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Abstract

Causal effect identification using causal graphs is a fundamental challenge in causal inference.
While extensive research has been conducted in this area, most existing methods assume
the availability of fully specified directed acyclic graphs or acyclic directed mixed graphs.
However, in complex domains such as medicine and epidemiology, complete causal knowledge
is often unavailable, and only partial information about the system is accessible. This paper
focuses on causal effect identification within partially specified causal graphs, with particular
emphasis on cluster-directed mixed graphs (C-DMGs) which can represent many different
acyclic directed mixed graphs (ADMGs). These graphs provide a higher-level representation
of causal relationships by grouping variables into clusters, offering a more practical approach
for handling complex systems. Unlike fully specified ADMGs, C-DMGs can contain cycles,
which complicate their analysis and interpretation. Furthermore, their cluster-based nature
introduces new challenges, as it gives rise to two distinct types of causal effects: macro
causal effects and micro causal effects, each with different properties. In this work, we focus
on macro causal effects, which describe the effects of entire clusters on other clusters. We
establish that the do-calculus is both sound and complete for identifying these effects in
C-DMGs over ADMGs when the cluster sizes are either unknown or of size greater than
one. Additionally, we provide a graphical characterization of non-identifiability for macro
causal effects in these graphs.

1 Introduction

A key challenge in causal inference for observational studies, known as the identification problem (Shpitser
& Pearl, 2008), involves determining when and how a causal effect of a set of variables X on another set
of variables Y—denoted as Pr(Y = y ∣ do (X = x)), where the do (⋅) operator represents an external inter-
vention—can be estimated from observational data, which are typically represented as a joint probability
distribution under normal, intervention-free conditions. To address this problem, several graph-based tech-
niques have been developed for causal effect identification, assuming a fully specified causal structure, often
represented as directed acyclic graphs (DAGs) or acyclic directed mixed graphs (ADMGs). Among these
methods, the do-calculus(Pearl, 1995) stands out as a sound and complete tool for causal effect identification.
These tools were also extended to directed mixed graphs (DMGs) (Richardson, 1997; Forré & Mooij, 2017;
2018; Forré & Mooij, 2020; Boeken & Mooij, 2024).

However, constructing a fully specified causal graph is challenging because it requires knowledge of the
causal relations among all pairs of observed variables. This knowledge is often unavailable, particularly
in complex, high-dimensional settings, thus limiting the applicability of causal inference theory and tools.
Therefore, there has recently been more interest in partially specified causal graphs (Maathuis & Colombo,
2013; Perkovic et al., 2016; Perkovic, 2020; Jaber et al., 2022; Wang et al., 2023; Anand et al., 2023; Wahl
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et al., 2024; Boeken & Mooij, 2024; Assaad et al., 2023; 2024; Ferreira & Assaad, 2024; 2025). An important
type of partially specified graphs is the Cluster-Directed Mixed Graph that can represent many ADMGs
(C-DMG over ADMGs) which provides a coarser representation of causal relations through vertices that
represent a cluster of variables (and can contain cycles). The partial specification of a C-DMG over ADMGs
arises from the fact that each vertex represents a cluster of variables rather than a single variable. Within
C-DMGs, two distinct types of causal effects exist: macro causal effects, which describe the causal influence
between entire clusters, and micro causal effects, which capture the causal relationships between individual
variables within and across clusters. In this paper, we focus on the former.

Recent work has demonstrated that the do-calculus can be directly applied to identify macro causal effects
in certain restricted classes of C-DMG over ADMGs. Notably, these include Cluster-ADMGs, which enforce
an acyclicity constraint on the cluster graph (Anand et al., 2023; Tikka et al., 2023), and summary causal
graphs, where each cluster represents a single time series (Reiter et al., 2024; Ferreira & Assaad, 2025). In
this study, we extend this line of work by addressing macro causal effect identification in general C-DMG
over ADMGs, without imposing structural restrictions. Specifically, we allow for the presence of cycles and
do not impose any constraints on how clusters are formed—any subset of variables can constitute a cluster as
long as the cluster size is either unknown or it is of size greater than 1. More specifically, our contributions
are as follows:

• We establish that d-separation (Pearl, 1988)—a fundamental tool in do-calculus—is sound and
complete in C-DMG over ADMGs.

• We demonstrate that do-calculus remains sound and complete for identifying macro causal effects
in C-DMG over ADMGs.

