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Abstract

MAX-K-CUT and correlation clustering are fundamental graph partitioning prob-
lems. For a graph G = (V,E) with n vertices, the methods with the best approxi-
mation guarantees for MAX-K-CUT and the MAX-AGREE variant of correlation
clustering involve solving SDPs with O(n2) constraints and variables. Large-
scale instances of SDPs, thus, present a memory bottleneck. In this paper, we
develop simple polynomial-time Gaussian sampling-based algorithms for these
two problems that use O(n + |E|) memory and nearly achieve the best existing
approximation guarantees. For dense graphs arriving in a stream, we eliminate
the dependence on |E| in the storage complexity at the cost of a slightly worse
approximation ratio by combining our approach with sparsification.

1 Introduction

Semidefinite programs (SDPs) arise naturally as a relaxation of a variety of problems such as k-means
clustering [5], correlation clustering [6] and MAX-K-CUT [14]. In each case, the decision variable is
an n × n matrix and there are d = Ω(n2) constraints. While reducing the memory bottleneck for
large-scale SDPs has been studied quite extensively in literature [9, 11, 19, 36], all these methods use
memory that scales linearly with the number of constraints and also depends on either the rank of
the optimal solution or an approximation parameter. A recent Gaussian-sampling based technique
to generate a near-optimal, near-feasible solution to SDPs with smooth objective function involves
replacing the decision variable X with a zero-mean random vector whose covariance is X [27]. This
method uses at most O(n+ d) memory, independent of the rank of the optimal solution. However,
for SDPs with d = Ω(n2) constraints, these algorithms still use Ω(n2) memory and provide no
advantage in storage reduction. In this paper, we show how to adapt the Gaussian sampling-based
approach of [27] to generate an approximate solution with provable approximation guarantees to
MAX-K-CUT, and to the MAX-AGREE variant of correlation clustering on a graph G = (V,E) with
arbitrary edge weights using only O(|V |+ |E|) memory.
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1.1 MAX-K-CUT

MAX-K-CUT is the problem of partitioning the vertices of a weighted undirected graph G = (V,E)
into k distinct parts, such that the total weight of the edges across the parts is maximized. If
wij is the edge weight corresponding to edge (i, j) ∈ E, then the cut value of a partition is
CUT =

∑
i and j are in different partitions wij . Consider the standard SDP relaxation of MAX-K-CUT

max
X�0

〈C,X〉 subject to
{

diag(X) = 1

Xij ≥ − 1
k−1 i 6= j,

(k-Cut-SDP)

where C = k−1
2k LG is a scaled Laplacian. Frieze and Jerrum [14] developed a randomized rounding

scheme that takes an optimal solution X? of (k-Cut-SDP) and produces a random partitioning
satisfying

E[CUT] =
∑

ij∈E,i<j
wijPr(i and j are in different partitions) ≥ αk〈C,X?〉 ≥ αkoptGk , (1)

where optGk is the optimal k-cut value and αk = min−1/(k−1)≤ρ≤1
kp(ρ)

(k−1)(1−ρ) , where p(ρ) is the
probability that i and j are in different partitions given that Xij = ρ. The rounding scheme proposed
in [14], referred to as the FJ rounding scheme in the rest of the paper, generates k i.i.d. samples,
z1, . . . , zk ∼ N (0, X?) and assigns vertex i to part p, if [zp]i ≥ [zl]i for all l = 1, . . . , k.

1.2 Correlation clustering

In correlation clustering, we are given a set of |V | vertices together with the information indicating
whether pairs of vertices are similar or dissimilar, modeled by the edges in the sets E+ and E−
respectively. The MAX-AGREE variant of correlation clustering seeks to maximize

C =
∑
ij∈E−

w−ij1[i,j in different clusters] +
∑
ij∈E+

w+
ij1[i,j in the same cluster].

Define G+ = (V,E+) and G− = (V,E−). A natural SDP relaxation of MAX-AGREE [6] is

max
X�0

〈C,X〉 subject to
{

diag(X) = 1

Xij ≥ 0 i 6= j,
(MA-SDP)

where C = LG− +W+, LG− is the Laplacian of the graph G− and W+ is the weighted adjacency
matrix of the graph G+. Charikar et al. [10] (see also Swamy [30]) propose a rounding scheme that
takes an optimal solution X?

G of (MA-SDP) and produces a random clustering C satisfying

E[C] ≥ 0.766〈C,X?
G〉 ≥ 0.766optGCC , (2)

where optGCC is the optimal clustering value. The rounding scheme proposed in [10], referred to as
the CGW rounding scheme in the rest of the paper, generates either k = 2 or k = 3 i.i.d. zero-mean
Gaussian samples with covariance X?

G and uses them to define 2k clusters.

1.3 Contributions

We now summarize key contributions of the paper.

Gaussian sampling for MAX-K-CUT. Applying Gaussian sampling-based Frank-Wolfe given
in [27] directly to (k-Cut-SDP) uses n2 memory. We, however, show how to extend the approach
from [27] to MAX-K-CUT by proposing an alternate SDP relaxation for the problem, and combining
it with the FJ rounding scheme to generate a k-cut with nearly the same approximation guarantees as
stated in (1) (see Proposition 1) using O(n+ |E|) memory. A key highlight of our approach is that
while the approximation ratio remains close to the state-of-the-art result in (1), reducing it by a factor
of 1− 5ε for ε ∈ (0, 1/5), the memory used is independent of ε. We summarize our result as follows.

