
Integrating nested data into knowledge graphs
with RML fields

Thomas Delva(�)[0000−0001−9521−2185], Dylan Van Assche[0000−0002−7195−9935], Pieter
Heyvaert[0000−0002−1583−5719], Ben De Meester[0000−0003−0248−0987], and Anastasia

Dimou(�)[0000−0003−2138−7972]

IDLab, Department of Electronics and Information Systems, Ghent University - imec
Technologiepark-Zwijnaarde 122, 9052 Ghent, Belgium

{firstname.lastname}@ugent.be

Abstract. To support business decisions or improve operational efficiency,
heterogeneous data is often integrated into a knowledge graph. This inte-
gration can be achieved with one of the existing declarative mapping lan-
guages, which offer declarative data integration in the form of knowledge
graphs. However, current mapping languages cannot always integrate
data with nested structure, such as JSON or XML files or JSON docu-
ments stored in a database column. We designed a backwards-compatible
extension of the RDF Mapping Language (RML) which empowers it to
integrate nested data: RML fields. In this paper, we introduce RML fields,
compare it with the state of the art in mapping languages, and validate
it on mapping challenges formulated by the Knowledge Graph Construc-
tion W3C community group. Our extension allows addressing several of
the challenges related to nested data that were previously not possible.
RML fields can integrate even more datasets into knowledge graphs with
all the advantages of using a language specially designed for that purpose.
Our extension intends integrating multiple data sets independently, but
some use cases require joins or other operations during knowledge graph
generation, which we will investigate in the future.

1 Introduction

Graph structures recently became a popular way [10] to organize information:
the so-called knowledge graphs [11]. Declarative mapping languages are often
used to integrate non graph data into a knowledge graph [5]. A declarative map-
ping language allows describing schema and data transformations. R2RML, the
W3C-recommended declarative mapping language creates knowledge graphs
from tabular input data in databases [7]. R2RML was quickly extended to cover
more input formats [8], but it also comes with added challenges.

References to common data formats like JSON or XML may return multiple
values and these values can be composite: they may again contain multiple val-
ues. In contrast, a reference to tabular data typically returns exactly one, non-
composite value: the value in a table cell. These two things, multiple and/or
composite values, can occur independently of each other: a reference could

2 T. Delva et al.

return one value composed of different attributes, it could return multiple non-
composite values, such as integers, or it could return any other combination
of multiple and composite values. For instance, multiple objects are returned
by applying the JSONPath reference $.characters.[*] on the JSON docu-
ment in fig. 1a and each returned object is itself composed of several attributes:
firstname and items. Declarative mapping languages that integrate such for-
mats as JSON or XML use references that return multiple and composite values,
but current mapping languages do not completely handle this. That is why sev-
eral1 of the challenges2 the KGC W3C Community Group identified are related
to handling references that can return multiple and/or composite values.

Integrating mixed-format data faces a similar challenge: what if data in
one format contains multiple or composite values stored in another format?
Examples are JSON objects stored inside a database column (fig. 1b) or multiple
values stored as a delimiter-separated string. While certainly unnormalized
(it violates the first normal form for relational databases [3]) such data is not
unrealistic.

We extended the RDF Mapping Language (RML) [8], which already allows
integration of heterogeneous data, with a nested iteration model. The nested
iteration model empowers RML to write nested loops over input data. Nested
iterations solve both previously mentioned problems: (i) references returning
multiple or composite values can be treated as a deeper iteration level and (ii)
every iteration level can iterate over data in a different format.

The rest of the paper is structured as follows. We give an overview of how
current mapping languages integrate nested data in section 2. Then, we intro-
duce the “fields” extension to RML and show how nested fields allow integrat-
ing nested data in section 3. We show how RML fields can handle the challenges
related to integrating nested data formulated by the W3C Knowledge Graph
Construction Community Group in section 4. Finally we conclude in section 5.

1 access-fields-outside-iteration, generate-multiple-values, multivalue-references,
process-multivalue-reference and rdf-collections

2 https://github.com/kg-construct/mapping-challenges/

{ "characters": [{

"firstname": "Ash",
"items": [

{"name":"gloves", "weight":340},
{"name":"sword", "weight":4400}

]}, {

"firstname": "Misty",
"items":[

{"name":"gloves", "weight":340},
{"name":"mittens", "weight":300},
{"name":"hat", "weight":800}

]}]}

(a) Example of tree-structured
data in the JSON format.

firstname; items

Ash; [{"name": "gloves",
"weight": 340 },

{"name": "sword",
"weight": 4400 }]

Misty; [{"name": "gloves",
"weight": 340 },

{"name": "mittens",
"weight": 300 },

{"name": "hat",
"weight": 800}]

(b) Example of
mixed-format data:
JSON object stored
in a CSV column.

