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Abstract

We study the problem of model selection in bandit scenarios in the presence of
nested policy classes, with the goal of obtaining simultaneous adversarial and
stochastic (“best of both worlds") high-probability regret guarantees. Our approach
requires that each base learner comes with a candidate regret bound that may or
may not hold, while our meta algorithm plays each base learner according to a
schedule that keeps the base learner’s candidate regret bounds balanced until they
are detected to violate their guarantees. We develop careful mis-specification tests
specifically designed to blend the above model selection criterion with the ability to
leverage the (potentially benign) nature of the environment. We recover the model
selection guarantees of the CORRAL [3] algorithm for adversarial environments,
but with the additional benefit of achieving high probability regret bounds. More
importantly, our model selection results also hold simultaneously in stochastic
environments under gap assumptions. These are the first theoretical results that
achieve best of both world (stochastic and adversarial) guarantees while performing
model selection in contextual bandit scenarios.

1 Introduction

A fundamental challenge in sequential decision-making is the ability of the learning agent to adapt to
the unknown properties of the environment they interact with. While adversarial environments may
require some caution, we would also like to leverage situations where more benign scenarios may be
disclosed as a result of this interaction.

In the literature on multi-armed bandits, this adaptation capabilities has often taken two forms:
1. Best-of-both worlds guarantees, which were pioneered by [10] and subsequently studied by a
number of authors [e.g., 29, 5, 28, 30, 33, 21]. Here, the goal is to design algorithms achieving
both stochastic and adversarial environment guarantees simultaneously, without knowing the type
of environment in advance. Similar in spirit is the stream of literature on stochastic rewards with
adversarial corruptions [23, 17, 34, 21, 31], where an adversary is assumed to corrupt the stochastic
rewards observed by the algorithm, and the regret guarantees are expected to degrade gracefully with
the total amount of corruption, without knowing this amount in advance.
2. Model selection guarantees, which were initiated by [3], and subject since then to intense
investigations [e.g., 15, 1, 27, 4, 16, 12, 8, 14, 22, 26, 13]. Here, we assume we have access to a
pool of M base bandit algorithms each operating, say, within a different class of models or under
different assumptions on the environment, and the aim is to design a bandit meta-algorithm that
learns to simulate the best base algorithm in hindsight, without knowing in advance which one will
be best for the environment at hand. This approach has often been used in the literature to capture
bandit model selection problems. In fact, a natural instantiation of this framework is when we have a
sequence of nested policy classes, and the goal is to single out the best policy within this nested family,
by paying as price only the complexity of the policy class the optimal policy falls into. In some
sense, Item 2 is more general than Item 1, since one may attempt to achieve a best-of-both-world
performance by pooling a stochastic bandit algorithm with an adversarial bandit one, and expect the
meta-algorithm on top of them to eventually learn to follow one of the two. Similarly, in the setting of
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stochastic rewards with adversarial corruptions, one can pool together stochastic algorithms operating
with increasing guessed levels of corruptions, and let the meta-algorithm learn to single out the one
corresponding to the true corruption level.1

In this paper, we combine the two items above into a bandit algorithm that exhibits both model
selection and best-of-both worlds regret guarantees simultaneously. Our framework encompasses in
particular a well-known linear bandit model selection scenario, where the action set A is a (finite but
large) subset of RdM , for some maximal dimension dM > 0, and we deal with a hierarchy of possible
dimensions d1 < . . . < dM . At time t, the learner plays an action at ∈ A and receives as reward
either rt = a>t ωt, where ωt ∈ RdM is an adversarially-generated reward vector (adversarial setting),
or rt = a>t ω + white noise, where ω ∈ RdM is a fixed but unknown reward vector (stochastic setting).
Associated with dimensions d1 < . . . < dM are a nested family of policy classes Π1 ⊂ . . . ⊂ ΠM ,
and M base algorithms A1, . . . ,AM , where the i-th algorithm Ai is a linear bandit algorithm that
works under the assumption that only the first di components of ωt (or ω) are nonzero. Hence
Ai operates with dimension di in that all policies π ∈ Πi are probability distributions which are
projections over action set Ai of the set of probability distributions in ΠM . Here, Ai is the projection
of the full-dimensional action set A onto its first di dimensions. Notice that this implies that the
policy classes are nested: Π1 ⊆ Π2 . . . ⊆ ΠM . If only the first di? dimensions (i? being unknown
to the learner) of each ωt (adversarial setting) or ω (stochastic setting) are nonzero, we design an
algorithm whose regret bound scales as poly(di?)

√
T in the adversarial case and, simultaneously,

as poly(dM ) log T
∆ if the environment happens to be stochastic. Specific consideration is given to

the dependence on di? . We show through a lower bounding argument that in the stochastic case a
guarantee of the form dM log T

∆ , that is, where dM replaces the more desirable factor di? , is inevitable,
if we want to insist on obtaining a log T

∆ -like result. Thus our bounds reflect the best achievable regret
rates depending on dM in the stochastic case and on poly(di?) in the adversarial case.