Proposition 1. For ε ∈ (0, 1/5), our O
(
n2.5|E|1.25

ε2.5 log(n/ε) log(|E|)
)

-time method outlined in

Section 3 uses O(n+ |E|) memory and generates a k-cut for the graph G = (V,E) whose expected
value satisfies E[CUT] ≥ αk(1− 5ε)optGk , where optGk is the optimal k-cut value.
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Gaussian sampling for MAX-AGREE. The structure of (MA-SDP) is similar to (k-Cut-SDP),
however, the cost matrix in (MA-SDP) is no longer PSD or diagonally dominant, a property that plays
an important role in our analysis in the case of MAX-K-CUT. Despite this, we show how to generate
a (1− 7ε)0.766-optimal clustering using O(n+ |E|) memory. Our approach makes a small sacrifice
in the approximation ratio (as compared to (2)), however, the memory used remains independent of ε.

Proposition 2. For ε ∈ (0, 1/7), our O
(
n2.5|E|1.25

ε2.5 log(n/ε) log(|E|)
)

-time method outlined in

Section 4 uses O(n+ |E|) memory and generates a clustering of graph G = (V,E) whose expected
value satisfies E[C] ≥ 0.766(1− 7ε)optGCC , where optGCC is the optimal clustering value.

The constructive proof outline of Propositions 1 and 2 is given in Sections 3 and 4 respectively.

Memory reduction using graph sparsification. Propositions 1 and 2 state that the memory used
by our approach is O(n + |E|). However, for dense graphs, the memory used by our method
becomes Θ(n2). In this setting, to reduce the memory used, we first need to change the way we
access the problem instance. We assume that the input (weighted) graph G arrives edge-by-edge,
eliminating the need to store the entire dense graph. We then replace it with a τ -spectrally close
graph G̃ (see Definition 1) with O(n log n/τ2) edges. Next, we compute an approximate solution
to the new problem defined on the sparse graph using O(n log n/τ2) memory. For MAX-K-CUT
and MAX-AGREE, we show that this method generates a solution with provable approximation
guarantees.

1.4 Literature review

We first review key low memory algorithms for linearly constrained SDPs.

Burer and Monteiro [9] proposed a nonlinear programming approach which replaces the PSD decision
variable with its low-rank factorization in SDPs with d linear constraints. If the selected value of
rank r satisfies r(r + 1) ≥ 2d and the constraint set is a smooth manifold, then any second-order
critical point of the nonconvex problem is a global optimum [8]. Another approach, that requires
Θ(d+ nr) working memory, is to first determine (approximately) the subspace in which the (low)
rank-r solution to an SDP lies and then solve the problem over the (low) r-dimensional subspace [11].

Alternatively, randomized sketching to a low dimensional subspace is often used as a low-memory
alternative to storing a matrix decision variable [31, 34]. Recently, such sketched variables have been
used to generate a low-rank approximation of a near-optimal solution to SDPs [37]. The working
memory required to compute a near-optimal solution and generate its rank-r approximation using
the algorithmic framework proposed by Yurtsever et al. [37] is O(d + rn/ζ) for some sketching
parameter ζ ∈ (0, 1). Gaussian sampling-based Frank-Wolfe [27] usesO(n+ d) memory to generate
zero-mean Gaussian samples whose covariance represents a near-optimal solution to the SDPs with d
linear constraints. This eliminates the dependency on the rank of the near-optimal solution or the
accuracy to which its low rank approximation is computed.

However, the two problems considered in this paper have SDP relaxations with n2 constraints, for
which applying the existing low-memory techniques provide no benefit since the memory requirement
of these techniques depends on the number of constraints in the problem. These problems have been
studied extensively in literature as we see below.

MAX-K-CUT. MAX-K-CUT and its dual MIN-K-PARTITION have applications in frequency allo-
cation [12] and generating lower bound on co-channel interference in cellular networks [7]. These
problems have been studied extensively in the literature [20, 26, 29]. The SDP-based rounding
scheme given in [14] has also been adapted for similar problems of capacitated MAX-K-CUT [16] and
approximate graph coloring [21]. In each case, however, the SDP relaxation has Ω(n2) constraints.
Alternative heuristic methods have been proposed in [13, 17, 23, 25], however, these methods generate
a feasible cut which only provides a lower bound on the optimal cut value.

Correlation clustering. Charikar et al. [10], Swamy [30] provide 0.766-approximation schemes for
MAX-AGREE each of which involve solving (MA-SDP). For large-scale applications, data streaming
techniques have been studied quite extensively for various clustering problems, such as k-means and k-
median [3, 24]. Ahn et al. [1] propose a single-pass, Õ(|E|+nε−10)-time 0.766(1−ε)-approximation
algorithm for MAX-AGREE that uses Õ(n/ε2) memory. In contrast, to achieve the same approxima-
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tion guarantee, our approach usesO
(
n+ min

{
|E|, n logn

ε2

})
memory which is equal toO(n+ |E|)

for sparse graphs, and is independent of ε. Furthermore, the computational complexity of our
approach has a better dependence on ε given by O

(
n2.5

ε2.5 min{|E|, n logn
ε2 }

1.25 log(n/ε) log(|E|)
)

which is at most O
(
n3.75

ε5 (log n)1.25 log(n/ε) log(|E|)
)

. Moreover, our approach is algorithmically
simple to implement.

