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ABSTRACT

Unsupervised reinforcement learning (URL) poses a promising paradigm to learn
useful behaviors in a task-agnostic environment without the guidance of extrin-
sic rewards to facilitate the fast adaptation of various downstream tasks. Previous
works focused on the pre-training in a model-free manner while lacking the study
of transition dynamics modeling that leaves a large space for the improvement
of sample efficiency in downstream tasks. To this end, we propose an Efficient
Unsupervised Reinforcement Learning framework with Multi-choice Dynamics
model (EUCLID), which introduces a novel model-fused paradigm to jointly pre-
train the dynamics model and unsupervised exploration policy in the pre-training
phase, thus better leveraging the environmental samples and improving the down-
stream task sampling efficiency. However, constructing a generalizable model
which captures the local dynamics under different behaviors remains a challeng-
ing problem. We introduce the multi-choice dynamics model that covers different
local dynamics under different behaviors concurrently, which uses different heads
to learn the state transition under different behaviors during unsupervised pre-
training and selects the most appropriate head for prediction in the downstream
task. Experimental results in the manipulation and locomotion domains demon-
strate that EUCLID achieves state-of-the-art performance with high sample effi-
ciency, basically solving the state-based URLB benchmark and reaching a mean
normalized score of 104.0±1.2% in downstream tasks with 100k fine-tuning steps,
which is equivalent to DDPG’s performance at 2M interactive steps with 20× more
data. Codes and visualization videos are released on our homepage.

1 INTRODUCTION

Reinforcement learning (RL) typically requires substantial interaction data and task-specific rewards
for the policy learning without using any prior knowledge, resulting in low sample efficiency (Yarats
et al., 2021b) and making it hard to generalize quickly to new downstream tasks (Zhang et al., 2018).
For this, unsupervised reinforcement learning (URL) emerges and suggests a new paradigm: pre-
training policies in an unsupervised way, and reusing them as prior for fast adapting to the specific
downstream task (Li et al., 2020; Peng et al., 2022; Seo et al., 2022), shedding a promising way to
further promote RL to solve complex real-world problems (filled with various unseen tasks).

Most URL approaches focus on pre-train a policy with diverse skills via exploring the environment
guided by the designed unsupervised signal instead of the task-specific reward signal (Hansen et al.,
2020; Liu & Abbeel, 2021a). However, such a pre-training procedure may not always benefit down-
stream policy learning. As shown in Fig. 1, we pre-train a policy for 100k, 500k, 2M steps in the
robotic arm control benchmark Jaco, respectively, and use them as the prior for the downstream pol-
icy learning to see how pre-training promotes the learning. Surprisingly, long-hour pre-training does
not always bring benefits and sometimes deteriorates the downstream learning (500k vs 2M in the
orange line). We visualize three pre-trained policies on the left of Fig. 1, and find they learn different
skills (i.e., each covering a different state space). Evidently, only one policy (pre-trained with 500k)
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Figure 1: A motivation example.

is beneficial for downstream learning as it happens to focus on the area where the red brick exists.
This finding reveals that the downstream policy learning could heavily rely on the pre-trained policy,
and poses a potential limitation in existing URL approaches: only pre-training policy via diverse
exploration is not enough for guaranteeing to facilitate downstream learning. Specifically, most
mainstream URL approaches pre-train the policy in a model-free manner (Pathak et al., 2019; 2017;
Campos et al., 2020), meaning that the skill discovered later in the pre-training, will more or less
suppress the earlier ones (like the catastrophic forgetting). This could result in an unpredictable skill
that is most likely not the one required for solving the downstream task (2M vs. 500k). We refer
to this as the mismatch issue which could make pre-training even less effective than randomized
policy in the downstream learning. Similarly, Laskin et al. (2021) also found that simply increasing
pre-training steps sometimes brings no monotonic improvement but oscillation in performance.

To alleviate above issue, we propose the Efficient Unsupervised Reinforcement Learning frame-
work with Multi-choice Dynamic model (EUCLID), introducing the model-based RL paradigm
to achieve rapid downstream task adaption and higher sample efficiency. First, in the pre-training
phase, EUCLID proposes to pre-train the environment dynamics model, which barely suffers from
the mismatch issue as the upstream and downstream tasks in most time share the same environment
dynamics. Notably, the pre-training dynamics model is also orthogonal to the pre-training policy,
thus EUCLID pre-trains them together and achieves the best performance (see Fig. 1). In practice,
EUCLID requires merely no additional sampling burden as the transition collected during the policy
pre-training can also be used for the dynamics model pre-training. On the other hand, in the fine-
tuning phase, EUCLID leverages the pre-trained dynamics model for planning, which is guided by
the pre-trained policy. Such a combination could eliminate the negative impact caused by the mis-
match issue and gain fast adaptation performance. More importantly, EUCLID can monotonically
benefit from an accurate dynamics model through a longer pre-training.

Another practical challenge is that, due to the model capacity, pre-training one single dynamics
model is hard to accurately model all the environment dynamics. The inaccuracy can be further
exacerbated in complex environments with huge state space, and thus deteriorates the downstream
learning performance. Inspired by multi-choice learning, EUCLID proposes a multi-headed dynam-
ics model with each head pre-trained with separate transition data. Each head focuses on a different
region of the environment, and is combined to predict the entire environment dynamics accurately.
As such, in the fine-tuning phase, EUCLID could select the most appropriate head (sharing a similar
dynamics to the downstream task) to achieve a fast adaptation.

