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ABSTRACT

Product quantization (PQ) coupled with a space rotation, is widely used in modern
approximate nearest neighbor (ANN) search systems to significantly compress the
disk storage for embeddings and speed up the inner product computation. Existing
rotation learning methods, however, minimize quantization distortion for fixed
embeddings, which are not applicable to an end-to-end training scenario where
embeddings are updated constantly. In this paper, based on geometric intuitions
from Lie group theory, in particular the special orthogonal group SO(n), we
propose a family of block Givens coordinate descent algorithms to learn rotation
matrix that are provably convergent on any convex objectives. Compared to the
state-of-the-art SVD method, the Givens algorithms are much more parallelizable,
reducing runtime by orders of magnitude on modern GPUs, and converge more
stably according to experimental studies. They further improve upon vanilla
product quantization significantly in an end-to-end training scenario.

1 INTRODUCTION

Search index is the core technology to enable fast information retrieval in various modern compu-
tational systems, such as web search, e-commerce search, recommendation and advertising in the
past few decades. As a traditional type of search index, inverted index (Dean, 2009), which maps
terms to documents in order to retrieve documents by term matching, have been the mainstream type
of search index for decades, thanks to its efficiency and straightforward interpretability. Recently,
with the advent of deep learning era, embedding indexes coupled with approximate nearest neighbor
(ANN) search algorithms, have established as a promising alternative to search index (Zhang et al.,
2020) and recommendation index (Covington et al., 2016; Huang et al., 2020; Li et al., 2019), in part
due to its learnable representations and efficient ANN algorithms.

The main idea of embedding indexes is to encode users (or queries) and items in a latent vector space,
and represent their semantic proximity in terms of inner product or cosine similarity. Embedding
indexes enjoy a few appealing characteristics: a) the embeddings can be learned to optimize down-
stream retrieval task of interests, and b) items can be efficiently retrieved within tens of milliseconds.
The latter leverages decades of algorithmic innovations, including a) maximum inner product search
(MIPS) or approximate nearest neighbors (ANN), such as locality sensitive hashing (LSH) (Datar
et al., 2004), hierarchical navigable small world graphs (HNSW) (Malkov & Yashunin, 2020), space
indexing by trees (Bentley, 1975; Dasgupta & Freund, 2008; Muja & Lowe, 2014; Bernhardsson,
2018) or graphs (Harwood & Drummond, 2016; Iwasaki, 2015), and b) state-of-the-art product
quantization (PQ) based approaches (Jegou et al., 2010; Johnson et al., 2019; Guo et al., 2020;
Wu et al., 2017). In particular, PQ based indexes and its variants have regularly claimed top spots
on public benchmarks such as GIST1M, SIFT1B (Jegou et al., 2010) and DEEP10M (Yandex &
Lempitsky, 2016). Moreover, along with the open-sourced libraries Faiss (Johnson et al., 2019)
and ScaNN (Guo et al., 2020), PQ based embedding indexes are widely adopted in many industrial
systems (Huang et al., 2020; Zhang et al., 2020).
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1.1 PRODUCT QUANTIZATION (PQ) BASED INDEXES

Since Jegou et al. (2010) first introduced PQ and Asymmetric Distance Computation (ADC) from
signal processing to ANN search problem, there have been multiple lines of research focused on
improving PQ based indexes. We briefly summarize the main directions below.

Coarse Quantization, also referred to as inverted file (IVF), is introduced in the original work of
Jegou et al. (2010) to first learn a full vector quantization (referred to as coarse quantization) by
k-means clustering and then perform product quantization over the residual of the coarse quantization.
This enables non-exhaustive search of only a subsets of the clusters, which allows ANN to retrieve
billions of embeddings in tens of milliseconds. More work has been done in this direction, including
Inverted Multi-Index (IMI) (Lempitsky, 2012);

Implementation Optimization efforts have mainly been spent on the computation of ADC, including
using Hamming distance for fast pruning (Douze et al., 2016), an efficient GPU implementation of
ADC lookup (Johnson et al., 2019), and SIMD-based computation for lower bounds of ADC (André
et al., 2015). Our proposed method is fully compatible with all these implementation optimizations,
since we are solely focused on the rotation matrix learning algorithms.

Rotation Matrix Learning is introduced to reduce the dependencies between PQ subspaces, since
PQ works best when the different subspaces are statistically independent, which may not be true
in practice. As early as 2013, Optimized PQ (OPQ) (Ge et al., 2013), ITQ (Gong et al., 2013) and
Cartesian k-means (Norouzi & Fleet, 2013) all propose the idea of alternating between learning
(product) vector quantization and that of the rotation matrix; the latter can be formulated as the classic
Orthogonal Procrustes problem (Schönemann, 1966) that has a closed form solution in terms of
singular value decomposition (SVD), which is also widely used in CV (Levinson et al., 2020).