1.5 Outline

In Section 2, we review the Gaussian sampling-based Frank-Wolfe method [27] to compute a near-
feasible, near-optimal solution to SDPs with linear equality and inequality constraints. In Sections 3
and 4 respectively, we adapt the Gaussian sampling-based approach to give an approximation
algorithm for MAX-K-CUT and MAX-AGREE respectively, that use only O(n + |E|) memory,
proving Propositions 1 and 2 respectively. In Section 5, we show how to combine our methods
with streaming spectral sparsification to reduce the memory required to O(n log n/ε2) for dense
graphs presented edge-by-edge in a stream. We provide some preliminary computational results for
MAX-AGREE in Section 6, and conclude our work and discuss possible future directions in Section 7.
All proofs are deferred to the Supplementary material.

Notations. The matrix inner product is denoted by 〈A,B〉 = Tr
(
ATB

)
. The vector of diagonal

entries of a matrix X is diag(X), and diag∗(x) is a diagonal matrix with the vector x on the diagonal.
The notations O,Ω,Θ have the usual complexity interpretation and Õ suppresses the dependence on
log n. An undirected edge (i, j) in the set E is denoted using (i, j) ∈ E and ij ∈ E interchangably.

2 Gaussian Sampling-based Frank-Wolfe

Consider a smooth, concave function g and define the trace constrained SDP

max
X∈S

g(B(X)), (BoundedSDP)

where S = {Tr(X) ≤ α,X � 0} and B(·) : Sn → Rd is a linear mapping that projects the
variable from

(
n+1
2

)
-dimensional space to a d-dimensional space. One algorithmic approach to

solving (BoundedSDP) is to use the Frank-Wolfe algorithm [18] which, in this case, computes an
ε-optimal solution by taking steps of the form Xt+1 = (1− γt)Xt + γtαhth

T
t , where γt ∈ [0, 1] and

unit vectors ht’s arise from approximately solving a symmetric eigenvalue problem that depends only
on B(Xt) and g(·). Standard convergence results show that an ε-optimal solution is reached after
O(Cug /ε) iterations, where Cug is an upper bound on the curvature constant of g [18].

Frank-Wolfe with Gaussian sampling. The Gaussian sampling technique of [27] replaces the
matrix-valued iterates, Xt, with Gaussian random vectors zt ∼ N (0, Xt). The update, at the level
of samples, is then zt+1 =

√
1− γtzt +

√
γtα ζtht, where ζt ∼ N (0, 1). Note that zt+1 is also

a zero-mean Gaussian random vector with covariance equal to Xt+1 = (1 − γt)Xt + γtαhth
T
t .

Furthermore, to track the change in the objective function value, it is sufficient to track the value
vt = B(Xt), and compute vt+1 such that vt+1 = (1− γt)vt + γtB(αhth

T
t ). Thus, computing the

updates to the decision variable and tracking the objective function value only requires the knowledge
of zt ∼ N (0, Xt) and B(Xt), which can be updated without explicitly storing Xt, thereby reducing
the memory used.

Algorithm 1 [27] describes, in detail, Frank-Wolfe algorithm with Gaussian sampling when applied
to (BoundedSDP). It uses at most O(n + d) memory at each iteration, and after at most O(Cug /ε)

iterations, returns a sample ẑε ∼ N (0, X̂ε), where X̂ε is an ε-optimal solution to (BoundedSDP).

2.1 SDP with linear equality and inequality constraints

Consider an SDP with linear objective function and a bounded feasible region,

max
X�0

〈C,X〉 subject to
{
A(1)(X) = b(1)

A(2)(X) ≥ b(2), (SDP)
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Algorithm 1: (FWGaussian) Frank-Wolfe Algorithm with Gaussian Sampling [27]
Input :Input data for (BoundedSDP), stopping criteria ε, accuracy parameter η, upper bound

Cug on the curvature constant, probability p for the subproblem LMO
Output :z ∼ N (0, X̂ε) and v = B(X̂ε), where X̂ε is an ε-optimal solution of (BoundedSDP)

1 Function FWGaussian:
2 Select initial point X0 ∈ S; set v0 ← B(X0) and sample z0 ∼ N (0, X0)
3 t← 0, γ ← 2/(t+ 2)

4 (ht, qt)← LMO(B∗(∇g(vt)),
1
2ηγC

u
g )

5 while 〈qt − vt,∇g(vt)〉 > ε do
6 (zt+1, vt+1)← UpdateVariable(zt, vt, ht, qt, γ)
7 t← t+ 1, γ ← 2/(t+ 2)

8 (ht, qt)← LMO(B∗(∇g(vt)),
1
2ηγC

u
g , p)

9 end
10 return (zt, vt)
11 Function LMO(J , δ):
12 Find a unit vector h such that with probability at least 1− p,

