reduce the protein design space. To design such
an autoencoder, we identify some constraints and the uniqueness of protein backbones. First, Cα atoms
in protein backbones have a fixed order due to the sequential nature of amino acid sequences. In general,
downsampling or upsampling of sequence data can be achieved by 1D convolutional neural networks (CNNs).
Also, since Cα atoms form a chain structure that could be preserved during upsampling, we don’t need to
reconstruct edge connections like traditional graph autoencoder. Second, despite the sequence representation
of protein backbones, they also possess 3D geometries, which require equivariance during the downsampling
and upsampling stages. Traditional CNN cannot meet this equivariant requirement, but graph neural net-
works (GNNs) are capable of dealing with this challenge. Based on these observations, we propose a novel
equivariant protein autoencoder that considers both the amino acid sequence and 3D graph information of
protein backbones.

Overview. In the equivariant protein autoencoder, we first downsample protein to smaller sizes and up-
sample the latent graph to reconstruct the original protein. There are four steps within each downsampling
and upsampling layer, namely sequence padding, edge building, graph expansion, and equivariant
message passing. The first three steps are used to construct a graph that contains the input nodes and
initialized downsampling or upsampling nodes in the current layer. After the message passing, only updated
downsampling or upsampling nodes will be kept as input in the next layer for further downsampling or
upsampling operation. In the following, we describe the network input and details of one downsampling
layer. The upsampling layer shares the exact same steps except for sequence padding, which we will also
introduce in the sequence padding section.
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Network Input. For a protein backbone structure S, we move the structure to the zero centroid in order
to make the model avoid capturing translational equivariance. Then we will augment the protein to a fixed
length m to simplify the remaining operations in the network. So m is the maximum protein length that
we can generate, and we choose m as 128 in this work. The augmented protein is shown as the white part
in Figure 1.A. Specifically, we append m − n extra nodes to the end of the protein sequence. Each extra
node is assigned a zero position and the same node type. And we denote the augmented protein structure as
Saug = (X, H), where X ∈ R3×m and H ∈ Rd×m are node positions and node feature vectors respectively.
For X, the first n columns {xi}n

i=1 denote the positions of all Cα atoms in the original protein and the last
m − n columns {xi}m

i=n+1 denote the zero positions of extra nodes. Each node feature vector hi ∈ Rd in H
is a d-dimensional type embedding indicating the corresponding node type. Then the preprocessed Saug is
the input to the first downsampling layer.

Sequence Padding. Similar to padding in image convolution, within each layer, we first need to pad the
augmented protein sequence Saug before downsampling or upsampling the sequence in order to obtain an
output with the desired size. Let’s assume that we have k nodes after sequence padding. Denote the padded
sequence as Spad = (Xpad , Hpad), where Xpad ∈ R3×k and Hpad ∈ Rd×k. As shown in Figure 1.A and D,
red nodes are padding nodes. For the downsampling, we pad the input sequence on the boundary by adding
nodes with the same node position and node features as the boundary node. For example, in Figure 1.A,
the red node is the duplicate of the last white node. For the upsampling, we need both boundary padding
and internal padding, similar to image padding in transpose convolution. The boundary padding is the same
as that of downsampling. For an internal padding node, such as the second red node in Figure 1.D, it is
initialized with the average value of the position and node features of its two nearest nodes on both sides.

Edge Building. After sequence padding, we perform an edge-building step to construct a graph from
a padded protein sequence Spad . We could adopt fully connected graphs in order to capture interactions
between all atom pairs. As shown in Figure 1.B, the edges in the constructed complete graph are in red.
For simplicity, we only show the edge connections for one node. Note that ways of edge connections can
be flexible in this step. Empirically we find that constructing a complete graph only over the non-padded
sequence during downsampling gives better reconstruction performance.

Graph Expansion. Then, for the graph expansion step, we need to first initialize downsampled nodes
and connect them to the graph constructed in the edge-building step. We denote the expanded graph as
Gexp = (Xexp, Hexp, Aexp), where Xexp = [Xpad, Xdown] ∈ R3×(k+ m

2 ), Hexp = [Hpad, Hdown] ∈ Rd×(k+ m
2 ),

and Aexp ∈ R(k+ m
2 )×(k+ m

2 ). Specifically, we create a set of new nodes with positions Xdown ∈ R3× m
2 and

node feature vectors Hdown ∈ Rd× m
2 which represent the downsampled sequence. The edge connections

between downsampled sequence and the augmented protein sequence are created in a 1D CNN convention.
Specifically, only nodes within a kernel-sized window will be connected to a new node. For example, as
shown in Figure 1.B, the green area denotes a kernel of size 3, and the first black node connects to the first
three white nodes in the green area. And each new node is initialized as the average of its connected nodes
for both position and node feature.