• We demonstrate that the classical concept of hedges (Shpitser & Pearl, 2006)—a graphical structure
traditionally used to indicate the non-identifiability of causal effects—does not extend to C-DMG
over ADMGs. Instead, we show that the recently introduced concept of SC-hedges (Ferreira &
Assaad, 2025), which was originally developed for summary causal graphs (a specific subclass of
C-DMG over ADMGs), is applicable to general C-DMG over ADMGs.

The remainder of the paper is organized as follows: In Section 2, we formally present C-DMG over AD-
MGs and macro causal effects. In Section 3, we show that d-separation and the do-calculus is sound and
complete for macro causal effects in C-DMG over ADMGs and present a graphical characterization for the
non-identifiability of these effects. In Section 4, we examine the challenges that emerge when additional
information about cluster sizes is available, particularly when some clusters have a size of 1. Finally in
Section 5, we conclude the paper while showing its limitations. All proofs are deferred to the appendix.

2 Notation and Definitions

In this section, we introduce the key definitions and notations used throughout the paper to facilitate a clear
and consistent presentation of our results. We begin by introducing the primary concept under consideration,
namely the structural causal model (Pearl, 2009), also referred to as the probabilistic causal model (Shpitser
& Pearl, 2008) which is assumed to be unknown.
Definition 1 (Structural causal model (SCM) (Pearl, 2009)). A structural causal model is a tuple M =
(L, V, F, Pr(l)), where

• L is a set of exogenous variables, which cannot be observed but affect the rest of the model.

• V, is a set of endogenous variables, which are observed and every V ∈ V is functionally dependent on
some subset of L ∪ V/{V }.

• F is a set of functions such that for all V ∈ V, fV is a function taking as input the values of a subset
of L ∪ V/{V } and outputting a value for V .

• Pr(l) is a joint probability distribution over L.
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In this definition of SCMs, the set of functions F encapsulates the causal mechanisms governing the relation-
ships among variables, while L represents the noise, i.e., the unobserved or hidden variables that affect the
observed variables, and V represents the observed variables, which are often referred to as individual variables
or micro-variables or low-level variables. The uncertainty associated with these unobserved variables is char-
acterized by the distribution Pr(l), which accounts for the unknown influences outside the observed system.
When combined with the causal mechanisms encoded in F, this distribution gives rise to the distribution
Pr(v) over the observed variables V. We also assume that each structural causal model (SCM) induces a
directed acyclic graph (DAG), where every variable in V ∪ L corresponds to a vertex in the graph. In this
DAG, a directed edge → is drawn from one variable to another if the former serves as an input to the function
that determines the latter. For simplicity, instead of working directly with these DAGs, we consider an alter-
native representation known as an acyclic directed mixed graph (ADMG). In an ADMG, only the observed
variables in V correspond to vertices, while hidden variables in L that share common inputs are represented
by bidirected edges 1 between the corresponding observed variables, thereby implicitly accounting for the
hidden confounding. Formally, ADMGs are defined as follows:
Definition 2 (Acyclic directed mixed graph (ADMG)). Consider an SCM M. The ADMG G = (V, E)
induced by M is a graph where:

• the vertices V are the endogenous variables of the SCM; and

• ∀X, Y ∈ V the edge X → Y is in E if Y is functionally dependent on X and the edge X Y is in E
if both X and Y are functionally dependent on a same exogenous variable L ∈ L.

ADMGs have been extensively studied and are highly valuable in causal inference. However, in many fields
such as epidemiology, constructing, analyzing, and validating an ADMG remains a significant challenge for
researchers due to the inherent difficulty in accurately determining causal relationships among individual
variables. This complexity primarily stems from the uncertainty surrounding causal relations, making it chal-
lenging to specify the precise structure of the graph. Nevertheless, researchers can often provide a partially
specified version of the ADMG, which offers a more practical and compact representation of the underlying
causal structure. These simplified representations, which we call Cluster-Directed Mixed Graphs (C-DMG
over ADMGs), group several variables into clusters, allowing for the representation of causal relationships
at a higher level of abstraction while retaining essential structural properties of the system. In a C-DMG,
directed edges between clusters represent causal influences at the higher level, while bidirected edges capture
hidden confounding effects that exist between clusters.
Definition 3 (Cluster directed mixed graph over ADMGs (C-DMG over ADMGs)). Let G = (V, E) be an
ADMG induced from an SCM M. A C-DMG is a graph Gc = (C, Ec) where:

• C is a partition (i.e., k disjoints sets of micro-variables) of V; and

• ∀CX, CY ∈ C the edge CX → CY (resp. CX CY) is in Ec if and only if there exists X ∈ CX and
Y ∈ CY such that X → Y (resp. X Y ) is in E.