In order to achieve these best-of-both-world results, one cannot easily rely on general corralling
techniques, like the one contained in [3], since the granularity offered by adversarial aggregation
algorithms is no better than

√
T , which is not adequate for stochastic settings; hence our choice

towards the model selection technique known as regret balancing. Yet, even in this case, the literature
does not provide off-the-shelf solutions: We first need to extend regret balancing from stochastic
rewards [13, 26, 1] and corrupted stochastic rewards [31] to adversarial rewards. This involves
adding extra actions to the action space at a given level of the hierarchy so as to enable the base
learner operating at that level to compete with higher levels. This seems to be needed because in the
adversarial case, base algorithms may even incur a negative regret, thus making it hard to compare the
relative performance of algorithms operating at different levels during the regret balancing operations.
Specific technical hurdles arise in the linear bandit case, where mis-specification may cause low-level
base learners to behave in a maliciously erratic way. In this case, mis-specification tests have to be
designed with care so as to ensure that base learners that are mis-specified but not yet eliminated
incur manageable regret. At the same time, these tests should also detect as soon as possible if the
environment is stochastic through ad hoc regret balancing gap estimation procedures.

For our results to hold, some technical conditions are required on the base algorithms, like a notion of
(high probability) stability and a notion of action space extendability, formally defined in Section 2.
We show that these conditions are fulfilled by known algorithms, like an anytime variant of the
GeometricHedge.P algorithm in [7], and a high-probability variant of the EXP4 algorithm in [6].

Related work. Among the references we mentioned above, those which are most relevant to
our work, as directly related to model selection and best-of-both-worlds guarantees are perhaps
[4, 13, 21, 31]. In both [4] and [13], model selection regret guarantees for stochastic contextual
bandits are given which take the form poly(di?)

√
T . Yet, no combination of best-of-both worlds and

model selection results are contained in those papers. Closer in spirit are [21] and [31].

In [21], the authors consider model selection problems on top of adversarially corrupted stochastic
linear bandit problems, where the total level of corruption C is unknown in advance. It is worth
stressing that this is a model selection problem which is substantially different (and actually easier,
see Section 4) than ours, as the selection applies to C instead of the complexity term R(Πi). In fact,
the model selection procedure in [21] looks very different from ours, and can be roughly seen as

1Recent relevant papers, working with model mis-specification instead of reward corruption, include [27, 14].
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a robust version of a doubling trick applied to C. Our algorithm is more general than theirs, as it
applies to settings beyond linear bandits, and the same is true of our best of both worlds procedures.

In [31], the authors also consider RL settings, and more general forms of corruptions than [21].
Like ours, their model selection algorithm follows the idea of regret balancing and elimination of
[1, 13]. Yet, importantly our work applies to the fully adversarial setting with

√
T regret while

the corruption-robust approach by [31] suffers a linear in T regret if the world is fully adversarial
(C = Ω(T )). To enable this sublinear regret, several important technical challenges needed to solved
that are not present in the corruption setting. Most importantly, the corruption setting can, for the
most part, be handled similar to the stochastic setting. For instance, since [31] measures regret always
w.r.t. to the uncorrupted environment, by definition, no learner can achieve negative regret, which
entails that setting does not require linking base learners as we do here – see Section 2.

On the lower bound side, relevant papers include [32, 24], where the authors investigate the Pareto
frontier of model selection for (contextual) stochastic bandits. It is shown in particular that a regret
upper bound of the form

√
di?T cannot be achieved. However, these papers do not explicitly cover

gap-dependent regret guarantees. A more thorough discussion of our contributions is postponed to
Section 3, after introducing our main notation and assumptions.

2 Problem Setting and Assumptions
We start off by defining the adversarial scenario. An adversarial contextual bandit problem is a
repeated game between a learner A and an environment B. We consider the general decision-making
scenario where the learner A has at its disposal a class of policies ΠA made up of functions π of the
form π : X → ∆A, where ∆A denotes the set of probability distributions over A. At each round t,
the interaction between A and B is as follows:

1. Learner A selects a policy πt ∈ ΠA
2. Simultaneously, the environment B selects context xt ∈ X and reward function rt :
A×X → [0, 1], and reveals xt to A

3. Learner A takes an action at ∼ πt(· |xt) and observes reward ot = rt(at, xt).

The regret RegA(T ,Π′) of algorithm A in rounds T ⊆ N against a policy class Π′ is the difference
between the learner’s accumulated reward in T and the performance of the best fixed policy from Π′:

RegA(T ,Π′) = max
π∈Π′

∑
`∈T

[Ea∼π [r`(a, x`)]− r`(a`, x`)] ,

where Ea∼π[r`(a, x`)] =
∑
a∈A π(a|x`)r`(a, x`) denotes the expectation over the action drawn

from the given policy π which may itself be a random quantity. For ease of notation, we will
omit the comparator policy class when Π′ = ΠA is the policy class of A and replace T by t when
T = [t] := {1, . . . , t}. Hence, RegA(t) is the regret of A against its own policy class up to round t.