Our contributions are four-fold: (1) we extend the mainstream URL paradigm by innovative intro-
ducing the dynamics model in the pre-training phase, so that model-based planning can be leveraged
in the fine-tuning phase to alleviate the mismatch issue and further boost the downstream policy
learning performance; (2) We propose a multi-headed dynamics model to achieve a fine-grained and
more accurate prediction, which promotes effective model planning in solving downstream tasks;
(3) We empirically study the performance of EUCLID by comparing different mainstream URL
mechanisms or designs, and comprehensively analyze how each part of EUCLID affect the ultimate
performance; (4) Extensive comparisons on diverse continuous control tasks are conducted and the
results demonstrate significant superiority of EUCLID in performance and sample efficiency, espe-
cially in challenging environments. Our approach basically solves the state-based URLB, achieving
state-of-the-art performance with a normalized score of 104.0±1.2% and outperforming the prior
leading method by 1.35×, which is equivalent to DDPG with 20× more data.
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2 BACKGROUND

Markov Decision Process (MDP) is widely used for formulating a continuous control task, defined
as a tuple (S,A, R,P, ρ0, γ) of the state space S , action spaceA, reward function R(s, a), transition
probabilityP ( s′ | s, a), initial state distribution ρ0 and discounting factor γ (Sutton & Barto, 1998).
The objective is to learn the optimal policy at ∼ πϕ (· | st) that maximizes the expected discounted

return Es0∼ρ0,(s0,a0,...,sT )∼π

[∑T−1
t=0 γtR (st,at)

]
, where T is the variable episode length.

Unsupervised reinforcement learning (URL) poses a promising approach to learning useful pri-
ors from past experience and accelerating the learning of downstream tasks (Schwarzer et al., 2021).
URLB (Laskin et al., 2021) split the whole learning phase into two parts, pre-training (PT) and fine-
tuning (FT).At every timestep in the PT phase, the agents can only interact with the task-agnostic
reward-free environment to obtain intrinsic rewards learned through a self-supervised manner. In
contrast, in the FT phase, agents need to adapt quickly to downstream tasks with task-specific ex-
trinsic rewards provided by the environment.

Specifically, URL algorithms can be generalized into three categories, including knowledge-based,
data-based and competence-based methods Oudeyer et al. (2007); Srinivas & Abbeel (2021). The
goal of the knowledge-based methods is to increase knowledge of the world by maximizing predic-
tion errors (Pathak et al., 2017; 2019; Burda et al., 2019) while data-based methods aim to maximize
the entropy of the state of the agents (Liu & Abbeel, 2021b; Yarats et al., 2021a; Hazan et al., 2019).
Competence-based methods learn an explicit skill vector by maximizing the mutual information be-
tween the observation and skills (Campos et al., 2020; Eysenbach et al., 2019; Gregor et al., 2017).

Model-based reinforcement learning (MBRL) leverages a learned dynamic model of the environ-
ment to plan a sequence of actions in advance which augment the data (Sutton, 1991; Janner et al.,
2019; Pan et al., 2020) or obtain the desired behavior through planning (Chua et al., 2018; Hafner
et al., 2019; Lowrey et al., 2019). However, training the world model requires a large number of
samples (Polydoros & Nalpantidis, 2017; Plaat et al., 2021), and an imprecise model can lead to low-
quality decisions for imaginary planning (Freeman et al., 2019). Thus constructing a reliable world
model by pre-training can greatly accelerate the learning process of downstream tasks (Chebotar
et al., 2021; Seo et al., 2022). A concurrent work of ours is Rajeswar et al. (2022), which also fo-
cuses on promoting URL performance through a world model, but only considers the incorporation
of a simple single dynamics model without realizing the low accuracy caused by the mismatch of
the pre-training policies and the optimal policies for the downstream tasks. Our work designs multi-
choice learning and policy constraints to explore how to construct a generic pre-trained dynamics
model to cover different local dynamics under different behaviors.

Multi-choice learning (MCL) learns ensemble models that produce multiple independent but di-
verse predictions and selects the most accurate predictions to optimize the model, better reduce
training loss and improve stability (Guzmán-Rivera et al., 2012; 2014; Dey et al., 2015; Lee et al.,
2017). Multi-choice learning has been widely used, such as in vision computing (Cuevas et al.,
2011; Tian et al., 2019; Lee et al., 2017) and visual question answer (Lei et al., 2020; Lu et al.,
2022), but most works focus on supervised learning. T-MCL (Seo et al., 2020) brings MCL into the
meta RL, which approximates multi-modal distribution with context and models the dynamics of
changing environments. Inspired by this, EUCLID builds a multi-headed dynamics model to cover
specialized prediction regions corresponding to different downstream tasks.

3 METHODOLOGY

In this work, we propose an Efficient Unsupervised Reinforcement Learning framework with Multi-
choice Dynamic model (EUCLID) to further improve the ability of mainstream URL paradigm
in fast adapting to various downstream tasks. As a starter, EUCLID adopts the task-oriented la-
tent dynamic model as the backbone for environment modeling, and contains two key parts: 1 a
model-fused URL paradigm that innovatively integrates the world model into the pre-training and
fine-tuning for facilitating downstream tasks learning, and 2 a multi-headed dynamics model that
captures different environment dynamics separately for an accurate prediction of the entire envi-
ronment. In this way, EUCLID can achieve a fast downstream tasks adaptation by leveraging the
accurate pre-trained environment model for an effective model planning in the downstream fine-
tuning. The detail pseudo code is given in Algorithm 1.
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Figure 2: Overview of the model-fused URL paradigm. In the pre-training phase (left), we jointly
update the world models and policy using exploring samples collected from the environment inter-
action. In the fine-tuning phase (right), we reuse the pre-trained weights to initialize the downstream
world models and the policy, perform policy guided planning via dynamics model for fast adaption.

3.1 BACKBONE FOR ENVIRONMENT MODELING

We build world models for representation learning and planning based on the Task-Oriented Latent
Dynamic Model (TOLD) of TDMPC (Hansen et al., 2022). EUCLID learns world models that
compresses the history of observations into a compact feature space variable z and enables policy
learning and planning in this space (Zhang et al., 2019; Hafner et al., 2019). EUCLID’s world model
components include three major model components: (i) the representation model that encodes state
st to a model state zt and characterizes spatial constraints by latent consistency loss, (ii) the latent
dynamics model that predicts future model states zt+1 without reconstruction and (iii) the reward
predictor allows the model to encoder task-relevant information in a compact potential space. The
model can be summarized as follow:

Representation: zt = Eθ (st) Latent dynamics: zt+1 = Dθ (zt,at)
Reward predictor: r̂t ∼ Rθ (zt,at)