For simplicity, we will henceforth use the terms "C-DMG over ADMGs" and "C-DMGs" interchangeably.
The transformation from an ADMG to a C-DMG can be made explicit using the natural transformation
from V to C = {CX = {X1,⋯, Xnx},⋯, CY = {Y1,⋯, Yny}}:

(x1,⋯, xnx ,⋯, y1,⋯, yny)↦ ((x1,⋯, xnx),⋯, (y1,⋯, yny)).

The abstraction of C-DMG entails that, even though there is exactly one C-DMG compatible with a given
ADMG, there are in general several ADMGs compatible with a given C-DMG. For example, we give in
Figure 1 a very simple C-DMG with two of its compatible ADMGs. If all clusters in the C-DMG are of
size equal to one, then the C-DMG according to our definition would be an ADMG. Notice that, a C-DMG

1In the literature, the bidirected edges in ADMGs are generally non-dashed. However, in this work, we use dashed bidirected
edges to enhance visual clarity and distinction.
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Figure 1: Two ADMGs and with their compatible C-DMG. Red vertices represent the exposures of interest
in and blue vertices represent the outcome of interest.

may have directed cycles and in particular two directed edges oriented in opposite directions, however, we
emphasize that all cycles in all C-DMGs that we consider in this paper, arise from the partial specificity. For
example, in Figure 1 in the C-DMG, CX → CW and CW → CX form a cycle, which we often write CX ⇄ CW.
This cycle implies that in all ADMGs compatible with the C-DMG ∃Xi, Xj ∈ CX and Wk, Wl ∈ CW such that
Xi →Wk and Xj ←Wl.

To streamline the presentation and avoid repetitive explanations of concepts applicable to both ADMGs and
C-DMGs, we will adopt the unified notation G∗ = (V∗, E∗) to refer to either type of graph. This notation
allows us to generalize results and discussions without redundancy across different graph types. In the
remainder, for every vertex V ∗ ∈ V∗ in a graph G∗ = (V∗, E∗) (whether it be an ADMG or a C-DMG), we will
refer to its parents in graph by, Pa(V ∗,G∗), its ancestors by An(V ∗,G∗), and its descendants by De(V ∗,G∗).
We consider that a vertex counts as its own descendant and as its own ancestor. In addition, in a C-DMG
Gc = (C, Ec), for every cluster CX ∈ C, we will use the notation of strongly connected components defined as
follows:

• Strongly Connected Component: Scc(CX,Gc) = An(CX,Gc) ∩De(CX,Gc).

Finally, in order to map the vertices in the C-DMG with the vertices in the ADMG, we will use the notion
of corresponding cluster

• Corresponding Cluster: ∀X ∈ CX, Cl(X,Gc) = CX.

We distinguish between two types of causal effects in the context of C-DMGs, the macro causal effect (Anand
et al., 2023; Ferreira & Assaad, 2025) and the micro causal effect (Assaad et al., 2024; Assaad, 2025). In
this paper we focus on the former and we formally define it below:
Definition 4 (Macro causal effect). Consider a SCM on variables V and a compatible C-DMG Gc = (C, Ec).
A macro causal effect is a causal effect from a set of macro-variables CX on another set of macro-variables
CY where CX and CY are disjoint subsets of C. It is written Pr(CY = cY ∣ do (CX = cX)), where the do (⋅)
operator represents an external intervention.

In the following, we will abuse the notation by writing Pr(cY ∣ do (cX)) instead of Pr(CY = cY ∣ do (CX = cX))
when the setting is clear.

The identification problem in causal inference aims to establish whether a causal effect of a set of variables on
another set of variables can be expressed exclusively in terms of observed variables and standard probabilistic
notions, such as conditional probabilities. Formally, the identification problem in the context of macro causal
effects and C-DMGs is defined as follows:
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Definition 5 (Identifiability in C-DMGs). Let X and Y be disjoint sets of vertices in an unknown ADMG
G compatible with a C-DMG Gc. The causal effect of X on Y is identifiable in Gc if Pr(y ∣ do (x)) is uniquely
computable from any observational positive distribution2 compatible with Gc.

