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ABSTRACT

Spatial coding is a fundamental function of the brain. Place cells in the hippocampus (HPC)
and grid cells in the medial entorhinal cortex (MEC) are two primary types of neurons ac-
counting for spatial representation in the brain. These two types of neurons employ different
spatial coding strategies and process environmental and motion cues, respectively. In this
work, we develop a computational model to elucidate how place and grid cells can comple-
ment each other to integrate information optimally and overcome their respective shortcom-
ings. Specifically, we build a model with reciprocally coupled continuous attractor neural
networks (CANNS), in which a CANN with location coordinate models the place cell en-
semble in HPC, and multiple CANNs with phase coordinate model grid cell modules with
different spacings in MEC, and the coupling between place and grid cells conveys the cor-
relation prior between sensory cues. We theoretically derive that the dynamics of our model
effectively implements the gradient-based optimization of the posterior. Using simulations,
we demonstrate that our model achieves Bayesian optimal integration of the environmental
and motion cues, and avoids the non-local error problem in phase coding of grid cells. We
hope that this study gives us insights into understanding how place and grid cells complement
each other to improve spatial representation in the brain.

1 INTRODUCTION

Spatial coding is a fundamental function of the brain, which serves as the foundation for the brain to realize many
other advanced cognitive functions. Over decades, experimental studies have unveiled the neural correlates of
spatial coding in the brain, and two primary neuron types central to this functionality are identified, which
are place cells in the hippocampus (HPC) (O’Keefe & Dostrovsky, [1971; 0’ Keefe, [1976) and grid cells in the
medial entorihnal cortex (MEC) (Hafting et al.| 2005). These two types of cells exhibit very different response
characteristics in spatial representation. Specifically, place cells display localized place fields, firing intensely
at localized locations in the environment; while grid cells display distributed place fields, forming periodic
grid-like firing patterns across the environment (Fig[Th). Experimental data further revealed that place and grid
cells are primarily responsible for processing different sensory cues, namely, place cells are primarily driven
by environmental cues, such as the visual and/or olfactory cues; while grid cells are primarily driven by the
self-motion cue of the animal (McNaughton et al., [2006; |[Laptev & Burgess, [2019; (Chen et al.l 2019} [Sharp
et al.,[1995).

The significantly different response characteristics between place and grid cells indicate that they employ dif-
ferent strategies to represent space. Simply state, the strategy of HPC is to use intensive number of place cells
with localized fields to cover the space compactly (Fig[Th-b), referred to as localized space coding (LSC) here-
after; while the strategy of MEC is to use the combination of grid cells’ phases with varying spacing to encode
space (Fig[Ik-d), referred to as phase space coding (PSC) hereafter. From the information theory point of view,
LSC is robust to noise but not efficient, since the number of neurons it needs increases linearly with the spatial
size (Abbott & Dayan, [1999; |[Latham et al., |2003)); while PSC is efficient but susceptible to noise, as small
perturbations in grid cells’ activities can induce non-local errors in the space representation (Fiete et al., 2008bj
Sreenivasan & Fiete] [2011) (Fig[Tk).

Given that place and grid cells employ different coding strategies and process different sensory cues, a prompt
question is: whether these two coding strategies can complement with each other, such that the brain can
integrate two sensory cues optimally to improve spatial representation? Experimental studies have shown that
there exist abundant reciprocal connections between HPC and MEC (Manns & Eichenbaum, 2006; Wible|
2013} [Bush et al.l 2014])), which can support the interaction between place and grid cells. In this work, we build
a computational model with reciprocally coupled place and grid cells, and demonstrate that HPC and MEC can
interact with each other to integrate the environmental and motion cues optimally for spatial representation.
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The organization of the paper are as follows. In Sec.2, we first review the different coding properties of place and
grid cells, and discuss about their respective advantages and disadvantages in spatial representation. In Sec.3,
we use a probabilistic inference model to elucidate the information integration between place and grid cells,
and present an optimal decoding approach called gradient-based optimization of posterior (GOP). In Sec.4,
we build a computational model with reciprocally coupled continuous attractor neural networks (CANNS), in
which a CANN with location coordinate models the place cell ensemble in HPC, and multiple CANNs with
phase coordinate model the grid cell modules of different spacings in MEC. HPC and MEC receive the location
information through the environmental and the motion cues, respectively, and they are reciprocally connected
in a congruent manner, which conveys the correlation prior between two sensory cues. We theoretically derive
that our model implements GOP effectively. In Sec.5, we carry out simulations to demonstrate that our model
integrates two sensory cues optimally in a Bayesian optimal manner, and that it avoids the non-local error
problem of PSC. In Sec.6, overall conclusions of this study and related works are discussed.
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Figure 1: Different coding strategies of place and grid cells. a. Tuning curves of place cells (up) and grid cells
(down). A place cell fires at a localized position. A grid cell fires at periodic positions, which are multiple
locations equally spaced in the one-dimensional case. b. Illustration of localized space coding (LSC) of place
cells. A bump-shaped population activity of the place cell ensemble encodes an animal location in the space.
c. Iustration of phase space coding (PSC) of grid cells. Multiple positions with spacing A are represented
by a single phase value ¢, which mathematically corresponds to a remainder operation. d. Illustration of the
non-local error of PSC. An animal location z is represented by the combination of two phase values ¢ and ¢o
in two grid cell modules with spacing A\; and Ao, respectively. Small fluctuations in phases, ¢1 + €1 and ¢2 + €2,
can induce a non-local error in the space representation, resulting from z to 2.

2 DIFFERENT CODING STRATEGIES OF PLACE CELLS AND GRID CELLS

We start to review the different properties of place and grid cells for spatial representation. In the present study,
for the simplicity of analysis, we focus on the encoding of one-dimensional (1D) space, which corresponds to
linear tracks widely used in experiments (e.g., (Skaggs et al., |1996)). The main conclusions of this work are,
however, extendable to the 2D space.

Place cells perceive the animal location primarily through the environmental cue, e.g., the visual and/or olfactory
cues. Let us denote z € (—L/2, L/2) the animal location, with L the spatial range. The response of a place cell



Under review as a conference paper at ICLR 2025

with preferred location x can be written as,
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where f,,(x; z) is the tuning curve, A, and a, the peak and width of the tuning function, respectively. €,(x)
denotes Gaussian noise of zero mean and unit variance, and o, the noise strength. The joint activity of place
cells, denoted as 7, (z) = {rp(z; 2)}, forx € (—L/2, L/2), encodes the animal location z as a localized activity
bump in the space, which forms LSC (see Fig[Ip).

Grid cells perceive the animal location primarily through the self-motion cue, and a location z is expressed
as phase ¢ € (0,27) of a grid cell module according to the conversion rule, ¢(z) = mod(z/A,1) x 2,
where A denotes the periodicity of the place field, called spacing, and the symbol mod(-) denotes the remainder
operation (Fig[Tk). In a single module, a phase value corresponds to multiple spatial locations as induced by the
remainder operation, implying that a grid cell fires at multiple locations. This gives rise to the place field of the
hexagon-shape in the 2D space and equally spaced firing positions in the 1D space (Fig[ITh.c). To overcome the
representation ambiguity of a single module, MEC includes multiple modules with varying spacings, and uses
the combination of grid cells’ phases from different modules to encode a position, denoted as ¢(z) = {¢(2)},
fori =1,..., M, with ¢*(2) = mod(z/X;, 1) x 27 and \; the spacing of the ith module (Fig.1d). Given that
{ A }are prime numbers, the spatial range represented by MEC unambiguously is [, A;.

Let us denote ¢(z) the phase of the ith module corresponding to the animal location z. The response of a grid
cell in the ith module with preferred phase at 6 is written as,
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where f,(6%; ¢") is the tuning curve, A, and ag; the peak and width of the tuning curve, respectively. €4(6")
represents Gaussian noise of zero mean and unit variance, and o; the noise strength. The symbol ||6? — ¢'|| =
min (|6° — ¢'|, 27 — |6 — ¢'|), reflecting the periodicity of phase.

2.1 CODING EFFICIENCY

The efficiency of a coding strategy can be quantified by information rate, which is defined a R = In L/N, with
L the spatial range and N the number of neurons (Mackay, 2003} |Sreenivasan & Fietel 2011). We can roughly
estimate the efficiency of LSC and PSC as follows. In LSC, the place cell ensemble covers the space compactly.
Denote Az to be the interval covered by a place cell with its local place field. The whole space range covered
by N place cells is L = NAz. Thus, the information rate of LSC is given by R, = log(NAx)/N, which
becomes very small for large NV, indicating that LSC is not efficient, in term of utilizing the resource of neurons.
In PSC, the phases of grid cells in a single module cover a spatial range A (the spacing); beyond that, multiple
positions share the same phase value, inducing ambiguity. By employing multiple modules of varying spacing
i, for i = 1,..., M, and that {\;} are prime numbers, the spatial range unambiguously represented by the
combination of grid cells’ phasesis L = Hf\il Xi =~ MM (Fiete et al.| 2008a). Thus, the information rate of PSC
is given by R, = log(AM)/M Ny = log \/Ny, with Ny the number of neurons in each module. This shows
that with the increased number of modules M (and so does the number of neurons M Ny), the information rate
of PSC is a constant, indicating that PSC is much more efficient than LSC in utilizing the resource of neurons
(for more detailed analysis, see Appendix[A].