:people/Ash/items/gloves :weight 340 .
:people/Ash/items/sword :weight 4400 .
:people/Misty/items/gloves :weight 340 .
:people/Misty/items/mittens :weight 300 .
:people/Misty/items/hat :weight 800 .

(c) This graph cannot be created
from fig. 1a or fig. 1b with cur-
rent languages, as it mixes data
from multiple hierarchical levels
(bolded).

Fig. 1: Current mapping languages cannot successfully handle this nested data.

https://github.com/kg-construct/mapping-challenges/

Integrating nested data into knowledge graphs with RML fields 3

2 Related work

With the increasing prevalence of RDF as a format for data on the web, W3C
sought to standardize the RDF generation procedure. To this end, two recom-
mendations were published related to generating RDF from relational databases:
the Direct Mapping [1] and R2RML [7] recommendations. Direct Mapping is
a transformation that generates an RDF graph with the same structure and
contains exactly the same information as a relational database. R2RML is a
declarative mapping language that can be used to define customized mappings
from a relational database to RDF. With R2RML, information in a database can
be used to generate RDF graphs with different structures than the database
itself.

R2RML was soon generalized by RML [8] aiming to be extensible towards
other input data formats than relational databases. RML provides examples for
common formats like CSV, JSON and XML. To achieve this, RML introduces,
among other things, the concept of reference formulation. A reference formu-
lation is specified for each integrated data set to specify how data elements in
that data set should be referred to: for example, RML uses by default (i) XPath
expressions to refer to data in XML format, (ii) column names to refer to data
in CSV/TSV format or relational databases, and (iii) JSONPath expressions to
refer to data in JSON format. However, in going beyond relational databases,
references to non-relational data that return multiple values are not considered,
even though they may be needed for XML and JSON. Other mapping languages,
such as xR2RML [14] and ShExML [9], were proposed to cover some of RML’s
limitations but none offers a complete solution.

xR2RML [14] extends both R2RML and RML and was the first to handle chal-
lenges that come with nested input data. For this reason, xR2RML introduced
the nested term map and mixed-syntax paths.

Nested term maps can be used to generate triples from hierarchical data,
where one of the triples’ terms is generated from a deeper level of the input
data’s hierarchy. However, it becomes difficult to refer to data stored in dif-
ferent hierarchical levels in the input data. Therefore, xR2RML introduced the
xrr:pushDown term, which allows to “push down” values from a higher hierar-
chical level into a lower hierarchical level. For example, in fig. 2, a nested term
map is used together with xrr:pushDown to generate URIs from data on different
hierarchical levels: :people/Ash/items/gloves is created by pushing Ash from
level one in fig. 4a down to level two (inside the nested items array), where it
can be used together with gloves to generate the needed URI. xrr:pushDown
can be used to solve many practical cases, but, as the nested term map by defi-
nition generates individual terms, it does not account for cases where data from
different hierarchical levels is used to generate more than one term in a triple, as
in the graph in fig. 1c. There, Ash, gloves, and 340 come from more than one
hierarchical level and are used in the subject and in the object. Therefore it is
impossible to generate this graph using xR2RML.

Independently of nested term maps, xR2RML introduced mixed-syntax
paths. These paths can be used to refer to data stored in mixed formats. An

4 T. Delva et al.

<#Characters >

a rr:TriplesMap;

xrr:logicalSource [

xrr:query """db.characters.find()""" ;

rml:iterator "$.characters[*]"] ;

rr:subjectMap [

rr:template ":people/{$.firstname}/"] ;

rr:predicateObjectMap [

rr:predicate ex:hasItem;

rr:objectMap [
xrr:reference "$.items[*]" ;
xrr:pushDown [
xrr:reference "$.firstname" ;
xrr:as "firstname"] ;

xrr:nestedTermMap [
rr:template
":people/{$.firstname}/items/{$.name}"

]]] .

:people/Ash :hasItem :people/Ash/items/gloves ,
:people/Ash/items/sword .

:people/Misty :hasItem :people/Misty/items/gloves ,
:people/Misty/items/mittens ,
:people/Misty/items/hat .