αλ = α〈hhT , J〉 ≥ maxd∈S α〈d, J〉 − δ
13 if λ ≥ 0 then q ← B(αhhT )
14 else q ← 0, h← 0
15 return (h, q)
16 Function UpdateVariable(z, v, h, q, γ):
17 z ← (

√
1− γ)z +

√
γαhζ where ζ ∼ N (0, 1)

18 v ← (1− γ)v + γq
19 return (z, v)

where A(1)(·) : Sn+ → Rd1 and A(2)(·) : Sn+ → Rd2 are linear maps. To use Algorithm 1, the linear
constraints are penalized using a smooth penalty function. Let ul = 〈A(1)

l , X〉−b(1)l for l = 1, . . . , d1

and vl = b
(2)
l − 〈A

(2)
l , X〉 for l = 1, . . . , d2. For M > 0, the smooth function φM (·) : Rd1+d2 → R,

φM (u, v) =
1

M
log

 d1∑
i=1

eM(ui) +

d1∑
i=1

eM(−ui) +

d2∑
j=1

eM(vj)

 , satisfies (3)

max
{
‖u‖∞,max

i
vi

}
≤ φM (u, v) ≤ log(2d1 + d2)

M
+ max

{
‖u‖∞,max

i
vi

}
.

We add this penalty term to the objective of (SDP) and define

max
X�0

{
〈C,X〉 − βφM (A(1)(X)− b(1), b(2) −A(2)(X)) : Tr(X) ≤ α

}
, (SDP-LSE)

where α, β and M are appropriately chosen parameters. Algorithm 1 then generates a Gaussian
sample with covariance X̂ε which is an ε-optimal solution to (SDP-LSE). It is also a near-optimal,
near-feasible solution to (SDP). This result is a slight modification of [27, Lemma 3.2] which only
provides bounds for SDPs with linear equality constraints.

Lemma 1. For ε > 0, let (X?, ϑ?, µ?) be an optimal primal-dual solution to (SDP) and its dual,
and let X̂ε be an ε-optimal solution to (SDP-LSE). If β > ‖ϑ?‖1 + ‖µ?‖1 and M > 0, then

〈C,X?〉 − β log(2d1 + d2)

M
− ε ≤ 〈C, X̂ε〉 ≤ 〈C,X?〉+ (‖ϑ?‖1 + ‖µ?‖1)

β log(2d1+d2)
M + ε

β − ‖ϑ?‖1 − ‖µ?‖1
,

max
{
‖A(1)(X)− b(1)‖∞,max

i

(
b
(2)
i −A

(2)
i (X)

)}
≤

β log(2d1+d2)
M + ε

β − ‖ϑ?‖1 − ‖µ?‖1
.
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3 Application of Gaussian Sampling to (k-Cut-SDP)

In this section, we look at the application of Gaussian sampling to MAX-K-CUT. Since Algorithm 1
uses O(n2) memory when solving (k-Cut-SDP), we define a new SDP relaxation of MAX-K-CUT
with the same approximation guarantee, but with O(|E|) constraints. We then apply Algorithm 1 to
this new relaxation, and show how to round the solution to achieve nearly the same approximation
ratio as given in (1). Let

αk = min
−1/(k−1)≤ρ≤1

kp(ρ)

(k − 1)(1− ρ)
, (4)

where p(Xij) is the probability that vertices i and j are in different partitions. If X is feasible
for (k-Cut-SDP) and CUT is the value of the k-cut generated by the FJ rounding scheme, then

E[CUT] =
∑

ij∈E,i<j
wijp(Xij)

≥
∑

ij∈E,i<j

k − 1

k
wij(1−Xij)αk = αk〈C,X〉.

(5)

Frieze and Jerrum [14] derive a lower bound on αk, showing that the method gives a nontrivial
approximation guarantee. Observe that (5) depends only on the values Xij if (i, j) ∈ E.

A new SDP relaxation of MAX-K-CUT. We relax the constraints in (k-Cut-SDP) to define

max
X�0

〈C,X〉 subject to
{

diag(X) = 1

Xij ≥ − 1
k−1 (i, j) ∈ E, i < j.

(k-Cut-Rel)

Since (k-Cut-Rel) is a relaxation of (k-Cut-SDP), its optimal objective function value provides an
upper bound on 〈C,X?〉, where X? is an optimal solution to (k-Cut-SDP), and hence, on the optimal
k-cut value optGk . Note that the bound in (5) holds true even if we replace X? by an optimal solution
to (k-Cut-Rel) since it depends on the value of Xij only if (i, j) ∈ E. Furthermore, when the FJ
rounding scheme is applied to the solution of (k-Cut-Rel), it satisfies the approximation guarantee on
the expected value of the generated k-cut given in (1), i.e., E[CUT] ≥ αkoptGk .