Cayley Transform (Cayley, 1846) recently inspires researcher to develop end-to-end algorithm
to learn rotation matrix in various neural networks, especially unitary RNN (Helfrich et al., 2018;
Casado & Martínez-Rubio, 2019) and PQ indexes (Wu et al., 2017). Formally, Cayley transform
parameterizes a d× d rotation matrix R by R = (I −A)(I +A)−1, where A is a skew-symmetric
matrix (i.e., A = −A>). Note that the above parameterization of R is differentiable w.r.t. the

(
d
2

)
parameters of A. Thus, it allows for end-to-end training of rotation matrix R, as long as the gradient
of R can be obtained. However, as we will discuss in Section 2.4, these Cayley transform based
methods are not easily parallelizable to modern GPUs thus inefficient compared to our proposed
method. Another drawback of Cayley transforms is numerical instability near orthogonal matrices
with -1 eigenvalues. This has been partially addressed in (Lezcano-Casado & Martínez-Rubio, 2019)
using approximate matrix exponential methods. However the latter incurs higher computation cost
per step, due to the higher order rational functions involved. The question of minimal Euclidean
dimension to embed SO(n) has been shown in (Zhou et al., 2019) to be of order O(n2). By contrast,
our proposed GCD methods only require O(n) dimension of local parameterization.

1.2 TRAINABLE INDEXES

Despite its various advantages, a notable drawback of embedding indexes is the separation between
model training and index building, which results in extra index building time and reduced retrieval
accuracy. Typically, for a large industrial dataset with hundreds of millions of examples, it takes
hours to build the index, and recall rates drop by at least 10% (Zhang et al., 2021). This spurred a
new trend of replacing embedding indexes with jointly learnable structural indexes. Researchers
argue that product quantization based embedding indexes are suboptimal, as it can not be learned
jointly with a retrieval model. To overcome this drawback, researchers propose a few learnable index
structures, such as tree-based ones (Zhu et al., 2018; 2019), a K-D matrix one (Gao et al., 2020) and
an improved tree-based one (Zhuo et al., 2020). Though these alternative approaches have also shown
improved performance, they often require highly specialized approximate training techniques, whose
complexities unfortunately hinder their wide adoptions.

On the other hand, learning PQ based indexes and retrieval model in an end-to-end scenario is also
challenging, in large part due to the presence of non-differential operators in PQ, e.g., arg min.
Recently, however, Zhang et al. (2021) proposes an end-to-end training method which tackles the
non-differentiability problem by leveraging gradient straight-through estimator (Bengio et al., 2013),
and it shows improved performance over the separately trained embedding indexes. However, learning
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a rotation matrix in an end-to-end training scenario remains unaddressed. As alluded to earlier, all
existing methods of learning rotation matrix are based on alternative minimization procedure with
an expensive non-parallelizable SVD step in each iteration. Thus it is not applicable to various
back-propagation based techniques in neural network learning.

Note that the orthonormality constraint on the rotation matrix is critical to ensure pairwise distances
are preserved between query and item embeddings. In end to end training, however, one could relax
this condition by using an L2 regularization loss of the form ‖XX> − I‖22. We have not explored
this latter approach here, since we aim for applicability of the method even for standalone PQ.

1.3 OUR CONTRIBUTIONS

In this paper, we overcome the last hurdle to fully enable end-to-end training of PQ based embedding
index with retrieval models, by leveraging mathematical studies of decomposition of orthogonal
group by Hurwitz (1963) as early as 1963. Based on intuitions about maximal tori in compact
Lie groups (Hall, 2015), we propose an efficient Givens coordinate gradient descent algorithm to
iteratively learn the rotation matrix – starting from an identity matrix and applying a set of maximally
independent (mutually commuting) Givens block rotations at each iteration. We open sourced the
proposed algorithm, which can be easily integrated with standard neural network training algorithms,
such as Adagrad and Adam.

Our contribution can be summarized as follows.

• Methodologically, we change the landscape of learning rotation matrix in approximate
nearest neighbor (ANN) search from SVD based to iterative Givens rotation based, in order
to be applicable to end-to-end neural network training.

• Algorithmically, we propose a family of Givens coordinate block descent algorithms with
complexity analysis and convergence proof of the least effective variant, GCD-R.

• Empirically, we prove that for fixed embeddings the proposed algorithm is able to converge
similarly as the existing rotation matrix learning algorithms, and for end-to-end training the
proposed algorithm is able to learn the rotation matrix more effectively.

2 METHOD

2.1 REVISIT TRAINABLE PQ INDEX

Figure 1 illustrates an overview of an embedding indexing layer inside a typical deep retrieval two-
tower model. Formally, the indexing layer defines a full quantization function T : Rm×n −→ Rm×n
that maps a batch of m input embedding X in n-dimensional space to output embeddings T (X),
which can be decomposed into two functions: a product quantization function φ : Rm×n −→ Rm×n
and a rotation function with an orthonormal matrix R. The indexing layer multiplies the input
embedding X by a rotation matrix R and the product quantized embedding φ(XR) by its inverse
matrix R−1, which is equal to its transpose R> for orthonormal rotation matrix. Formally,

T (X) = φ(XR)R>.

We omit the definition of product quantization function φ here, since it is not the focus of this paper.
Interested readers can find the full definitions in (Jegou et al., 2010) or (Zhang et al., 2021).