Fig. 2: This xR2RML mapping (left) partially handles the example in fig. 1:
xR2RML can generate single terms from data from across the input hierarchy
(shown bolded on the right), but not full triples, as is needed in fig. 1c.

ITERATOR chars_it <jsonpath: $.characters[*]> {

PUSHED_FIELD firstname <firstname >
ITERATOR items <items[*]> {
FIELD name <name>
FIELD weight <weight>
POPPED_FIELD firstname <firstname > }}

EXPRESSION chars <chars_file.chars_it >

:Item :[chars.items.name] {
:hasweight [chars.items.weight] ;
:ownedBy :[chars.items.firstname] }

:gloves :hasWeight 340 ;
:ownedBy :Ash .

:sword :hasWeight 4400 ;
:ownedBy :Ash .

:gloves :hasWeight 340 ;
:ownedBy :Misty .

:mittens :hasWeight 300 ;
:ownedBy :Misty .

:hat :hasWeight 800 ;
:ownedBy :Misty .

Fig. 3: This ShExML mapping (left) partially handles the example in fig. 1:
ShExML can access all the attributes required to generate the triples in fig. 1c,
but can only make terms from exactly one attribute (shown bolded on the right).

example explains the idea best: if JSON objects are stored in a database col-
umn, fields of such a JSON object can be referred to with an expression like
Column(.)/JSONPath(.).

ShExML [9] uses ShEx shapes [15] to define the structure of RDF generated
from other sources. To extract information from input data, ShExML uses it-
erators and fields. Iterators give a name to collections in the input data, and
fields give a name to individual values. Iterators can be defined nestedly to
handle nested input data. Names of fields and iterators are used in ShEx shape
templates to specify how the extracted information is written to RDF. For refer-
ring to data in different hierarchical levels ShExML introduces “pushed” and
“popped” fields which can push down information during nested iteration,
similar to xR2RML’s xrr:pushdown. As such, ShExML is missing little to gener-
ate the graph in fig. 1c, yet ShExML can only generate URIs from one attribute,
while the desired URI :people/Ash/items/gloves is generated from two at-
tributes. In fig. 3 we give a partial solution in ShExML for the input data and
desired graph in fig. 1. ShExML does also not provide solutions for input data
in mixed formats.

Integrating nested data into knowledge graphs with RML fields 5

Task Referring to Referring to Writing nested
Language mixed-format data tree-structured data data to graph
xR2RML Mixed syntax paths Nested term map
ShExML – Nested iterator Linked shapes
RML fields Reference formulation Nested fields (Nested) term map

Table 1: Overview of how different mapping languages handle different tasks
related to generating graphs from nested data.

In the next section, we will build on xR2RML’s concepts of nested term map
and mixed-syntax paths and on ShExML’s concepts of fields and nested iterators.
Our main contribution on top of these two mapping languages is a method to
preserve the relation between related values from different hierarchical levels
without explicitly pushing down those values. The relation between xR2RML,
ShExML and our contribution, RML fields, is shown in table 1.

3 RML fields

In this section we introduce the fields extension of RML. We will first explain
how to extract information from nested data using fields. Then we show an al-
gorithmic representation of the extracted information and how that information
can be written to RDF. We will close the section by showing precisely how RML
with fields is compatible with regular RML.

3.1 Fields

A field gives a name to a reference, as in ShExML. References are the part of
RML for extracting information from data. This extraction involves two other
concepts, besides the reference concept: iterators and records. The extraction
process as it is in RML can be summarized as follows. Given a data source,
the iterator extracts a list of records from it. From each record in this list, a
reference extracts a value to create RDF terms with. For example the iterator
$.characters[*] returns a list containing the objects in the characters JSON
array in fig. 4a. The reference $.firstname extracts the firstname attribute of
each record: in consecutive iterations this reference will return Ash and Misty.
An RML field can be used to give a human-readable name to the extracted
attribute, the field declaration for this is shown on lines 5-7 of fig. 4a. This name
can then be used in term maps and URI templates to generate RDF triples from
the extracted information.

The extraction scheme as it is explained so far does not specify yet what hap-
pens with references which return multiple or composite values. For example
the JSONPath expression $.items.[*]will return each value in the items array
and each of these returned values is themselves an object composed of attributes
name and weight. Therefore we need to make this clarification about references:

6 T. Delva et al.

a reference does not extract a value from a record, but a reference extracts a list
of records from a record. In particular we treat extracted non-composite values,
such as the string Ash or number 340, as one particularly simple type of record.