Using Algorithm 1. We now have an SDP relaxation of MAX-K-CUT that has n+ |E| constraints.
Penalizing the linear constraints in (k-Cut-Rel) using the function φM (·) (3), Algorithm 1 can now
be used to generate k samples with covariance X̂ε which is an ε-optimal solution to

max
X�0

{
〈C,X〉 − βφM

(
diag(X)− 1,− 1

k−1 − e
T
i Xej

)
: (i, j) ∈ E,Tr(X) ≤ n

}
. (k-Cut-LSE)

Optimality and feasibility results for (k-Cut-Rel). Given an ε-optimal solution to (k-Cut-LSE),
we show that it is also a near-optimal, near-feasible solution to (k-Cut-Rel).

Lemma 2. For ε ∈ (0, 1/2), let X?
R be an optimal solution to (k-Cut-Rel) and let X̂ε be an εTr(C)-

optimal solution to (k-Cut-LSE). For β = 6Tr(C) and M = 6 log(2n+|E|)
ε , we have

(1− 2ε)〈C,X?
R〉 ≤ 〈C, X̂ε〉 ≤ (1 + 4ε)〈C,X?

R〉 and (6)

‖diag(X̂ε)− 1‖∞ ≤ ε, [X̂ε]ij ≥ −
1

k − 1
− ε, (i, j) ∈ E, i < j. (7)

Generating a feasible solution to MAX-K-CUT. Since X̂ε might not necessarily be feasible
to (k-Cut-Rel), we cannot apply the FJ rounding scheme to the samples zi ∼ N (0, X̂ε). We,
therefore, generate samples zfi ∼ N (0, Xf ) using the procedure given in Algorithm 2 such that Xf

is a feasible solution to (k-Cut-Rel) and 〈C,Xf 〉 is close to 〈C, X̂ε〉.

We can now apply the FJ rounding scheme to zf1 , . . . , z
f
k as given in Lemma 3.

Lemma 3. For G = (V,E), let optGk be the optimal k-cut value and let X?
R be an optimal solution

to (k-Cut-Rel). For ε ∈
(
0, 14
)
, let X̂ε � 0 satisfy (6) and (7). Let zf1 , . . . , z

f
k be random vectors

generated by Algorithm 2 with input zi, . . . , zk ∼ N (0, X̂ε) and let CUT denote the value of a k-cut
generated by applying the FJ rounding scheme to zf1 , . . . , z

f
k . For αk as defined by (4), we have

αk(1− 4ε)optGk ≤ αk(1− 4ε)〈C,X?
R〉 ≤ E[CUT] ≤ optGk . (8)
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Algorithm 2: Generate Gaussian samples with covariance feasible to (k-Cut-Rel)

Input :Sample zi ∼ N (0, X̂ε) for i = 1, . . . , k and diag(X̂ε)

Output :zfi ∼ N (0, Xf ) for i = 1, . . . , k with Xf feasible to (k-Cut-Rel)

1 Function GeneratekSamples:
2 for i = 1, . . . , k do
3 Set err = max{0,max(i,j)∈E,i<j −1/(k − 1)− [X̂ε]ij}
4 Set zi = zi +

√
err y 1, where y ∼ N (0, 1)

5 Generate ζ ∼ N
(

0, I − diag∗
(

diag(X̂ε)+err
max(diag(X̂ε))+err

))
6 Set zfi = zi√

max(diag(X̂ε))+err
+ ζ

7 end
8 return zf1 , . . . , z

f
k

Computational complexity of Algorithm 1 when applied to (k-Cut-LSE). Finally, in Lemma 4,
we provide the computational complexity of the method proposed in this section, which concludes
the proof of Proposition 1.
Lemma 4. When the method proposed in this section (Section 3), with p = ε

T (n,ε) and T (n, ε) =
144 log(2n+|E|)n2

ε2 , is used to generate an approximate k-cut to MAX-K-CUT, the generated cut

satisfies E[CUT] ≥ αk(1− 5ε)optGk and runs in O
(
n2.5|E|1.25

ε2.5 log(n/ε) log(|E|)
)

time.

4 Application of Gaussian Sampling to (MA-SDP)

We now look at the application of our Gaussian sampling-based method to MAX-AGREE. Algorithm 1
uses O(n2) memory to generate samples whose covariance is an ε-optimal solution to (MA-SDP).
However, with the similar observation as in the case of MAX-K-CUT, we note that for any X feasible
to (MA-SDP), the proof of the inequality E[C] ≥ 0.766〈C,X〉, given in [10, Theorem 3], requires
Xij ≥ 0 only if (i, j) ∈ E. We therefore, write a new relaxation of (MA-SDP),

max
X�0

〈C,X〉 = 〈W+ + LG− , X〉 subject to
{

Xii = 1 ∀ i ∈ {1, . . . , n}
Xij ≥ 0 (i, j) ∈ E, i < j,

(MA-Rel)

with only n + |E| constraints. The bound E[C] ≥ 0.766〈C,X?〉 ≥ 0.766optGCC on the expected
value of the clustering holds even if the clustering is generated by applying the CGW rounding
scheme to an optimal solution X? of (MA-Rel). To use Algorithm 1, we penalize the constraints
in (MA-Rel) and define

max
X�0

{
〈C,X〉 − βφM (diag(X)− 1,−eTi Xej) : (i, j) ∈ E,Tr(X) ≤ n

}
. (MA-LSE)

Optimality and feasibility results for (MA-Rel). Algorithm 1 is now used to generate z ∼
N (0, X̂ε), where X̂ε is an ε-optimal solution to (MA-LSE). We show in Lemma 5 that X̂ε is
also a near-optimal, near-feasible solution to (MA-Rel).
Lemma 5. For ∆ = Tr(LG−)+

∑
ij∈E+ w

+
ij , ε ∈

(
0, 14
)
, letX?