(1)

where s,a, z denote a state, action and latent state representation. Then, for effective value-based
learning guidance planning, we built actor and critic based on DDPG (Lillicrap et al., 2016):

Value: q̂t = Qθ (zt,at) Policy: ât ∼ πϕ (zt) , (2)

All model parameters θ except actor are jointly optimized by minimizing the temporally objective:

L (θ,D) = E(s,a,zt,rt)t:t+H∼D

t+H∑
i=t

c1 ∥Rθ (zi,ai)− ri∥22︸ ︷︷ ︸
Reward prediction

+c2 ∥Dθ (zi,ai)− Eθ− (si+1)∥22︸ ︷︷ ︸
Latent state consistency

+c3 ∥Qθ (zi,ai)− (ri + γQθ− (zi+1, πθ (zi+1)))∥22︸ ︷︷ ︸
Value prediction


 ,

(3)

while actor πϕ maximizes Qθ approximated cumulative discounted returns. The reward term pre-
dicts a single-step task reward, the state transition term aims to predict future latent states accurately
and the value term is optimized through TD-learning (Haarnoja et al., 2018; Lillicrap et al., 2016).
Hyper-parameters ci are adjusted to balance the multi-source loss function and a trajectory of length
H is sampled from the replay buffer D.

3.2 MODEL-FUSED UNSUPERVISED REINFORCEMENT LEARNING PARADIGM

Overall, EUCLID introduces the environment modeling into the pre-training (PT) and fine-tuning
(FT) phases, formulating a new model-fused URL paradigm. As shown in Fig. 2 (left), EUCLID
adopts a reward-free exploration policy to collect task-agnostic transitions for pre-training the dy-
namics model and then uses them to boost downstream FT. In the following, we describe three
important detail designs in EUCLID throughout the PT and FT processes.

Firstly, in the PT phase, we expect as diverse data as possible to pre-train the dynamics model for an
accurate environment prediction. As EUCLID can be easily combined with almost any mainstream
exploration methods, we empirically evaluate the knowledge-based method (Disagreement, Pathak
et al. (2019)), data-based method (APT, Liu & Abbeel (2021b)) and competence-based method (DI-
AYN, Eysenbach et al. (2019)) (see more in Appendix B). We find the knowledge-based method (i.e.,
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Figure 3: Illustrations of multi-choice learning in EUCLID. We design a multi-headed dynam-
ics model to predict different environment dynamics, training each predictor head separately using
diverse data, and select the most beneficial predictor head for the downstream task.

Disagreement) synthetically performs the best, and hypothesize this happens because it explores via
maximizing the prediction uncertainty, allowing discovery more unpredictable dynamics.

Secondly, in the PT phase, how to select the loss function for the dynamics model pre-training is
challenging. We use latent consistency loss (Schwarzer et al., 2020; 2021; Hansen et al., 2022)
to learn the dynamics model in latent space to directly predict the feature of future states without
reconstruction (Hafner et al., 2020b;a; Ha & Schmidhuber, 2018). This improves the generalization
of the dynamics model and avoids capturing task-irrelevant details between PT and FT phase while
the reconstruction loss forces to model everything in the environment in such a huge state space.

Lastly, shown in Fig. 2 (right), we utilize the pre-trained dynamics model to rollout trajectories for
both planning and policy gradient in the FT for downstream tasks. An important reason is that
model-based planning can yield a stable and efficient performance due to the similarity of the envi-
ronment dynamics between upstream and downstream tasks, thus an accurate pre-trained dynamics
model could benefit downstream learning. This can avoid the above-mentioned mismatch issue,
caused by utilizing a less effective pre-trained policy for the downstream tasks. For this, we adopt
a representative model predictive control method (Williams et al., 2015) to select the best action
based on the imaged rollouts (via dynamics model). Meanwhile, we also notice that the pre-trained
policy can master some simple skills like rolling, swinging, and crawling, which is useful and can
be utilized in the model planning to further boost downstream learning. Therefore, we additionally
mix the trajectories generated by the pre-trained policy interacting with the dynamics model for
planning. This would further speed up the planning performance and effectiveness, especially in the
early stage of fine-tuning (Wang & Ba, 2020). Another side benefit is that the Q-value function (in
the critic) in the pre-trained policy could speed up the long-term planning via bootstrapping (Sikchi
et al., 2021) (see details in Appendix H).

3.3 MULTI-CHOICE LEARNING VIA MULTI-HEADED DYNAMICS MODEL

Prior works (Wu et al., 2019; Seo et al., 2020) reveal that training one single dynamics model to
accurately predict the whole environment dynamics is difficult in complex environments. Besides,
pre-training one single dynamics model to predict the entire state space in the environment is ineffec-
tive, as downstream tasks may involve only limited local state distributions (left in Fig. 3). Therefore,
EUCLID proposes a multi-choice learning mechanism via multi-headed dynamics model in the PT
stage for achieving a more accurate environment prediction and to select one of the heads for the FT
stage to further boost downstream learning.

As shown in Fig. 3 (middle), we design a multi-headed dynamics model to predict different environ-
ment dynamics (i.e., state distributions), encouraging each predictor head to enjoy better prediction
accuracy in its own specialized prediction region. The model contains a backbone parameterized by
θ, sharing the high-level representations of the first few layers of the neural network, while the latter
layers build H prediction heads parameterized by {θhead

h }Hh=1. The output is:

zt+1 =
{
Dθ

(
zt, at; θ, θ

head
h

)}H

h=1
. (4)

We do not use separate ensemble models with completely different parameters because we empir-
ically observe that there may also be a large number of shared dynamics between different down-
stream tasks which can be captured by the shared backbone to leverage environmental samples
efficiently and also avoid actively reducing the information of acquired environment samples.

To encourage each head to focus on a separate region as possible, we assign different exploration
policies for each head, denoted by [π1

ϕ(z), · · · , πh
ϕ(z)]. To avoid region overlap, we design a
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diversity-encouraging term as an additional regularization term as follows:

Lπ(ϕ,D) = Ezt∼D [Qθ (zt, πϕ (zt))− αDKL (π̃ϕ (zt) ∥πϕ (zt))], (5)

where π̃ϕ (zt) =
∑h

i=1 πi (z) /h. In this way, each policy is optimized by its own intrinsic for
exploration and policies are encouraged to move away from each other (see more in Appendix G).