Hence, there are no two ADMGs, G1 and G2 such that Pr1(v) = Pr2(v) where Pr1 is a positive distribution
compatible with G1 and Pr2 is a positive distribution compatible with G2 and Pr1(y ∣ do (x)) ≠ Pr2(y ∣ do (x)).

Whenever the ADMG is known, i.e., all clusters in the C-DMG are of size equal to one, the do-calculus (Pearl,
1995) can be applied to identify the causal effect of interest. Recently, it has been shown that the do-calculus
can also be applied when the ADMG is unknown but its C-DMG is known (with clusters of size greater
than one) under one of the following conditions: the C-DMG is acyclic (Anand et al., 2023); or if the cluster
corresponds to a time series (Ferreira & Assaad, 2025). However, it remains unclear whether the do-calculus
can be directly applied to general C-DMGs. Therefore, the primary objective of this paper is to bridge this
gap by developing analogous tools tailored for general C-DMGs.

We emphasize that, throughout this paper (except in Section 4), we operate under the following assumption:
Assumption 1. The identifiability problem, as defined in Definition 5, is considered under one of the
following assumptions:

1. The size of the clusters is unknown, or

2. No two adjacent clusters in a cycle are both of size one.

While the first condition in the assumption may seem unrealistic—since, in practice, access to data would
typically reveal cluster sizes—it remains relevant in early-stage study design. A modeler may wish to assess
identifiability before finalizing which specific variables will be included in each cluster. For instance, an
epidemiologist planning a study on the effect of salary on stress may know that multiple variables may
represent salary, stress, and confounders, without yet specifying their exact composition. On the other
hand, if the modeler already knows the precise variables in each cluster, and thus the cluster sizes, then our
results apply only when there is no cycle containing two adjacent clusters both of size one (second condition
in the assumption). In Section 4, we further analyze this assumption, distinguishing the results that remain
valid when it is not satisfied from those that no longer hold.

3 Identification of Macro Causal Effects in a C-DMG over ADMGs

In this section, our primary objective is to demonstrate that the do-calculus is both sound and complete
for identifying macro causal effects in C-DMGs. To achieve this, we first establish in the first subsection
that d-separation, a fundamental tool used in do-calculus to determine conditional independencies, is also
sound and complete within C-DMGs to determine "macro conditional independencies". In the second sub-
section, we present the main theoretical result of this section, providing a rigorous proof of the soundness
and completeness of do-calculus for macro causal effect identification. Following this, we introduce a graph-
ical characterization of non-identifiability, offering insights into scenarios where causal effects cannot be
determined from observational data. Finally, in the last subsection, we explore the connection between our
findings and summary causal graphs, demonstrating how our results extend and apply to this specific class
of graphs.

3.1 The d-separation in a C-DMG over ADMGs

The standard definition of d-separation (Pearl, 1988) was introduced for ADMGs. It was later extended to
DMGs in Forré & Mooij (2018) and to cluster-ADMGs in Anand et al. (2023). In this subsection, we show
that it is also readily extendable to C-DMGs. We start by defining blocked paths and d-separation.
Definition 6 (blocked walk (Pearl, 2009)). In a graph G∗ = (V∗, E∗) (whether it be an ADMG or a C-DMG),
a walk π̃ = ⟨V ∗1 ,⋯, V ∗n ⟩ is said to be blocked by a set of vertices W∗ ⊆ V∗ if:

2In this work, we call a positive distribution a distribution in which ∀v, Pr(v) > 0, however this assumption can be loosened
(Hwang et al., 2024).

5



Published in Transactions on Machine Learning Research (07/2025)

1. V ∗1 ∈W∗ or V ∗n ∈W∗, or

2. ∃i ∶ 1 < i < n such that ⟨V ∗i−1∗− ∗V ∗i → V ∗i+1⟩ ⊆ π̃ or ⟨V ∗i−1 ← V ∗i ∗− ∗V ∗i+1⟩ ⊆ π̃ and V ∗i ∈W∗, or

3. ∃i ∶ 1 < i < n such that ⟨V ∗i−1∗→V ∗i ← ∗V ∗i+1⟩ ⊆ π̃ and De(V ∗i ,G∗) ∩W∗ = ∅.

where ∗→ represents → or , ← ∗represents ← or , and ∗− ∗represents any of the three arrow type →, ← or
. A walk which is not blocked is said to be active.

Definition 7 (d-separation (Pearl, 2009)). In a graph G∗ = (V∗, E∗) (whether it be an ADMG or a C-DMG),
let X∗, Y∗, W∗ be distinct subsets of V∗. W∗ is said to d-separate X∗ and Y∗ if and only if W∗ blocks every
path from a vertex in X∗ to a vertex in Y∗. It is written (X∗ ⊧dY∗ ∣W∗)G∗ .