This generalization of the reference concept is crucial, as it allows to define
references that extract information from the output of other references, as that
output is also just records. As such, it is possible to extract the name and weight
information from the output of the$.items.[*] referenceby using the$.name
and $.weight references on the output of $.items.[*]. We introduce nested
fields for such “chaining” of references and an example of a field with two
nested fields inside is shown on lines 8-17 of fig. 4a. The relation between data
sources, iterators, records and references is pictured in fig. 5.

:source1 a rml:LogicalSource ;

rml:source :file ;

rml:referenceFormulation ql:JSONPath ;

rml:iterator "$.characters[*]" ;

rml:field [
rml:name "name" ;
rml:reference "$.firstname" ;] ;

rml:field [
rml:name "item" ;
rml:reference "$.items[*]" ;
rml:field [
rml:name "name" ;
rml:reference "$.name" ;] ;

rml:field [
rml:name "weight" ;
rml:reference "$.weight" ;] ;

].

(a) RML fields snippet to extract infor-
mation from the nested JSON collec-
tions in fig. 1a.

:source1 a rml:LogicalSource ;

rml:source :file ;

rml:referenceFormulation ql:CSV ;
rml:field [

rml:name "name" ;

rml:reference "firstname" ;] ;

rml:field [

rml:name "items" ;

rml:reference "items" ;

rml:field [

rml:referenceFormulation ql:JSONPath ;
rml:name "item" ;

rml:reference "$.[*]" ;

rml:field [

rml:name "name" ;

rml:reference "$.name" ;] ;

rml:field [

rml:name "weight" ;

rml:reference "$.weight" ;] ;

] .

(b) RML fields snippet to extract in-
formation from the mixed-format data
(JSON in CSV) in fig. 1b

Fig. 4: RML field declarations for extracting information from the files in fig. 1.

data
source record string

1 1 1

1n

n

reference

iterator toString

Fig. 5: Extracting information from data sources with RML fields. An iterator
extracts n records from a data source. One or more references extract n further
records from each record. A record has a string value.

Integrating nested data into knowledge graphs with RML fields 7

To solve the mixed data format problem introduced earlier, we extend the
reference formulation concept of RML to specify the formulation for each field
separately. An example is shown on line 11 of fig. 4b: the items column can be
referenced as CSV column, but the JSON objects stored inside can be processed
using JSONPath. This process is similar to xR2RML’s mixed-syntax paths.

3.2 Algorithmic representation

The information extracted from the input data can be represented in tables. We
only introduce this representation as a tool for defining the semantics of RML
fields, RML engines are not required to instantiate these tables. We choose the
tabular format because it is easy to understand.

Since each reference can in theory return multiple values, we give each field
a separate table, so that the extracted tables do not violate the 2nd normal
form [3]. A field’s table has three columns and these columns contain records,
as well as provenance of which previous records created a record. Concretely,
for each field we have these columns (shown in fig. 6, right-to-left):

– A column containing the field’s records, one per row, as returned by the
field’s reference. This column has the same name as the field3.

– A column containing an index of every record produced by this reference.
This index makes it possible for records from this field to be referred to by
records from this field’s subfields. The name of this column is the name of
the field concatenated with .#.

– A column containing references to the index column of the field’s parent
field (or to the iterator’s index column for fields without a parent field).
These references are used to keep track of which row in the parent field’s
or iterator’s table the given row is based on: which record from the parent
field was used as input to create the record in this row.

There is also one additional table for the iterator. This table contains two
columns: one with the iteration index (column name #) and one with the it-
eration record (column name it). In fig. 6 the extracted tables for the iterator
and for the fields item and item.name (all defined in fig. 4a) are shown.

The tables as defined for each field and the iterator can be joined to create
one denormalized table for the logical source, containing all columns of all the
source’s fields’ tables. The RDF generation is defined from this denormalized
table. The logical source’s denormalized table is defined as the natural, full outer
join [4] of the iterator’s table and all the fields’ tables. By this definition records
from different hierarchical levels in the input data that “belong together”, i.e.,
records along the same root-to-leaf path in the input data’s tree structure, will
end up in the same row in the denormalized table. Therefore, RDF can be
generated that mixes data from different levels of the input data’s hierarchy
without losing information about which data belongs together.

3 For nested fields, we consider <parentname>.<declaredname> as their name, with
<parentname> the name of the parent field and <declaredname> the object of the field’s
rml:name property. For example: item.name.