In the beginning of FT phase, we select one head in the pre-trained multi-headed dynamics model to
construct a single-head dynamic model that can benefit the downstream learning the most (right in
Fig. 3). To figure out the optimal head h∗ (that covers the most appropriate state region) for solving
the downstream tasks, inspired by Seo et al. (2020), we evaluate the zero-shot performance of each
head and pick one with the highest zero-shot performance in downstream tasks. After that, only
optimal head is used in the subsequent fine-tuning for adapting to downstream tasks.

Overall, we empirically show that different prediction heads can indeed cover different state regions
with respective closely related tasks and the multi-choice learning improves the performance by
selecting the appropriate specialized prediction head (see Fig. 7).

4 EXPERIMENTS

We conduct experiments on various tasks to study the following research questions (RQs):
Combination (RQ1): Which category of URL method works best in combination with EUCLID?
Performance (RQ2): How does EUCLID compare to existing URL methods?
Monotonism (RQ3): Can EUCLID monotonically benefit from longer pre-training steps?
Specialization (RQ4): Does multi-choice learning delineate multiple specialized prediction region?
Ablation (RQ5): How each module in EUCLID facilitates the downstream policy learning?

4.1 EXPERIMENTAL SETUP

Benchmarks: We evaluate our approach on tasks from URLB (Laskin et al., 2021), which con-
sists of three domains (walker, quadruped, jaco) and twelve challenging continuous control down-
stream tasks. Besides, we extend the URLB benchmark (URLB-Extension) by adding a more com-
plex humanoid domain and three corresponding downstream tasks based on the DeepMind Control
Suite (DMC) (Tunyasuvunakool et al., 2020) to further demonstrate the efficiency improvement of
EUCLID on more challenging environments. Environment details can be found in Appendix A.

Baselines: The proposed EUCLID is a general framework that can be easily combined with any
unsupervised RL algorithms. Therefore we make a comprehensive investigation of EUCLID com-
bined with popular unsupervised RL algorithms of three exploration paradigms. Specifically, we
choose the most representative algorithms from each of the three categories including Disagree-
ment (Knowledge-based) (Pathak et al., 2019), APT (Data-based) (Liu & Abbeel, 2021b) and DI-
AYN (Competence-based) (Eysenbach et al., 2019). In addition, we compare our method to the pre-
vious state-of-the-art method CIC (Laskin et al., 2022) in the URLB, which is a hybrid data-based
and competence-based method. More detailed information about the baselines is in Appendix B.

Evaluation: In the PT phase, all model components are pre-trained under an unsupervised setting
based on the sample collected by interacting 2M steps in the reward-free environment. Then in
the FT phase, we fine-tune each agent in downstream tasks with the extrinsic reward for only 100k
steps, which is moderated to 150k steps for the humanoid domain due to special difficulties. All
statistics are obtained based on 5 independent runs per downstream task, and we report the average
with 95% confidence regions. For fairness of comparison, all model-free baselines and the policy
optimization part of model-based methods opt DDPG (Lillicrap et al., 2016) agent as backbone,
maintaining the same setting as Laskin et al. (2021). To better compare the average performance
of multiple downstream tasks, we choose the expert score of DDPG learning from scratch with 2M
steps in the URLB as a normalized score. Note that expert agents run for 2M steps with extrinsic
reward, which is 20× more than the budget of the agent used for evaluation steps in the FT phase.

Implementation details: EUCLID employs both model planning and policy optimization in the
FT phase but uses only policy optimization in the PT phase. During planning, we leverage Model
Predictive Path Integral (MPPI) (Williams et al., 2015) control and choose a planning horizon of
L = 5. Notably, we still retain seed steps for warm-start in the FT phase despite sufficient pre-
training steps to alleviate the extreme case of a strong mismatch between the pre-training policies
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Figure 4: We combine EUCLID with three types of exploration algorithms to show the synergistic
benefit of URL and MBRL methods for 12 downstream tasks on URLB. The normalized scores are
the average performance after pre-training 2M steps and then fine-tuning 100k steps with 5 indepen-
dent seeds. EUCLID achieves significant improvement over the corresponding exploration backbone
and empirically shows the combination with the knowledge-based method is most effective.
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Figure 5: Learning curves of EUCLID and three baselines on downstream tasks of the humanoid
domain. Curves show the mean and 95% confidence intervals of performance across 5 independent
seeds. The dashed reference lines are the asymptotic performance of the Disagreement algorithm
with 2M PT steps and 2M FT steps. These results show that EUCLID has better sample efficiency
and large performance gains on tasks with complex dynamics.

and the optimal policies for the downstream tasks. For multi-choice learning, we build a multi-
headed dynamics model maintaining heads of H = 4 by default, each optimized by independent
samples.

4.2 COMBINATION (RQ1)

To answer RQ1, we show the synergistic benefit of EUCLID in unsupervised RL methods and
model-based architecture. As shown in Fig. 4, We build EUCLID on a different URL backbone
named EUCLID (Disagreement/APT/DIAYN), where the dark line denotes its normalized score and
the light line denotes the corresponding vanilla URL backbone results in Laskin et al. (2021). For
the purpose of simplicity, we do not use the multi-choice learning mechanism here. We show that
we can combine all three types of exploration baselines and obtain significant performance gains in
all environments. In particular, the previous competence-based approaches under-perform in URLB
because of the weak discriminator, while the EUCLID (DIAYN) greatly improves fast adaptation
to downstream tasks through pre-trained world models. Besides, we empirically find that EUCLID
is better combined with the knowledge-based approaches with the best performance and stability.
Unless specified, we choose Disagreement as the exploration backbone in the PT stage by default.