The final loss function includes two parts, a retrieval loss and a quantization distortion loss, formally,

L(X) = Lret(T (X)) + (1/m)‖XR− φ(XR)‖2 (1)

where Lret denotes any retrieval loss – typically by softmax cross entropy loss or hinge loss (Cov-
ington et al., 2016; Zhang et al., 2020; Huang et al., 2020). Note that straight-foward optimization
of L is intractable, since the quantization function φ is not differentiable, which, however, can still
be tackled by gradient straight-through estimator (Bengio et al., 2013). Then the only remaining
unaddressed problem is how to iteratively learn the rotation matrix R, since existing methods only
solve the case where the input vectors X are fixed (Ge et al., 2013; Jegou et al., 2010). We will
present our approach in the following sections.
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Figure 1: Illustration of an end-to-end trainable two-tower retrieval model. The indexing layer located
at the top of item tower is composed of a rotation matrix and a product quantization layer.

2.2 GIVENS ROTATION

Before we present the algorithm of learning a rotation matrix, let us first present a few mathematical
preliminaries that serve as foundations to our algorithm. For simplicity of exposition, the embedding
dimension n = 2m will always be an even number.
Definition 1. Let Rn×n denote the set of n×n matrices. An orthogonal groupO(n) = {A ∈ Rn×n :
AA> = In} is the group of all distance-preserving transformations of the Euclidean space Rn. The
special orthogonal group, denoted SO(n), consists of all orthogonal matrices with determinant 1.

It is straight-forward to check that axioms of group theory are satisfied by O(n) and SO(n) (see any
introductory text on Lie groups, e.g., (Hall, 2015)). In fact they form Lie sub-groups of the group of
n× n invertible matrices GL(n), both of which are manifolds embedded naturally in Rn2

.
Definition 2. A Givens rotation, denoted as Ri,j(θ), defines a rotational linear transformation
around axes i and j, by an angle of θ ∈ [0, 2π). Formally,

Ri,j(θ) :=

i j


Ii−1
cos θ − sin θ i

Ij−i
sin θ cos θ j

In−j

where Ik denotes the k× k identity matrix. In other words, the Givens rotation matrix Rij(θ) can be
regarded as an identity matrix with four elements at (i, i), (i, j), (j, i), (j, j) replaced.

Hurwitz (1963) showed the following important result as early as in 1963. The essential idea is
similar to Gram-Schmidt process, but specialized to rotational matrices.
Lemma 1. Every element in SO(n) can be written as a product

∏
1≤i<j≤nRi,j(θi,j), though the

decomposition is not unique.

In our case, to iteratively learn the rotation, we want to take θ to be small, such as uniformly in
(−ε, ε), at each step. While most existing work considers a single Givens rotation at each step, to our
best knowledge no published work has considered multiple rotations in one steps, namely with a step
rotation composed of n/2 independent rotations:

R = Rσ(1),σ(2)(θ1,2)Rσ(3),σ(4)(θ3,4) . . . Rσ(n−1),σ(n)(θn−1,n),

where σ is a randomly chosen permutation, σ(i) is the value at position i, and θi,j’s are again
independent and uniform in (−ε, ε).

The fact that these rotation axes are mutually disjoint ensures that their product can be computed in a
parallel fashion. Also the convergence proof of the coordinate descent algorithm relies on estimating
the amount of descent in the tangent space, which in turns requires that the rotations commute with
one another. This is naturally satisfied by the choice of rotations above.
Lemma 2. The n/2 families of Givens rotations Rσ(1),σ(2)(θ1,2), . . . , Rσ(n−1),σ(n)(θn−1,n) gener-
ate a maximally commuting subgroup within SO(n).
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This follows from the observation that a maximal torus of SO(n) is precisely given by simultaneous
rotations along n/2 pairs of mutually orthogonal 2d-planes (see (Bröcker & Tom Dieck, 2013)
Chapter 5). For odd n = 2m+ 1, simply replace n/2 by (n− 1)/2.

Note that both groups SO(n) and GL(n) are non-commutative for all n > 2, just as matrix multi-
plication is in general non-commutative. Unlike GL(2), however, SO(2) is commutative, since it
consists of the 1-parameter family of planar rotations.

2.3 BLOCK COORDINATE DESCENT ALGORITHM

The overall objective function, as shown in Eq. (1), needs to be optimized with respect to R and other
parameters in T , formally,

minimize
R∈SO(n),T

L(X) = Lret(T (X)) + (1/m)||XR− φ(XR)||2, (2)

where we omit other parameters in T since they are not the focus of this paper, though clearly opti-
mizing those parameters needs special techniques such as gradient straight-through estimator (Bengio
et al., 2013). Note that, in earlier PQ work, R is either fixed to be In, the identity matrix (Chen et al.,
2020), or separately optimized in a non-differentiable manner, e.g., using singular value decomposi-
tion (Ge et al., 2013), which is equivalent to optimizing only the second term in Eq. (2) with respect
to only R and fixing all other parameters.

These earlier approaches do not apply to our case, since we would like to optimize the rotation matrix
iteratively and jointly with other parameters. The naive update rule R← R− α∇RL, however, does
not preserve the requirement that R ∈ SO(n). A straight-forward remedy is to project the update
back to SO(n), such as with SVD or the tangent space exponential map, both of which however
require essentially a diagonalization procedure, which is prohibitively expensive. Instead we take a
direct approach to ensure that R stays on SO(n) after every iteration.