8 T. Delva et al.

it

0 {"firstname": "Ash",
 "items":[
 {"name":"gloves", "weight":340},
 {"name":"sword", weight":4400}
]}

1 {"firstname": "Misty",
 "items":[
 {"name":"gloves", "weight":340},
 {"name":"mittens", "weight":300},
 {"name":"hat", "weight":800}
]}

item.# item

0 0 {"name":"gloves", "weight":340}

0 1 {"name":"sword", "weight":4400}

1 2 {"name":"gloves", "weight":340}

1 3 {"name":"mittens", "weight":300}

1 4 {"name":"hat", "weight":800}

item.# item.name.# item.name

0 0 gloves

1 1 sword

2 2 gloves

3 3 mittens

4 4 hat

Fig. 6: The tree structure of the data in fig. 1a, here explicitly shown with arrows,
is preserved by the index columns # and item.#.

This solution avoids concepts as “pushing down” values in a nested iteration
(as in ShExML and xR2RML), but achieves the same goal of mixing input data
from different hierarchical levels, while preserving the relation between related
data. The join by which the denormalized table is defined should be an order-
preserving join, as the order in the data source might need to be preserved in
the generated RDF. The denormalized table for the running example is shown
in table 24. Again, this table is intended as a tool to specify the semantics if RML
fields, an RML engine should not necessarily instantiate this table, especially as
it might contain duplicates values in columns higher in the field hierarchy, as
can for example be seen in the leftmost four columns in table 2.

it name.# name item.# item item.name.# item.name item.weight.# item.weight
0 {...} 0 Ash 0 {...} 0 gloves 0 340
0 {...} 0 Ash 1 {...} 1 sword 1 44400
1 {...} 1 Misty 2 {...} 2 gloves 1 340
1 {...} 1 Misty 3 {...} 3 mittens 1 300
1 {...} 1 Misty 4 {...} 4 hat 1 800
Table 2: Data along the same root-to-leaf path in fig. 1a ends up in the same row
of this denormalized table, after being extracted by the fields in fig. 4a.

3.3 Writing to RDF

Writing information extracted from a source to RDF is done using RML triples
maps. A triples map is a combination of term maps. Each term map is defined
by a position (subject, predicate or object) and by a way to generate an RDF
term from field values. A typical way a term map creates RDF terms from
field values is the URI template: this is an URI with “gaps” which are filled in

4 The values in column it and item are omitted for brevity in table 2, but should be
the same as those in fig. 6.

Integrating nested data into knowledge graphs with RML fields 9

by field values. For example the URI template :person/{name} creates URIs
from the value of the name field. The semantics of a triples map can be defined
using the denormalized table from the previous paragraph: for each row in the
denormalized table, fill in the term maps with the values of the corresponding
columns and return the thus created triples. One caveat is that the denormalized
table might contain NULL values introduced by the outer join. If a term map
would be filled in with a NULL value, the triples created from this NULL value
are omitted from the output.

In general, order and duplicates do not matter when generating RDF, since
the RDF model itself is unordered and duplicate-free [6], so the duplicates intro-
duced by the full outer join do not matter. However, some RDF constructs such
as collections are affected by order and duplicates. Further, removing duplicates
has been shown to positively affect performance of knowledge graph genera-
tion [12]. For these two reasons we introduce a duplicate-removal mechanism to
select relevant duplicate-free segments of a logical source’s denormalized table.

The duplicate removal works as follows: if a combination of subject, pred-
icate and object map uses fields f1, ... , fn, then select from the denormalized
table the distinct values in those columns (f1,..., fn) and their index columns
(f1.#,..., fn.#), while preserving order. Triples for this subject, predicate and ob-
ject map are then generated from the thus selected table, which contains all the
required information, but no duplicates. An example of such a selected table is
shown in table 3, for the three term maps :person/{name} a :Person, which
together only contain a reference to one field: name. It should be clear that in
many cases, the duplicate-free table needed for a triples map can be instantiated
without first instantiating the denormalized table from which it is defined.

name.# name
0 Ash
1 Misty

Table 3: Duplicate-free table selected from table 2 for the field name and its index.

Finally, to create RDF collections we reuse the nested term map from xR2RML.
A nested term map generates collections by grouping several generated terms
into one list or set or other RDF collection. By default, terms are grouped into
a collection based on the fields used in the other terms of the triples map, but
other groupings could be explicitly declared by the user. For example, in fig. 7
we see that the items generated by the nested term map in the object position
are grouped on the name field since that field is used by the subject term map.