4.3 PERFORMANCE (RQ2)

Comparative evaluation on URLB. To answer RQ2, we evaluate the performance of EUCLID
and other baseline methods in the URLB and URLB-Extension environment. The results in Table 1
show that EUCLID outperforms all other mainstream baselines in all domains and basically solves
the twelve downstream tasks of the state-based URLB in 100k steps, obtaining a performance com-
parable to the expert scores while the expert agent trained 2M steps with extrinsic reward. It is
worth noting that EUCLID significantly improves performance in reward-sparse robotic arm control
tasks, such as jaco, which is challenging for previous URL methods. Moreover, the results of EU-
CLID also show significant improvement over TDMPC@100k learned from scratch, especially with
greater gains in the Quadruped domain where is challenging to predict accurately. This suggests that
unsupervised pre-training can significantly reduce model error.
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Table 1: Performance of EUCLID and EUCLID w/o multi headed structure on URLB after 2M
reward-free pre-training steps and finetuning for 100k steps with extrinsic rewards. All baseline
runs with 5 seeds. We refer to Appendix C for full results of all baselines.

Domain Task Disagreement CIC EUCLID w/o MCL EUCLID

Walker

Flip 491±21 631±34 971±1 969±2
Run 444±21 486±25 765±10 770±9

Stand 907±15 959±2 985±1 985±1
Walk 782±33 885±28 967±4 972±1

Normalized score 72.5±2.6 82.2±3.4 104.3±0.5 104.6±0.4

Quadruped

Jump 668±24 595±42 840±13 858±14
Run 461±12 505±47 651±35 735±16

Stand 840±33 761±54 953±6 958±5
Walk 721±56 723±43 874±42 925±6

Normalized score 73.5±3.5 72.5±5.2 93.1±2.7 97.6±1.1

Jaco

Reach bottom left 134±8 138±9 214±5 220±3
Reach bottom right 122±4 145±7 205±9 212±2

Reach top left 117±14 153±7 197±23 225±5
Reach top right 140±47 163±4 219±7 229±6

Normalized score 63.4±8.6 74.0±3.4 103.3±5.6 109.7±2.0
Overall Normalized score 69.8±4.9 76.2±4.0 100.2±2.9 104.0±1.2
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Figure 6: We show the fine-tuning performance of EUCLID with different pre-training steps, in-
cluding 100k, 500k, and 2M steps. EUCLID can benefit from longer pre-training steps to achieve
monotonic performance gains, while previous URL algorithms fail.

Effects of multi-headed dynamics model. To verify the importance of multi-choice learning,
we compared the performance of EUCLID and EUCLID w/o multi-headed dynamics model. Ta-
ble 1 demonstrates that EUCLID achieved almost all of the 12 downstream tasks’ average perfor-
mance improvement and significantly reduced the variance, reaching the highest normalized score
of 104.0±1.2%. This indicates that multi-choice learning reduces the prediction error of the down-
stream tasks corresponding to local dynamics and obtains better results.

URLB-Extension experiments. As shown in Fig. 5, we evaluate the agents in the humanoid do-
main which is the most difficult to learn locomotion skills due to high-dimensional action spaces.
We found that the previous model-free URL method is difficult to improve the learning effi-
ciency of downstream tasks in such a complex environment, while the previous model-based meth-
ods (TDMPC) still make some initial learning progress. In contrast, EUCLID is able to consistently
improve performance in all three downstream tasks with small variance. Also, we compare EUCLID
with the naive pre-training scheme, which uses a random exploration policy to collect data in the PT
phase to train the world models. As the task difficulty increases, we observe that EUCLID w/ naive
PT struggles to achieve competitive performance because of the lack of intrinsic unsupervised goal.

4.4 MONOTONISM (RQ3)

Intuitively, a longer pre-training phase is expected to allow for a more efficient fine-tuning phase,
but the empirical evidence of Laskin et al. (2021) demonstrated that longer pre-training is not always
beneficial or even worse than random initialization when applying the previous URL algorithm, be-
cause it is difficult to capture such rich environmental information with only pre-trained policies.
This is a major drawback that makes the application URL pre-training paradigm fraught with un-
certainty. However, EUCLID better leverage environmental information to build additional world
models. Fig. 6 shows that our methods achieve monotonically improving performance by varying
pre-training steps on most of the tasks. All results are better than random initialization, except for
the quadruped domain with 100k pre-training steps.
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Figure 7: (a) Zero-shot performance of the pre-trained multi-headed dynamics model for different
tasks on Walker and Quadruped domain. We highlight the top-2 prediction heads which are suitable
for Corresponding tasks. (b) The average performance of the multi-headed dynamics model used
by EUCLID and multiple dynamics models across 12 downstream tasks for 2M pre-training steps.

4.5 SPECIALIZATION (RQ4)

Prediction heads corresponding to the specialized regions. To investigate the ability of EU-
CLID to learn specialized prediction heads, we visualized how to assign heads to downstream tasks
in Fig. 7(a), we can observe that different prediction heads are better adapted to different downstream
tasks, with their corresponding specialized region. i.e., head 2 works best for Run tasks while head
4 for Jump tasks in the Quadruped environment. No one prediction head can perform optimally for
all downstream tasks. See our homepage for more visualization analysis.
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Figure 8: Ablation on different
pre-trained components for FT.

Comparison of multiple models and multi-headed models.
Fig. 7(b) shows the comparison of the multi-headed dynamics
model used by EUCLID and multiple dynamics models without
a shared backbone. We find that multiple models are less effec-
tive than multi-headed models in all domains, especially in the
quadruped domain which requires a large amount of sample to
model complex dynamics. This also demonstrates that sharing
the underlying dynamics of agents is beneficial to improve the
sample efficiency for downstream tasks.

4.6 ABLATION (RQ5)

Roles for each module. As shown in Fig. 8, We conducted ablation experiments with 2M steps
pretraining on the EUCLID, reusing different subsets of pre-trained components in the FT phase. To
ensure the generality of the conclusions, we conduct experiments based on different URL methods
and take the average results. From the overall results, our default settings, reusing all components of
the world models (encoder, dynamics model, reward model) and policy (actor and critic) work best.
We show the detailed results for each domain in Appendix E with in-depth analysis.