2.2 CODING ACCURACY

We use Fisher information, whose inverse is the lower bound of decoding variance of any unbiased estimator
(commonly known as the Cramér—Rao bound (CRAMER| |1946)), to quantify the decoding accuracy of LSC.
For the response property of place cells given by Eq. (1)), the Fisher information can be analytically calculated,
whose value increases linearly with the number of neurons, indicating that LSC can achieve arbitrary accuracy
if the number of neurons is sufficiently large (see Appendix[A). The accuracy of PSC is, however, very sensitive
to noises. In PSC, grid cells’ phases are combined to represent spatial location. Due to the periodic mapping
between phase and location, two points close in the phase plane can represent two far away spatial locations
(see illustration in Fig[Id and details in Appendix[A)). This implies that small fluctuations in grid cells’ activ-
ities can induce large non-local errors in spatial representation, a shortcoming of PSC that has been noticed
previously (Sreenivasan & Fietel 2011).
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3 A PROBABILISTIC MODEL OF INFORMATION INTEGRATION BETWEEN PLACE AND
GRID CELLS

Given that place and grid cells implement different coding strategies and that they process different sensory
cues, a nature question is: how can they complement with each other to improve spatial representation? Before
going to the detail of neural implementation, we first introduce a probabilistic inference model which elucidates
theoretically how the information from two types of cells can be integrated (see Fig. [2h). For the convenience
of analysis, we consider that noises in neuronal responses are all independent to each other.

3.1 THE ENCODING PROCESS

The brain perceives the animal location via both environment and motion cues, and the two cues go through
physically separate pathways. This implies that the information about the animal location conveyed to place
and grid cells are highly correlated but not exactly the same (because of the different reliability of the sensory
cues and the independent noises in signal transmission). To reflect this correlation relationship, we set the joint
property p(z, ¢) of the animal location z perceived by place cells and the phases ¢ perceived grid cells satisfy,

|68 — vi(z)| |2
pr Hm% p{—% , 3)

where t*(2) is the phase value matching the location z, i.e., ¥*(z) = mod(z/A;,1) x 27, and o4 con-
trols the correlation level between two sensory cues. In the above, we have used the condition that grid
cell modules are independent to each other as a consequence of no connection between them, which gives
p(z, @) = vail p(z,¢"). This form of joint probability implies that the locations represented by place cells
and grid cells tend to be close, but may be different because of noises. This joint probability serves as the
correlation prior for integrating information between place and grid cells (see below).

According to the response property of Eq. , the likelihood function of observing the joint activity 7, of place
cells given the animal location z is written as,

p(rpl2) Hp rp(7)[2] = H\/%Upexp{[rp(m) 2Ufg(x;z)] } @

According to the response property of Eq. (2), the likelihood function of observing the joint activity r, of grid
cells given the phases ¢ is written as,
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3.2 THE DECODING PROCESS

Given the observed responses (75, 7,) of place and grid cells, the neural decoder infers the animal location z
represented by place cells and the phases ¢ represented by grid cells. According to the Bayes’ theorem, the
posterior distribution of (z, ¢) given (r,, r,) is written as

p(z, @lrg,Tp) < p(rp, 7yl 2, @)p(2, #) = P(rp|2)p(7g|P)D(2, @)
M

=[Irlm@I]] {p(w) [L [rs(0)16] } . ©®

i=1
In the above, we have used the condition that the environmental and motion cues go through separate pathways,
which gives p(r,, rq|z, @) = p(rp|2)p(rg|P).

Maximum a posteriori (MAP) decoding is a widely used method and can be proven to be the optimal decoding
strategy under a 0-1 loss function. However, in practice, the high non-linearity of the posterior often makes direct
maximization computationally challenging, necessitating the use of approximation methods. The gradient-
based optimization of posterior (GOP) is such an approximation approach (Wu et al., 2017). It starts from an
initial point to search for a solution by ascending along the gradient of the log posterior until a local maximum
is reached. By this, GOP finds an approximated maximum of the posterior. Interestingly, we find that in the
case of phase coding, GOP tends to outperform MAP, as it avoids large non-local errors (see below).

Combining Eqs. (3}{), the gradients of the posterior are calculated to be (for details, see Appendix [B]),
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In the below, we will show that a biologically plausible network model can implement GOP and that GOP
overcomes the non-local error of PSC.

(a)

p(1pl2) HPC 2 p(rp|z): likelihood function corresponding
to the environmental cue.
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to the motion cue.
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Figure 2: Complementary coding of space with place and grid cells. a. A probabilistic inference model describ-
ing the information integration between place and grid cells. The animal location 2 is encoded by the population
activity r, of place cells in HPC in the form of the likelihood function p(7,|2) and by the population activity 7,
of grid cells in MEC in the form of the likelihood function p(r,|¢). By integrating two sensory cues with the

correlation prior p(z, ¢), HPC and MEC output the animal location Z and the corresponding phases (;3, respec-
tively. b. A network model with coupled place and grid cells implementing information integration between
sensory cues. The place cell ensemble is modeled as a 1D CANN with location coordinate (P-CANN). A grid
cell module is modeled as a 1D CANN with phase coordinate (G-CANN), and three moduels are illustrated.
The P-CANN and each G-CANN are reciprocally connected, and no connection between G-CANNSs exists.

4 INFORMATION INTEGRATION WITH RECIPROCALLY CONNECTED PLACE AND GRID
CELLS

In this section, we develop a biologically plausible network model to implement information integration between
place and grid cells as described in Sec[3]

4.1 A NETWORK MODEL WITH COUPLED PLACE AND GRID CELLS

As shown in Figg}), we use a 1D CANN with location coordinate to model the place cell ensemble in HPC,
referred to as P-CANN, in which neurons are aligned according to their preferred locations « € (—L/2, L/2)
in the 1D space. We use multiple 1D CANNs with phase coordinate to model grid cell modules with different
spacings in MEC, referred to as G-CANNSs, and in each G-CANN, neurons are aligned according to their
preferred phases 6 € (0, 2r]. The P-CANN and each G-CANN are reciprocally connected, and no connection
between G-CANNSs exists.
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The recurrent connections between neurons in the same network are set as follows. For two neurons at locations
 and 2’ in the P-CANN, their connection is Wy, (z,2) = J,/(V2may) exp [—(z — 2’)?/2a2], with a, con-
trolling the range of recurrent connections and .J,, the connection strength. For two neurons at phases # and ¢’ in
a G-CANN, their connection is W (0, 60') = J,/(V2mag;) exp [—||0 — 0[|?/2a2;]. To realize the correlation
prior Eq. , we set reciprocal connections between place cells at location z and grid cells at phase 6 as,
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where 1¢(x) = mod(z/\%,1) x 27 is the phase value matching the location x. This connection form is called
congruent, in term of that place and grid cells tend to have strong connections when their preferred location and
phase are matched.

Denote U, (z, t) the synaptic current to place cells at location x at time ¢, and R, (z, t) the corresponding firing
rate. The dynamics of place cells are written as,

du, L2
T d(t b _ =—Up(z,t) + pp Wp(x,z’)Rp(x’,t)d:c/

(10)
50 [ Wt 100,

where 7, denotes the time constant, p,, and p,, the densities of place and grid cells, respectively. I, () represents
the external inputs conveying the location information from the environmental cue.

Denote U, (0%, ) the synaptic current at time ¢ to grid cells at phase 6° in the ith module, and R,(0,t) the
corresponding firing rate. The dynamics of grid cells are written as,

Tg% = —Uy(0',1) + pg W,(0,0")Ry(0",1)d0"
L/2 ' ) an
+ pp L Weip(z, 0" )Ry(z, t)dx + 1,(0"), i=1,..., M,

where 7, denotes the time constant, and ,(6°) the external inputs conveying the location information from the
motion cue.

The external inputs to the networks convey the location information of the animal. We set them to be,

_ 2
i ol 2
0" = ozgi{exp ,w +§g}, i=1,...,M, (13)
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where 2z denotes the true location of the animal and and 1/’ (o) the matched phase. ay; and o, represent the
strengths of the external inputs. £, and &, are Gaussian noises of zero mean and variances Ugi and O'g, reflecting
the ambiguity of sensory cues.