The stochastic scenario we consider is similar to the above, except in the way contexts xt and reward
values rt(at, xt) are generated. Specifically, B generates contexts xt in an i.i.d. fashion according to
a fixed (but arbitrary and unknown) distribution D over X , while the reward rt(at, xt) is such that
for all fixed (a, x) ∈ A× X , we have E[rt(a, x)] = r(a, x), for some fixed function r(·, ·) in some
known class of reward functions. In this case, we measure performance through pseudo-regret

PseudoRegA(T ,Π′) = max
π∈Π′

∑
`∈T

[Ex∼D,a∼π [r(a, x)]− Ex∼D,a∼π` [r(a, x)]] ,

where Ex∼D,a∼π is the expectation over contexts x and the action a ∼ π(·|x) drawn from a policy π
that may itself be a random quantity. We say an environment B is stochastic with gap ∆ > 0 if there
is a policy π? ∈ Π such that

Ex∼D,a∼π? [r(a, x)] ≥ max
π∈Π\{π∗}

Ex∼D,a∼π [r(a, x)] + ∆ .

A notable example of the above is the following linear bandit scenario. In the adversarial case
(“adversarial linear bandits”) the action space A is a subset of Rd, for some dimension d, the context
xt is irrelevant and, upon playing action at ∈ A, the environment generates a reward which is a linear
function of the actions, rt(at, xt) = rt(at) = a>t ωt, where ωt is chosen adversarially at every round
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within some known class of d-dimensional vectors. In the stochastic case (“stochastic linear bandits”),
the only difference is that we simply have rt(at, xt) = rt(at) = a>t ω + εt, where ω is a fixed and
unknown vector in the class of d-dimensional vectors, and εt is a sub-Gaussian noise. Moreover, we
have gap ∆ if there is π? ∈ Π such that Ea∼π?

[
a>ω

]
≥ maxπ∈Π\{π?} Ea∼π

[
a>ω

]
+ ∆ .

Many algorithms A in the literature exist that enjoy a regret bound against their policy class ΠA,
holding in all environments B satisfying certain conditions. If this regret bound holds, we say that A
is adapted to this environment. Here, we allow algorithms to also compete against policy classes Π′

other than ΠA, and focus on algorithms that come with regret bounds of the following form.
Definition 1 (Adapted). We call A adapted to environment B and policy class Π′ if, with probability
at least 1− δ, the following bound holds simultaneously for all t ∈ N:2

RegA(t,Π′) = O

(
R(ΠA)

√
t ln

t

δ

)
.

The term R(ΠA) is a (known) measure of complexity of the policy class ΠA used by A.

Examples of algorithms satisfying Definition 1 include a version of the Geometric Hedge algorithm
in linear bandits [7] and the EXP4 algorithm [6] in contextual bandits with finite action sets that
operates over policies mapping contexts to probability distributions over actions. We will discuss
them in detail below. Before introducing the model selection questions addressed in this work, we
present two stronger versions of the above definition, which we call high-probability stability and
extendability. These will be useful for model selection among multiple learners. As we will show
with examples later, these stricter conditions can be established for several common settings under
the same conditions for which adaptivity from Definition 1 is guaranteed.

Additional conditions. The first condition, high-probability stability (or h-stability) generalizes
adaptivity to the case where A only observes a certain noisy version of the reward. To state the
condition formally, consider a more general interaction protocol between A and the environment B,
where Step 3 above is replaced by

3a. Let bt ∼ Bernoulli(ρ) for a fixed and known ρ ∈ (0, 1]. Learner A takes an action
at ∼ πt(· |xt) and observes an importance-sampled version of the reward ot = bt

rt(at,xt)
ρ .

This encompasses the original protocol with ρ = 1 as a special case. An algorithm is h-stable if it
maintains its regret guarantee up to a 1/

√
ρ penalty in this more general interaction protocol:

Definition 2 (h-stability). An algorithm A is high probability stable (h-stable) in an environment B
against policy class Π′ if it satisfies for any constant ρ ∈ (0, 1] a regret bound

RegA(t,Π′) = O
(
R(ΠA)

√
t

ρ
ln
t

δ

)
that holds with probability at least 1− δ simultaneously for all t ∈ N.

Note that A is adapted to B and Π′ if it is h-stable for ρ = 1. Compared to the notion of stability
proposed in [3], the one in Definition 2 is more demanding, in that it requires the importance-
weighted regret bound to hold with high probability, rather than in expectation. Since we aim for
high-probability regret bounds in adversarial and stochastic settings, this stronger notion is natural.

The second condition, extendability, generalizes h-stability to environments with additional actions, as
specified next. Let B be the original environment with action setA and let Āk = A∪{a′1, a′2, . . . , a′k}
be the action set extended by k extra special actions a′1, a

′
2, . . . , a

′
k. Further, let Π̄ = {π : X →

∆Āk} be an extended version of the original policy set Π = {π : X → ∆A} that contains all policies
of the original policy set and the single-action policies 1 {a′i} that always choose a certain special
action a′i, i.e., Π̄ ⊇ Π ∪ {1 {a′1} ,1 {a′2} , . . . ,1 {a′k}}.3 We further allow the environment on the
extended action space Āk to choose any values for rewards rt(a′i, xt), possibly depending on the
entire history and all rewards rt(a, xt) assigned to other actions a 6= a′i in that round. We denote the
set of all such extended environments by Bk(B, Āk). An algorithm A is now extendable if we can
run it with the extended policy set Π̄k and it competes well against Π′ and policies 1 {a′i} in all such
extended environments.