5 CONCLUSION

In this work, we propose Efficient Unsupervised Reinforcement Learning framework with Multi-
choice Dynamic model (EUCLID) which introduces the MBRL methods into the URL domain to
boost the fast adaption and learning performance. We formulate a novel model-fused URL paradigm
to alleviate the mismatch issue between the upstream and downstream tasks and propose the multi-
choice learning mechanism for the dynamics model to achieve more accurate predictions and further
enhance downstream learning. The results demonstrate that EUCLID achieves state-of-the-art per-
formance with high sample efficiency. Our framework points to a novel and promising paradigm
for URL to improve the sample efficiency and may be further improved by the more fine-grained
dynamics divided by skill prior (Pertsch et al., 2020) or the combination of offline RL (Yu et al.,
2022), which we leave as future work.
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A ENVIRONMENT DETAILS

(a) Walker (b) Quadruped (c) Jaco (d) Humanoid

Figure 9: Environment Details. We evaluate our method on four manipulation and locomotion
domains. Each domain contains 4 downstream tasks (3 tasks for humanoid).

The details of all environments and corresponding tasks are as follows, as illustrated in Fig. 9:

• Walker1 (Flip, Run, Stand, Walk): Walker is a biped bound to a 2D vertical plane, which
learns balancing and locomotion skills.

• Quadruped (Jump, Run, Stand, Walk): Quadruped also learns various types of locomotion
skills but is harder because of high-dimensional state and action spaces and 3D environ-
ment.

• Jaco (Reach bottom left, Reach bottom right, Reach top left, Reach top right): Jaco Arm
is a 6-DOF robotic arm with a three-finger gripper, which requires to control the robot
arm and perform simple manipulation tasks. Prior works (Laskin et al., 2021; Yarats et al.,
2021a) have shown that such reward-sparse manipulation tasks are particularly challenging
for unsupervised RL.

• Humanoid2 (Run, Stand, Walk): Humanoid is a simplified human-like entity with 21 joints,
which is extremely challenging to learn locomotion skills due to high-dimensional action
spaces and exploration dilemma. We test fine-tuning performance on relatively few inter-
action steps (150k) whereas prior work typically executes for 30M steps (200x) learning
from scratch.

B DETAILS OF UNSUPERVISED RL BASELINES

EUCLID can simply combine with various categories of URL exploration approaches as backbone.
We select several typical exploration algorithms as baselines.

Disagreement (Pathak et al., 2019): Disagreement is a knowledge-based baseline which trains an
ensemble of forward models {gi (zt+1 | zt,at)} to predict the feature. Intrinsic rewards are defined
as the variance among the ensemble models:

rDisagreement
t ∝ Var {gi (zt+1 | zt,at)} i = 1, . . . , N. (6)

APT (Liu & Abbeel, 2021b): Active Pre-training (APT) is a data-based baseline which utilizes a
particle-based estimator (Singh et al., 2003) that uses K nearest-neighbors to estimate entropy for
a given state. Since APT needs the auxiliary representation learning to provide the latent variables
for entropy estimation, we implement of APT on the top of EUCLID encoder optimized by latent
consistency loss. Intrinsic reward are computed as:

rAPT
t ∝

k∑
i

log ∥zt − zk∥2 . (7)

1https://github.com/rll-research/url_benchmark
2https://github.com/deepmind/dm_control/blob/main/dm_control/suite/

humanoid.py
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DIAYN (Eysenbach et al., 2019): Diversity is All you need (DIAYN) is a competence-based base-
line which learn explicit skill w and maximizes the mutual information between states and skills
I(wt, zt). DIAYN decompose the mutual information via I(zt;wt) = H(wt) −H(wt | zt). The
first term is sampled by a random prior distribution H(wt) and maximizes the entropy while the
latter term is estimated by the discriminator log q(wt | zt). Intrinsic reward are computed as:

rDIAYN
t ∝ log q(wt | zt) + const. (8)

CIC (Laskin et al., 2022): CIC is a hybrid data-based and competence-based as the previous state-
of-the-art method. CIC that uses an intrinsic reward structure based on particle entropy similar to
APT and distill behaviors into skills using contrastive learning.

C FULL RESULTS ON THE URLB

The full results of fine-tuning for 100k frames for each task and each method are presented in Table 2
on the state-based URLB. For Disagreement, APT and DIAYN, we utilize the results presented in
this Laskin et al. (2021).

Table 2: Full results of pre-training for 2M and fine-tuning for 100k steps on the state-based URLB.

Domain Task Disagreement APT DIAYN CIC TDMPC@100k
EUCLID

(Disagreement)
w/o MCL

EUCLID
(APT)

w/o MCL

EUCLID
(DIAYN)
w/o MCL

EUCLID

walker

Flip 491±21 477±16 381±17 631±34 930±28 971±1 967±3 923±34 969±2
Run 444±21 344±28 242±11 486±25 750±4 765±10 744±9 793±7 770±9

Stand 907±15 914±8 860±26 959±2 940±22 985±1 987±1 970±5 985±1
Walk 782±33 759±35 661±26 885±28 967±2 967±4 974±2 967±2 972±1

Quadruped

Jump 668±24 462±48 578±46 595±42 723±98 840±13 792±5 807±34 858±14
Run 461±12 339±40 415±28 505±47 465±83 651±35 589±13 571±19 735±16

Stand 840±33 622±57 706±48 761±54 765±92 953±6 911±31 918±30 958±5
Walk 721±56 434±64 406±64 723±43 710±77 874±42 864±21 859±33 925±6

Jaco

Reach bottom left 134±8 88±12 17±5 138±9 168±7 214±5 207±6 190±10 220±3
Reach bottom right 122±4 115±12 31±4 145±7 183±11 205±9 213±6 179±11 212±2

Reach top left 117±14 112±11 11±3 153±7 178±11 197±23 204±7 192±10 225±5
Reach top right 140±47 136±5 19±4 163±4 172±24 219±7 204±7 197±4 229±6

In Table 2, we find that the best approach is to use EUCLID with multi-choice learning and with
disagreement as the backbone (EUCLID (Disagreement) with MCL) and we refer to EUCLID for
this default setting. EUCLID versions constructed based on each of the explored approaches signif-
icantly improve the performance of the corresponding baseline.