For both place and grid cells, the relationships between neuronal synaptic current and firing rate are expressed
as, )
Up(xvt)2 Ug(elvt)Q

1+ kppp [U(2,t)2da’’ L+ kypg [ U, (0, 1)2d0""

where k,, and £, control the amplitude of divisive normalization (Hao et al., 2009).

Ry(z,t) = Ry(0',t) = (14)

When no reciprocal connection between HPC and MEC (J,, ; = 0) and no external synaptic input (I, = I, = 0)
exists, the P-CANN or each G-CANN holds a continuous family of Gaussian-shaped stationary states due to
the property of CANNSs (Fung et al.} 2012 [2010; /Wong et al.,[2008), and they are expressed as,

o (o )2 Il - 12|
Up(z) = Apexp [—4%2) iz, (15)

} 0,0 = A, exp [

where 2z and ¢' are free parameters, A,(A,) and a,(a,4;) denote, respectively, the height and width of the
activity bump of place (grid) cells (see details in Appendix [C)
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4.2 THE MODEL IMPLEMENTING GRADIENT-BASED OPTIMIZATION OF POSTERIOR

We analyze the model dynamics theoretically. Previous studies have shown that a key property of a CANN
is that its dynamics is dominated by very few motion modes, and we can project the CANN dynamics onto
these dominating modes to simplify the network dynamics significantly (Fung et al., 2010; [Wong et al., |2008))
(projecting a function f(z,¢) onto a motion mode u(t) means computing | f(x,t)u(z)dx)). Here, we consider
the first two dominating motion modes representing the height and position variations of the bump, respectively,
which are,

ur(s) = Ur(s), ur(s) = Wgs( L for T=p.gis=n.0" (16)

where Ur(s) is the stationary state of P-CANN (T = p,s = x) or G-CANN (T = g,s = %) as given in
Eq. (13).

For coupled CANNS, we assume that the states of both P-CANN and G-CANN can still be well approximated
as of the bump-shape given by Eq. (I3), which is conﬁrmed by our numerical simulations (see Appendix D).
Substituting Eq. (T3) into the model dynamics Egs. and then projecting them onto the two dominating
modes Eq. (I6), we obtain the simplified model dynamlcs which are the dynamics of the bump center of place
cells z(t) and the bump centers of grid cells ¢'(t), for i = 1,..., M. They are written as (see Appendix D] for
details):

- TPAP{4Z%Jg,ppgRg|¢ V(@) + 5= ﬂp / <x>u,},<x>dw}, (17)
d¢ 1 A L NPT

= - ! ! 1,(0° 0")do* =1,....M 1
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where Rp and Rg represent the maximum firing rates of place cells and grid cells, respectively. The first terms
on the right sides of Eqs.(17]18) are the contributions of reciprocal interactions between place and grid cells,
and the second terms are the contributions of the external inputs.

It can be checked that when the parameters satisfy the condition, 27 A,T,pp R, = A; A7 sTo quz the above
dynamics can be reorganized as (Appendix D)),

dz 0 dg’ 0

g 0s Inp(z, @lry, ry), a BYs Inp(z, lry,7y), (19)
where the variance terms in Inp(z, ¢|r,,7y) are given by of = (VTAp,7)/(apy), oo =

(ngPng)/(agiagi)’ and CT;,; = (87TAng)/<>‘iJgi,pPpRp)-
Note that o4: specifies the correlation level between sensory cues (Eg. E[) and Jg; , specifies the reciprocal

connection strength between place and grid cells (Eq.ﬂ). The relationship a;i = (8mAyTy)/ ()\iJgi,p,opRp)
indicates that the reciprocal connections between HPC and MEC conveys the correlation prior between the
environment and motion cues on animal location.

Finally, comparing Eq. (I9) with (7[8), we see that the model dynamics effectively implements GOP, i.e., the
Bayesian integration of information.

It is interesting to note that the simplified model dynamics Eq. (I9) have a Lyapunov function, which is the

negative posterior L = — Inp(z, ¢|r,, r4), whose dynamics is given by
dL d(Inp) dy dy\ >
—_— = _— = — —_— < 0, f = 9 . 20
dt dy  dt a) 0 fory={=¢} (20)

This ensures that the model dynamics always converge to a local maximum of the posterior.

5 SIMULATION EXPERIMENTS
We carry out simulation experiments to further confirm the above theoretical analysis.

5.1 THE MODEL IMPLEMENTING BAYESIAN INTEGRATION OF INFORMATION

We first demonstrate that our network model implements GOP as theoretically analyzed. We consider a scenario
where the animal is positioned at a fixed location (z = 0) on a linear track ranging from —30 to 30, with the
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Figure 3: Optimal information integration by the coupled CANNSs. (a). Illustration of the network decoding
process. The bump activity of place cells is initially at zy (blue line). In response to noisy inputs (gray line), the
bump moves to a stationary state (purple line), whose position z* outputs the decoding result. (b). Comparing
the model decoding results and that of GOP. Each dot (gray) represents the result of single trial. (c¢). Fitting
the distributions of decoding results with Gaussian functions. The blue, red, and green lines correspond to the
results of (1) only presenting the motion cue (Mot.), (2) only presenting the environmental cue (Env.), and (3)
presenting both cues (Both). The dashed blue line represents the prediction of Bayesian integration (Bayes)
based on the results of (1) and (2). Note the the network decoding results almost completely overlap with the
Bayesian prediction. (d). Comparing the decoding variances in three cuing conditions and that of Bayesian
prediction across different noise levels. For details of the simulation experiments, see Appendix

network receiving two noisy inputs representing environmental and motion cues, respectively. These noisy
inputs are generated according to Eqs. (T2]T3).

We apply two methods to decode the animal location. One is to apply GOP to directly calculate the local max-
imum of the posterior according to Eqs.(7}f8) (see Appendix [B). The other to run the network dynamics given
by Eqs.% [OHTT) and read out the animal location based on the bump position (z) of place cells (see illustration
in Fig Bh). The decoding results of two methods are shown in Fig[Bp. We see that they agree with each other
very well, confirming that the network model implements GOP effectively.

We further demonstrate that our network model performs optimal cue integration. To this end, we consider
three cuing conditions: 1) only the environmental cue is presented, corresponding to only place cells receiving
external inputs (I, # 0 and I, = 0); 2) only the motion cue is presented, corresponding to only grid cells
receiving external inputs (I, = 0 and I, # 0); 3) both the environmental and motion cues are presented,
corresponding to both place and grid cells receiving external inputs (I, # 0 and I, # 0). In each condition, we
run the network dynamics and read out the bump position (z) of place cells as the neural representation of the
animal location. For comparison, we also calculate the theoretical prediction of Bayesian cue integration. Under
the assumptions of Gaussian distributions of decoding errors and the uniform prior, the variance of Bayesian
cue integration is given by 1/0¢, .. = 1/02,, + 1/0%, where o5, and o7, represent the variances of
decoding errors of using only the environmental or the only motion cue, respectively (Ernst & Banks| 2002).
We also vary the noise levels of external inputs (aﬁ and 03 in Eqs. and ll to assess the robustness of
model integration. Fig[3k-d present the simulation results, which show that across different noise levels, the
model integration consistently yields lower decoding errors compared to that using a single cue, and that the
model decoding results matches well with the theoretical prediction of Bayesian integration, confirming that
our model integrates sensory cues optimally. For details of the experiments and calculations, see Appendix [D]
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Figure 4: The coupled CANNS resolves the non-local error in phase coding of grid cells. (a). An example of the
distributions of decoding errors using the coupled CANNs (red line) and that of maximum a posteriori (MAP)
based on the grid cell activity only (blue line). The decoding errors of the network model concentrate around the
true animal location, while the decoding errors of MAP distribute widely. (b). Decoding errors across different
noise levels using the coupled CANNSs (red line) and MAP based on the grid cell activity only (blue line). For
details of the simulation experiments, see Appendix [D]

5.2 THE MODEL ELIMINATING NON-LOCAL ERRORS

In certain scenarios, such as moving in dark, animals have to locate themselves relying mainly on the motion
cue. In our model, this corresponds to the external inputs [, = 0 and I, # 0. In such a case, if we only
use the responses of grid cells to decode the position, e.g., by maximizing p(rg|¢) directly, we will get large
non-local errors associated with phase coding (Sreenivasan & Fietel 2011). On the other hand, if we let the
coupled CANNSs to decode the location, which is given by the bump position of place cells, non-local errors are
eliminated, as shown in Fig. fp. The underlying reason is intuitively understandable. In the coupled CANNS,
although place cells does not receive the environment cue (I, = 0), through reciprocal connections between
networks, place cells will still generate a bump activity to represent the animal location. As analyzed above, the
dynamics of coupled CANNSs effectively implements GOP, whereby the previous bump position of place cells
serves as the initial point, which restricts the bump to evolve to a local maximum of the posterior, reflecting
the continuity of the animal movement. Hence, no abrupt change in decoding results occurs, which effectively
eliminate large non-local errors. Fig. @b show that as the amplitude of noises in grid cells’ responses increases,
the error of MAP based on PSC increases dramatically (due to non-local errors), while the error of coupled
CANNSs remains largely flat.