Consider the Hurwitz parameterization in Lemma 1, since θij ∈ R, we can treat it as Euclidean
optimization, thus a step of gradient descent looks like R←

∏
1≤i<j≤nRij(θij + α∇θijL). How-

ever, full Hurwitz product requires Ω(n2) sparse matrix multiplications, which is too expensive.
Furthermore the various θij are non-trivially correlated. To address both, we consider selecting a
subset of Givens rotation Rij at each step, according to the directional derivative as follows.
Proposition 1. Given an objective function L, the (un-normalized) directional derivative
d
dθ

∣∣
θ=0
L(XRij(θ)), 1 ≤ i < j ≤ n, is given by

〈R′ij(0), X>∇L(X)〉 = Trace(X>∇L(X)R′ij(0)>) = (∇L(X)>X −X>∇L(X))ij .

where (.)ij denotes the element at i-th row and j-th column, and 〈·, ·〉 is the Frobenius inner product.

Proof. Consider the map h : R→ Rn×n, h(θ) = XRij(θ). By linearity, h′(0) = XR′ij(0). Thus,
the chain rule gives

d

dθ

∣∣∣∣
θ=0

L(XRij(θ)) = 〈∇L(X), XR′ij(0)〉.

We would like to group ∇L(X) and X together. Using the fact that 〈u, v〉 = u>v, the right hand
side can be written as

∇L(X)>XR′ij(0) = (X>∇L(X))>R′ij(0) = 〈X>∇L(X), R′ij(0)〉. (3)

From Definition 2 of Givens rotation Rij(θ), we see that

R′ij(0) =

i j


0i−1
cos′(0) − sin′(0) i

0j−i
sin′(0) cos′(0) j

0n−j

=

i j


0i−1
0 −1 i

0j−i
1 0 j

0n−j

.
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Algorithm 1 Bipartite matching in greedy Givens coordinate descent (GCD-G).

1: Input:
(
n
2

)
directional derivatives gij := d

dθL(RRij(θ)), 1 ≤ i < j ≤ n.
2: Output: n/2 disjoint coordinate pairs {(i`, j`) : 1 ≤ ` ≤ n/2}.
3: Let S := {1, . . . , n} be the set of all coordinate axes.
4: for 1 ≤ ` ≤ n/2 do
5: Among indices in S, pick (i`, j`), i` < j`, that maximizes ‖gij‖2.
6: Remove i` and j` from S: S → S \ {i`, j`}.
7: end for

It follows that 〈R′ij(0), Y 〉 = (Y > − Y )ij for any square matrix Y , which completes the proof
by plugging in Eq. (3). Finally to normalize the directional derivative, it needs to be divided by
‖R′ij(0)‖ =

√
2.

Given the above directional derivatives for each Rij(θ), we have a few options to select a subset
of n/2 disjoint (i, j) pairs for Rij , listed below in order of increasing computational complexities,
where GCD stands for Givens coordinate descent.

• GCD-R randomly chooses a bipartite matching and descents along the n/2 Givens coordi-
nates, similar to stochastic block coordinate gradient descent (Beck & Tetruashvili, 2013).
This can be done efficiently by first shuffling the set of coordinates {1, . . . , n}.

• GCD-G sorts the ij pairs according to the absolute value of its directional derivatives in
a decreasing order, and greedily picks pairs one by one if they forms a bipartite matching.
Since this is our main proposed algorithm, we list the details in Algorithm 1.

• GCD-S finds a bipartite matching with maximum sum of edge weights, giving the steepest
descent. The fastest exact algorithm (Kolmogorov, 2009) for maximal matching in a general
weighted graph, has a O(n3) running time, which is impractical for first-order optimization.

With any of the above options to pick n/2 disjoint ij pairs, we can present the full algorithm in
Algorithm 2. Moreover, it is worth mentioning that picking non-disjoint ij pairs neither guarantees
theoretical convergence as shown in Section 2.5, nor works well in practice (see Section 3.1).

2.4 COMPLEXITY ANALYSIS

One iteration of Givens coordinate descent, as shown in Algorithm 2, consists of three major steps: a)
computing directional derivatives A in O(n3) but parallelizable to O(n); b) selecting n/2 disjoint
pairs in O(n) by random, O(n2 log n) by greedy, or O(n3) by the exact non-parallelizable blossom
algorithm (Kolmogorov, 2009); c) applying rotation in O(2n2) FLOPs by a matrix multiplication
between R and an incremental rotation, which is a sparse matrix with 2n nonzero elements. Thus,
the sequential computational complexities of one iteration for the three proposed algorithms are
O(n3 + n+ 2n2) = O(n3) for GCD-R, O(n3 + n2 log n+ n2 + 2n2) = O(n3) for GCD-G, and
O(n3 + n3 + 2n2) = O(n3) for GCD-S.