Equivariant Message Passing. Next, we use an E(n) equivariant graph neural network (EGNN) (Satorras
et al., 2021) to perform message passing on the expanded graph Gexp to update downsample nodes. Formally,

X̂exp, Ĥexp = EGNN[Xexp, Hexp], (4)

where X̂exp = [X̂, X̂down] and Ĥexp = [Ĥ, Ĥdown]. EGNN contains L equivariant convolution layers
(EGCL). Each layer performs a position and feature update, such that xl+1

i , hl+1
i = EGCL[xl

i, hl
i], which is

defined below:

mij = ϕe(hl
i, hl

j , d2
ij , aij), (5)

hl+1
i = ϕh(hl

i,
∑
j ̸=i

ẽijmij), (6)

xl+1
i = xl

i +
∑
j ̸=i

xl
i − xl

j

dij + 1 ϕx(mij), (7)
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where dij =
∥∥xl

i − xl
j

∥∥
2 denotes the Euclidean distance between nodes i and j, and aij = MLP([hl

i, hl
j ]) is

the edge feature for edge (i, j). Following Hoogeboom et al. (2022), we use dij + 1 to normalize the node
distance to improve numerical stability and use an attention mechanism ẽij = ϕinf (mij) to infer a soft
estimation of edges.

Then after the message passing, we will only keep the updated downsampled sequence (X̂down, Ĥdown) as
the input of next layer, as shown in Figure 1.C. During the upsampling stage in the decoder, we perform the
same four steps as introduced above. After upsampling to the original size of the input augmented protein,
we obtain a reconstructed sequence with position and node embedding for each node. Then we use an MLP
to process the final node embedding and predict whether a reconstructed node belongs to the augmented
node type. We then use another MLP to predict the amino acid type of each node.

Training Loss. Reconstruction loss of autoencoder consists of six parts. First, we have a cross-entropy loss
Laug on a binary classification task to determine whether each reconstructed node is an augmented node
that not belongs to the original protein. Next, we use another cross-entropy loss Laa on the amino acid
type prediction for each node. And then, we calculate the mean absolute error (MAE) of the position for
each non-augmented node between the reconstructed protein and ground truth, and we denote it as Lpos.
Apart from these three losses, to further consider the secondary structure reconstruction for proteins, we
also include edge distance loss Ldist and torsion angle loss Ltor calculated across the non-augmented nodes.
Specifically, edge distance is calculated as the Euclidean distance between every two consecutive Cα atoms,
and the torsion angle is the angle between two planes formed by four consecutive Cα atoms. To avoid latent
node embeddings having an arbitrarily high variance, we use slight KL divergence loss Lreg to regularize
latent node embeddings, which is similar to a variational autoencoder. So the total loss is the weighted sum
of these individual losses. Formally,

Ltotal = Laug + Laa + Lpos + w1 ∗ Ldist + w2 ∗ Ltor + w3 ∗ Lreg, (8)

where w1, w2, and w3 are relative weights to control the edge distance loss, torsion angle loss, and regu-
larization loss, respectively. We want the network to optimize the absolute position of each node first and
adjust edge distance and torsion angle later, so we set w1 and w2 as 0.5. Also, we want the autoencoder
to have good reconstruction performance, so we only use very small regularization, and we set w3 equal to
1e−4.

3.3 Latent Diffusion

Modeling the extracted latent representations (Xdown , Hdown) of protein backbone structures poses unique
challenges due to the fact that they consist of 3D Euclidean positions, which differ from images and texts.
In this section, we first explain the desired distribution E(3) invariance property and then provide a detailed
description of the latent diffusion process that satisfies this property for the task of protein backbone gener-
ation. In this section, pdata , pmodel , and pθ denote the underlying data distribution, the output distribution
of the whole model framework, and the latent distribution from the latent diffusion model, respectively.

Distribution E(3) Invariance. For a given protein backbone structure (X, H), we would like the learned
data distribution to be E(3) invariant: pdata(X, H) = pdata(RX + b, H) as the geometric 3D structure
remains unchanged after E(3) transformations, where R ∈ R3×3, |R| = ±1 describing the rotation and
reflection transformations and b ∈ R3 for translation in 3D space. Because our protein autoencoder is
translation invariant as described in Sec. 3.2, pmodel(X, H) = pmodel(X + b, H) holds naturally. Hence,
distribution rotation and reflection invariance pmodel(X, H) = pmodel(RX, H) needs to be satisfied for the
latent diffusion process.