2Here and throughout, the O-notation only hides absolute constants.
3Policies π ∈ Π are naturally extended from ∆A to ∆Āk by assigning probability 0 to all special actions a′i.
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Definition 3 (Extendability). Consider an algorithm A with policy set ΠA ⊆ X → ∆A in
environment B. We call A k-extendable in B against Π′ if there is an extended policy set
Π̄k ⊇ ΠA ∪ {1 {a′1} , . . .1 {a′k}} such that A equipped with the extended policy set Π̄k is h-stable
against Π′ ∪ {1 {a′1} , . . .1 {a′k}} in all environments B′ ∈ B(B, Āk) that extend B from action
space A to action space Āk = A ∪ {a′1, . . . , a′k}.

One relevant example of h-stable and extendable algorithm working in the adversarial linear bandit
scenario is an anytime variant of the Geometric Hedge algorithm from [7] with exploration ruled by
John’s ellipsoid (e.g., [9]) – see Appendix B. Another example is a high-probability variant of the
EXP4 algorithm from [6], which operates with finite sets of policies.

2.1 Model selection and best-of-both-worlds regret

Our model selection for best-of-both worlds regret guarantees can be described as follows. We have a
nested family of policy classes Π1 ⊆ . . . ⊆ ΠM , with (known) complexitiesR(Π1) ≤ . . . ≤ R(ΠM ).
A meta-learning algorithm M has access to M base algorithms A1, . . . ,AM , algorithm Ai operating
with policy class Πi. These algorithms we sometimes refer to as base learners. Let i? be the smallest
index of the base learner that competes against the largest policy class ΠM in the following sense:

i? = min {i ∈ [M ] : Ai is (M − i)-extendable and h-stable in B against ΠM} .

The goal of model selection is to devise a meta-algorithm M that has access to the base learners
A1, . . . ,AM , and which achieves with probability 1− δ a regret bound of the form4

RegM(t,ΠM ) = O
(

poly
(
M,R(Πi?), lnR(ΠM )

)√
t ln

t

δ

)
,

holding for all t, whenever AM is h-stable and the environment B is adversarial. Simultaneously, if B
is stochastic with gap ∆, then we must have

PseudoRegM(t,ΠM ) = O
(poly(M,R(ΠM ))

∆
log

t

δ

)
.

Notice that the above requirement on the pseudo-regret in stochastic environments only requires
a dependence on R(ΠM ), instead of R(Πi?). This is motivated by the fact that in stochastic
environments with gap ∆ it is generally impossible to obtain model selection guarantees of the form
R(Πi? ) log t

∆ – see Appendix A for a proof of this claim.

3 Summary of Our Contributions and Discussion

Our contributions can be summarized as follows. (i) We introduce an algorithm, called Arbe
(Algorithm 1), for high probability model selection. This is the first high-probability model selection
result for adversarial contextual bandit algorithms. Arbe satisfies a high probability guarantee as
long as each of the base algorithms also satisfies one. Our algorithm takes inspiration from the
balancing and elimination techniques in [13], which have been designed for stochastic contextual
bandit (and RL) scenarios. Yet, as mentioned above, several technical hurdles had to be overcome
in the algorithm’s design to make it usable with adversarial base learners. We believe the model
selection rates that our algorithm achieves are minimax optimal in their dependency on R(Πi?).
Recall that, as shown by the lower bounds of [24], it is not possible to achieve a model selection rate
scaling linearly with R(Πi?) – the best one can hope for is a quadratic dependence on R(Πi?). In
the setting of adversarial linear bandits this turns into a rate with a multiplier of the form di? log(A)

instead of
√
di? log(A). In particular, when |A| = Ω(2di? ) or5 |A| = ∞, this multiplier becomes

d2
i?

. In the simpler case of EXP4 base learners, this multiplier takes the form log(Πi?) instead of√
log(Πi?).

(ii) We introduce the first algorithm for best-of-both-worlds model selection. By leveraging the high-
probability guarantees of Arbe, we develop the first best-of-both-worlds model selection algorithm

4Here, poly(a, b, c) is a polynomial function of the three arguments separately.
5Despite we do not explicitly work out the details here, applying our results to the infinite arm case for

adversarial linear bandits can be accomplished by a standard covering argument at each dimension di. This turns
factor log(A) into one of the form di? log T .
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Algorithm 1: Arbe(δ, s = 1, t0 = 0) Adversarial Regret Balancing and Elimination
1 Input: initial time t0, index s of smallest active base learner, failure probability δ
2 Initialize base learners As,As+1, . . . ,AM with extended policy classes Π̃s, Π̃s+1, . . . , Π̃M

3 Set sampling probabilities ρi = R(Π̃i)
−2∑M

j=s R(Π̃j)−2
for all i ∈ {s, . . . ,M}, and ρi = 0 for i < s

4 for round t = t0 + 1, t0 + 2, . . . do
5 Sample base learner index bt ∼ Categorical(ρ1, · · · , ρM )

6 Get context xt and compute ait ∼ πit(·|xt), the action each base learner Ai proposes for xt
7 Play action at = abtt (resolve linked actions if necessary) and receive reward rt(at, xt)
8 Update all base learners Ai with reward 1{bt=i}rt(at,xt)