Though the time complexity for SVD and Cayley transform’s gradient computation is also O(n3),
the derivative computation in the proposed GCD algorithms can be fully parallelized under modern
GPUs. Thus GCD-R and GCD-G have parallel runtimes of O(n2) and O(n2 log n) respectively. In
contrast, the SVD computation can not be easily parallelized for general dense matrices (Berry et al.,
2005), due to its internal QR factorization step (Golub & Van Loan, 1996). So is the Cayley transform
gradient computation, since matrix inversion by solving a linear system can not be parallelized.

2.5 CONVERGENCE ANALYSIS

In this section we consider gradient descent of a loss function L : SO(n)→ R. Note that SO(n) is
not a convex subset of its natural embedding space Rn2

because convex combinations of two distinct
orthogonal matrices are never orthogonal.
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Algorithm 2 One iteration of Givens coordinate descent algorithm for rotation matrix learning.

1: Input: current n× n rotation matrix R, loss function L : Rm×n → R, learning rate λ.
2: Get a batch of input X ∈ Rm×n and run forward pass using X ′ = XR.
3: Run backward pass to get the gradient G = ∇RL(XR) and compute A := G>R−R>G.
4: for 1 ≤ i < j ≤ n do
5: Gather Aij as the directional derivative gij := 1√

2
d
dθ |θ=0L(RRij(θ)) (see Proposition 1).

6: end for
7: Select n/2 disjoint pairs {(i`, j`) : l} by random, greedy (see Algo. 1) or steepest options.
8: R← R

∏n/2
`=1Ri`,j`(−λgi`,j`).

As usual, convergence results require some assumptions about the domain and the function. Before
stating them, first we introduce some definitions, specialized to the space SO(n) of orthogonal
matrices with determinant 1.

For all below lemmas, theorem and corollary, see Appendix for a complete proof.

Definition 3. The tangent space of SO(n) ⊂ Rn2

at the identity In is given by the space of anti-
symmetric matrices so(n) := {g ∈ Rn×n : g + g> = 0}. That of GL(n) is simply gl(n) := Rn2

.
Definition 4. A geodesic on SO(n) is a curve of the form ξ(t) = G∗ exp(tg) for a starting point
G∗ ∈ SO(n) and a direction given by some g ∈ so(n); exp is the matrix exponential.
Definition 5. A function L : SO(n) → R is called geodesically convex if for any geodesic ξ,
L ◦ ξ : [0, 1]→ R is a convex function.

We make two assumptions on L in order to prove global convergence results for the random Givens
coordinate descent method (GCD-R) on SO(n). The convergence of GCD-G and GCD-S follows by
simple comparison with GCD-R at each step.
Assumption 1. The objective function L is geodesically convex on the level set of the manifold
S(G0) := {G ∈ SO(n) : L(G) < L(G0)} and has a unique global minimum at G∗.
Assumption 2. (Global Lipschitz) For some η > 0 and all G ∈ S(G0), g ∈ so(n):

L(G exp(g)) ≤ L(G) + 〈∇L(G), g〉+
η

2
‖g‖2. (4)

Assumption 2 leads to the following Lemma
Lemma 3. For learning rate α = 1

η , the descent is sufficiently large for each step:

E[L(Gk)− L(Gk+1)|Gk] ≥ 1

(n− 1)η
‖∇L(Gk)‖2.

Lemma 3.4-3.6 of (Beck & Tetruashvili, 2013) combined with the above lemma and Assumption 1
finally yield the following Theorem:
Theorem 1. Let {Gk}k≥0 be the sequence generated by the GCD-R method, and let Dn := nπ be
the diameter of SO(n). With the two assumptions above,

L(Gk)− L(G∗) ≤ 1

k(D2
n(n− 1)η)−1 + (L(G0)− L(G∗))−1

.

In particular, the value of L(Gk) approaches that of the minimum, L(G∗), at a sub-linear rate.

By verifying Assumptions 1 and 2 for individual functions F , we have
Corollary 1. Let the joint rotational product quantization learning objective be of the form

F̃ (R, C) = F

(
R>

D⊕
i=1

ui

)
s.t. ui ∈ Ci ⊂ Rn/D and ‖Ci‖ = K,

where
⊕D

i=1 ui := (u1, . . . , uD) stands for vector concatenation. Consider the specialization to a
convex F , such as, F (x) = 〈w, x〉 (dot product) or F (x) = 〈w,x〉

‖w‖‖x‖ (cosine similarity). If we fix the
value of w ∈ Rn as well as the choice of quantization components ui, gradient descent applied to the
map L : R 7→ F̃ (R, C) converges to the global minimum, provided the latter is unique.

7



Published as a conference paper at ICLR 2022

0 100 200 300 400 500
Number of Iterations

3.50

3.55

3.60

3.65

3.70

3.75

3.80

Di
sto

rti
on

1e4

Overlapping GCD-G
Overlapping GCD-R
GCD-R
GCD-G
GCD-S
Cayley
OPQ

(a) Convergence comparative results.

0 100 200 300 400 500
Number of Iterations

3.50

3.55

3.60

3.65

3.70

3.75

3.80

Di
sto

rti
on

1e4

10%
50%
100%

(b) OPQ on various datasets.

0 100 200 300 400 500
Number of Iterations

3.50

3.55

3.60

3.65

3.70

3.75

3.80

Di
sto

rti
on

1e4

10%
50%
100%

(c) GCD-G on various datasets.