In our approach, we propose to decompose the generation of protein backbone structures into two stages,
including (1) protein latent representation generation and (2) latent representation decoding. The model
distribution can be defined as pmodel(X, H) = fdecoder(pθ(Xdown , Hdown)). Given that the decoding pro-
cess is E(3) equivariant and deterministic, if the latent diffusion model sθ satisfies pθ(Xdown , Hdown) =
pθ(RXdown + b, Hdown), the distribution rotation and reflection invariance pmodel(X, H) = pmodel(RX +
b, H) can be satisfied.
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N ⇠ (0, I)

Figure 2: Pipeline of LatentDiff. Encoder E and decoder D are pretrained via equivariant protein autoencoder
introduced in Section 3.2, and their parameters are fixed during training the latent diffusion. Protein
structures are encoded into latent representations via the encoder E . And latent representations are gradually
perturbed into Gaussian noise. During generation, we first sample Gaussian noise and use the learned
denoising network to generate protein representations in the latent space. And then, the decoder D decodes
latent representations to protein structures.

The challenge of pθ(Xdown , Hdown) = pθ(RXdown + b, Hdown) can be addressed by (1) modeling zero-mean
geometric distribution for X, (2) using a high-dimensional Gaussian distribution as the prior distribution,
and (3) employing rotation and reflection equivariant reverse diffusion process (Hoogeboom et al., 2022; Xu
et al., 2021). Specifically, the influence of translation transformations in 3D space is omitted by reducing
the central position of X. Additionally, by using an isotropic high dimensional Gaussian prior, we have
pθ(XT , HT ) = pθ(RXT , HT ). The rotation and reflection equivariant reverse diffusion process further
guarantees that pθ(Xt, Ht) = pθ(RXt, Ht) for any time t and the proof is provided in Appendix. A.1.

Rotation and Reflection Invariant Latent Diffusion. Due to the aforementioned considerations, we
propose the rotation and reflection distribution invariant latent forward and reverse diffusion processes for
the extracted protein backbone latent features (Xdown , Hdown). The implementation is based on Hoogeboom
et al. (2022) with adjustments to support the latent diffusion process. The pipeline of our protein latent
diffusion is shown in Figure 2. During the forward process, the input latent representations (Xdown , Hdown)
are diffused slowly into random noise by a sequence of noise scales 0 < β1, β2, . . . , βN < 1 as follows

Xi =
√

1 − βiXi−1 +
√

βiσX ,

Hi =
√

1 − βiHi−1 +
√

βiσH ,

where σH ∼ N (0, I), and σX is first sampled from N (0, I) and then reduced based on the corresponding
central position following Hoogeboom et al. (2022). And the closed-form forward process can be written as

Xt =
√

αtXdown +
√

1 − αtσX , (9)
Ht =

√
αtHdown +

√
1 − αtσH , (10)

where αt =
∏t

i=0(1 − βi). Since αt is a scalar value, we have pt(Xt, Ht) = p(Xdown , Hdown)p(σX , σH)
where pt is the data distribution at time t and p(σX , σH) = p(σX)p(σH) denotes the correspond-
ing multivariate Gaussian distributions. It can be seen that pt(Xt, Ht) = pt(RXt, Ht) because
p(Xdown , Hdown)p(σX , σH) = p(RXdown , Hdown)p(σX , σH). Hence, the forward diffusion process satis-
fies rotation and reflection distribution invariance.

For the reverse diffusion process, a reverse Markov chain is formed as below

(Xt−1, Ht−1) = 1√
1 − βt

µt +
√

βt(σX , σH),

µt = (Xt, Ht) − βt√
1 − αt

sθ(Xt, Ht, t),

where sθ is a rotation and reflection equivariant network implemented based on EGNN (Satorras et al.,
2021).

7



Under review as submission to TMLR

Training Loss. The reverse diffusion model sθ is trained with a re-weighted evidence lower bound (ELBO)
following ProtDiff (Trippe et al., 2022) and DDPM (Ho et al., 2020) as below

θ⋆ = argminθEt,(Xdown ,Hdown ),σ[∥δ∥2], (11)

δ = σ − sθ(
√

αt(Xdown , Hdown) +
√

1 − αtσ, t), (12)

where σ = (σX , σH).