3.4 Backwards-compatibility

As long as no nested fields are used, the fields extension of RML is exactly
as expressive as “regular” RML. In fact, there is quite a simple equivalency

10 T. Delva et al.

:triplesMap a rr:TriplesMap ;

rr:subjectMap [

rr:template ":person/{name}"] ;

rr:predicateObjectMap [

rr:predicate :hasItems ;

rr:objectMap [

rr:termType rr:List ;
xrr:nestedTermMap [
rr:template ":person/{name}/item/{item.name}"

]]] .

(a) Nested term map used with RML
fields to create lists of persons’ items.

:person/Ash :hasItems

(:person/Ash/item/gloves
:person/Ash/item/sword) .

:person/Misty :hasItems

(:person/Misty/item/gloves
:person/Misty/item/mittens

:person/Misty/item/hat) .

(b) Graph with RDF lists in the turtle
syntax [2]. Created by the triples map in
fig. 7a from the logical source in fig. 4a.

Fig. 7: Generating lists of items grouped per personwith RML fields.

between regular RML on the one hand and RML with non-nested fields on the
other. Regular RML references can be seen as “syntax sugar” [13] for RML fields
in the following way. Given an RML mapping, each reference in a term map can
be replaced by adding a field with the same reference and replacing the use of
the reference by the name of the field. The obtained RML mapping with fields
has exactly the same semantics as the original RML mapping.

:source1 a rml:LogicalSource ;

rml:source :file ;

rml:referenceFormulation ql:JSONPath ;

rml:iterator "$.characters[*]" ;

:triplesMapPeople a rr:TriplesMap ;

rr:subjectMap [rr:template ":person/{$.name}"] ;
rr:predicateObjectMap [

rr:predicate :hasName ;

rr:objectMap [rml:reference "$.firstname"] ;] ;
rr:predicateObjectMap [

rr:predicate :hasItem ;

rr:objectMap [rr:template ":person/{$.name}/item/{{$.items.[*]}.{$.name}}"]].

:triplesMapItems a rr:TriplesMap ;

rr:subjectMap [rr:template ":person/{$.name}/item/{{$.items.[*]}.{$.name}}"] ;
rr:predicateObjectMap [

rr:predicate :hasName ;

rr:objectMap [rml:reference "{$.items.[*]}.{$.name}"] ;] ;
rr:predicateObjectMap [

rr:predicate :hasWeight ;

rr:objectMap [rml:reference "{$.items.[*]}.{$.weight}"] ;] .

Fig. 8: Syntax sugar for RML fields logical source in fig. 4a. References repre-
senting fields in fig. 4a are bolded. References representing nested fields are also
italicized.

Similarly, we introduce a syntax for nested fields in the same style as regular
RML. The idea is that this syntax is less verbose and more similar in style and
spirit to regular RML than the syntax for nested fields from the start of this
section. Of course this shorter syntax is again equivalent to using nested fields.
In short, if an expression like {ref1}.{ref2} is used in a term map, it should
be interpreted as if there is a field with reference ref1with a nested field inside
with reference ref2. A more extended example of this and of the previous syntax
sugar can be seen in fig. 8.

Integrating nested data into knowledge graphs with RML fields 11

4 Validation

The W3C community group for Knowledge Graph Construction identified nine
challenges for declarative mapping languages. Each challenge gives a high level
problem statement of a feature current mapping languages cannot always suc-
cessfully handle. There is also a set of input files and the expected output graph
for each challenge. Of these nine challenges, five are related to nested itera-
tion and references returning multiple values, namely: access-fields-outside-
iteration, generate-multiple-values, multivalue-references, process-multivalue-
reference and rdf-collections. We go over these five challenges, briefly describe
each of them, and explain how RML fields allows to handle the challenge. We
published our solutions to these challenges in a public github repository5.

Access fields outside iteration. The challenge access-fields-outside-iteration relates
to accessing data not directly present in the current iteration element. For exam-
ple, sometimes during iteration over a lower hierarchical level, data in a higher
hierarchical level is needed to mint an URI. RML fields solve this challenge by
allowing to use field names from different hierarchical levels to create one term.
The template :person/{name}/item/{item.name} from our running example
(fig. 7a), creates URIs from person names (from level one of the input data hier-
archy) and item names (from level two of the input data hierarchy). We could
handle this challenge the same as our running example, since the input file for
this challenge has a very similar structure to the file in our running example.