G be an optimal solution to (MA-Rel)

and X̂ε be an ε∆-optimal solution to (MA-LSE). Setting β = 4∆ and M = 4 log(2n+|E|)
ε , we have

(1− 4ε)〈C,X?
G〉 ≤ 〈C, X̂ε〉 ≤ (1 + 4ε)〈C,X?

G〉 and (9)

‖diag(X̂ε)− 1‖∞ ≤ ε, [X̂ε]ij ≥ −ε, (i, j) ∈ E, i < j. (10)

Generating an approximate clustering. The CGW rounding scheme can only be applied if we
have a feasible solution to (MA-Rel). We, therefore, use a modified version of Algorithm 2, with Step
3 replaced by err = max{0,max(i,j)∈E,i<j −[X̂ε]ij} and input z1, z2, z3 ∼ N (0, X̂ε), to generate
zero-mean Gaussian samples whose covariance is a feasible solution to (MA-Rel). Finally, we apply
the CGW rounding scheme to the output of the modified of Algorithm 2.
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Lemma 6. Let X?
G be an optimal solution to (MA-Rel). For ε ∈ (0, 1/6), let X̂ε � 0 satisfy (9)

and (10), and let zf1 , z
f
2 , z

f
3 be random vectors generated by Algorithm 2 with input z1, z2, z3 ∼

N (0, X̂ε). Let optGCC denote the optimal clustering value for the graph G = (V,E) and let C denote
the value of the clustering generated from the random vectors zf1 , z

f
2 , z

f
3 using the CGW rounding

scheme. Then
E[C] ≥ 0.766(1− 6ε)〈C,X?

G〉 ≥ 0.766(1− 6ε)optGCC . (11)

Computational complexity of Algorithm 1 when applied to (MA-LSE).
Lemma 7. When the method proposed in this section (Section 4), with p = ε

T (n,ε) and T (n, ε) =
64 log(2n+|E|)n2

ε2 , is used to generate an approximate clustering, the value of the clustering satisfies

E[C] ≥ 0.766(1− 7ε)optGCC and runs in O
(
n2.5|E|1.25

ε2.5 log(n/ε) log(|E|)
)

time.

This completes the proof of Proposition 2.

5 Sparsifying the Laplacian Cost Matrix

As seen in Sections 3 and 4, the memory requirement for generating and representing an ε-optimal
solution to (k-Cut-LSE) and (MA-LSE) is bounded by O(n+ |E|). However, if the input graph G is
dense, the cost matrix will be dense and the number of inequality constraints will still be high. In
this section, we consider the situation in which the dense weighted graph arrives in a stream, and we
first build a sparse approximation with similar spectral properties. We refer to this additional step as
sparsifying the cost.

Definition 1 (τ -spectral closeness). Two graphs G and G̃ defined on the same set of vertices are said
to be τ -spectrally close if, for any x ∈ Rn and τ ∈ (0, 1),

(1− τ)xTLGx ≤ xTLG̃x ≤ (1 + τ)xTLGx. (12)

Spectral graph sparsification has been studied quite extensively (see, e.g., [2, 15, 28]). Kyng et al.
[22] propose a O(|E| log2 n)-time framework to replace a dense graph G = (V,E) by a sparser
graph G̃ = (V, Ẽ) such that |Ẽ| ∼ O(n log n/τ2) and G̃ satisfies (12) with probability 1− 1

poly(n) .
Their algorithm assumes that the edges of the graph arrive one at a time, so that the total memory
requirement is O(n log n/τ2) rather than O(|E|). Furthermore, a sparse cost matrix decreases the
computation time of the subproblem in Algorithm 1 since it involves matrix-vector multiplication
with the gradient of the cost.

MAX-K-CUT with sparsification. Let G̃ be a sparse graph with O(n log n/τ2) edges that is τ -
spectrally close to the input graph G. By applying the method outlined in Section 3, we can generate
a k-cut for the graph G̃ (using O(n log n/τ2) memory) whose expected value satisfies the bound (8).
Note that, this generated cut is also a k-cut for the original graph G with provable approximation
guarantee as shown in Lemma 8.

Lemma 8. For ε, τ ∈ (0, 1/5), let X̂ε be a near-feasible, near-optimal solution to (k-Cut-Rel)
defined on the graph G̃ that satisfies (6) and (7). Let CUT denote the value of the k-cut generated by
applying Algorithm 2 followed by the FJ rounding scheme to X̂ε. Then the generated cut satisfies

αk(1− 4ε− τ)optGk ≤ E[CUT] ≤ optGk ,

where optGk is the value of the optimal k-cut for the original graph G.