The following theorem shows that d-separation is applicable as is to C-DMGs.
Theorem 1 (Soundness of d-separation in a C-DMG over ADMGs). Let Gc = (C, Ec) be a C-DMG and
CX, CY, CW be disjoint subsets of C. If CX and CY are d-separated by CW in Gc then, in any compatible
ADMG G = (V, E), X = ⋃C∈CX

C and Y = ⋃C∈CY
C are d-separated by W = ⋃C∈CW

C.

Theorem 1 shows that d-separation in C-DMGs guarantees finding some common macro-level d-separation in
all compatible ADMGs which implies according to (Pearl, 2009, Theorem 1.2.5) that it allows the detection
of some conditional independencies in the underlying probability distribution directly from the C-DMG.
Thus, by extending the applicability of d-separation to C-DMGs, this result allows us to infer macro-level
conditional independencies even when dealing with partially specified graphs. To appreciate the above result,
we give in the following an example of the application of d-separation to C-DMGs
Example 1. Let G be the true unknown ADMG and consider that its compatible C-DMG, denoted as Gc

is one given in Figure 2a. Using Definition 7, we can directly deduce (CW ⊧dCY ∣ CX)Gc . Thus according
to (Pearl, 2009, Theorem 1.2.5), CW is conditionally independent of CY given CX in every distribution
compatible with the true ADMG.
Example 2. Let G be the true unknown ADMG and consider that its compatible C-DMG, denoted as Gc

is one given in in Figure 2c. Using Definition 7, we can directly deduce that (CZ ⊧dCY ∣ CX, CW)Gc . Thus
according to (Pearl, 2009, Theorem 1.2.5), CZ is conditionally independent of CY given CX and CW in every
distribution compatible with the true ADMG.

The following theorem shows that d-separation is also complete in C-DMGs under Assumption 1.
Theorem 2 (Completeness of d-separation in a C-DMG over ADMGs3). Let Gc = (C, Ec) be a C-DMG,
CX, CY, CW be disjoint subsets of C, X = ⋃C∈CX

C, Y = ⋃C∈CY
C and W = ⋃C∈CW

C. Under Assumption 1, if
CX and CY are not d-separated by CW in Gc, then there exists a compatible ADMG G = (V, E) such that X
and Y are not d-separated by W.

The findings of the above theorem establish that identifying a d-separation in C-DMGs guarantees finding
all common macro-level d-separation in all compatible ADMGs. This is particularly valuable in constraint-
based causal discovery when the interest is to uncover the structure of the C-DMG without uncovering an
ADMG. Most importantly, these findings serve as a critical foundation for the results presented in the next
subsection.

3.2 The do-calculus in a C-DMG over ADMGs

The do-calculus initially introduced in Pearl (1995) is an important tool of causal inference that consists of
three rules. It allows to express, whenever it is possible, queries under interventions, i.e., those that contains
a do (⋅) operator, as queries that can be computed from positive observational distribution, i.e., that does

3The proof of this Theorem follows the same intuition as the proof of Theorem 2 in Ferreira & Assaad (2025). However,
Ferreira & Assaad (2025) made the implicit and unnecessary assumption that the clusters were of sizes bigger than the number
of clusters. In our proof we do not need this assumption and thereby our proof generalize their result i.e.,the clusters do not
need to be of size bigger than 2, nor for the completeness of d-separation in C-DMGs, nor for the completeness of d-separation
in summary causal graphs.

6



Published in Transactions on Machine Learning Research (07/2025)

CW

CX CY

(a)

CX CYCW

(b)

CX CZCW

CY

(c)

CX

CZ

CR

CU
CW

CY

(d)

Figure 2: C-DMGs with identifiable macro causal effects. Each pair of red and blue vertices represents the
causal effect we are interested in.
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Figure 3: C-DMGs with not identifiable macro causal effects. Each pair of red and blue vertices represents
the total effect we are interested in.

not contain a do (⋅) operator. In such cases, it is said that the query containing the do (⋅) is identifiable.
The do-calculus was initially introduced for ADMGs so it is not easily extendable to cyclic graphs. In this
subsection, we show that it is also readily extendable to C-DMGs (containing cycles).