3.4 Overall Generation Process

We have introduced the main components of our protein latent diffusion model, LatentDiff. To generate
a novel protein backbone structure, we first sample multivariate Gaussian noise and use the learned latent
diffusion model to generate 3D positions and node embeddings in the latent space. To further improve
generation quality, we also use low-temperature sampling (Ingraham et al., 2022) to guide the reverse process
in the diffusion model. And then we use the pre-trained decoder to generate backbone structures in the
protein space. Note that the output of the decoder has a pre-defined fixed size. In order to generate proteins
of various lengths, each node in the decoder output is predicted to be an augmented node or not. We simply
find the first node that is classified as an augmented node and drop the remaining nodes in the generated
protein backbone structure. Note that we do not use reconstructed amino acid types for the corresponding
node. Instead, we use the inverse folding model ProteinMPNN (Dauparas et al., 2022) to predict protein
amino acid sequences from generated backbone structures.

4 Experiments

We empirically demonstrate the effectiveness and efficiency of our method for generating protein backbone
structures. In Section 4.1, we first introduce the dataset we curated from existing protein databases and the
benchmarking baseline models. In Section 4.2–Section 4.7, we show the reconstruction performance of the
pre-trained autoencoder, the quality and diversity of generated protein backbone structures, and the parallel
sampling efficiency of LatentDiff. In Appendix A.3, we describe the training details of the autoencoder and
latent diffusion model.

4.1 Experimental Setting

Dataset. We curate the dataset from Protein Data Bank (PDB) and Swiss-Prot data in AlphaFold Protein
Structure Database (AlphaFold DB) (Jumper et al., 2021; Varadi et al., 2022). Details of the dataset can
be found in Appendix A.2. Note that the dataset employed in our research is larger than the ones used in
both ProtDiff (Trippe et al., 2022) and FoldingDiff (Wu et al., 2022a). Our methodology necessitates that
the latent space is well-structured and equivalent to the protein space. To realize this goal to the maximum
extent, it is imperative that we utilize the maximum possible volume of data to train our model.

Baselines. To evaluate our proposed methods, we compare with the state-of-the-art protein backbone
structure generation methods including ProtDiff (Trippe et al., 2022) and FoldingDiff (Wu et al., 2022a).
Both of them are proposed to generate novel protein backbone level structures as discussed in Sec. 2.3.

4.2 Autoencoder Reconstruction

In this section, we demonstrate the reconstruction performance of the protein autoencoder. We compare
autoencoders with different downsampling factors f = {2, 4, 8}, which we denote as auto – f .

Metrics. First, we evaluate the classification accuracy of augmented and non-augmented nodes (Augment
Acc), and the accuracy of amino acid type classification (Residue Acc). And we have the following three
geometric evaluations. We use root mean square deviation (RMSD) to compare the absolute position error
between reconstructed Cα atoms and ground truth. Additionally, we measure edge stability, which counts
the proportion of Cα – Cα distance that resides with range [3.65Å, 3.95Å]. The reason for choosing this
range is that 99% Cα – Cα distances in ground truth are within this range. We also calculate the mean
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Table 1: Performance of autoencoder with different downsampling factors. ↑ (↓) represents that a higher
(lower) value indicates better performance.

Factor RMSD (Å)↓ Augment Acc (%)↑ Residue Acc (%)↑ Edge Stable (%)↑ Torsion MAE (rad)↓

2 1.1607 100 99 68.61 1.1558
4 1.4070 100 98 61.66 1.2932
8 2.9488 100 48 52.54 1.8518

Table 2: Percentage of generated proteins with scTM score > 0.5. Following FoldingDiff and ProtDiff, results
are shown within short (50–70) and long (70–128) categories.

Method 50–70 70–128 50–128
ProtDiff 17.1% 8.9% 11.8%
FoldingDiff 27.1% 9.4% 14.2%
LatentDiff 31.1% 35.6% 31.6%

absolute error (MAE) of the torsion angle. Note that all the geometric evaluations are performed on the
original protein backbones without considering augmented nodes.

In Table 1, we summarize the results with respect to these five metrics for protein autoencoders with different
downsampling factors. In order to reduce the modeling space of proteins and make it easier for the diffusion
model to learn the latent distribution, larger downsampling factors are preferred; but meanwhile, it will
become more difficult to achieve good reconstruction results. We can see that auto – 8 has the worst
reconstruction performance because the autoencoder compresses information too much. Although auto – 2
performs the best among the three settings, the number of nodes in the latent space is still relatively large.
So in order to achieve a balance between computation and reconstruction performance, we finally choose
auto – 4 as the pre-trained model for generating latent space data and decoding protein backbones.

4.3 In-silico Evaluation

After sampling protein backbone structures, we also need to evaluate the designability of these generated
structures. This means that for a generated backbone, whether we can connect some amino acids into a
sequence and the sequence can naturally fold into that desired backbone structure. The most faithful and
desirable evaluation is to check through a wet-lab experiment, but this is often resource demanding and not
feasible. Here we use in silico evaluations as an alternative.