MAX-AGREE with sparsification. The number of edges |E+| and |E−| in graphs G+ and G−
respectively determine the working memory of Algorithm 1. For dense input graphs G+ and G−, we
sparsify them to generate graphs G̃+ and G̃− with at most O(n log n/τ2) edges and define

max
X∈S

f̃(X) = 〈LG̃− + W̃+, X〉 − βφM (diag(X)− 1,−[eTi Xej ](i,j)∈Ẽ), (MA-Sparse)

where S = {X : Tr(X) ≤ n,X � 0}, LG̃− is the Laplacian of the graph G̃−, W̃+ is matrix
with nonnegative entries denoting the weight of each edge (i, j) ∈ Ẽ+, and Ẽ = Ẽ+ ∪ Ẽ−.
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Algorithm 1 then generates an ε(Tr(LG̃−) +
∑
ij∈Ẽ+ w̃

+
ij)-optimal solution, X̂ε, to (MA-Sparse)

usingO(n log n/τ2) memory. We can now use the method given in Section 4 to generate a clustering
of graph G̃ whose expected value, E[C], satisfies (11). The following lemma shows that C also
represents a clustering for the original graph G with provable guarantees.

Lemma 9. For ε, τ ∈ (0, 1/9), let X̂ε be a near-feasible, near-optimal solution to (MA-Sparse)
defined on the graph G̃ that satisfies (9) and (10). Let C denote the value of the clustering generated
by applying Algorithm 2 followed by the CGW rounding scheme to X̂ε. Then, E[C] satisfies

0.766(1− 6ε− 3τ)(1− τ2)optGCC ≤ E[C] ≤ optGCC ,

where optGCC is the value of the optimal clustering of the original graph G.

We summarize our results in the following lemma whose proof is given in the Supplementary material.
Lemma 10. Assume that the edges of the input graph G = (V,E) arrive one at a time in
a stream. The procedure given in this section uses at most O(n log n/τ2) memory and in

O
(
n2.5|E|1.25

ε2.5 log(n/ε) log(|E|)
)

-time, generates approximate solutions to MAX-K-CUT and MAX-

AGREE that satisfy the bounds E[CUT] ≥ αk(1− 5ε− τ)optGk and E[C] ≥ 0.766(1− 7ε− 3τ)(1−
τ2)optGCC respectively.

6 Computational Results

We now discuss the results of preliminary computations to cluster the vertices of a graph G using
the approach outlined in Section 4. The aim of numerical experiments was to verify that the bounds
given in Lemma 6 were satisfied when we used the procedure outlined in Section 4 to generate a
clustering for each input graph. We used the graphs from GSET dataset [35] which is a collection of
randomly generated graphs. Note that the aim of correlation clustering is to generate a clustering
of vertices for graphs where each edge has a label indicating ‘similarity’ or ‘dissimilarity’ of the
vertices connected to that edge. We, therefore, first converted the undirected, unweighted graphs
from the GSET dataset [35] into the instances of graphs with labelled edges using an adaptation of
the approach used in [32, 33]. This modified approach generated a label and weight for each edge
(i, j) ∈ E indicating the amount of ‘similarity’ or ‘dissimilarity’ between vertices i and j.

Generating input graphs for MAX-AGREE. In the process of label generation, we first computed
the Jaccard coefficient Jij = |N(i)∩N(j)|/|N(i)∪N(j)|, where N(i) is the set of neighbours of i
for each edge (i, j) ∈ E. Next we computed the quantity Sij = log((1−Jij +δ)/(1+Jij−δ)) with
δ = 0.05 for each edge (i, j) ∈ E, which is a measure of the amount of ‘similarity’ or ‘dissimilarity’.
Finally, the edge (i, j) was labelled as ‘dissimilar’ if Sij < 0 with w−ij = −Sij and labelled as
‘similar’ with w+

ij = Sij otherwise.

Experimental Setup. We set the input parameters to ε = 0.05, ∆ = Tr(LG−) +
∑
ij∈E+ w

+
ij ,

β = 4∆, M = 4 log(2n)+|E|
ε . Using Algorithm 1, (MA-LSE) was solved to ε∆-optimality and,

we computed feasible samples using Algorithm 2. Finally, we generated two Gaussian samples
and created at most four clusters by applying the 0.75-rounding scheme proposed by Swamy [30,
Theorem 2.1], for simplicity. The computations were performed using MATLAB R2021a on a
machine with 8GB RAM. We noted the peak memory used by the algorithm using the profiler
command in MATLAB. The code and the GSET dataset are included in the Supplementary material.

The computational result for some randomly selected instances from the dataset is given in Table 1.
We have provided the result for the rest of the graphs from GSET in the Supplementary material.
First, we observed that for each input graph, the number of iterations of LMO for ε∆-convergence
satisfied the bound given in Proposition 1 and the infeasibility of the covariance X̂ε of the generated
samples was less than ε satisfying (10). We generated 10 pairs of i.i.d. zero-mean Gaussian
samples with covariance X̂ε, and each in turn was used to generate a clustering for the input
graph using the 0.75-rounding scheme proposed by Swamy [30]. Amongst the 10 clusterings
generated for each graph, we picked the clustering with largest value denoted by Cbest. Note that,
Cbest ≥ E[C] ≥ 0.75(1 − 6ε)〈C,X?