D IMPLEMENTATION DETAILS

We provide richer implementation details of EUCLID in this section.

D.1 DEEP DETERMINISTIC POLICY GRADIENT (DDPG)

For continuous action space, we opt for DDPG (Lillicrap et al., 2016) as our base optimization
algorithm. DDPG is an actor-critic off-policy algorithm, which update critics Qθ by minimizing the
Bellman error:

LQ(θ,D) = E(st,at,rt,st+1)∼D
[(
Qθ (st,at)− y(s))2

]
, (9)

where the Q-target y(s) = R(s, a) + γQθ̄ (st+1, πϕ (st+1)), D is a replay buffer and θ̄ is an slow-
moving average of the online critic parameters. At the same time, we learn a policy πϕ that maxi-
mizes Qθ by maximizing the objective:

Lπ(ϕ,D) = Est∼D [Qθ (st, πϕ (st))] . (10)

D.2 HYPER-PARAMETERS

EUCLID studies various categories of exploration algorithms as a backbone in the experiments, and
we list the individual hyper-parameters of each method in Table 3. As for the world models and
policy, most of the parameters remain the same as in the original TOLD of TDMPC (Hansen et al.,
2022). We list the hyper-parameters of EUCLID in Table 4, with particular reference to the fact that
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Table 3: Hyper-parameters of the exploration algorithms used in our experiments.
Disagreement hyper-parameter Value
Ensemble size 5
Forward net (|O| + |A|) →1024

→1024→ |O| ReLU MLP
APT hyper-parameter Value
Representation dim 1024
Reward transition log(r + 1.0)
k in NN 12
Avg top k in NN True
DIAYN hyper-parameter Value
Skill dim 16
Skill sampling frequency 50
Discriminator net 512→1024

→1024→16 ReLU MLP

some of them change during the pre-training phase (PT) and the fine-tuning phase (FT). Following
prior work (Hafner et al., 2020b; Hansen et al., 2022), we use a task-specific action repeat hyper-
parameter for URLB based on DMControl, which is set to 2 by default while 4 for the Quadruped
domain. During the pre-training process, we increase the number of policies and prediction heads of
the dynamics model one after another based on specific snapshot time steps, the detailed parameters
are shown in the Table 5.

Table 4: Hyper-parameters of the world model, policy, and planner.
World model Value
Batch size 1024
Max buffer size 1e6
Latent dim 50 (default)

100 (Humanoid)
MLP hidden dim 256 (Encoder)

1024 (otherwise)
MLP activation ELU
Optimizer (θ) Adam
Learning rate 1e-4 (PT)

1e-3 (FT)
Reward loss coefficient (c1) 0.5
Consistency loss coefficient (c2) 2
Value loss coefficient (c3) 0.1
θ− update frequency 2
Policy Value
Seed steps 0 (PT)

4000 (FT)
Discount factor (γ) 0.99

Action repeat 2 (default)
4 (Quadruped)

Planning (Only for FT phase) Value
Iteration 6
Planning horizon (L) 5
CEM population size 512
CEM elite fraction 12
CEM policy fraction (Policy/CEM) 0.05
CEM Temperature 0.5
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Table 5: hyper-parameters of multi-choice learning mechanism
MCL hyper-parameter Value
Num of prediction heads (H) 4
Regularization strength (α) 0.1
specific interval time steps T 500k

D.3 COMPUTE RESOURCES

We conducted our experiments on an Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz processor
based system. The system consists of 2 processors, each with 26 cores running at 2.60GHz (52 cores
in total) with 32KB of L1, 1024 KB of L2, 40MB of unified L3 cache, and 250 GB of memory.
Besides, we use a single Nvidia RTX3090 GPU to facilitate the training procedure. The operating
system is Ubuntu 16.04. Totally, we conduct experiments on 2500 seeds in 15 downstream tasks.

E ADDITIONAL ANALYSIS OF ABLATION
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Figure 10: Ablation. Comparison with
agents based on different pre-trained
components for fine-tuning. The results
are based on the average performance
of three types of exploration backbone
with 2M steps of pre-training.

The results of the complete ablation experiment for each
environment are shown in Fig. 10. For the generaliza-
tion ability of experiments, the results are based on the
average performance of three types of exploration back-
bone with 2M steps of pre-training and 100k steps of fine-
tuning (A total of 720 runs = 3 algorithms × 12 tasks × 5
seeds × 4 settings).

Overall, our default settings, i.e. reusing all components
of the world models (encoder, dynamics model, reward
model) and policies (actor and critic) works best. The
most important modules in EUCLID are dynamics mod-
els and actor as these two always get a performance gain
in all tasks, whereas reusing critic and reward predictor
can improve performance only in some domains.

Using pre-trained policies to initialize downstream policies shows significant performance in
Quadruped and Jaco domains, which illustrates the synergistic effect of model based planning and
pre-trained policy. Exploration policies trained by intrinsic rewards during the pre-training phase
usually exhibit behaviours that are beneficial for downstream tasks, e.g. agents in the Quadruped
domain trained by the Disagreement can exhibit behaviours such as tumbling and wobbly stand-
ing, while randomly initialised agents only fall and shake. Therefore, using such policies to guide
the planning process during the fine-tuning phase can help the agents reduce exploration cost and
increase sampling efficiency which also demonstrates the benefits of a hybrid strategy.

Since the state transition of the environment are shared during the pre-training and fine-tuning
phases, it makes sense that pre-trained dynamics model would be more accurate than a model initial-
ized randomly. Moreover, we empirically find that reusing both the critic and reward predictor at the
beginning of FT phase can improve overall performance, although the intrinsic reward which reward
predictor predicts in pre-training phase is quite different from the expected extrinsic return given by
downstream tasks. Thus, we still maintain the reuse of critic and reward predictor by default and
leave whether the pre-training of critic and reward predictor can benefit for downstream tasks with
a theoretical guarantee as an open question.

F PSEUDO CODES OF EUCLID

We show the full process of EUCLID, including both pre-training and fine-tuning phases, in Algo-
rithm 1.
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Algorithm 1: Efficient Unsupervised Reinforcement Learning Framework with Multi-choice
Dynamics Model (EUCLID)

1 Input: specific interval time steps T , prediction head size H , regularization strength α, current
policy size h = 0, ensemble policy set S = ∅.