6 CONCLUSIONS AND DISCUSSIONS

In this study, we have developed a computational model to elucidate how place and grid cells complement with
each other to improve spatial representation in the brain. We first formulate the interaction between place and
grid cells as a probabilistic inference model for integrating information between environmental and motion cues.
We then model the interaction between HPC and MEC using reciprocally coupled CANNs, with the coupling
strength conveying the correlation prior between sensory cues. We theoretically derive that the dynamics of
coupled CANNGs effectively implements gradient-based optimization of the posterior (GOP). Using simulations,
we further demonstrate that our model indeed achieves Bayesian optimal integration of two sensory cues, which
improves the spatial coding accuracy compared to no cue integration. We also show that when only the motion
cue is presented, our network model avoids the non-local error problem faced by phase coding of grid cells.

6.1 RELATED WORKS

The coding properties of place cells and grid cells have been studied intensively in the literature for long time.
For instances, a large volume of theoretical works studied the encoding accuracy and decoding models of place
cells (see e.g. (Wilson & McNaughton, 1993} Seung & Sompolinsky, [1993; Brunel & Nadall, |1998}; |Abbott &
Dayan, 1999)) and references therein), and researches on grid cells involve calculating the coding efficiency and
addressing the non-local error problem (Fiete et al., 2008b; |Sreenivasan & Fietel, 2011 [Mathis et al.| [2012).
Notably, Sreenivasan et al. proposed a “constrained range” approach to resolve the non-local error of PSC,
which restricts the coding range of grid cells to reduce the sensitivity of phase coding to noises (Sreenivasan
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& Fiete, [2011), and they built a network model with connected place cells and grid cells to implement this
idea. Their method differs from our model significantly. Specifically, by restricting the spatial range to be
decoded, the “constrained range” approach avoids large non-local errors, but it also sacrifices the advantage of
high coding efficiency of PSC. On the other hand, in our model, the non-local error of phase coding is naturally
avoided, since the coupled CANNSs effectively implement a gradient-based searching method (GOP), which
imposes that the decoding result of the place cell network is history-dependent and only changes smoothly.

There are also a large volume of theoretical works in the literature studying the interactions between place and
grid cells. These works include: 1) exploring how grid cell inputs drive place cells to form localized place fields
and how the place field remapping occurs (Bush et al.,|2014;|Agmon & Burak,|2020; [Whittington et al., 2020); 2)
exploring how place cell inputs shape the hexagonal activity pattern of grid cells (Blair et al., |2008; [Fernandez-
Leon et al. 2022; [Evans & Burgess, 2019); 3) examining the role of the HPC-MEC loop in multisensory
processing. For examples, Li et al. proposed that the reciprocal connections between HPC and MEC transmit
the prior association between visual and motion cues, enabling the differentiation of multiple environments (Li
et al.,2020); Laptev et al. suggested that attractor dynamics in HPC and MEC enable decentralized information
integration (Laptev & Burgess| 2019); Agmon et al. modeled the joint network of grid cells and place cells
as coupled CANNs (Agmon & Burakl 2020). Compared to these works, our study has the following novel
contributions: 1) we formulate the information integration between HPC and MEC as a Bayesian inference
model, and propose GOP as a feasible decoding method; 2) we build a model of coupled CANNS to elucidate
the information integration between HPC and MEC, where the reciprocal connections between CANNs convey
the prior correlation between sensory cuses; 3) by both theoretical analysis and simulations, we demonstrate
that the coupled CANNSs effectively implement GOP, a Bayesian optimal way of information integration, and
that the coupled CANNS eliminate non-local errors of phase coding of grid cells.

6.2 LIMITATION AND FUTURE WORK

In the present study, for the purpose of theoretically elucidating the neural mechanism clearly, we have consid-
ered the representation of 1D space, while a large amount of experimental data was on the 2D space. Also, the
focuses of this work are on the information integration between place and gird cells and eliminating of non-local
decoding errors. Experimental data has shown that place and grid cells can also complement with each other
on other functions. One example is the construction of a global map of the space (Whittington et al.| 2020;
Evans et al.,[2016)). Based on the environmental cue such as vision, place cells can sense the space precisely but
only locally; while based on the self-motion cue, gird cells sense the space ambiguously but can link far-away
locations via path-integration. Thus, in order to construct a global map, it is necessary to combine both environ-
mental and motion cues. In future work, we will extend the current model to the 2D space and investigate how
place and grid cells complement with each other to construct a global spatial map.

Recent experimental studies have continuously revealed new functions of the HPC-MEC loop. In addition to
processing different sensory cues, it was found that the spatial map formed by place cells is more oriented to the
special layout of the environment; while the spatial map formed by grid cells reflects more the abstract metric
information of the environment (Whittington et al., 2020; [Evans et al.,|2016). This is manifested by that place
cells tend to remap their place fields dramatically when the environment changes, while grid cells only realign
their place fields slightly (Hafting et al., 2005). Furthermore, it was suggested that in addition to represent the
space, the HPC-MEC loop can cooperate to represent some general relationships between objects. It is our
future work to extend the current model to explore these issues.
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A APPENDIX A: CODING PROPERTIES OF LSC AND PSC

We compare the different coding properties of place cells and grid cells.

Local spatial coding by place cells, also known as “classical population coding” (Sreenivasan & Fiete, 2011J),
is widely found in various brain regions (Schreiner et al., 2000; |Georgopoulos et al., [1989; [Taube et al., [1990;
Vollan et al.} 2024). In this coding strategy, each neuron has a local receptive field corresponding to its preferred
feature values. The receptive field typically has a bell-shaped curve, with neuronal activity peaking when the
stimulus is at the center of the receptive field and gradually decreasing as the stimulus moves away from the
center. The receptive fields of different neurons cover different parts of the feature space, together spanning the
entire encoded variable space. Place cells perceive the animal location primarily through environmental cues,
e.g., the visual and/or olfactory cues. Denote the true location of the animal is zy. The response of a place cell
with preferred location at x is written as,

(x — 20)?

4%2) ] + opep(z), 20

Tp(l'§20) = fp(lVZO) + Upﬁp(x) = Apexp [_
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where f,(; z0) is the tuning curve, A, and a,, the peak and the width of the tuning function, respectively. e, (x)
denotes Gaussian noise of zero mean and unit variance, and o,, the noise strength. Ideally, the receptive fields
of neurons in population coding have identical shapes and are uniformly distributed across the feature space. In
this case, each feature value corresponds to a bell-shaped “bump” in neural activity (Figure [ST).

Unlike place cells, grid cells respond to multiple periodic spatial locations. This phenomenon can be equiv-
alently described as grid cells encoding spatial phases. In the one-dimensional space, for grid cells with grid
spacing A, the mapping between spatial phase and position can be written as (Fiete et al., [2008b)),

mod(z, \)
A b)

where z denotes the spatial position, and ¢ represents the spatial phase, ranging from 0 to 27. 1)(z) is the map-

ping function between position and phase, where mod is the modulus function. Grid cells perceive the animal

location primarily through the self-motion cue. Let us denote ¢*(zg) the phase of the ith module corresponding
to the animal location zy. The response of a grid cell in the ith module with preferred phase at ° is written as,

. . . . . 91’ _ T2 )
(05 ¢") = f4(0";9") + 0gicg(0") = Agexp {M} + ogi€g(60), (23)

2
4a i

¢ =1(z,\) = 2r (22)

where f,(0%; ¢") is the tuning curve, A, and a,; the peak and width of the tuning curve, respectively.
€4(6") represents Gaussian noise of zero mean and unit variance, and og; the noise strength. ||0' — ¢'|| =
min (|07 — ¢*|, 27 — |0" — ¢|).

A grid cell module encodes spatial phase at a specific scale using “classical population coding” (Figure [STk).
Grid cells from different modules encode spatial phases at different scales (Hafting et al., |2005), collectively
forming a phase vector (Figure [STk). This method, known as periodic spatial coding, uses the phase vector
encoded by the population activity to represent spatial position (Fiete et al., |2008b).