Specifically, for a generated backbone structure, we first use an inverse folding model, ProteinMPNN (Dau-
paras et al., 2022), to predict eight amino acid sequences that could possibly fold into that backbone structure.
OmegaFold (Wu et al., 2022b) is then used to predict folding structures for each amino acid sequence. Next,
we adopt TMalign (Zhang & Skolnick, 2005) to compute the similarity between the generated backbone struc-
ture and each OmegaFold-predicted backbone structure and calculate a TM score to quantify the similarity.
The maximum TM-score among these eight scores is referred to as the self-consistency TM-score (scTM). If a
scTM score is larger than 0.5, two backbone structures are considered with the same fold and that generated
backbone structure is designable. Similar as in previous works (Wu et al., 2022a; Trippe et al., 2022), we
generate 780 backbone structures with various lengths between 50 and 128 and evaluate them by the scTM
score, for which the sampling temperature in ProteinMPNN is 0.1. The histogram of scTM scores is shown
in Figure 3, and the comparison with FoldingDiff and ProtDiff is shown in Table 2. For our LatentDiff, 247
of 780 (31.6%) generated structures have their scTM scores > 0.5. The achieved percentage of designable
structures has a significant margin over FoldingDiff (14.2%) and ProtDiff (11.8%). In the reported results
by these two baseline methods, the authors grouped their generated structures into short (50-70) and long
(70-128) ones, and reported the designable percentage (scTM > 0.5) within each category. For the short
category, 31.1% of our generated structures are designable, which is higher than FoldingDiff (27.1%) and
ProtDiff (17.1%). For the long category, our percentage (35.6%) is in fact much better than these two base-
line models (8.9% for ProtDiff and 9.4% for FoldingDiff), demonstrating significantly improved scalability
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Figure 3: scTM score distribution of generated backbone structures with length between 50 and 128. 31.6%
(247/780) generated samples are designable (scTM > 0.5)
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Figure 4: Some samples of generated structures with scTM > 0.5. The top row shows our generated back-
bones and the second row shows the backbone structures predicted by the OmegaFold from the predicted
amino acid sequences. We use the inverse folding model ProteinMPNN to generate these amino acid se-
quences that can likely to fold into our generated structures.

due to our designed model space reduction in LatentDiff. We also visualize some exemplar backbones and
OmegaFold-predicted backbone structures using PyMOL (DeLano, 2002) in Figure 4.

4.4 Structure Distribution Analysis

After showing the success of in silico tests, we illustrate the distributions of generated samples in both the
original protein space and the latent space. First, we show the edge distance and bond angle distributions of
generated backbones and test set backbones. As shown in Figure 5, the distributions of generated samples
are similar to the test distributions. We further investigate the distributions in the latent space. Specifically,
we show the distributions of node positions, edge distances, and node embeddings in the latent space. For
simplicity, we only show the x coordinate of the latent node position and the first dimension of latent node
embeddings. As shown in Figure 6, these distributions of generated latent samples almost recover the latent
training data distributions.
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Figure 5: Distribution comparison between generated backbone structures and test set protein backbones.
(a) Edge distance between any two consecutive Cα atoms along a protein chain. (b) Bond angle formed by
any three consecutive Cα atoms along a protein chain.
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Figure 6: Distribution comparison between training data and generated samples in the latent space. (a)
Position of latent node in the x direction. (b) Edge distance between any two consecutive nodes in the latent
space. (c) First dimension of latent node embeddings.

4.5 Secondary Structures

We use P-SEA (Labesse et al., 1997) to count the number of two types of secondary structures in the generated
proteins with scTM > 0.5. Specifically, we calculate the percentage of generated proteins that contain only
α-helix, only β-sheet, and both α-helix and β-sheet, respectively. The results are shown in Table 3. As seen,
more than half of the generated proteins include α-helix, and a large portion of generated proteins contain
β-sheet. This proves that our method can generate various secondary structures in natural proteins.

4.6 Diversity

We also evaluate the diversity of generated proteins with scTM > 0.5 (designable), as shown in Table 4.
Specifically, we calculate the TM scores with all other designable proteins for each designable protein and
choose the maximum TM score to measure its similarity with the generated proteins. Then, we calculate the
average of maximum TM scores over all designable proteins to assess the diversity of the generated proteins
(lower is better). From the table, we can see that LatentDiff can generate more diverse protein structures
than ProtDiff and is comparable with FoldingDiff.