Figure 2: Performance of the proposed GCD algorithms in the SIFT1M dataset (Lowe, 2004).

3 EXPERIMENTS

We evaluate the convergence performance on fixed embeddings in Section 3.1, and the overall
embedding retrieval performance on end-to-end trainable embedding indexes in Section 3.2. We
implement the proposed GCD algorithm in Tensorflow 1.15, and perform all experiments in a single
machine with 4 Nvidia 16G V100 GPU cards.

3.1 FIXED EMBEDDINGS

Dataset and Setup. To make sure the proposed GCD algorithms practically converge, we first
evaluate, for a given set of embeddings from SIFT1M (Lowe, 2004), whether the GCD algorithms
can converge similarly as the original OPQ algorithm (Ge et al., 2013), which alternates between
k-means for PQ centroid learning and SVD projection for optimal rotation. Our GCD algorithms
simply replace the latter SVD step by a number (5 in this experiment) of Givens coordinate descent
iterations with learning rate λ=0.0001 as shown in Algorithm 2. Similarly, Cayley method (Helfrich
et al., 2018; Casado & Martínez-Rubio, 2019) also replaces the SVD steps by a number of Cayley
parameter updates. All methods are evaluated by quantization distortion, which is the square of L2
distance between the original embedding and quantized embedding, averaged over all examples.

Figure 2a shows the comparative results between OPQ, Cayley method and the proposed GCD
algorithms. Specifically, the proposed GCD-G and GCD-S can converge as well as the original
OPQ algorithm, as the convergence curves are similar. The previously widely used method, Cayley
transform, does not converge as fast as the proposed GCD algorithms, potentially due to the varying
scales of the transformed gradient. It also shows the results of two other alternatives: overlapping
GCD-G and overlapping GCD-R, which do not enforce the (i, j) pairs to be disjoint as we discussed
in Section 2.2. The comparison shows the necessity of enforcing the disjoint selection, since otherwise
GCD-G does not converge well, though it does not affect GCD-R much. But GCD-R in general does
not work as well as GCD-G, which indicates the necessity of picking the steeper descent directions.
Moreover, we can observe that GCD-G converges similarly as GCD-S, which indicates that a greedy
bipartite matching algorithm as given in Algorithm 1 may be good enough in practice.

Figures 2b and 2c further compare the convergence performance between GCD-G and OPQ, by
averaging over 10 runs and varying the size of data. We can make two important observations: a)
GCD-G converges much more stably than OPQ, as the curves show significantly lower variances; b)
GCD-G converges better for smaller size of data, e.g., for 10% of the data. It indicates that GCD-G
potentially works better in the stochastic descent scenario where the batch size is usually small.

3.2 END-TO-END TRAINABLE EMBEDDING INDEXES

Dataset and Setup. In this section, we evaluate GCD-S and GCD-R performances in an industrial
search click log data where a user input query is used to retrieve items, and two public datasets
of MovieLens (Harper & Konstan, 2015) and Amazon Books (He & McAuley, 2016) where user
historical behaviors are used to retrieve next behavior. The industrial dataset contains 9,989,135
training examples with 1,031,583 unique queries and 1,541,673 unique items, which is subsampled
about 2% from our full dataset, but enough for training a reasonably well search retrieval model.
We evaluate the effectiveness of the learned rotation matrix by quantization distortion, precision@k
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Figure 3: Comparison of quantization distortion reduction on end-to-end trainable embedding indexes.

Table 1: Comparison of retrieval quality metrics on end-to-end trainable embedding indexes.
Industrial Dataset MovieLens Amazon Books

p@100 r@100 p@100 r@100 p@100 r@100
Baseline 2.43% 51.29% 7.78% 35.53% 0.74% 5.91%
Cayley 2.44% 51.37% 7.73% 35.59% 0.74% 5.88%
GCD-R 2.43% 51.28% 7.82% 35.78% 0.73% 5.88%
GCD-G 2.43% 51.37% 7.83% 35.89% 0.73% 5.81%
GCD-S 2.44% 51.43% 7.94% 36.35% 0.74% 5.91%

GCD-S p-value w/ baseline 0.054 0.012 0.145 0.024 0.702 0.925

(p@k) and recall@k (r@k) metrics, which are standard retrieval quality metrics. In our experiments,
we choose k=100. Specifically, for each query, we retrieve from embedding indexes a set of top k
items, which is then compared with the ground truth set of items to calculate the precision and recall.
We perform ANOVA test to evaluate the p-value for all comparisons. We implement a two-tower
retrieval model (Zhang et al., 2021) with cosine scoring, hinge loss of margin 0.1 and embedding size
512. At the beginning, a number of 10,000 warmup steps are performed before applying the indexing
layer as shown in Figure 1. Then a number of 8,192 examples are collected to warm start the PQ
centroids and rotation matrix with 200 iterations of OPQ algorithm. The baseline method uses this
initial rotation matrix and stops updating it, while the other methods continue updating it.