A.1 EFFICIENCY AND ROBUSTNESS OF LSC

The robustness of LSC to noise can be characterized by the relationship between noise intensity and decoding
error. Previous studies have analytically derived the optimal decoding error for LSC by calculating the Fisher
information (Seung & Sompolinsky} 1993} /Abbott & Dayan,|1999; [Latham et al., 2003 Brunel & Nadall [1998)).
These results show that the lower bound of decoding error in LSC is linearly proportional to the variance of
the noise and inversely proportional to the total number of place cells. Specifically, under the assumption of
independent noises and considering z € (—oo, ), the Fisher information is calculated to be,

Z

:p —_—
P 2a,02’

J(2) (24)

where p,, represents the density of place cells. We see that the Fisher information increases with the neuron
density, indicating that increasing the number of neurons improves the robustness of LSC. This robustness arises
from two aspects: first, the bell-shaped bump is formed by the collective activity of many neurons, making it
difficult for noise at the single-cell level to disrupt the overall shape of the bump. Second, the similarity between
bumps corresponding to different features decreases as the distance between the features increases, making it
difficult for single-cell noise to confuse bumps that represent distant feature values (Figure [SIp). As a result,
noise only causes errors near the actual feature value, rather than introducing random errors.

The trade-off for increased robustness is a decrease in coding efficiency, as more neurons are required to encode
the same variable. Inspired by Shannon’s information theory (Mackayl 2003)), Ila et al. defined the coding
efficiency R as the total amount of information encoded (in bits) divided by the number of neurons used for
encoding (Sreenivasan & Fietel 2011). For one-dimensional spatial coding, the total encoded information is

. 0 . . . lIl L
proportional to the logarithm of the encoded spatial range L, so the coding efficiency i = 7.

Using this definition, we can roughly estimate the efficiency of LSC in the one-dimensional space. Assuming
that place cells’ place fields uniformly cover a one-dimensional space, let Ax be the interval covered by a single
place cell, and the total range covered by N neurons is L = N Az. Therefore, the coding efficiency is given by:
In(NAz)
Ry = ——"F"-—+-. 25

P N ( )
As we can see, as the number of neurons N increases, the efficiency R, of LSC decreases and asymptotically
approaches zero. Compared to PSC (see below), LSC is inefficient in term of utilizing the coding resource of
neurons.
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Figure S1: Robustness of local spatial coding and periodic spatial coding. (a). A one-dimensional linear
track, where color represents continuously varying positions. The blue and red dots correspond to two distant
positions, z; and zs, respectively. (b). Localized space coding (LSC). Place cells are arranged in a one-
dimensional feature space according to their preferred place fields, with neural activity forming a Gaussian
bump centered on the encoded position. The blue and red lines represent the bumps encoding the two distinct
positions, z; and 2. (¢). Phase space coding (PSC). Spatial positions are encoded by two grid cell modules,
forming a two-dimensional phase space represented by the phase combinations (¢1, ¢2). The parallel lines are
the projections of the positions in (a) onto the phase space. The blue and red dots correspond to z; and 25 in (a),
with their respective bump activities shown as blue and red lines along the axes. (d). Distribution of decoding
errors. The blue line represents PSC, while the red line represents LSC. (e). Relationship between decoding
error and noise intensity. The blue line represents PSC, while the red line represents LSC.
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A.2 EFFICIENCY AND ROBUSTNESS OF PSC

A single phase can only represents a position within the range of the period A, beyond this range, the periodic
nature of grid cell activity leads to ambiguity in position representation. To enlarge the representation range, the
combination of phases from multiple grid cell modules can be used. If the spatial periods of all grid cell modules
are pairwise coprime, the total coding range A is the product of all periods, i.e., A = Hiw ' = A\M (Sreenivasan
& Fietel [2011), where M is the number of modules and )\’ represents the spatial period of the i-th module.
Assuming each module contains N grid cells, the coding efficiency of PSC is calculated to be:

][, A MInh  InX

MNy,  MNy, Ny’
The efficiency of PSC is independent of the number of grid cell modules M, which differs from LSC (see
Eq.[25). Thus, PSC is more efficient than LSC in term of utilizing the coding resource of neurons.

(26)

Ry =

Non-local errors in PSC. The vast coding range of grid cells, which grows exponentially with the number
of modules, comes with the expense of high sensitivity to noise. For instance, consider PSC with two grid
cell modules. The phase combination (¢1, ¢2) spans a two-dimensional toroidal space with periodic bound-
aries (Figure [STk). A straight line in position space (with position coordinate z) is mapped to parallel line
segments in the phase space through the mapping function Eq. (22). The vertical separation between adjacent
parallel lines is denoted by d,i,. It is important to note that, due to the periodicity of the phase space, two
points that are far apart in the position space (the blue and red dots in Figure [STk) can be close in the phase
space. Consequently, a small perturbation in the phase space can result in a large shift in the decoded positions
(Figure ['S_Tﬁ) (Sreenivasan & Fiete, [2011).

Specifically, non-local errors occur when noises cause the phase combination encoded by grid cells to deviate
by more than dp,;,/2 from the true phase combination in the vertical direction. Since the encoding of phase
within a single grid module follows “classical population coding,” the error is proportional to the intensity of
noises. Therefore, PSC does not produce non-local errors when the noise level is low. However, as the noise
level exceeds a certain threshold, non-local errors emerge, leading to a sharp increase in the error variance (as
shown in the numerical simulations in Figure[STk). This indicates that PSC is vulnerable to noise.

B APPENDIX B: DECODING METHODS

B.1 GRADIENT-BASED OPTIMIZATION OF THE POSTERIOR (GOP)

In the main text, we have formulated the information integration between place and grid cells as a probabilistic
inference problem. The posterior of z and ¢ given r, and r,, is expressed as,

p(z, @lrg,rp) o p(ry|d)p(ry|2)p(eh, 2)

M L R il 27)
=TI p@.2) [[plre@Dle] ¢ [T plrole)lz)-
i=1 j=1 j=1
Maximizing the posterior is equivalent to maximizing the log posterior, and the latter is given by,
Inp(z, p|rg, rp) o< Inp(ry|d) + Inp(ry|z) + Inp(e, 2)
2m
=237 [ 0~ £y )] o
o2, Z o o050 (28)
Py [T 2 1 ) ' 2
=5 | (@) = Hplw)Pds =Y —l¢' = ' ()P + C
05 ) —~ 0

For the clarity of description, we approximate the discrete neuron distribution as a continuous one, i.e.,
>4lr(ss) — ()2 = ps [Ir(s) — f(s)]?ds. p; = No/2 represents the density of grid cells and p, = N, /L
the density of place cells. C' = M Inv27no4 + M In+/27w0 4 + N, In /270, is a constant.

We calculate the gradients of each probability function with respect to z and ¢?. For p(¢|z), the gradient of ¢°
is calculated to be,

9 9 | o' =¥ ()
7 Inp(¢,2) = o= [—2 ] )
¢ 8;25 20¢1 (29)
= 1) = )

15



Under review as a conference paper at ICLR 2025

and the gradient of z is,

9 _ 90 l¢* — ¥ (2)]]?
% 1np(¢72) - & Z l_ 20_;1/ ‘| )

K2

=> QW ol
—ZA ol = (2]l

Z ¢7.

o' (z)
0z '’ (30)

In the above, we have used the von-Mises distribution approximation of p(¢, z) (see more details below).

For p(r4|¢), the gradient of ¢ is calculated to be,

9 _ 9 (rg(67) — £4(0%:6)%] i
a3 10ir19) = 55 [ o { 20 (0] v 1)
_ Py i 0507 0") s
= Jfﬂ r4(6°) 96 do*,
The gradient of z is calculated to be,
0
5 Inp(ry|¢p) = 0. (32)
For p(r,|2), the gradient of ¢* is calculated to be,
0
By Inp(rp|z) =0, (33)
and the gradient of z is,
9 _9 (rp(x) — fo(@;2))”
S (e, l2) = oo, [ { = dr, )
_Pr [ (@Mdm .
o2 ) " 0z ’
Combining the above results, the gradients of the log posterior are obtained, which are,
0 0
= Inp(6, 2[ry 1) = 5 (p(rg|) + lnp(@.2) + Inp(r,|2)]
B 2T i Ofp(x;2) (35
=S 6 @I+ 2 [
0
8¢z hlp(¢a Z|rgvrp) a¢7 [h’lp(l'g‘(ﬁ) + 111p(¢, ) + h’lp(l‘p‘Z)] 9
o (36)
. 0 92; % i
@) =0l + 2 [ o) 2
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o
The algorithm of gradient-based optimization of the posterior (GOP) is summarized in Table[I]

THE VON-MISES DISTRIBUTION APPROXIMATION

In the main text, for convenience, we consider that p(¢, z) satisfy Gaussian distributions. In reality, von-Mises
distributions are more suitable to describe periodic variables. When computing gradients, we use von-Mises
distributions to approximate Gaussian distributions, as the latter are not differentiable at the boundary.