ρi

9 Set

C̃Rewi(t0, t) =

t∑
`=t0+1

1 {b` = i} r`(a`, x`)
ρi

, Di(t0, t) = O

(√
t− t0
ρi

ln
ln t

δ
+

1

ρi
ln

ln t

δ

)
(1)

Test for all i, j ∈ {s, . . . ,M} with i < j:

C̃Rewj(t0, t) > C̃Rewi(t0, t) + Di(t0, t) + Dj(t0, t) +R(Π̃i)

√
t− t0
ρi

ln
t

δ
(2)

10 if test triggers for Ai then restart algorithm by running Arbe(δ, i+ 1, t)

(Arbe-Gap + Arbe-GapExploit, Algorithm 2 + Algorithm 4) that can retain model selection rates
when the environment is adversarial, and obtain logarithmic rates when the environment is stochastic
with a gap. The logarithmic gap-dependent rate of this algorithm exhibits an optimal quadratic
dependence w.r.t. the largest policy class R(ΠM ) (see also Item (iii) below). Our algorithm is quite
complex and requires a couple of main innovations: First, a careful design of a gap identification
subroutine aimed at identifying a candidate optimal policy and gap estimator (Arbe-Gap) and,
second, a very precise schedule of play for exploiting this knowledge and test its truthfulness
(Arbe-GapExploit).

(iii) As already mentioned, we show via a lower bound for stochastic environments that, in the
presence of a gap, perfect model selection between multiple logarithmic rate learners is impossible.
This can be found in Appendix A. A dependence on the complexity of the largest class R(ΠM ) is
inevitable, and this dependence must be quadratic. Our algorithms (Arbe-Gap + Arbe-GapExploit)
achieve exactly this dependence when the environment is stochastic and has a gap (Theorem 5).

4 Adversarial Model Selection Using Regret Balancing

We now introduce our algorithm for model selection in adversarial bandit problems with high-
probability regret guarantees. The algorithm is shown in Algorithm 1, and follows the regret
balancing principle. This principle has been applied successfully to model selection in bandit and RL
problems with stochastic rewards [13, 26, 1] and with corrupted stochastic rewards [31]. Our work is
the first to extend this approach to adversarial rewards.

Regret Balancing. In each round, we choose the index of a base learner bt by sampling from a
categorical distribution with probabilities ρs, ρs+1, . . . , ρM that remain fixed throughout the epoch.
The policy of learner Abt is then used to sample the action at that is passed to the environment. After
receiving the reward rt(at, xt), Algorithm 1 updates each base learner Ai with rt(at, xt) importance-
weighted by the probability that the learner was selected, i.e., 1{bt=i}rt(at,xt)

ρi
. Thus, we update all

base learners. This is closer to the Corral algorithm [3] than to the regret balancing approaches for
the stochastic setting, which only update the selected learner Abt .
If the probabilities are set to ρi ∝ 1

R(Πi)2 then after t rounds, each learner Ai is followed roughly ρit
times. To see why the regrets of all learners are balanced if they are h-stable against ΠM in this case,
consider the following. Denote by regt(a) = [Ea∼π? [rt(a, xt)]− rt(a, xt)] the regret in round t of
action a where π? ∈ argmaxπ∈ΠM

∑T
t=1 Ea∼π [rt(a, xt)] is the best policy after all rounds T . The
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regret in rounds where Ai was selected can be bounded using standard concentration arguments as

T∑
t=1

1 {bt = i} regt(at) = ρi

T∑
t=1

1 {bt = i}
ρi

regt(a
i
t) ≈ ρi

T∑
t=1

regt(a
i
t) ≤ R(Π̃i)Õ

(√
ρiT
)
,

where the final inequality holds because Ai is h-stable. From the definition of ρi we haveR(Π̃i)
√
ρi =(∑M

j=sR(Π̃j)
−2
)−1/2

≤ R(Π̃s), which shows that the total regret in those rounds is bounded by

Õ(R(Π̃s)
√
T ). Thus, if base learners are all h-stable, then the regret incurred by each of them is

comparable to the regret incurred by As, the learner with the smallest complexity R(Πs).

Eliminating Base Learners. If a learner Ai is not h-stable and may have linear regret, then the
probabilistic schedule above which plays this learner roughly ρit times yields linear regret. We
therefore monitor the performance of each learner and terminate the epoch whenever a learner
performs significantly worse than expected, and thus cannot be h-stable in the environment. To
identify such cases, we compare estimates of the rewards of all pairs of base learners as follows. For
each learner Ai, C̃Rewi(t0, t) in Equation 1 is an unbiased estimate of the learners reward sequence
CRewi(t0, t) =

∑t
`=t0+1 r`(a

i
`, x`) (see the appendix for details about how these estimates are

computed). Further, using confidence bounds Di(t − t0) from Equation 1, we can constructs a
confidence interval for CRewi(t0, t) as

[
C̃Rewi(t0, t)−Di(t− t0), C̃Rewi(t0, t) + Di(t− t0)

]
.

If the confidence intervals for two learners with indices i < j are more than the h-stable regret
bound of i apart, see Equation 2, then deem all learners with index up to i not h-stable and restart the
algorithm with a reduced set of base learners.