Firstly, we define the notion of mutilated graphs (Pearl, 2009). Consider a causal graph G∗ = (V∗, E∗)
(whether it be an ADMG or a C-DMG) and A∗, B∗ ⊆ V∗, a mutilated graph denoted by G∗

A∗B∗
is the graph

obtained by removing all edges coming in A∗ and all edges coming out of B∗.

Using the notion of mutilated graphs and d-separation we show that the do-calculus is applicable to C-DMGs.
Theorem 3 (do-calculus for a C-DMG over ADMGs and macro causal effects). Let Gc = (C, Ec) be a C-DMG
and CX, CY, CZ, CW be disjoint subsets of C. The three following rules of the do-calculus are sound.

Rule 1:Pr(cy ∣ do (cz) , cx, cw) = Pr(cy ∣ do (cz) , cw) if (CY ⊧dCX ∣ CZ, CW)Gc
CZ

Rule 2:Pr(cy ∣ do (cz) , do (cx) , cw) = Pr(cy ∣ do (cz) , cx, cw) if (CY ⊧dCX ∣ CZ, CW)Gc
CZCX

Rule 3:Pr(cy ∣ do (cz) , do (cx) , cw) = Pr(cy ∣ do (cz) , cw) if (CY ⊧dCX ∣ CZ, CW)Gc
CZCX(CW)

where CX(CW) is the set of vertices in CX that are non-ancestors of any vertex in CW in the mutilated graph
Gc

CZ
.

Using the soundness of the do-calculus in C-DMG (Theorem 3), we can easily use the rules of the do-calculus
to find out that the causal effect Pr(cy ∣ do (cx)) is identifiable in all C-DMGs in Figure 2 as demonstrated
in the following examples.
Example 3. Both in Figure 2a and 2c, one can verify that (CY ⊧dCX)Gc

CX
, thus Rule 2 of the do-calculus is

applicable and Pr(cy ∣ do (cx)) = Pr(cy ∣ cx).
Example 4. Notice that Figure 2b does not contain any cycle other than self-loops and is very similar to
Figure 1(b) of Anand et al. (2023) which corresponds to the well-known front-door criterion (Pearl, 2009).
Thus, using the corresponding sequence of classical rules of probability and rules of do-calculus as the one
given in (Pearl, 2009, p.83), one obtains Pr(cy ∣ do (cx)) = ∑cw

Pr(cw ∣ cx)∑cx′ Pr(cy ∣ cw, cx′)Pr(cx′).
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Example 5. Consider the C-DMG in Figure 2d containing a cycle between cY, cR, and cU and a hidden
confounding between cY and cW. Let Pr(cy ∣ do (cx, cz)) be the causal effect of interest. Using the rule of total
probability we can rewrite Pr(cy ∣ do (cx, cz)) as

∑
cw

Pr(cy ∣ do (cx, cz) , cw)Pr(cw ∣ do (cx, cz)).

We first focus on Pr(cy ∣ do (cx, cz) , cw). Notice that (CY ⊧dCX ∣ CZ, CW)Gc

CZCX

and that (CY ⊧dCZ ∣ CX, CW)Gc
CZ

which means by applying Rule 2 consecutively, the expression Pr(cy ∣ do (cx, cz) , cw) can be equivalently
rewritten as: Pr(cy ∣ cx, cz, cw).
Now we focus on Pr(cw ∣ do (cx, cz)). Notice that (CW ⊧dCX ∣ CZ)Gc

CZCX

which means by Rule 3 of the do-
calculus we can completely remove do (cx) from the expression. Furthermore, we have (CW ⊧dCZ)Gc

CZ
which

means by Rule 2 we can replace do (cz) by cz. So we can rewrite Pr(cw ∣ do (cx, cz)) as Pr(cw ∣ cz).

In these three examples, the rules of the do-calculus allow a macro causal effect to be expressed solely in
terms of observed variables. Consequently, the macro causal effect can be estimated from data, provided
that the positivity assumption holds.

In the following theorem, we show that the do-calculus is not only applicable to C-DMGs, but also it is
complete.
Theorem 4 (Completeness of do-calculus for a C-DMG over ADMGs and macro causal effects). Under
Assumption 1, if one of the do-calculus rules does not apply for a given C-DMG, then there exists a compatible
ADMG for which the corresponding rule does not apply.