The challenge has an extension related to referring to data on the same iter-
ation level but in different records, so-called “sibling” data. This challenge can
be tackled by creating two fields with identical references, but different names:
id and friendId. In different rows of the denormalized table, id and friendId
will contain every combination of ids that occur in the data, since the content
of these fields is defined by a full outer join. Saying a person is friends with all
their siblings in the input data is then as simple as generating ex:hasFriend
triples connecting people identified by id and friendId, as shown in fig. 9.

rml:field [

rml:name "id" ;
rml:reference "$.id"] ;

rml:field [

rml:name "friendId" ;
rml:reference "$.id"]] ;

rr:subjectMap [

rr:template "http://example.com/{id}"] ;
rr:predicateObjectMap [

rr:predicate ex:hasFriend ;
rr:objectMap [

rr:template "http://example.com/{friendId}"]] .

Fig. 9: By declaring a field with reference $.id twice with different names, all
combinations of the reference’s values can be linked by predicate ex:hasFriend.

5 https://github.com/RMLio/mapping-challenges-rml-fields/

https://github.com/RMLio/mapping-challenges-rml-fields/

12 T. Delva et al.

The challenge has a second extension about joining data in different data
sets. While the RML fields extension as it is described in this document does
not cover joins, we think the tabular algorithmic representation we introduced
gives a solid foundation to add joins and other relational operators.

Generate multiple values. The generate-multiple-values challenge relates to gen-
erating multiple literals, each with its own language tag. This feature is typically
needed when the input data stores strings together with the strings’ languages.

RML fields handles this challenge by iterating over the multiple stored
strings and their languages together. Then, using the standard RML feature
of the language map, literals can be generated having the language tag stored
in the input data, as shown in fig. 10.

rr:objectMap [

rr:reference "firstname.label" ;
rr:languageMap "firstname.lang"]

Fig. 10: The label and language of firstname are iterated over together, so both
can be used to create a single RDF literal.

This challenge has an extension related to default values for language tags.
As it is more related to default behaviour of language maps and not to the
iteration model, we did not focus on handling this extension when designing
RML fields.

Multivalue references. The multivalue-references challenge relates to using ref-
erences returning multiple values. This typically occurs when referring to tree-
structured data. RML fields handles this challenge because it uses an iteration
model where every reference can return multiple values.

The challenge has an extension related to generating triples that “skip” one
or more iteration levels: for example, generating triples from data in levels one
and three of the input hierarchy (skipping level two). This extension of the
challenge is handled by RML fields since field names from any levels of the
iteration can be used in triples maps. This includes using field names that skip
a level in the same triples map, as shown in fig. 11.

rr:subjectMap [

rr:template "http://example.com/lab/{name}"] ;
rr:predicateObjectMap [

rr:predicate ex:hasMember ;

rr:objectMap [

rr:template "http://example.com/author/{article.author.name}"] .

Fig. 11: This triples map generates triples connecting data from the first level
of the input hierarchy (name) to data in the third level (article.author.name),
skipping the second level.

Integrating nested data into knowledge graphs with RML fields 13

Process multivalue references. The process-multivalue-references challenge, like
the previous one, relates to creating RDF from references returning multiple
values, with an additional focus on extracting multiple values from strings and
on generating different types of RDF collections.

RML fields handle extracting multiple values from strings by treating the
strings as comma-separated value records and using the appropriate reference
formulation for such records, as shown in fig. 12. Further, RML fields handle the
generation of RDF collections by using xR2RML’s nested term map, for which
an RDF collection type can be specified.

rml:field [

rml:name "author" ;

rml:referenceFormulation ql:JSONPath ;
rml:reference "$.authors.[*].name"

rml:field [

rml:name "firstname" ;

rml:referenceFormulation ql:CSV ;
rml:reference "1"] ;

rml:field [

rml:name "lastname" ;

rml:referenceFormulation ql:CSV ;
rml:reference "0"]] .

Fig. 12: By changing reference formulation in nested fields, comma-separated
values can be extracted from a JSON string.

RDF collections. The rdf-collections challenge focuses on the generation of RDF
collections. As such, it overlaps with the previous challenge, but this challenge
combines generating RDF collections with different structures for the input data.

Again, the generation of RDF collections is handled with RML fields by
using xR2RML’s nested term map. We find that using the nested term map
allows to handle all cases in this more detailed challenge as well, one excerpt
from a solution creating RDF lists is shown in fig. 13.

rr:objectMap [

rr:termType xrr:RdfList ;
xrr:nestedTermMap [

rr:template "http://example.com/author/{article.author}"] ;
] ;

Fig. 13: This object map creates RDF lists of authors.