This kind of elimination condition has already been used in stochastic environments [27, 13, 31],
but it requires substantially more care in an adversarial setting. In settings with stochastic rewards
(even with corruption, e.g., [31]), no learner can achieve rewards that are significantly higher than the
optimal policy. In contrast, in the adversarial setting, it is possible to have negative regret against any
fixed policy. Thus, if we were to use the elimination condition in Equation 2 with our base learners as
is, then we may eliminate an h-stable base learner i when another base learner j has negative regret
against the best fixed policy π?t . This could in turn lead to undesirable regret in subsequent epochs
when only learners with R(Πi)� R(Πi?) are left.

Linking Base Learner Performances. To address this issue, we link the performance of base
learners. Instead of instantiating each learner Ai with its original policy set Πi, we apply it to an
extended problem with M − i additional actions ãi+1, ãi+2, . . . , ãM , and an extended policy set Π̃i

that includes all original policies, along with policies that only choose one of the additional actions ãi,
that is Π̃i ⊇ Πi∪{1 {ãi+1} , . . .1 {ãM}}. Whenever a base learner Ai chooses one of the additional
actions ãj , then the action proposed by Aj is followed. Essentially, running each base learner with
such an extended action set allows it to choose to follow the actions proposed by any learner with
higher index in the hierarchy. The benefit of linking base learners this way is that each base learner
now not only competes against the best fixed policy in their set, but also against all learners above
them in the hierarchy. Thus, if Ai is h-stable and extendable (see Definition 3), then it satisfies a
regret bound of the form6

t∑
`=t0+1

[
Ea∼πj` [r`(a, x`)]− Ea∼πi` [r`(a, x`)]

]
= Õ

(
R(Π̃i)

√
t− t0
ρi

)
(3)

against any learner Aj with j > i. As a result, since the LHS of Equation 3 is approximately

C̃Rewj(t0, t)− C̃Rewi(t0, t)±Di(t0, t)±Dj(t0, t), the test in Equation 2 cannot trigger for such
Ai, and only base learners that are not h-stable or extendable can be eliminated.

In Appendix C, we show that our regret balancing algorithm achieves the following regret bound:
Theorem 4. Consider a run of Algorithm 1 with Arbe(δ, 1, 0) and M base algorithms with 1 ≤
R(Π̃1) ≤ · · · ≤ R(Π̃M ) where Π̃i is the extended version of policy class Πi with (M − i) additional
actions. Then with probability at least 1− poly(M)δ the regret Reg(t,ΠM ) for all rounds t ≥ i? is
bounded by

6We here naturally extend the domain of r` to linked actions as r`(ãi, x`) = r`(a
i
`, x`) for all i ∈ [M ].
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O

((
R(Π̃i?)

R(Π̃1)

√
i? +M

)
R(Π̃i?)

√
i?t ln

t

δ

)
, (4)

where i? is the smallest index of the base algorithm that is h-stable.

In most settings, the complexity R(Π̃i? )

R(Π̃1)
≥
√
M and the first term dominates. This regret recovers

the expected regret guarantees of Corral [2] when used with learning rates that do not require
knowledge of i? but as stronger high-probability bounds. To the best of our knowledge, Theorem 4
is the first high-probability regret bound for adversarial model selection. To illustrate our result,
consider to common problem of model selection with nested model classes of dimensions di = 2i for
i ∈ [M ], discussed in the introduction. We can use GeometricHedge.P as base learners which are
h-stable and extendable if adapted (see Appendix B) and the complexity of extended policy classes
R(Π̃i) = R(Πi) + M − i ≤ di + M is not much larger than those of the original policy classes.
Arbe with such base learners achieves a regret bound of order Õ(d2

i?

√
t) up to factors of M and

log-factors which are typically small.

5 Adversarial Model Selection with Best of Both Worlds Guarantees

In this section, we present our algorithm for adversarial model selection that preserves a logarithmic
regret guarantee in case it interacts with a stochastic environment with gap ∆ > 0. In order to achieve
such a best-of-both-worlds guarantee, we will combine our adversarial regret balancing technique
with the algorithmic strategy of Bubeck and Slivkins [11]. The main result for our algorithm is:

Theorem 5. Consider a run of Algorithm 2 with inputs t0 = 0, arbitrary policy policy π̂ ∈ ΠM

and M base learners A1, . . . ,AM . Then with probability at least 1− poly(M)δ, the following two
conditions hold for all t ≥M2 simultaneously. In any adversarial or stochastic environment B, the
regret is bounded as

Reg(t,ΠM ) = O

((
M + ln(t) +

R(Π̃i?)

R(Π̃1)

√
i?

)
R(Π̃i?)

√
t(ln(t) + i?) ln

t

δ

)
.

If B is stochastic and there is a unique policy with gap ∆ > 0, then the pseudo-regret is bounded as,

PseudoRegM(t,ΠM ) = O

(
R(ΠM )2

∆
ln(t) ln

t

δ
+
R(Π̃i?)2R(Π̃M )2

R(Π̃1)2

M2i?
∆

ln2

(
MR(Π̃M )

∆δ

))
.