Using the completeness of the do-calculus in C-DMGs (Theorem 4), we can determine that the causal effect
Pr(cy ∣ do (cx)) is not identifiable in all C-DMGs depicted in Figure 3 and in the C-DMG in Figure 1 by
examining all possible iterations of the rules of the do-calculus. However, it is well known that exhaustively
examining all possibilities for applying the rules of do-calculus can quickly become impractical, particularly
for large graphs. To address this challenge, the following subsection introduces a sub-graphical structure
designed to directly determine whether it is feasible to express a macro causal effect solely in terms of
observed variables using do-calculus and C-DMG.

Notice that, even though C-DMGs are defined with the inclusion of self directed edges (e.g., C → C) and self
dashed bidirected edges (e.g., C C), we only focused on paths in this paper and thus, under Assumption 1,
adding or removing such edges will not influence identifiability results. However, this is not necessarily true
if Assumption 1 is not verified. In addition, as shown in Assaad et al. (2024), self directed edges and self
dashed bidirected edges are very useful in the identification of micro causal effects.

3.3 Non-Identifiability: a graphical characterization

In ADMGs, there exists a sub-graphical structure, called a hedge (Shpitser & Pearl, 2006), which is employed
to graphically characterize non-identifiability as shown in Shpitser & Pearl, 2006, Theorem 4. To properly
define it for C-DMGs, it is essential to first familiarize oneself with the two related definitions which we have
adapted and provided below specifically for the context of C-DMGs:
Definition 8 (C-component, Tian & Pearl (2002)). Let G∗ = (V∗, E∗) be a graph (whether it be a C-DMG or
an ADMG). A subset of vertices V∗C ⊆ V∗ such that ∀V ∗1 , V ∗n ∈ V∗C , ∃V ∗2 ,⋯, V ∗n−1 ∈ V∗ with ∀1 ≤ i < n, V ∗i
V ∗i+1 is called a C-component.
Definition 9 (C-forest, Shpitser & Pearl (2006)). Let G∗ = (V∗, E∗) be a graph (whether it be a C-DMG or
an ADMG). If G∗ is acyclic, G∗ is a forest (i.e., every of its vertices has at most one child), and G∗ is a
C-component then G∗ is called a C-forest. The vertices which have no children are called roots and we say
a C-forest is R∗-rooted if it has roots R∗ ⊆ V∗

Definition 10 (Hedge, Shpitser & Pearl (2006; 2008)). Consider a graph G∗ = (V∗, E∗) (whether it be a
C-DMG or an ADMG) and two disjoint sets of vertices X∗, Y∗ ⊆ V∗. Let F = (V∗F, E∗F) and F′ = (V∗F′ , E∗F′) be
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of Figure 2a.
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(b) SC-projection
of Figure 2b.
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of Figure 2c.
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of Figure 2d.
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(e) SC-projection of Fig-
ure 3a.

CX CY

(f) SC-projection of Fig-
ure 3b.
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(g) SC-projection of Fig-
ure 3c.
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(h) SC-projection of Fig-
ure 3d.

Figure 4: SC-projections of the C-DMGs in Figures 1, 2, and Figures 3. Each pair of red and blue vertices
represents the total effect we are interested in, and the red edges indicate those added through the SC-
projection.

two R∗-rooted C-forests subgraphs of G∗ such that X∗ ∩ V∗F ≠ ∅, X∗ ∩ V∗F′ = ∅, F′ ⊆ F, and R∗ ⊂ An(Y∗,G∗
X∗
).

Then F and F′ form a hedge for the pair (X∗, Y∗) in G∗.

A hedge turned out to be too weak to cover non-identifiability in C-DMGs. For example, the C-DMG in
Figure 3a contains no hedge but the macro causal effect is not identifiable due to the cycle between CX and
CY. However, the SC-hedge—an extension of the hedge structure introduced in Ferreira & Assaad (2025) for
summary causal graphs—proves to be applicable to general C-DMGs. In the following, we formally define
SC-hedges in the context of C-DMGs and demonstrate that this substructure serves as a sound criterion for
detecting non-identifiable macro causal effects.

Definition 11 (Strongly connected projection (SC-projection)). Consider a C-DMG Gc = (C, Ec). The
SC-projection Hc of Gc is the graph that includes all vertices and edges from Gc, plus a dashed bidirected
edge between each pair CX, CY ∈ C such that Scc(CX,Gc) = Scc(CY,Gc) and CX ≠ CY.

Definition 12 (Strongly Connected Hedge (SC-Hedge)). Consider a C-DMG Gc = (C, Ec), its SC-projection
Hc and two disjoints sets of vertices CX, CY ⊆ C. A hedge for (CX, CY) in Hc is an SC-hedge for (CX, CY) in
Gs.