Using the von-Mises distribution, the probability p(¢, z) is written as,

M

po.2) = [ ﬁ() exp [ cos(@' — (2))] 37)
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Table 1: The pseudo-code of GOP
Step Procedure

1 Initialization: Set initial values based on the historical information
2(0) = 2, where % represents the decoded location at the previous time
step.

¢ = (=)

Gradient Ascent Update: Iteratively update parameters using the gra-
dients of the log posterior.

Update z: 25T = 20 4 9 ¥, Inp(z®, " |r,, 1,)

Update ¢: ¢+ = ) 4 1V Inp(2®), ¢ |r 1))

where V. Inp and V4 Inp are the gradients of the log posterior with
respect to z and ¢, and 1), and 7 are the learning rates.

Termination: Stop iteration when a the local maximum is reached:
V. Inp(z® ¢®|r, r,) 2~ 0and Vg Inp(z*), p®|r,, r,) = 0.
Output: z, ¢

The modified Bessel function of the first kind and zero order I,,(x) serves as the normalizing constant, satisfying
[T _exp[kcos(z — p)] = 2nl,(k). Parameters s and 1(z) are analogous to the variance and mean in the
Gaussian distribution, respectively.

The logarithm of p(¢, z) is expressed as,

Inp(e, 2) Z K cos( ¥¥(2)) — M In(2nIy(k)), (38)

where ¢'(z) = mod(z/\") x 27 = (2/A") x 27 — 2n'm, with n’ = z//A" and the symbol // represents the
mathematical operation of divisibility. Substituting ¢*(z) into the above equation, we get,

Inp(e, 2) ZRCOb — —27r —2'n) +C = chos — —271') + C. (39)

Thus, the gradient of z is calculated to be,

é1np (¢, 2) = chos(b ——27r)

0z
B Z . i y%)
-X 21“ | [w ~(Zor+2uw)).
= 3 snlo! v,

(40)

Given that the disparity between ¢ and 1¢(2) is sufficiently small, we can use the approximation sin(x) ~ x
with z sufficiently small. We have,

d 2 i
57 np(e2) = 32 Sl — )]l 1)

7

Similarly, the gradient of ¢° is calculated to be

0 . .
95 Inp(¢, 2) = &[4 (2) — ¢'|l. 42)

These give the results in Egs. (2930).
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B.2 DECODING POSITION FROM GRID CELLS

Assuming independent Gaussian noises, the likelihood function of PSC consists of two parts, which are:

T 1 [M |¢i—w<z>||21
2)=[]p(¢' 2) = exp [y | 43)
Z.I;[l \/27r0¢7: ; 20351,
T r i e — fo(63:6")]
p(rgld) =[] [ »[re(0))1e] = W - exp ZZ o : (44)
i=1j5=1 i=1 j=1 .‘]1

where 9; represents the preferred phase of the jth neuron in the ith module.

We can us maximum a posterior (MAP) to decode the position, which is written as,

2, ¢ = arg rgaxp(a Plry) = arg ma [p(ry|P)p(9, 2)] - (45)

C APPENDIX C: THEORETICAL ANALYSIS OF THE MODEL DYNAMICS

C.1 THE MODEL STRUCTURE

We first review the dynamics of our model presented in the main text.

The dynamics of place cells is given by,

AU, (x,t Ly
Tp%’) == Uyt o | Wl ) Ry(o' )
(46)
Jerg/ W, p(z, 09 Ry (07, 1)d0° + I,().
The dynamics of grid cells is given by,
au, (6t , ™ -, , .
Tg% =—Uy(0',t) + pg Wy (0',6" )Ry(6° ,t)do"
L2 47
+ pp Wy p(2,0")Ry(z,t)dx + 1,(0").
—L/2
The firing rate of neurons is given by,
Us(s,t)?
Rs(s,t) = , s=ua,6. 48
(s:%) 1+ keps [Us(s,t)?ds ST 48)
The recurrent connections between neurons in the P-CANN or a G-CANN are given by
Js lls — &'l IQ]
Ws(s,s) = ——exp|————|, s=uzx,0. 49
(s ) V2Tas P [ 2a2 (49)
The reciprocal connections between place and grid cells are given by,
J, 10 — ()|
Wy p(x, 0 —P ex —_—, 50
g.p( ) = maw’p p [ 2%171) (50)

where ¢ (z) = mod(xz/\, 1) x 2.

C.2 THE SOLUTION OF BUMP STATES

When the inhibition strength £ lies within a certain region (Fung et al.,|2010), a CANN can hold a continuous
family of bump-shape stationary states. For place cells, the bump state is expressed as,

U,(z) = Apexp [—W} , Ry(x)=Ryexp {—(x;agy] . (51)
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For grid cells, the bump state is expressed as,

- 16 =61 & g
0,0) = Agesp | W) Ry = Ryeso |10 52)

_W—w‘n?]_

In the above A, and A, represent the bump heights in P-CANN and G-CANN, respectively, and Rp and I%g
the maximum firing rates of place cells and grid cells, respectively. We check the condition when the coupled
networks hold these bump states as their stationary states. For clearance, hereafter, we denote the Gaussian
function as N (s|s’, a) = exp [—||s — ¢'|[*/4a?].

Substituting Eqs. (51] [52)) into the grid cell dynamics, we get,

A, WIS 8 | 16, ) = (— Ay + 222 RN (016", a0

+
o |4 T 242 at T ar 2
gi \[ (53)
oy [ Lo2Bo N O(a), SO\ (a2, e + I 01,0
y 4 raglp b ?\/§ g b I

V2
where NV (0]¢", ag;) = exp [—[|0° — ¢'||/4a,].
cells can be simplified as,

By setting I; = 0 and dA,/dt = 0, the dynamics of grid

_ Pgdy i — g0ty Agip ap
(Ag \/ﬁ RQ)N(9|¢ 70’9") \/%GQZPN( |/(/)( ) \/Q )N(.’I}|Z, \/Q)dl' (54)

To calculate the integral in the right-hand side of Eq. (54), we need to map the bump from the phase represen-
tation to the location representation. Because of the periodic nature, a phase corresponds to many locations.
Denote 1~ 1(6%; 2) = (\*/2m)6° + n'(z) to be the location corresponding to phase 6 closest to z. We have,

N(91|’(/ﬂ(z)7agi) = exp _||2sz2(’2)||‘| 7
L gt
o |16 = 2m(z/x = )|
= exp - 2(132- 1 :
Y2m)0 +n'(z) — 2)° (55)
p
[ (W7(0%52) — 2)?
—o [

ZN(z{w_l(Hi;z),ap).

Note that [¢)~!(6"; z) — z| must be smaller than \* /2, implying that ||6" — 27 (2 /A" —n'(2))|| = |0" — 27 (2 /X' —
n*(z))| < m, so that the operation of circular distance can be removed from the above equation.

Using this property, we can further simplify Eq. (54) as,

Pgdg ; ) Qg a
(g~ PR N1 000 = 25 [ oot 3; Wialz. Ly,
gz P
(56)
Aa a
']717 ']1717 p
— oy [ Nl 10, 5 SR (a2 o
i \/7 Qgip \/> \/i
We see that, the condition for the above equation to be satisfied is,
Qgip = Qgi = ap(21/N), (57)
We substitute this condition into the above equation and get,
Jy : JypR _
(Ag = L2 RN (016", agi) = P LN (@l (050),ay),
J, R )\ ©8)
_ Ppdgpitph
OlY(z), ag:).
P 2SN O) a0

Therefore, in the steady state, the bump center of grid cell modules is ¢* = 1(z), with z the bump center of
place cells.
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Substituting Eqs. (51] 52)) into the place cell dynamics, we get,

r—z dz PpJp A 2

TpApﬁN(z 2a )dt Tp 7t N( ar) =(—A, + 3 Ry)N(z,2a,)
M A 2 (59)

Pty Py [ (@) — 'l
—|—Z exp | —————— | + I(z,1).
= V2 dag;
The divisive normalization can be simplified as,
N A2

s = > (60)

1+ 271'as,osk:SA§7
where s denotes the cell type.