(5)

The algorithm has the same regret bound as Arbe up to a
√

ln t factor. However, in addition, it
also maintains poly-logarithmic pseudo-regret if the environment is stochastic and the best policy
exhibits a positive gap. Our pseudo-regret bound depends polynomially on R(ΠM ) in contrast to the
R(Πi?) dependency for the adversarial regret rate. This may seem undesirable but, as mentioned in
Section 2.1, model selection in stochastic environments with poly(R(Πi?), ln(R(ΠM )) ln(t)

∆ regret is
impossible (see Appendix A), let alone while maintaining a best-of-both-worlds guarantee with

√
T

regret in adversarial environments. Hence, our algorithm achieves the best kind of guarantee we can
hope for, up to improvements in the order of polynomial dependencies.

Our algorithm proceeds in two distinct phases. The first, Arbe-Gap shown in Algorithm 2 is designed
to identify a suitable candidate for the optimal policy and to estimate its gap. If such a policy that
performs significantly better than any other policy emerges, the algorithm enters the second phase,
Arbe-GapExploit which hones in on this policy by playing it most of the time while monitoring its
regret in case the environment turns out to be adversarial after all (in which case we simply run Arbe).
We now describe both phases.

5.1 First Phase: Candidate Policy Identification and Gap Estimation

This goal of this phase is to always maintain the desired adversarial model selection regret guarantee
and simultaneously identify the gap between the best policy and the rest if one exists. To achieve
the first goal, we employ the regret balancing and elimination technique of Arbe, see Lines 3–11 of
Algorithm 2 which are virtually identical to Algorithm 1.
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Algorithm 2: Arbe-Gap(δ, t, π̂, n, (Ai)Mi=s)
1 Input: failure probability δ, timestep t0, focus policy π̂, number of (re)starts n, learners (Ai)Mi=s
2 Set ΠM+1 = ΠM\{π̂} and AM+1 as a copy of AM with policy class ΠM+1

3 Initialize base learners As,As+1, . . . ,AM+1 with extended policy classes Π̃s, Π̃s+1, . . . , Π̃M+1

4 Set sampling probabilities ρi = R(Π̃i)
−2∑M+1

j=s R(Π̃j)−2
for all i ∈ {s, . . . ,M + 1}, and ρi = 0 for i < s

5 for round t = t0 + 1, t0 + 2, . . . do
6 Sample base learner index bt ∼ Categorical(ρ1, · · · , ρM )

7 Get context xt and compute ait ∼ πit(·|xt), the action each base learner Ai proposes for xt
8 Play action at = abtt (resolve linked actions if necessary) and receive reward rt(at, xt)
9 Update all base learners Ai with reward 1{bt=i}rt(at,xt)

ρi

10 if Equation 2 holds between Ai,Aj for s ≤ i < j ≤M + 1 then
11 restart algorithm by running Arbe-Gap(δ, t, π̂, n+ 1, (Ai+1, · · · ,AM ))

// Gap Test: AM better than AM+1?

12 Set W(t0, t) = Θ

(√
R(Π̃M )2

ρM (t−t0) ln n(t−t0)
δ +

ln
n ln(t−t0)

δ

ρM (t−t0)

)
13 Set ∆̂t = C̃RewM (t0,t)−C̃RewM+1(t0,t)

t−t0 −W(t0, t)

14 if 2W(t0, t) ≤ ∆̂t ≤ R(Π̃M )2 then
15 Run Arbe-GapExploit (Appendix D) with inputs δ, t0 = t,AM , π̂ and ∆̂ = ∆̂t

16 Run Arbe with inputs t0, s, δ
// New Candidate Policy Test

17 if a policy π ∈ ΠM \ {π̂} has been selected in more than 3t
4 of all t ≥ 9 rounds then

18 restart algorithm by running Arbe-Gap(δ, t, π, n+ 1, (Ai)Mi=s)

For the second goal, determining the gap, Arbe-Gap maintains a candidate π̂ ∈ ΠM for the optimal
policy and estimates its gap as follows. The learner hierarchy A1, . . . ,AM is augmented at the top
with an additional learner AM+1 operating on the policy class ΠM+1 = ΠM \ {π̂}. Since AM+1

is identical to AM except that it does not have access to π̂, we can obtain a gap estimate for π̂ by
monitoring the difference in reward estimates C̃RewM+1 and C̃RewM of AM+1 and AM . In fact,
∆̂t in Line 13 is a lower confidence bound on the difference between the best policies in Π̂M and
Π̂M \ {π̂} and thus, the gap of π̂. We test at every round whether ∆̂t exceeds its confidence width
2W(t0, t). If this test triggers then π̂ must have a positive gap ∆ of order W(t0, t) and further, ∆̂t must
be a multiplicative estimate of ∆, that is, ∆̂t ≤ ∆ ≤ 2∆̂t. The latter holds, because ∆̂t + 2W(t0, t)

is an upper-confidence bound on ∆ and the test condition implies 2∆̂t ≥ ∆̂t + 2W(t0, t) ≥ ∆. Since
in this case, we have determined that π̂ is optimal with a gap of order ∆̂t, we can move on to the
second phase Arbe-GapExploit discussed later.