4.7 Parallel Sampling Efficiency Comparison

In this section, we demonstrate the parallel sampling efficiency of our method. Diffusion models usually need
to perform thousands of reverse steps to generate a single data point, and the data size must be the same
during every reverse step. So this generation process is very time-consuming and computationally expensive,
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Table 3: Percentage of generated proteins that contain only α-helix, only β-sheet, and both α-helix and
β-sheet, respectively.

α-helix only β-sheet only α-helix + β-sheet
58.7% 13.3% 14.9%

Table 4: Diversity of generated designable proteins (scTM > 0.5). ↓ represents that a lower value indicates
better performance.

Method Diversity↓

ProtDiff 0.836±0.1648
FoldingDiff 0.585±0.1276
LatentDiff 0.615±0.0849

Table 5: Sampling efficiency comparison between diffusion models in latent and protein space. LatentDiff-P
denotes no protein autoencoder being used and diffusion is performed directly in the protein space.

Method Parameters Protein Length Latent node Diffusion steps Time (hrs) Speed (sec/sample)
ProtDiff 1974528 128 N/A 1000 1.9 6.85
LatentDiff-P 2016453 128 N/A 1000 2.9 10.66
LatentDiff 2027984 128 32 1000 0.18 0.68
LatentDiff 2027984 128 32 2000 0.36 1.33
LatentDiff 2027984 256 64 1000 0.73 2.66

especially when the modeling space of diffusion models is large. So this prohibits efficient parallel sampling
with limited computing resources.

Generation in latent space can reduce memory usage and computational complexity as the latent space is
much smaller than the protein space, thereby improving the generation throughput. The reason we compare
efficiency in terms of parallel sampling is that, in practice, it requires sampling a large amount of proteins
in the screening procedure, so high throughput sampling is desired. In this sense, sampling in latent space
demonstrates significant efficiency improvement. For the experiments, we compare sampling 1000 proteins
with different methods on a single NVIDIA 2080Ti GPU and summarize the result in Table 5. Note that these
experiments are only used to test sampling efficiency, and the network weights are just randomly initialized.
For fair comparison and to rule out the other factors other than different modeling space, we compare with
ProtDiff and our LatentDiff without downsampling (named LatentDiff-P), as denoising networks for these
models are similar, and we also make the number of parameters to be similar for these models. For our
model, the processing time of the decoder is orders of magnitude less than that of our latent diffusion model,
so we do not take the decoder time into account. From the result, we can see that the generation time of 1000
protein structures in the protein space is about 2.9 hours, while it only takes about 11 minutes to generate
in the latent space and then map to the protein space. So reducing modeling space demonstrates potential
usefulness in practice. The sampling time of LatentDiff scales linearly with the number of diffusion steps
because diffusion steps are performed sequentially. Moreover, since we use a fully connected graph for the
diffusion model, increasing latent nodes will quadratically increase memory consumption and computational
complexity. Consequently, the sampling throughput will decrease and is contingent upon the GPU memory
and computational capacity, with the throughput being constrained by whichever resource reaches its limit
first.

5 Discussion

In this section, we discuss the limitations of our LatentDiff and potential future directions beyond LatentDiff.

Limitations. For one thing, the input protein backbone structure needs to be padded to a fixed length for
the protein autoencoder, and the actual length is predicted during the decoding process. For another thing,
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due to the modeling difficulty of structure and sequence co-design mentioned by previous works (Trippe et al.,
2022; Wu et al., 2022a), we only use the generated protein backbone structures but corresponding generated
sequences are not used. We think the reason for co-design not working well is that directly modeling the joint
distribution of structures and sequences is very hard since the model needs to learn the complex correlation
between protein structures and amino acid sequences. This somewhat requires the generative model to
implicitly learn the inverse folding or folding process, which by themselves are complex tasks that need
powerful inverse folding or protein folding prediction models to solve. However, using the high-accuracy
inverse folding model to predict sequences from structures can reduce the burden of the generative model to
learn the complex correlation between protein structures and amino acid sequences.