We calculate the stationary state of the networks when no external input exist (I, = I; = 0). By setting
dAp/dt = dA,/dt = 0 and dz/dt = d¢'/dt = 0, we obtain

Ppdp ~ 1 -
Ay = \p/ép Ry + \7@ Z PgBgg.p, (6D
Jg » 1
A, = Pgﬁg R, + NG ppRp Ty p- (62)
Using divisive normalization, we get,
A2 A?
Ag ngg g 5 + pP‘]gvP )4 = (63)
V2 1+ V2ragipgky A2 \/i 1+ V2mayppky A2
_ Py A2 PgJg,p0p A;
Ay = Z (64)
V2 1+ V2mayppky, A \f Ggi 1+ V2magipgky A

Previous research has shown that for CANNs, external inputs primarily influence the network dynamics by
altering the position of the network’s activity bump (Wong et al., 2008} |[Fung et al [2010). In our model,
this corresponds to the effects on dz/dt and d¢'/dt. This sensitivity arises because CANNs exhibit neutral
stability in the direction of the activity bump’s movement, making them highly responsive to external inputs.
In contrast, the height of the activity bump is less sensitive to changes in external inputs, reflecting the inherent
dynamics of the attractor. When examining changes in bump height, we consider that recurrent inputs within
each network are much stronger than reciprocal ones, allowing us to disregard reciprocal inputs and simplify
the above expressions,

Pgly As%
A, = > (65)
V2 14+ 27mgl-pgkgAg
A2
Ap _ pPJP p > (66)
V2 14V 2rayppky A
We have,
A, = 1 pgdq +\/p2J2 8V 2magipyk 67)
g A/magipeky \"° giPglg | »
1
A = — 2J2 — 8v/2 ky|. 68
? 4y/mayppky <ppJ " \/P T~ SVETOpp p) ©%

C.3 SIMPLIFYING THE MODEL DYNAMICS BY THE PROJECTION METHOD

In a CANN, its stationary states constitute a neutrally stable sub-manifold, implying that the network dynamics
can be effectively represented by a small number of dominant motion modes, such as the variations in height
and position of the stationary states. Therefore, by projecting the network dynamics onto these dominant motion
modes, we can simplify the network dynamics significantly. The first two dominating motion modes of a CANN
can be expressed as,

height : u2(s) = U,(s), (69)
)

position : wl(s) = (70)
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C.3.1 THE SIMPLIFIED DYNAMICS OF PLACE CELLS

For place cells, the first two modes are written as,

O(@) = exp [—(“"4‘@5)1 an
up(z) = [z—z]exp {—(364_@;)2]. (72)

We consider that the field width of place cells is much smaller than the space range, i.e., a, < L, and the
integral from —L/2 to L/2 can be approximate as from —oc to co.

For the projection on u , the result is,

Ap dz T — z)? dA T — z)?
Left = /TPQ o —(x — z)exp [ (4a2)} ug(m)dx + /Tpd—tp exp {_(4a2)] ug(ac)dx,
P P

(73)
= 27rap7pd—tp.
. Ppdp 5 (=21 o
R1ght:/<— » :}; p) exp [—4@2 u,(v)dx
PoltyTs, l¢" = ' @)II* |
i gr
ool \W (2)]2 0
= V2ma,(—A, + fR)+faprqR Jypexp |— + [ Tyuydz.
For the projection on u1 the result is,
B x—zdz (x—2)?] ,
Left = /TPAPMCh exXp |:4a12):| up(x)dx
dA, x—z)?
e 5] i
P
dz
= QﬁaprApE.
) Ppdp A (x —2)%] |
ht = —A —— d
Rig /( p T+ NG Rp> exp[ Ia2 u,,(z)dx
p R J’ 1,71/}71 ¢z 2
+/Zg\g[29pexp {w uzl,(z)der Ip(x,t)u;(x)dx (76)
Ta by J, pgR ; Pi(z) — ¢')?
_ VTt 5 Aot ) i)l exp [_II <8>az I +/1pu;dx
- gt
Combining the above equalities, we obtain
A, _ 1 pods 5 1 : i) - l2] . 1 /
—r = ! _A pp _ _ I 0
dt Tp { ot V2 Byt V2 Z:PgRnghp o l Sa; * V2may, Py
(77
dz 1 1 Ai > i i |97 (2) — ¢'||? 1 / 1
& - A, {4 z; 27TJg,pPgRgHGé ' (2)|] exp [ 87, + NS Lyuydz o .
(78)
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C.3.2 THE SIMPLIFIED DYNAMICS OF GRID CELLS

For grid cells, the first two dominant motion modes are written as,

% il|2
ug(az) _ expl ||9 ¢ H ‘|7 (79)

4a? i

uh(0) = |16 o] ex [ o ‘””2] (50)
g = P 402 :

For the projection on ug, the result is,

91 ¢z 9i_¢i 2 d(bi ; ;
Left/{TgAg” %2, I, [ I o ! 1dt ug (6")do

gl

dA 6" — ¢°I? 0/ pi\ 1pi 81
Jr/{rgdtgexp[ 1 2 ug(ﬁ )db"*, (8D
dA
= \/%agﬂgd—tg.
. J R 2L 7|2 ; ;
nght/< . pf@g>RgeXpl l 4a¢|] ul(6%)d6
gl
)\ 01’7 7 2 ) . ) ) .
pplf[‘]gp27r exp _H 4;/)2(2)H ]ug(ﬁz)dﬂl+/Ig(0’,t)u2(01)d91, (82)
gl
J. . . i i )][2 _
= V2may; <—Ag+ p\g/EgRg> + VmapppRpdy.pexp —W +/I;ugdx.
gi

For the projection on u;, the result is,

16 =& |10 =2 [ do" | 1 pin i
Left = 04wl (o) do!
¢ / {Tg 242, a2, | dt ug(0")

dA, o

+ / {Tg n (9’)} 5(07)d", 3
di
= QﬁagﬂgAgdi;.

: PgJg 1 HGZ ¢Z||2 100\ 1pi
nght:/(—Ag—i— f@gRg) exp [ 12, uy (6")do

ap ppRyJ,. 0t —i(2)])? P
+/i plp gpexp [| 4a2( )H ué(@ )d9

agi V2 gi (84)
+/Ig(0i,t)u;(9i)d9i,
Ta . ; ; wz = _¢i 2 ;
= Yyl — 4 (2) e [”(8)' + [ Lupde.
gt

Synthesizing the above equalities, we obtain

ddg _ 1 Py ll¢*(t) — ' (2)I? 1 / :
— A 9vg Tt 0 .
7 - { + NG R + \fppR pJg,p €XD l 8a§i + magi gUgd (85)

o 1 A o | (t) — ()2 1 |
T {%Jg,pppRp|w’<z>—¢Z||exp [—'“)8@;‘? Gl ]+2 vered | f;u;dx}. (36)

gt
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Combing the above results and assuming that the network bump centers are close enough, i.e., |[¢?(t) — 1*(2)||
are sufficiently small, we get the final form of the simplified network dynamics, which are,
dA, 1 Ppd;
=2 = —A, + LR, RyJ, / Ludd 87
dt Tp{ TR +\fzpq q’p+\/ map ) 7
dz 1 1 Ai - , , 1
e -y = bt Lyuld 88
i TPAP{4;2ﬂJg,ppgRg|¢ w<z>||+2ﬁ%/ bty x} (88)
dA, 1 Podg ~ 1 . 1 )
— = A+ IR+ —ppR,J 7/12%1 89
a Tg{ g+ 2 y+\/§pp pg,p"‘\/gAg gUgdl (s (89)
dg’ 1 A - , , 1 P 1
= —J Ryl|v' (=) — ¢° Iudzx o . 90
i oA, {871' gpPpBp| Y (2) — &[] + 2\/7?(191_/ glUyg I} (90
C.4 THE COUPLED NETWORKS IMPLEMENTING GOP
From Eqgs.(35]36), the gradients of the logarithm posterior are given by,
0 i i p Ofp(z;2)
5, np(9.2e.x,) = ZA 7 llo v (z)ll+é/rp<x)”azdx, 1)
0 1 i 0fg(0%5¢")
@lnp(qb,zhg,rp) = %HW( z) = ¢'|| + gl/ g(el)andez' 92)
From Eqgs.(88][90), the dynamics of the bump centers of place and grid cells are written as,
dz 1 1 Ai - : : 1
haied _ - 2 R ) - I ld
i - A {4 Z 3 JoaboBlle’ = V' + 5 / ity } (93)
de’ 1 A - - ; 1 ;1
= —J, Ryl[Y' (=) — @° — | TJu,_df ;. 94
i oA, {87r g pPp B[V (2) — @']| + o /mag: / glUy } 94

We consider the external inputs to the networks are given by, I; = ag;ry and I, = a,r,, where oy, and oy,

represent the strengths of external inputs to the grid cells and place cells, respectively.