As shown in Figure 3, in all three datasets, the proposed GCD algorithms and Cayley method clearly
outperform the baseline in terms of quantization distortion, which consequentially translates into
the improvement in retrieval quality metrics, measured by precision@100 and recall@100 as shown
in Table 1. However, the Amazon Book dataset is an exception. We suspect the dataset may have
subtle distribution, thus the small quantization distortion reduction does not result in improvements
on retrieval quality metrics. Finally, we observe that the three proposed GCD algorithms consistently
with theoretical analysis – GCD-R and GCD-S can be regarded as the lower bound and upper bound
of GCD methods, with GCD-G in between. The GCD-S with steepest Givens rotations picked at
each step, generally shows the best performance in both quantization distortion and retrieval metrics,
especially better than the widely known Cayley method in literature.

4 CONCLUSION

In this paper, we have proposed a novel method called Givens coordinate descent (GCD) to iteratively
learn a rotation matrix, in the context of end-to-end trainable PQ based embedding indexes. Based on
a well studied mathematical result that any orthogonal matrix can be written as a product of Givens
rotations, the proposed GCD algorithm picks n/2 maximally commuting Givens rotations to update
the learning rotation matrix by their directional derivatives. We also provide complexity analysis
and prove convergence of the proposed algorithm under convexity and other mild assumptions.
Experimental results show that the proposed method converges more stably than previous SVD
based and Cayley transform method, and it significantly improves retrieval metrics in the end-to-end
training of embedding indexes. Our algorithm is also applicable to other scenarios in any neural
network training where learning a rotation matrix is potentially helpful.
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A CONVERGENCE RESULTS

In this section we prove the results stated in Section 2.5.
Lemma 1. For learning rate α = 1

L , the descent is sufficiently large for each step:

E[F (xk)− F (xk+1)|xk] ≥ 1

2(n− 1)L
‖∇F (xk)‖2.

Proof. Recall that each step of RGCGD is given by xk+1 = xk · G where G =∏n/2
i=1 gσ(2i−1),σ(2i)(θi), where σ ∈ Sn is a uniformly random permutation. Furthermore since

the gσ(2i−1),σ(2i)’s in the product are along disjoint axes, they commute with one another:

gσ(2i−1),σ(2i)(θi)gσ(2j−1),σ(2j)(θj) = gσ(2j−1),σ(2j)(θj)gσ(2i−1),σ(2i)(θi), (5)

we can write them as gi,j(θ) = exp( θ√
2
(ei ∧ ej)), where the

√
2 factor accounts for the fact that

‖ei ∧ ej‖2 = 2 under Euclidean norm.

Thus let’s define s ∈ so(n) := TISO(n) by

s :=

n/2∑
i=1

θi√
n
eσ(2i−1) ∧ eσ(2i),

xk+1 = Rxk
(αs) = xk · exp(αs) = xk · exp(α

n/2∑
i=1

θi√
2
eσ(2i−1) ∧ eσ(2i)).

In fact, the θi’s are projections of the full gradient∇F̃ (x), for F̃ (x) := F (xk · x),

θi,j := −〈∇F̃ (I),
1√
2
ei ∧ ej〉, for 1 ≤ i < j ≤ n.

So from (4), and orthogonality of 1√
2
eσ(2i−1) ∧ eσ(2i), we have

F (xk+1) ≤ F (xk)− α‖s‖2 +
Lα2

2
‖s‖2. (6)

Now choose α = 1
L . We easily get

F (xk+1)− F (xk) ≤ − 1

2L
‖s‖2. (7)

Finally recall that s ∈ so(n) is a random vector with randomness given by the uniform σ ∈ Sn. By
orthogonality and the definition of θi above, we have

E‖s‖2 =
1

n!

∑
σ∈Sn

n/2∑
i=1

θ2σ(2i−1),σ(2i) =
1

n− 1

∑
1≤i<j≤n

θ2i,j =
‖∇F̃ (0)‖2

n− 1
=
‖∇F (xk)‖2

n− 1
. (8)

Taking expectation of both sides of (7):

E[F (xk+1)|xk] ≤ F (xk)− 1

2(n− 1)L
‖∇F (xk)‖2. (9)

Next we recall Lemma 3.5 from Beck & Tetruashvili (2013)
Lemma 2. Let {Ak}k≥0 be a non-negative sequence of real numbers satisfying Ak −Ak+1 ≥ ηA2

k,
k = 0, 1, . . ., and A0 ≤ 1

mη . for positive η and m. Then

Ak ≤
1

η(k +m)
, for k = 0, 1, . . . (10)

Ak ≤
1

ηk
, for k = 1, 2, . . . (11)
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This along with Assumption 1 leads to global convergence result below (combining Lemma 3.4 and
Theorem 3.6 of Beck & Tetruashvili (2013)):
Theorem 1. Let {xk}k≥0 be the sequence generated by the RGCGD method. With the two assump-
tions above,

F (xk)− F (x∗) ≤ 1

2kR2(x0)(n− 1)L+ (F (x0)− F (x∗))−1
. (12)

In particular, the value of F (xk) approaches that of the minimum, F (x∗), at a sub-linear rate.

Proof. We can write xk = Rx∗(s), where s = γ′(0) and γ : [0, 1]→ S(x0) ⊂ SO(n) is a constant
speed geodesic path from x∗ to xk. This means that ‖γ′(t)‖ is constant for all t.