G〉 ≥ 0.75 1−6ε
1+4ε 〈C, X̂ε〉, where the last inequality follows from

9



combining (11) with (9). Since we were able to generate the values, Cbest and 〈C, X̂ε〉, we noted that
the weaker bound Cbest/〈C, X̂ε〉 = AR ≥ 0.75(1− 6ε)/(1 + 4ε) was satisfied by every input graph
when ε = 0.05.

Table 1 also shows the memory used by our method. Consider the dataset G1, for which the memory
used by our method was 1526.35kB ≈ 9.8× (|V |+ |E+|+ |E−|)× 8, where a factor of 8 denotes
that MATLAB requires 8 bytes to store a real number. Similarly, we observed that our method used
at most c× (|V |+ |E+|+ |E−|)× 8 memory to generate clusters for other instances from GSET,
where c ≤ 33 for every instance of the input graph, showing that the memory used was linear in the
size of the input graph.

Table 1: Result of generating a clustering of graphs from GSET using the method outlined in
Section 4. We have, infeas = max{‖diag(X)− 1‖∞,max{0,−[X̂ε]ij}}, AR = Cbest/〈C, X̂ε〉 and
0.75(1− 6ε)/(1 + 4ε) = 0.4375 for ε = 0.05.

Dataset |V | |E+| |E−|
#
Iterations
(×103)

infeas 〈C, X̂ε〉 Cbest AR
Memory
required
(in kB)

G1 800 2453 16627 669.46 10−3 849.48 643 0.757 1526.35
G11 800 817 783 397.2 6× 10−4 3000.3 2080 0.693 448.26
G14 800 3861 797 330.02 8× 10−4 542.55 469.77 0.866 423.45
G22 2000 115 19849 725.66 10−3 1792.9 1371.1 0.764 1655.09
G32 2000 2011 1989 571.42 9× 10−4 7370 4488 0.609 1124
G43 1000 248 9704 501.31 10−3 803.8 616.05 0.766 654.46
G48 3000 0 6000 9806.22 0.004 599.64 461.38 0.769 736.09
G51 1000 4734 1147 1038.99 0.001 676.21 446.29 0.66 517.09
G55 5000 66 12432 2707.07 0.002 1244.2 901.74 0.724 1281.03
G57 5000 4981 5019 574.5 0.005 18195 10292 0.565 812.78

7 Discussion

In this paper, we proposed a Gaussian sampling-based optimization algorithm to generate approx-
imate solutions to MAX-K-CUT, and the MAX-AGREE variant of correlation clustering using
O
(
n+ min

{
|E|, n logn

τ2

})
memory. The approximation guarantees given in [10, 14, 30] for these

problems are based on solving SDP relaxations of these problems that have n2 constraints. The key
observation that led to the low-memory method proposed in this paper was that the approximation
guarantees from literature are preserved for both problems even if we solve their weaker SDP relax-
ations with only O(n+ |E|) constraints. We showed that for MAX-K-CUT, and the MAX-AGREE
variant of correlation clustering, our approach nearly preserves the quality of the solution as given
in [10, 14]. We also implemented the method outlined in Section 4 to generate approximate clustering
for random graphs with provable guarantees. The numerical experiments showed that while the
method was simple to implement, it was slow in practice. However, there is scope for improving the
convergence rate of our method so that it can potentially be applied to the large-scale instances of
various real-life applications of clustering.

Extending the low-memory method to solve problems with triangle inequalities. The known
nontrivial approximation guarantees for sparsest cut problem involve solving an SDP relaxation that
has n3 triangle inequalities [4]. It would be interesting to see whether it is possible to simplify these
SDPs in such a way that they can be combined nicely with memory efficient algorithms, and still
maintain good approximation guarantees.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The abstract provides an overview of the results. See
Section 1.3 (Contributions) for the summary of the results.

(b) Did you describe the limitations of your work? [Yes] See Section 7
(c) Did you discuss any potential negative societal impacts of your work? [No] Our method,

while memory-efficient and simple to implement, is not yet a practical algorithm, owing
to slow convergence. While clustering algorithms can potentially be misused, our
contributions do not seem to have direct impact on large-scale applications.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] The assump-
tions are provided in the statements of the results.

(b) Did you include complete proofs of all theoretical results? [Yes] The proofs of all the
results are provided in the supplementary material.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The code and
data are included in the Supplementary material. We will include the de-anonymized
URL to the github repository containing the code and the data in the camera-ready
version of the accepted paper.
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All parameters choices for our experiments are explicitly given
and they are chosen according to theory in the paper.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We have reported the best solution value and explicitly
stated the results with reference to the best value as this appropriate from the context.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We have used MATLAB 2021b
and performed the experiments on a local machine with 8GB RAM and 4 cores. We
have also included this information in Section 6.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We have used

graphs from GSET dataset [35] for numerical experiments. We have added the citation
accordingly in Section 6 (Computational results).

(b) Did you mention the license of the assets? [No] The license situation of the assets is
not clear. However, the dataset has been widely used for over 18 years, and is posted
publicly in multiple places.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] We have added a link (URL) to the code which we created and used to run the
experiment.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] GSET comprises of collection of randomly generated graphs,
and does not contain personal information/data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] GSET comprises of randomly generated graphs
and as such, is not deemed to have personal data in any way.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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