Comparing the gradients of the posterior Eqs. (91]92)) with the network dynamics Eqgs. (93]94), we see that they
are equivalent if the below parameter conditions are satisfied, which are,

(ﬁ)QJgﬂppgRg _ L _ GpQp i
2’ 4ApT, 0'5)7; VT A3p,T, 02
ﬁ Jg,pPpRp 1 _agiag; 1

= —, = . 95)

2n 4A47, 03)1 VT AL pyT, Uﬁi
From the above equalities, we find the necessary condition for o4 well-defined is QﬁAprppRp =
A Ai Tgpz Ri. The relationships between the parameters in the probabilistic model and those in the network dy-

namics are: U = (\prPpr)/@apap)’ Jii = (87TA979)/()‘iJ9,pPpRp) and U (\ngPng)/(Qagiagi)-

For the sake of simulation convenience, we can simplify the above parameter constraint by decomposing them
into a more manageable form. Assuming the neuron densities and recurrent strength of grid cells and place
cells are equal, i.e. p, = pg, J; = Jp, and that the products of interaction width and global inhibition strength
within each type of cells are the same, a4;k, = apk,. Therefore, according to the previous derivation of height

of stationary synaptic input A4 and maximal firing rate R, we have

I A t Lodop 45 (96)
* V2 14+ 2maspskyA? V2 1+ 27ras,opkpA§7

. A2

R, = > (Ch)

14+ V2maspsks A2 ’
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where s denotes the cell type. We see that A, = A, and Rp = Rg. Substituting into well-defined condition
of 0yi, 2rATppp Ry = N AlTyp, RY, we can conclude that a7, = ag7,. Utilizing the relation between
interaction width ay; /27 = a,/\;, we can decompose the constrain as
k k i
A, =A,, Jy=J, =21 . (98)

o NPT T

Through simulations, we directly compared the evolution trajectory of the bump center when projected with
noisy inputs to the trajectory obtained using gradient-based optimization of the posterior (GOP). The results
demonstrate that, while there is a small difference in the final converged point between the two decoding meth-
ods (which is not statistically significant, see Fig. [3p), the evolution trajectories of the network’s bump center
and the GOP method are nearly identical (see Fig. [S2|for examples).

— — —
‘
g §208 § 3015

3302 3207 3
3 3 3 3010
8 8 8

017 | 3005
205 \

0 25 500 750 1000 1250 1500 1750 2000 0 25 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
timestep

—
—_— 30.00

Figure S2: Three examples of decoding trajectories comparing the network’s bump center and the GOP method.

D APPENDIX D: SIMULATION DETAILS

In this section, we provide the details of the simulation experiments. In simulations, we consider a 1D spatial
range of (—30,30), with the animal located at position 0. The initial states of the place cell and grid cell
CANN:Ss are set to encode the position zg = —0.5, which is assumed to be the animal’s previous location. Most
parameters remain consistent across all experiments, with only the input strength of place and grid cells, as well
as the variance of noisy inputs, varying between experiments. Below, we present the shared parameters. The
parameters for the probabilistic inference model are listed in Table [2] the parameters for place cell dynamics in
Table 3] and the parameters for grid cell dynamics in Table ] Experiment-specific parameters are provided in
the subsequent subsections.

Variable Value | Variable Value

L 60 op1 025
O'¢2 0.19 0'¢3 0.15

Table 2: Shared parameters in the probabilistic inference model.

Variable ~Value | Variable Value | Variable Value

oy 33 N, 200 a, 0.3
Iy 20 kp 20 T 1.0

Table 3: Shared parameters of the place cell dynamics.

D.1 SIMULATION EXPERIMENT: OPTIMAL INFORMATION INTEGRATION OF SENSORY CUES
The experiment in Sec. 5.1 aims to demonstrate that the network model optimally integrates location informa-
tion from both environmental and motion cues. We evaluate the network’s performance under three distinct

conditions:

¢ Environmental cue only: Place cells receive external input from the environmental cue, with input
strength o, = 0.05 and grid cell input strength oy = 0.
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Variable ~Value | Variable Value | Variable Value

P 33 N, 20 M 3
A 3 A2 4 A3 5
Jy 20 Jng 0.5

a¢1 0.63 a¢2 0.47 a¢3 0.38
kg1 955 | kgo 1273 | kys 1591
Te1 209 | Tyo 157 | 743 1.26

Table 4: Shared parameters of the grid cell dynamics.

* Motion cue only: Grid cells receive external input from the motion cue, with o, = 0 and oy = 0.05.

* Information integration: Both place and grid cells receive external inputs, with o, = 0.05 from the
environmental cue and oy = 0.05 from the motion cue.
External inputs to place and grid cells are generated according to Eqgs. (I)) and (23)), respectively.

For each condition, we conduct 1000 independent trials. In each trial, the animal’s location is decoded based on
the bump center of place cells, which is computed as:

_ i Bp(@i)
> Bolwi)

where R, (x;) represents the activity of place cells at position ;.

z 99)

For comparison, we also apply the GOP method (Table|l) to theoretically decode the animal’s position.

In all three cases, we calculate the distributions of decoding errors and fit them with Gaussian distributions. In
Fig. , the standard deviation of the place cell input is o, = 0.25 and the standard deviation of the grid cell
inputis o4 = 0.2. In Fig. E}), the standard deviations of the place and grid cell inputs are identical, ranging from
0.05t0 0.2.

D.2 SIMULATION EXPERIMENTS: ELIMINATING NON-LOCAL ERRORS

The experiment in Sec. 5.2 aims to demonstrate that the network model can effectively eliminate non-local
errors associated with phase coding of grid cells. In this setup, only grid cells receive external inputs, meaning
that only the motion cue is available (i.e., o, = 0, ag = 0.05).

We compute the network’s decoding results and compare them with those obtained using the Maximum A
Posteriori (MAP) approach (see Eq.@3)). First, we measure the distributions of decoding errors from both
methods at a fixed noise intensity (Fig, o4 = 0.2), and then we calculate the variances of the decoding errors
across different noise levels (FigE]), with o, ranging from 0.05 to 04). The results are summarized in FigE] in
the main text.

E APPENDIX E: ROBUSTNESS TEST

E.1 IMPACT OF CORRELATED NOISE

We conduct the same experiment as shown in Fig.3 and Fig.4 in the main text but with correlated multi-variate
Gaussian noise, whose covariance matrix is,

((ri = £)(rj = [;)) = 0 [0 + c(1 = 6i5)] (100)
with ¢ = 0.15, which falls within the range of experimentally observed noise correlations (¢ = 0.1 — 0.2) as
reported by Zohary et al. (1994) and Shadlen et al. (1996). These simulations confirmed that our main conclu-
sions remain robust: (1) the network continues to integrate information in a Bayesian manner (see Fig[S3h&b
in revised Appendix), and (2) even in the absence of positional information (I, = 0), the network can still elim-

inate non-local errors caused by grid cell coding, enabling more robust spatial coding (see Fig[S3f in revised
Appendix).

E.2 IMPACT OF COUPLING STRENGTH

We next examine whether variations in coupling strength (denoted as J, ,, in Eqn. E]) affect the model’s ability to
integrate information. Specifically, we systematically varied the coupling strength and repeated the experiment
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(a) (b)
0.25
0.05 0.007 —— Net decoding Error
dg) 0.006 0.20 —— MAP decoding Error
>
2004
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£ 0.005
S £ 0.15
Q003 8 0.004
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Figure S3: Simulation with Correlated Noise.

shown in Fig. 3 of the main text. The results, presented in Fig.[S4] demonstrate a robust alignment between the
model’s information integration and Bayesian integration across different coupling strengths.

(a) (b) Coupling strength = 0.8 (C) Coupling strength = 1.25

—— only motion
only environment

—— net integration

—— Bayesian integration

0.08 \-/\/
o7 W

0.06 o0
0.8

Standard deviations
g
2

Normalized Density
Normalized Density

0.9 10 11 12
Coupling strength

63 2 61 do o1 02 03 04
Decoded Position

Figure S4: Impact of coupling strength on information integration. (a) Standard deviations of decoding results
under different coupling strengths. (b) and (c) Examples of decoding result distributions for varying coupling
strengths.

E.3 MODEL COMPARISON

We compare our model with the “constrained range model” proposed by |Sreenivasan & Fiete| (2011) (see
Fig. [S5). Both models are capable of eliminating non-local errors when the decoding range is tightly con-
strained (Fig. [S5h). However, when the decoding range becomes larger, our model continues to eliminate
non-local errors, whereas the “constrained range model” fails to do so (Fig. [S3p-c).

The key difference lies in how non-local errors are handled. Our model leverages recurrent currents within
the place cell network to store historical information, enabling robust error correction without relying on range
constraints. In contrast, the “constrained range model” reduces non-local errors by limiting the coding range,
thereby sacrificing coding capacity. This distinction highlights the advantage of our model: the dynamics of the
place cell network not only ensure robust spatial coding but also preserve coding efficiency.
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Figure S5: Comparison of our model with the constrained range model. (a) Both models successfully eliminate
non-local errors when the decoding range is small. (b) and (c) When the decoding range is large, our model
maintains error correction while the constrained range model fails.
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