By geodesic convexity, F ◦ γ : [0, 1]→ R is convex, therefore

F (xk)− F (x∗) ≤ (F ◦ γ)′(0)〈∇F (xk), γ′(0)〉.

Since γ′(0) = d(xk, x
∗), the geodesic distance between xk and x∗, by the constant speed parametriza-

tion of γ, Cauchy-Schwarz inequality then implies

F (xk)− F (x∗) ≤ ‖∇F (xk)‖d(xk, x
∗) ≤ R(x0)‖∇F (xk)‖.

This combined with Lemma 1 gives

E[F (xk)− F (xk+1|xk] ≥ 1

2R2(x0)(n− 1)L
(F (xk)− F (x∗))2.

Now consider the Taylor expansion around the global minimum x∗. Since the gradient vanishes, the
Lipschitz condition (4) simplifies to

F (xk)− F (x∗) ≤ L‖s‖2

2
≤ L

2
R2(x0).

For the last inequality, we again use γ′(0) = d(xk, x
∗) ≤ R(x0) by definition of the latter.

So letting Ak = E[F (xk) − F (x∗)], η = 1
2R2(x0)(n−1)L , and m = 1

η(F (x0)−F (x∗)) , Lemma 2
implies that

F (xk)− F (x∗) ≤ 1

(k +m)η
=

1

2kR2(x0)(n− 1)L+ (F (x0)− F (x∗))−1
.

Corollary 1. Let the joint rotational product quantization learning objective be given by

L(w,R, C) = F (w)(R

D⊕
i=1

ui) s.t. ui ∈ Ci ⊂ Rn/D and ‖Ci‖ = K. (13)

Consider the specialization of w ∈ Rn and F (w)(x) = 〈w, x〉 (dot product) or F (w)(x) = 〈w,x〉
‖w‖‖x‖

(cosine similarity). If we fix the value of w ∈ W as well as the choice of quantization components
ui, gradient descent applied to the map F̃ : R 7→ L(w,R,C) converges to the global minimum,
provided the latter is unique.

Proof. In the dot product case, F̃ (R) = 〈w,Rx〉. If there is a unique global minimizer, it can be
given by UV ⊥ from the following singular value decomposition:

wx⊥ = USV ⊥.

First we verify Assumption 1, namely that the following function is convex:

t 7→ F̃ (G0 exp(tA)) = 〈w,G0 exp(tA)x〉.

Indeed this follows immediately from diagonalizing A, which yields a linear combination of convex
functions of t.
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For assumption 2, recall we need to show F̃ (G0 exp(A)) ≤ F̃ (G0) + 〈∇F̃ (G0), A〉+ L
2 ‖A‖

2, for
some L > 0. By differentiating 〈w,G0 exp(tA)x〉 at t = 0, we see that

d

dt
|t=0F̃ (G0 exp(tA)) = 〈∇F̃ (G0), A〉

F̃ (G0 exp(A))− F̃ (G0) = 〈w,G0(exp(A)− I)x〉 = 〈w,G0(A+
1

2
A2 + . . .)x〉

= 〈∇F̃ (G0), A〉+
1

2
〈∇F̃ (G0), A2)

∞∑
k=2

1

k!
〈w,Akx〉.

For ‖A‖ small, the last term can be bounded by e‖A‖ − 1− ‖A‖, which is O(‖A‖2). For larger ‖A‖,
say > C, we can choose L large enough so that LC

2

2 > supF .

The cosine similarity case follows immediately from the dot product case since the denominator is a
constant for fixed w and

⊕D
i=1 ui, thanks to the fact that ‖Rx‖ = ‖x‖.

Corollary 2. Under the two assumptions 1 and 2, the steepest Givens coordinate gradient descent
(SGCGD) method also converges to its unique global minimum.

Proof. By the choice of coordinates, each step of SGCGD is dominated by the corresponding step of
RGCGD based at the same point x ∈ SO(n), in other words, the estimate (12) continues to hold.

B EMPIRICAL RUNNING TIME

Figure 4 shows the comparison of per step runtime cost between GCD methods and Cayley transform
for standalone QP training, with batch size chosen to be 1. In Figure 4a, for a fair comparison, we
only compare the GCD-R method with Cayley transform, since we have not implemented GCD-G
and GCD-S fully in GPU operators yet. Note that the GCD-G method needs a sorting operator
implemented in GPU (see step 5 in Algorithm 1), which is possible but needs a customized GPU
operator implemented in addition to the original TensorFlow release. On the other hand for Cayley
transform, while the gradient propagation and matrix multiplication are all computed on GPU, the
matrix inversion operation unfortunately cannot be parallelized, thus effectively runs on CPU. As
expected from the complexity analysis in Section 2.4, GCD-R slows down quadratically in the
embedding dimension n, whereas Cayley incurs an asymptotic O(n3) cost per step. To further
explore the empirical computation cost in a completely fair setup, we compare the methods all in
CPU. As shown in Figure 4b, GCD-G and GCD-R run much faster than the Cayley method, with
about 5 times and 50 times faster running speed, respectively, which roughly reflect the total number
of floating point computations in each method.
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Figure 4: Empirical runtime comparison between GCD methods and Cayley transform method.
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