Future Directions. There are several potential directions beyond the current LatentDiff and we leave
them to future works. (1) The 3D protein autoencoder can be adjusted to support arbitrary length input
and generate arbitrary length protein backbone structure. (2) Due to limited computation resources, we
cannot train our 3D protein autoencoder on all protein structures predicted by AlphaFold (Varadi et al.,
2022). And the performance of the 3D protein autoencoder is promising to boost when more training
protein structures are available. (3) The length of generated proteins is limited to 128 in our work. With
more data and computing resources, our method has the potential capability to generate longer proteins
and then can generate proteins that exhibit more diverse folds. (4) There’s still an opportunity to improve
structure and sequence co-design. With a more powerful protein autoencoder obtained by (1) and (2),
the modeling difficulty of structure and sequence co-design may be addressed naturally by our proposed
LatentDiff framework. Besides, an iterative refinement approach involving alternating between sequence and
structure generation steps might also be useful to gradually improve the consistency between the generated
sequence and structure. In addition, incorporating physical constraints during the generative modeling
process, such as integrating physical principles such as energy functions and geometric constraints into the
generative model, could also be possible to guide the generation process to produce sequences that are more
likely to fold into the generated structures. (5) Conditional generation tasks are very useful in practice as
they enable protein generation with desired properties and are worth more exploration in future work.

6 Broader Impact Statement

Our protein generation method, enabling the production of novel proteins, has significant broader impact
potential. On one hand, it might offer potential opportunities for advancements in medicine, agriculture,
and biotechnology, facilitating the development of innovative therapeutics, enzymes, and biomaterials in
the future. On the other hand, while considering the concerns raised regarding the computational selection
of potentially dangerous agents, we should prioritize responsible research practices, with stringent safety
protocols, adherence to regulations, and collaboration with biosecurity experts to ensure the responsible
handling of generated proteins. By fostering collaboration and knowledge dissemination, we aim to advance
protein design while actively managing any potential risks associated with our method.

7 Conclusion

We have proposed LatentDiff, a 3D latent diffusion framework for protein backbone structure generation. To
reduce the modeling space of protein structures, LatentDiff uses a pre-trained equivariant 3D autoencoder to
transform protein backbones into a more compact latent space, and models the latent distribution with an
equivariant latent diffusion model. LatentDiff is shown to be effective and efficient in generating designable
protein backbone structures by comprehensive experimental results.
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A Appendix

A.1 Distribution Rotation and Reflection Invariant Reverse Diffusion Process

In this section, we provide proof that by (1) using a high-dimensional Gaussian distribution as the prior
distribution, and (2) employing rotation and reflection equivariant reverse diffusion model sθ Hoogeboom
et al. (2022); Xu et al. (2021), the challenge of pθ(Xdown , Hdown) = pθ(RXdown , Hdown) can be addressed.
The proof process borrows ideas from Xu et al. (2021) and Hoogeboom et al. (2022).

First, because pθ(XT , HT ) = N (0, I), and N (0, I) is isotropic, we have pθ(XT , HT ) = pθ(RXT , HT ), where
R ∈ R3×3, |R| = ±1 describes the rotation and reflection transformations in 3D space.

Second, because sθ is rotation and reflection equivariant for Xt and rotation and reflection invariant for Ht,
and

Xt−1 = 1√
1 − βt

(Xt − βt√
1 − αt

sθ(Xt, Ht, t)X) +
√

βtσX , (13)

Ht−1 = 1√
1 − βt

(Ht − βt√
1 − αt

sθ(Xt, Ht, t)H) +
√

βtσH , (14)

where sθ(Xt, Ht, t)X and sθ(Xt, Ht, t)H denote the network predictions to update X and H, correspond-
ingly. When we apply transformation R ∈ R3×3, |R| = ±1 to Xt−1, we will have

RXt−1 = 1√
1 − βt

R(Xt − βt√
1 − αt

sθ(Xt, Ht, t)X) +
√

βtRσX (15)

= 1√
1 − βt

(RXt − βt√
1 − αt

Rsθ(Xt, Ht, t)X) +
√

βtRσX (16)

= 1√
1 − βt

(RXt − βt√
1 − αt

sθ(RXt, Ht, t)X) +
√

βtRσX , (17)

and we can have the following

pθ(Xt−1, Ht−1|Xt, Ht) = pθ(Xt, Ht)p(σX , σH) = pθ(RXt, Ht)p(RσX , σH) = pθ(RXt−1, Ht−1|RXt, Ht).
(18)

Beyond this, for the reverse diffusion time t ∈ {T, T − 1, · · · , 1}, assume pθ(Xt, Ht) satisfies pθ(Xt, Ht) =
pθ(RXt, Ht), where R ∈ R3×3, |R| = ±1 describes the rotation and reflection transformations in 3D space.
Then we have:

pθ(RXt−1, Ht−1) =
∫

(Xt,Ht)
pθ(RXt−1, Ht−1|Xt, Ht)pθ(Xt, Ht)

=
∫

(Xt,Ht)
pθ(RXt−1, Ht−1|RR−1Xt, Ht)pθ(RR−1Xt, Ht)

=
∫

(Xt,Ht)
pθ(Xt−1, Ht−1|R−1Xt, Ht)pθ(R−1Xt, Ht),

let X ′ = R−1Xt, we have det R = 1 and

pθ(RXt−1, Ht−1) ==
∫

(X′,Ht)
pθ(Xt−1, Ht−1|X ′, Ht)pθ(X ′, Ht) ∗ det R = pθ(Xt−1, Ht−1), (19)

and pθ(Xt−1, Ht−1) is invariant. By induction, pθ(XT −1, HT −1), . . . , pθ(X0, H0) are all invariant and the
proof is complete.

