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Abstract

In this work we propose a multi-scale recurrent encoder-decoder architecture to predict
the breathing induced organ deformation in future frames. The model was trained end-
to-end from input images to predict a sequence of motion labels. Targets were created
by quantizing the motion fields obtained from deformable image registration. We propose
a multi-scale feature extraction scheme in the spatial encoder which processes the input
at different resolutions. We report results using MRI free-breathing acquisitions from 12
volunteers. Experiments were aimed at investigating the proposed multi-scale design and
the effect of increasing the number of predicted frames on the overall accuracy of the model.
The proposed model was able to predict vessel positions in the next temporal image with
a mean accuracy of 2.03 ± 2.89 mm showing increased performance in comparison with
state-of-the-art approaches.
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1. Introduction

According to the last American Cancer Society’s report (Ame, 2020), about 42,810 new
cases of primary liver cancer will be diagnosed this year in the US. Radiation therapy is
the first line of treatment for the majority of these cases. Its goal is to focus the radiation
beams in the target and to avoid surrounding anatomy. However, respiratory motion is
one of the major issues with large dosimetric impact (Mechalakos et al., 2004). Image-
guided radiation treatments can greatly benefit from future frame prediction models since
the beam can be re-positioned compensating for motion. Toward this end, several solutions
have been proposed. Generally, they rely on statistical (Samei et al., 2012; Preiswerk, 2013)
or biomechanical modeling (Brock et al., 2002), the former being more common in the
literature. In this work, we proposed a recurrent multi-scale encoder-decoder framework to
perform in-plane spatio-temporal motion prediction from sequential images.

2. Method

The proposed model aims at learning a representation that predicts the sequence of encoded
motion 〈Zn,Zn+1, . . . ,Zn+T 〉 over T future time steps given an input image sequence
〈I1, I2, . . . , In〉 of length n. Figure 1 (A) shows the proposed pipeline. First, consecutive
pair of images are non-rigidly registered in order to measure the motion between them.
Secondly, the resulting two-dimensional motion fields are encoded using an auxiliary repre-
sentation space Zi = F (Yi) where Zi ∈ RH×W×Q. F is a mapping function to encode the
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displacement fields into motion labels. To that end, the ranges of values for each vectorial
component, i.e. axes x and y, are quantized into b bins according to the data distribution.
A codebook C ∈ RQ is built by assigning a class to each possible combination between the
bins of each axis. Then, the architecture presented in Figure 1 (B) is trained from input
and target sequences. It contains a multi-scale (MS) spatial encoder that extracts feature
representations at multiple scales through the network as showed in Figure 1 (C). The MS
block processes the input tensor at different levels: fully resolution, medium resolution and
low resolution in order to fully exploit the image features. The motion learning architecture
also contains recurrent units and a fully convolutional spatial decoder. The spatio-temporal
features extracted by the MS encoder are extrapolated in time by the convolutional Long
Short-Term Memory (LSTM) units and further processed by the spatial decoder to recover
the desired dimensions in the form of motion labels.
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Figure 1: A) Proposed pipeline B) Motion prediction architecture C) Multi-scale block.

We introduced a weighted cross entropy loss function (Zhang et al., 2016) to promote
class rebalancing since the distribution is strongly biased toward classes representing the
superior-inferior motion:

LCE = −
∑
h,w

v (Zh,w)
∑
q

Zh,w,q log
(
Ẑh,w,q

)
, (1)

where v (Zh,w) = wq∗ ∝
(

(1− λ) p̃q∗ + λ
Q

)−1
, with p̃q∗ the empirical distribution of motion

class q∗ :
∑

q p̃q wq = 1, q∗ = argmax
q

Zh,w,q and λ is the smoothing weight.

We split each volunteer dataset in 60/20/20 for training, validation and testing, respec-
tively. Adam optimizer with an initial learning rate of 10−3 was used. This learning rate
was reduced by 2 after 10 epochs without improvements in the validation set accuracy.

3. Results and discussion

Experiments were conducted using 50 MRI dynamics covering 15 positions on the right
liver lobe from 12 volunteers. Pixel spacing, slice thickness and temporal resolution are
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equal to 1.7 × 1.7 mm2, 3 mm and 320 ms, respectively. We compared the proposed net-
work with statistical modeling (Li et al., 2011) and with a similar architecture which uses
the traditional encoding scheme (Conv-Pool stacking) (Luo et al., 2017). Table 1 presents
the mean landmark location errors in the predicted images with respect to ground truth
positions. The proposed model significantly outperforms the compared methods for the
in-plane motion prediction task. Figure 2 presents a comparison based on the Normalized
Cross Correlation (NCC) metric. Higher values, which were obtained with the proposed
method, indicate a greater spatial correlation. Figure 3 illustrates the vessel trajectory
through the target and predicted temporal images. Our multi-scale encoder-decoder model
showed the closest alignment with the target trajectory. Finally, Figure 4 shows an example
of the output sequence obtained by deforming the last input image with the predicted defor-
mations. Although the last three extrapolated images present some degree of misalignment
with the targets, we can still identify the vessels and track the anatomy.

Table 1: Vessel tracking error position (in mm) for each predicted time in the MRI dataset.
Values are mean ± standard deviation.

Model t=1 t=2 t=3 t=4 t=5
(320 ms) (640 ms) (960 ms) (1280 ms) (1600 ms)

PCA 4.38 ± 5.12 4.64 ± 4.76 5.03 ± 5.19 5.39 ± 5.42 5.86 ± 5.73
Enc-Dec 2.68 ± 3.22 3.36 ± 3.37 3.90 ± 3.58 4.39 ± 3.61 4.38 ± 3.42
Proposed 2.03 ± 2.89 2.93 ± 3.26 3.51 ± 3.77 3.79 ± 3.92 3.86 ± 3.89

Figure 2: NCC between target and predicted
images.

Figure 3: Vessel trajectory predicted with
different approaches.
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Figure 4: Extrapolation up to five time steps from an input sequence in the test set. Top
row: Input and target sequences, middle row: predicted images by the proposed
model, bottom row: overlapping between target and predicted images. Green
and magenta pixels belong to target and predicted images, respectively.
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