5 Conclusion

We introduced the “fields” extension of RML that allows RML to generate
knowledge graphs from nested data. We introduced this approach using a
running example existing mapping languages cannot handle, but RML fields
can handle. We validated our approach by showing it can now handle the

14 T. Delva et al.

mapping challenges formulated by the W3C Knowledge Graph Construction
Community Group related to nested data. Until now, no declarative mapping
language could cover all the challenges we cover.

So far, we considered generating RDF from one data set with nested struc-
ture. However, in some use cases, information from multiple data sets needs
to be combined during knowledge graph generation. This includes the “basic”
case of joining two data sets on an attribute, but it also includes more advanced
cases, such as generating RDF from data set A only if data set B contains no rel-
evant information about an entity. This is exactly what we will investigate next.
The herein introduced tabular algorithmic representation provides a strong ba-
sis for such combination of data sets, since many operators, such as join, leftjoin,
etc., have been defined before for the tabular format.

References

1. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: A Direct Mapping of Re-
lational Data to RDF. Recommendation, World Wide Web Consortium (W3C) (Sep
2012), http://www.w3.org/TR/rdb-direct-mapping/

2. Beckett, D., Berners-Lee, T., Prud’hommeaux, E., Carothers, G.: RDF 1.1 Turtle – Terse
RDF Triple Language. Recommendation, World Wide Web Consortium (W3C) (Feb
2014), http://www.w3.org/TR/turtle/

3. Codd, E.F.: Further normalization of the data base relational model. Data base sys-
tems pp. 33–64 (1972)

4. Codd, E.F.: A relational model of data for large shared data banks. In: Software
pioneers, pp. 263–294. Springer (2002)

5. Cota, G., et al.: High-quality knowledge graphs generation: R2rml and rml com-
parison, rules validation and inconsistency resolution. Applications and Practices in
Ontology Design, Extraction, and Reasoning 49, 55 (2020)

6. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax. Rec-
ommendation, World Wide Web Consortium (W3C) (Feb 2014), http://www.w3.
org/TR/rdf11-concepts/

7. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language. Working
group recommendation, World Wide Web Consortium (W3C) (Sep 2012), http:
//www.w3.org/TR/r2rml/

8. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle,
R.: RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data.
In: Proceedings of the 7th Workshop on Linked Data on the Web. vol. 1184 (2014)

9. Garcı́a-González, H., Boneva, I., Staworko, S., Labra-Gayo, J.E., Lovelle, J.M.C.:
ShExML: improving the usability of heterogeneous data mapping languages for
first-time users. PeerJ Computer Science 6, e318 (2020)

10. Gutierrez, C., Sequeda, J.F.: Knowledge graphs. Commun. ACM 64(3), 96104 (Feb
2021). https://doi.org/10.1145/3418294, https://doi.org/10.1145/3418294

11. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutierrez, C., Gayo,
J.E.L., Kirrane, S., Neumaier, S., Polleres, A., Navigli, R., Ngomo, A.C.N., Rashid,
S.M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., Zimmermann, A.: Knowledge
Graphs (Mar 2020), preprint

12. Jozashoori, S., Chaves-Fraga, D., Iglesias, E., Vidal, M.E., Corcho, O.: Funmap: Effi-
cient execution of functional mappings for knowledge graph creation. In: Interna-
tional Semantic Web Conference. pp. 276–293 (2020)

http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/
https://doi.org/10.1145/3418294
https://doi.org/10.1145/3418294

Integrating nested data into knowledge graphs with RML fields 15

13. Landin, P.J.: The mechanical evaluation of expressions. The computer journal 6(4),
308–320 (1964)

14. Michel, F., Djimenou, L., Faron-Zucker, C., Montagnat, J.: xR2RML: Relational and
Non-Relational Databases to RDF Mapping Language. Rapport de recherche, Lab-
oratoire d’Informatique, Signaux et Systmes de Sophia-Antipolis (I3S) (Oct 2017),
https://hal.archives-ouvertes.fr/hal-01066663/document/

15. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF vali-
dation and transformation language. In: Proceedings of the 10th International Con-
ference on Semantic Systems. pp. 32–40. New York, NY, United States (2014)

https://hal.archives-ouvertes.fr/hal-01066663/document/

	Integrating nested data into knowledge graphswith RML fields