Assume the candidate policy π̂ is indeed optimal and exhibits a positive gap ∆. Since ∆̂t concentrates
around ∆ at a rate of W(t0, t) ≈ poly(RM (Π̃M ))√

t−t0
, the condition of the gap test in Line 14 must

trigger after at most t− t0 . poly(RM (Π̃M ))
∆2 rounds. Finally, since Arbe-Gap always maintains the

poly(R(Π̃i?)
√
t− t0 adversarial regret rate, the total pseudo-regret incurred until the test triggers is

of order poly(RM (Π̃M ))
∆ , leading to the second term in the bound in Equation 5.

With the techniques above, we can reliably detect a positive gap if the candidate policy π̂ exhibits
one. It remains to identify a suitable candidate π̂ of the optimal policy π? in stochastic environments.
To do so, we use the following two observations: Arbe-Gap maintains a poly(R(Π̃i?)

√
t adversarial

regret rate overall and each policy but π? will incur on average at least a regret of ∆ per round.
Hence, in order to maintain that regret, Arbe-Gap must select π? in the majority of all rounds when

t = ω(
poly(R(Π̃i? ))

∆2 ). Otherwise the regret grows as Ω(t∆) = ω(poly(R(Π̃i?))
√
t) violating the
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adversarial rate. To leverage this observation and identify a suitable candidate policy π̂, Line 17 of
Algorithm 2 always checks whether there is a policy other than the current candidate policy that
has been selected in at least 3/4 of all rounds.7 If so, the algorithm is restarted with this policy as
candidate π̂. One can show that there are at most O(ln t) restarts due to candidate policy switches,
only increasing the adversarial regret rate of Arbe-Gap by a factor of O(

√
ln t) compared to Arbe’s.

Our candidate policy selection approach is similar to that by Wei et al. [31] for the corrupted reward
setting but they require each adapted base learner to achieve a logarithmic regret rate in the first place.
Instead, our approach only requires an adversarial regret rate from the base learner.

5.2 Second Phase: Exploitation

Since each base learner only needs to satisfy a
√
T regret rate even in stochastic environments, we

generally cannot hope to recover logarithmic pseudo-regret by only selecting among them. For
logarithmic pseudo-regret, we need to ensure that the given policy π̂ with gap estimate ∆̂ is played
sufficiently often. However, we also need to monitor its regret against all other policies in case the
environments turns out to be adversarial. If at any point, π̂ fails to maintain a gap of order ∆̂, we can
conclude that the environment is adversarial. Then Arbe-GapExploit returns and we simply play an
instance of Arbe (Line 16 of Algorithm 2).

We will present a brief summary of the main intuition behind our exploitation phase approach here
and defer a longer discussion and the detailed pseudo-code to Appendix D. In each round, we
play policy π̂ with probability approximately 1− poly(R(ΠM ))

∆̂2t
, and with the remaining probability

poly(R(ΠM ))

∆̂2t
a version of base learner AM with policy class ΠM \ {π̂}.

If the environment is indeed stochastic, then π̂ = π? does not incur any pseudo-regret and the total
regret in other t′ ≈ t · poly(R(ΠM ))

∆̂2t
≈ poly(R(ΠM ))

∆̂2
rounds can be bounded as t′ ·∆ + RegAM (t′,ΠM \

{π̂}) ≈ poly(R(ΠM ))
∆ ln(t). The first term is the regret of the best policy in ΠM \ {π̂} and the second

term is the regret of AM against that policy. Since AM is h-stable on Π \ {π̂}, its regret against that
policy is at most poly(R(ΠM ))

√
t′ and we get the desired pseudo-regret.

To ensure good regret in the adversarial case, we need to detect quickly enough when π̂ does not
exhibit a performance gap anymore and fall back to a fully adversarial algorithm. Similar to ∆̂t in
the first phase, we use a lower confidence bound on the average performance gap and continuously
test whether it falls below ∆̂

2 . This simple approach would give
√
t adversarial regret but may exhibit

a poly(R(ΠM )) dependency. Fortunately, we can avoid this dependency and retain the desired model
selection regret rates by extending the intuition above to also test an upper bound on the gap. For
details, see Appendix D.

6 Conclusions

We have described and analyzed a novel model selection scheme for bandit algorithms that benefits
from best-of-both-worlds high probability regret guarantees. Though not restricted to linear bandits,
our machinery can be specifically applied to adversarial/stochastic linear bandit tasks, where model
selection is performed on the unknown dimensionality of the linear reward function. This has required
extending the regret balancing technique of model selection from stochastic to adversarial rewards
and a very careful handling of the associated mis-specification tests. The base learners aggregated by
our meta-algorithm have to satisfy an anytime high probability regret guarantee in the adversarial
case, along with regret stability and action space extendability properties which we have shown are
satisfied by (variants of) known algorithm in the bandits literature.

Our best-of-both world model selection regret guarantees cannot in general be improved, specifically
in stochastic environments with gaps, where it is generally impossible to obtain log t-like model
selection bounds that only depend on the complexity of Πi? . On the other hand, it would be nice to
see in Theorem 5 a better polynomial dependence on M and R(ΠM ). Also, it might be possible to
adapt Arbe-Gap to work with adversarially corrupted stochastic rewards while doing model selection
on the complexity of the models. We leave this as a future research direction.

7Due to linking learners, there is slight ambiguity in defining the selected policy per round. We here determine
the selected policy as the policy chosen by the learner that eventually picked at after resolving linked actions.
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