A.2 Datasets

We curate the dataset from Protein Data Bank (PDB) and Swiss-Prot data in AlphaFold Protein Structure
Database (AlphaFold DB) (Jumper et al., 2021; Varadi et al., 2022). We filter all the single-chain protein
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data from PDB with Cα – Cα distance less than 5Å and sequence length between 40 and 128 residues,
resulting in 4460 protein sequences. We randomly split the data according to 80/10/10 train/validation/test
split. In order to include more training data, we further curate protein data from two resources and add them
to the current training set. The first part of augmented training data comes AlphaFold DB. Specifically,
we filter single-chain proteins in Swiss-Prot with lengths between 40 and 128 and add these proteins to
the training data. The second part of augmented training data comes from PDB, where we curate data
from those single-chain proteins with Cα – Cα distance larger than 5Å and sequence lengths longer than
40. Specifically, we split these proteins at the position where Cα – Cα distance is larger than 5Å to obtain
protein fragments. Then we add these fragments with lengths between 50 and 128 to the training data.
For these fragments with lengths longer than 256, we uniformly cut them into lengths between 50 and 128,
and add them to the training data. After this data augmentation process, we can finally obtain about 100k
training data.

A.3 Experimental Details

For training of the autoencoder, we have used all the available training data. We then use the trained encoder
to embed all the training protein data and use their latent representations to train the latent diffusion model.
We have trained the autoencoder for 200 epochs with batch size 128, by Adam optimizer (Kingma & Ba,
2015) with learning rate 1e−3, β1 = 0.9, β2 = 0.999, and weight delay 2e−4. The latent diffusion model has
been trained for 13M steps with batch size 128, by Amsgrad optimizer (Reddi et al., 2018) with learning
rate 5e−5, β1 = 0.9, β2 = 0.999, and weight delay 1e−12. We use 1000 diffusion steps and the same noise
scheduler used in Hoogeboom et al. (2022). We have implemented all the models in PyTorch and have
trained all the models on a single NVIDIA A100 GPU.

A.4 Latent Space Interpolation

Usually, it is natural to visualize the latent space and perform latent code interpolation to test if the latent
space is well-structured. However, a protein in our latent space is not represented by a single latent feature
vector, but rather, it is a set of nodes associated with 3D coordinates and node features. As such, it is
difficult to use dimension reduction techniques like t-SNE to visualize the latent space. In addition, we did
not add a KL-divergence loss on coordinates since it would break equivariance. Even for invariant node
features, we only add a minimal KL-divergence penalty to control the variance of the latent space, as we
aim to maintain high reconstruction accuracy for the autoencoder. Therefore, in our case, the latent space
does not necessarily need to be well-structured, and arbitrary interpolation may not guarantee valid protein
structures upon decoding.

To show this, we pick two generated proteins with scTM>0.5 (designable), and their corresponding la-
tent space data are (Xs

emb, Hs
emb) and (Xt

emb, Ht
emb). Then we interpolate these two latent space data as

(Xinterp
emb , Hinterp

emb ) = (Xs
emb ∗ (1 − λ) + Xt

emb ∗ λ, Hs
emb ∗ (1 − λ) + Ht

emb ∗ λ). We choose different values
of λ and decode the interpolated latent space data into proteins and calculate the scTM score, as shown
in Table 6. We can see that if λ is close to 0 or 1, generated proteins are still designable. However, if λ is
near 0.5, generated proteins are not valid, just as we analyzed above.

Table 6: The scTM score of proteins decoded from the interpolation of two latent protein representations.
λ is the interpolation weights. TM-left means the TM score with the start protein, and TM-right means the
TM score with the end protein.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
scTM 0.85 0.57 0.49 0.37 0.27 0.31 0.42 0.52 0.49 0.68 0.74
TM-left 1.0 0.78 0.66 0.61 0.51 0.35 0.36 0.38 0.40 0.42 0.43
TM-right 0.57 0.55 0.56 0.48 0.47 0.43 0.44 0.52 0.61 0.71 1.0
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