2 Require: Initialize all networks: Encoder Eθ, Multi-headed dynamics Dθ, Reward predictor
Rθ, Critic Qθ, Actor πϕ, Replay buffer D.

3 Require: Environment (env), M downstream tasks Tk, k ∈ [1, . . . ,M ].
4 Require: Intrinsic reward rint, extrinsic reward rext.
5 Require: pre-train NPT = 2M and fine-tune NFT = 100K steps.
6 # Part 1 : Unsupervised Pre-training
7 for t = 0, 1, ..NPT do
8 if t == T ∗ h then
9 Initialize πh

ϕ with weights of πϕ, h← h+ 1

10 Extend ensemble policy set S ← S ∪ πh
ϕ

11 Update average policy distribution π̃ϕ (zt) =
∑h

i=1 π
i
ϕ (zt) /h

12 Encoder state zt = Eθ (st) and sample action at ∼ πθ (zt)
13 Apply action to the environment st+1 ∼ P (· | st,at)
14 Add transition to replay buffer D ← D ∪ (st,at, st+1)

15 Sample a minibatch from replay buffer D, compute intrinsic reward rint with exploration
backbone

16 Update encoder, reward predictor, critic and dynamics model parameters θ with prediction
head h ▷ see Eq. 3

17 Update actor ϕ by RL loss with additional diversity encouraging term ▷ see Eq. 5
18 # Part 2 : Supervised Fine-tuning
19 for Tk ∈ [T1, . . . , TM ] do
20 Initialize all networks with weights from the pre-training phase and an empty replay buffer

D
21 Select the most appropriate prediction head h∗ with the highest zero-shot reward
22 Fix head h∗ and corresponding policy πh∗

ϕ

23 Initialize fine-tuning actor πFT
ϕ with weights of πh∗

ϕ

24 for t = 1..NFT do
25 Encoder state zt = Eθ (st) and select action through planning at = Plan(zt) guided by

πFT
ϕ

26 Apply action to the environment st+1, r
ext
t ∼ P (· | st,at)

27 Add transition to replay buffer D ← D ∪ (st,at, r
ext
t , st+1)

28 Update encoder, reward predictor, critic and dynamics model parameters θ with fixed
prediction head h∗ ▷ see Eq. 3

29 Update actor ϕ only by RL loss ▷ see Eq. 10
30 Evaluate performance of RL agent on task Tk

G DETAILS OF MULTI-CHOICE LEARNING

To stabilize the training process, we fixed the equal number of ensemble policies and prediction
heads of the multi-headed dynamics model as hyper-parameters in advance, and corresponded the
policies to the prediction heads one by one. Our core intuition is that diverse policies yield diverse
data distributions, and we use the different data distributions to train the model primitives separately
to obtain a set of sub-optimal dynamics models with their specified region.

In the beginning of the PT stage, we initialize an empty set of policies S = ∅ and a dynamics model
Dθ with H prediction head. We extend ensemble policy set S ← S ∪πh

ϕ, h ∈ 1..H at every specific
interval time steps T for total 2M pre-training steps where network parameters of πh

ϕ is initialized
by the weights of current πϕ.

To allow ensemble policies to be as diverse as possible, we calculate the current average policy
distribution π̃ϕ each time we add a member to the ensemble and design policy diversity encour-

18



NeurIPS 2022 Deep Reinforcement Learning Workshop

aging terms DKL (π̃ϕ (zt) ∥πϕ (zt)) to encourage diversity of new policy. We balance each policy
of ensemble between the exploration and the diversity objectives that each model primitive models
different skill space. After a complete PT phase, we are able to obtain the multi-headed dynamics
model and the corresponding set of policies [π1

ϕ(z), · · · , πh
ϕ(z)].

H DETAILS OF EUCLID MIXTURE PLANNING

Following TDMPC (Hansen et al., 2022), we leverage imaginary trajectories both for planning and
policy gradient. As for planning, we perform Model Predictive Control (Bemporad & Morari, 1999)
method MPPI (Williams et al., 2015) to update parameters for a family of distributions using an
importance weighted average of the estimated top-k sampled trajectories of expected return. Specif-
ically, we use the cross entropy method (CEM) (Rubinstein, 1997) to optimize action sequences by
iteratively re-sampling action sequences near the best performing sequences from the last iteration.
It is worth noting that we plan at each decision step t and execute only the first action. In addition,
long-term model planning is computational costly and inaccurate, and model errors accumulate with
horizon length (Lai et al., 2020). Therefore, we use short-term reward estimates generated by the
learned model and use the Q value function for long-term return estimates via bootstrapping. At the
same time, we hope that the pre-trained policy can guide the planning process and improve control
performance. For this, we additionally mix the trajectory samples generated by policy with the plan-
ning trajectories to guarantee the optimization when model is not that accurate. The detail pseudo
code is given in Algorithm 2.

Algorithm 2: Policy Guided Planning Algorithm
1 Require: Encoder Eθ, Latent dynamics Dθ, Reward predictor Rθ, Critic Qθ, Actor πϕ.
2 Require: Initial parameters for N (µ0, (σ0)2).
3 Require: Planning trajectories num N and policy trajectories num Nπ .
4 Require: Current state st, rollout horizon L, iteration num J , elite trajectories num k.
5 Encoder state zt = Eθ (st) ▷ trajectory starting state
6 # Iterate J rounds starting from initial distribution N (µ0, (σ0)2)
7 for each iteration j = 1, ..J do
8 Sample N trajectories of length L from N

(
µj−1,

(
σj−1

)2)
9 Sample Nπ trajectories of length L using Dθ and πϕ

10 Estimating the cumulative discounted rewards for all trajectories, the first L steps are
estimated using the reward predictor Rθ and thereafter using Qθ

11 Select top-k elite trajectories based on cumulative rewards
12 Update µ, σ by top-k sampled trajectories using MPPI (Williams et al., 2015)

13 return a ∼ N
(
µJ ,

(
σJ

)2)
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