Theorem 5. Consider a C-DMG Gc = (C, Ec) and two disjoints sets of vertices CX, CY ⊆ C. Under Assump-
tion 1, if there exists an SC-hedge for (CX, CY) in Gc then Pr(cy ∣ do (cx)) is not identifiable.

Figure 4 illustrates all SC-projections of the C-DMGs presented in Figures 2 and 3. Notably, the SC-
projections corresponding to the C-DMGs in Figure 2 do not contain a hedge, whereas all SC-projections
derived from the C-DMGs in Figure 3 include a hedge. This distinction highlights the structural differences
between the hedges and non-hedges and their implications for causal effect identification.

Note that Theorem 5 states the soundness of the SC-hedges or in other words it guarantees the non identifi-
ability of the macro causal effect in the presence of a SC-hedge. However, it does not give the corresponding
completeness result i.e., the absence of an SC-hedge does not imply the identifiability of the macro causal
effect.
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CX CY

CW

∣ CX ∣= 1 ∣ CY ∣= 1

∣ CW ∣= 2

(a) C-DMG.

W1 W2

X1 Y1

∣ CW ∣= 2

(b) ADMG1

W1 W2

X1 Y1

∣ CW ∣= 2

(c) ADMG 2.

Figure 5: A C-DMG with the knowledge of the clusters’ size and its only two compatible ADMGs that
illustrates that knowing cluster sizes affects the completeness of d-separation and the do-calculus. The C-
DMG in (a) contains two clusters of size 1 and it contains an SC-Hedge. However, even in the presence of
an SC-Hedge the causal effect can be identifiable since in all its compatible ADMGs (i.e., (b) and (c)) the
causal effect remains identifiable by only applying Rule 2 of the do-calculus.

4 Non-completeness of d-separation and the do-calculus when considering the size
of the clusters

Up to this point in the paper, we have assumed either that the size of each cluster is unknown or that no
two adjacent clusters in a cycle are both of size one Assumption 1). In this section, we demonstrate that
the completeness results of d-separation and the do-calculus no longer hold when cluster sizes are known
and when some clusters contain only a single variable (when Assumption 1 is not satisfied). In the extreme
cases where Assumption 1 is not verified, there exists some paths in the C-DMG which do not map to any
micro-path in any compatible ADMG. To illustrate this, consider the C-DAG in Figure 5a, where cluster
CX has size 1, cluster CY also has size 1, and cluster CW has size 2. In Figure 5a, the path ⟨CX ← CW ← CY⟩
seems to be active, however when one looks at the two compatible ADMGs Figures 5b and 5c, one can see
that there is actually no such path in the ADMGs. Using our SC-hedge characterization, we would conclude
that the causal effect is not identifiable using the do-calculus, as the presence of a cycle containing CX and
CY implies the existence of a dashed bidirected edge between CX and CY in the SC-Projection. However, in
this specific case, the only compatible ADMGs are those shown in Figures 5b and 5c, where it is evident that
the causal effect Pr(cy ∣ do (cx)) = Pr(y1 ∣ do (x1)) is identifiable and equals Pr(y1 ∣ x1). The key intuition
behind this discrepancy is that a cycle involving X1, Y1, and Wi (for i ∈ {1, 2}) cannot exist, as this would
violate the assumption that the true causal structure follows an ADMG, where cycles are not permitted.
While Assumption 1 is not required for the results concerning identifiability i.e., Theorems 1 and 3, it is
necessary for the results regarding non-identifiability to hold i.e., Theorems 2, 4 and 5.

5 Conclusion and discussion

In this paper, we established the soundness and completeness of d-separation and the do-calculus for respec-
tively identifying macro causal effects in C-DMGs. By doing so, we bridged the gap between causal inference
and many real-world applications in epidemiology.

There are three main limitations to this work. The first limitation is that the completeness result in Theo-
rem 4 does not take into account that there might exist different iterations of the rules of the do-calculus in
different ADMGs that can give the same final identification of the causal effect. A second related limitation
is that we provided a graphical characterization for the non-identifiability of macro causal effects, however
this characterization is not proven to be complete, even though we did not find any counter-example of its
completeness. Proving it complete remains an open problem. The third limitation is that our results rely
on Assumption 1 which is not always satisfied in practice. However, we think that we can relax it, while
keeping the same results, by assuming that no two adjacent nodes in a cycle are both of size 1.
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